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Abstract
We discuss using a single inference procedure (abduction) for implementing the
various modules of an intelligent decision support systems.

1 Introduction

We define intelligent decision support systems (IDSSs) as model-based software systems
that support management comfort in vague domains. In terms of a computational archi-
tecture, the main requirements for such a system are the ability to:

o Validate models;
e Perform inference over those models using assumptions;
e Managing mutually exclusive assumptions in separate worlds;

e Support domain specific criteria for finding the best worlds.

We find that a single inference procedure (abduction) satisfies all these requirements.
Hence, we propose the use of abduction as a framework for IDSS.

All the above terms in italics are defined below.

Section 1 describes in detail our definition of IDSS. Section 2 describes abduction.
Section 3 discusses using abduction for IDSS. Section 4 discuss the practicality of our
proposal.

Note that this work is part of our abductive reasoning project. We believe that abduc-
tion provides a comprehensive picture of declarative KBS inference. Apart from IDSS,
we argue elsewhere [25, 24] that abduction is useful also for prediction, classification,
explanation, planning, qualitative reasoning, verification, diagrammatic reasoning, and
multiple-expert knowledge acquisition. Further, abduction could model certain inter-
esting features of human cognition [26]. Others argue elsewhere that abduction is also a
framework for natural-language processing [28], design [34], visual pattern recognition [35],
analogical reasoning [9], financial reasoning [15], machine learning [16, 30] and case-based
reasoning [19].
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2 What is an IDSS?

Henri Fayol suggested in 1916 that managers plan, organise, co-ordinate and control.
This lead to a view of managers as agents systematically assessing all relevant factors
to generate some optimum plan. Sometime in the sixties, it was realised that electronic
computers could automatically and routinely generate the information required for the
Fayol model. This lead to the era of the management information system (MIS) and the
wastage of a lot of paper. Managers found themselves overloaded with more information
than they could manage.

Mintzberg’s classic empirical fly-on-the-wall tracking of managers in the day-to-day
work demonstrated that the Fayol model was normative, rather than descriptive. For
example, a study of 56 U.S. foreman found that they averaged 583 activities in an eight-
hour shift (one every 48 seconds). Another study of 160 British middle and top managers
found that they worked for half an hour or more without interruption only once every
two days [14]. This frantic pace for decision making does not match with Fayol’s model
of managers as systematic agents.

The lesson of MIS was that management decision making was not inhibited by a lack
of information. Rather, it is confused by an excess of irrelevant information [1]. Modern
decision-support systems (DSS) evolved to filter useless information to deliver relevant
information (a subset of all information) to the manager. Our preferred definition of a
decision-support system is based on Brookes who developed it from Mintzberg’s model [3].
The goal of a DSS is management comfort, i.e. a subjective impression that all problems
are known and under control. More specifically, managers need to seek out problems,
solve them, then install some monitoring routine to check that the fix works. A taxonomy
of tasks used in that process is shown in Figure 1

Other DSS workers have a similar view. Boose, Bradshaw, Koszaek, and Shema
(BBKS) [2] discuss DSS architectures suitable for groups. Portions of the BBKS and the
Brookes” models overlap. The BBKS system lets groups manipulate their group model,
its inter-relationships, and the group’s criteria for selecting the best alternative. BBKS
stress that:

The process of generating and scoring alternatives are at the heart of most
decision processes. [2]

In the typical business situation, this process occurs domains containing much guess
work. We have previously characterised [23] such vague domains as being:

o Poorly measure: 1.e. known data from that domain is insufficient to confirm or deny
that some inferred state is valid;

o Hypothetical: i.e. the domain lacks an authorative oracle that can declare knowledge
to be “right” or “wrong”. Note that in a well-measured domain, the authorative
oracle could be a database of measurements.

o Indeterminate: i.e. inferencing over a knowledge base could generate numerous,
mutually exclusive, outcomes. For example, consider the qualitative model [17] of
Figure 2. In that figure:
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Figure 1: Components of management comfort

— X ¥ denotes that Y being UP or DOWN could be explained by X being UP
or DOWN respectively;

— X — Y denotes that Y being UP or DOWN could be explained by X being
DOWN or UP respectively.

Note that the results of this model may be uncertain; i.e. it is indeterminate. In
the case of both A and B going UP, then we have two competing influences of C
and it is indeterminate whether C goes UP, DOWN, or remains STEADY.
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Figure 2: An indeterminate qualitative model.

Models developed for vague domains have two properties. Firstly, inference requires
making guesses or assumptions and mutually exclusive assumptions must be managed
separately. Secondly, since vague domains lack an authorative oracle, their models may
be widely inaccurate. Modeling in vague domains therefore requires a validation engine.
We have argued previously that such a validation engine should not be based on internal



syntactic criteria (e.g. detection of subsumption or loops) [25]. We know of examples
of working expert systems that contain these anomalies, yet still satisfy their day-to-day
operational criteria [36]. We argue that the definitive test for any model is “can a model
of X reproduce known behaviour of X”. That is, external test suite validation is more
important that internal syntactic verification.

We define an intelligent decision support system as a model-based software device that
can execute in vague domains to support both external test suite validation and the tasks
of Figure 1. Note that, by this definition, an IDSS must manage the assumption space of
a problem.

3 Abduction

In this section, we discuss an inference procedure called abduction. In the next section
we will argue that this procedure can implement IDSS.

Informally, abduction is inference to the best explanation [29]. Given « , 3, and the
rule Ry : a F 3, then deduction is using the rule and its preconditions to make a conclusion
(a A Ry = (3); induction is learning Ry after seeing numerous examples of 3 and «; and
abduction is using the postcondition and the rule to assume that the precondition could
be true (8 A Ry = «) [20].

More formally, abduction is the search for assumptions A which, when combined with
some theory 7 achieves some goal G without causing some contradiction [8]. That is:

EQ.:: TUARG
EQy: TUAKL

In order to understand abduction in more detail, we describe our HT4 abductive
inference engine [25]. To execute HT4, the user must supply a theory 7 comprising a set
of uniquely labeled statements §,. For example, from Figure 2, we could say that:

s[1] = plus_plus(a,b).
s[2] = minus_minus(b,c).
etc.

The dependency graph D connecting literals in 7 is an and-or graph comprising
<< Y VYo s € T >:ie. aset of directed edges € connecting vertices V contain-
ing invariants Z. 7 is defined in the negative; i.e. =Z means that no invariant violation
has occurred (e.g. =Z(p,—p)). Each edge &£, and vertex V, is labeled with the S, that
generated it.

For example, returning to the theory T of Figure 2, let us assume that (i) each node
of that figure can take the value UP, DOWN, or STEADY; (ii) the conjunction of an UP
and a DOWN can explain a STEADY; and (iii) no change can be explained in terms of
a STEADY (i.e. a STEADY vertex has no children). With these assumptions, we can
expand Figure 2 into Figure 3. In that figure, V*** vertices are denoted (e.g.) €002 while
all other vertices are V" vertices. Note that in practice, the assumptions used to convert

T into D are contained in a domain-specific model-compiler.
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Figure 3: D calculated from the T of Figure 2

Not shown in Figure 3 are the invariants. For a qualitative domain, where nodes can
have one of a finite number of mutually exclusive values, the invariants are merely all
pairs of mutually exclusive assignments; e.g.:

i(aUp, aSteady). i(aSteady, aUp).
i(aUp, aDown). i(aDown, aUp).
i(bUp, bSteady). i(bSteady, bUp).
i(bUp, bDown).  i(bDown, bUp).
etc.

HT4 extracts subsets of £ which are relevant to some user-supplied T ASK. Fach
TASK, is a triple < ZN,OUT ,BEST >. Each task comprises some OUT puts to be
reached, given some ZAN put (OUT CV and ZN C V). For the rest of this paper we will

explore the example where:

IN
ouT

{aUp, bUp}
{dUp, eUp, fDown}

ZN can be either be a member of the known FACTS or a DEFAULT belief which
we can assume if it proves convenient to do so. Typically, FACTS = IN U OUT. If
there is more than one way to achieve the TASK, then the BEST operator selects the
preferred way(s).

To reach a particular output OUT , € OUT , we must find a proof tree P, using vertices
Pt whose single leaf is OUT , and whose roots are from ZA (denoted P7°°* C IN).

All immediate parent vertices of all Vznd e P must also appear in P****. One parent



of all V" € P must also appear in P*** unless V)" € IN (i.e. is an acceptable root
of a proof). No subset of P may contradict the FACTS; e.g. for invariants of arity 2:

~(V, € P4 AV, € FACTS A I(V,,V.))

For our example, the proofs are:

p(1) = {alp, xUp, yUp, dUp}
p(2) = {alp, cUp, gUp, dUp}
p(3) = {alp, cUp, gUp, eUp}
p(4) = {bUp, cDown, gDown, fDown}
p(5) = {bUp, fDown}

The union of the vertices used in all proofs that are not from the FACTS is the HT4
assumption set Agyy; i.e.

Am = [U{v, € Put}| - FACTS

Y

The proofs in our example makes the assumptions:
a = {xUp, yUp, cUp, gUp, cDown, gDown}

The union of the subsets of A,;; which violate Z are the controversial assumptions Ag:

Ac = U {VI e A A V, € A /\I(vay)}
Vﬂ:

The controversial assumptions of our example are:
ac = {cUp, gUp, cDown, gDown}

Within a proof P, the preconditions for V, € Pgsed are the transitive closure of all the
parents of ¥V, in that proof. The base controversial assumptions (Ag) are the controversial
assumptions which have no controversial assumptions in their preconditions (i.e. are not
downstream of any other controversial assumptions). The base controversial assumptions
of our example are:

ab = {cUp, cDown}

Maximal consistent subsets of P (i.e. maximal with respect to size, consistent with
respect to Z) are grouped together into worlds W (W, C £). Each world W; contains a
consistent set of beliefs that are relevant to the T.ASK. The union of the vertices used in
the proofs of W, is denoted W¥***, In terms of separating the proofs into worlds, Ap are
the crucial assumptions. We call the maximal consistent subsets of Ap the environments

ENV (ENV; C A € Ac € A C V). The environments of our example are:

env(1l)
env(2)

{cUp}
{cDown}



The union of the proofs that do not contradict EAV; is the world W;. In order to check
for non-contradiction, we compute the exclusions set X'. X; are the base controversial
assumptions that are inconsistent with EA'V;. The exclusions of our example are:

x(1) = {cDown}
x(2) = {cUp}

A proof P; belongs in world W; if it does not use any member of &'; (the excluded
assumptions of that world); i.e.
- (Pt .-}

Note that each proof can exist in multiple worlds. The worlds of our example are:

{p(1), p(2), p(3), p(B)}
{p(1), p(4), p(8d}

w(1l)
w(2)

W; is shown in Figure 4 and W; is shown in Figure 5.
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Figure 5: W,

For any world W;, W*“*** are the members of ZA found in W; (W5 = W= q TN,
The achievable or covered goals G in W, are the members of OUT found in that world
(Wsevered — e - OYT). Continuing our example:

{aUp, bUp}
{aUp, bUp}

causes(w(1))
causes(w(2))

{dUp, eUp, fDown}
{dUp, fDown}

cover(w(1))
cover (w(2))



Note that, in our example, we have generated more than one world and we must now
decide which world(s) we prefer. This is done using the BEST criteria. Numerous BEST s

can be found in the literature; e.g. the BEST worlds are the one which contain:
1. the most specific proofs (i.e. largest size) [12];
2. the fewest causes [37];
3. the greatest cover [23];
4. the most number of specific concepts [32];
5. the largest subset of £ [28];
6. the largest number of covered outputs [27];
7. the most number of edges that model processes which are familiar to the user [31];

8. the most number of edges that have been used in prior acceptable solutions [19];

Our view is that BEST is domain specific; i.e. we believe that their is no best BEST.

4 Using Abduction for IDSS

In order to satisfy our definition of an IDSS, abduction must be able to support validation,
problem detection, diagnosis, alternative generation and assessment, and monitoring in
vague domains. In this section, we argue that this is indeed the case.

HT4 can run with a minimum of information about the model at hand. During
execution, mutually exclusive assumptions are maintained in separate worlds. HT4 was
originally developed as a validation algorithm for external test suite assessment. Given a
library of known behaviours (i.e. a set of pairs < ZAN, OUT >), abductive validation uses
a BEST that favours the worlds with largest number of covered outputs (i.e. maximise
IN N W) [27]. Returning to our above example, we see that there exists a world w(1)
whose cover is all of OUT; i.e. there exists a set of assumptions by which all of the known
behaviour can be explained. Since HT4 can handle validation and inference in poorly
measured, indeterminate domains overly possible incorrect model; it is suitable for vague
domains and IDSS.

IDSS diagnosis can be implemented using either set-covering or consistency-based di-
agnosis. Parsimonious set-covering diagnosis [37] uses a BEST that favors worlds that
explain the most things, with the smallest number of diseases (i.e. maximise W, N OUT
and minimise W, N ZN'). Set-covering diagnosis is best for fault models and causal
reasoning [18]. Set-covering diagnosis could implement IDSS detection. Experts can add
alarm points into the model. If we can reach certain vertices (the alarm points), then the
system can detect potential problems.

The opposite of set-covering diagnosis is consistency-based diagnosis [5, 7,13, 33, 38] in
which all worlds consistent with the current observations are generated. In this abductive
framework, this is implemented by calling HT4 with OUT C V — IN; ie. find all
vertices we can reach from the inputs. The FACTS is restricted to being empty (i.e. all



vertices are possible) or just ZN (i.e. only the inputs cannot be contradicted). This is a
non-naive implementation of prediction since mutually exclusive predictions will be found
in different worlds. Note that in the special case where:

e ZN are all root vertices in the graph
o FACTS =0
e OUT =V — IN

then our abductive system will compute ATMS-style [6] total envisionments; i.e. all
possible consistent worlds that are extractable from the theory. A more efficient case is
that ZN is smaller than all the roots of the graph and some interesting subset of the
vertices have been identified as possible reportable outputs (i.e. OUT C V — IN).
This process can be varied slightly. For example, in Reiter’s variant on consistency-based
diagnosis [38], all predicates relating to the behaviour of a model component V, assume a
test that V. in not acting ABnormally; i.e. “AB(V,). BEST Reiter is to favour the worlds
that contain the least number of AB assumptions.

IDSS assessment generation and selection is merely the world generation and selection
process described above. Experts can specify their preference criteria using BEST .

Lastly, we can use abductive for IDSS monitoring. In the case where BEST returns
us N worlds, we can pass these worlds to a monitoring process which reviews the possible
worlds as new data comes to light. Worlds that use literals which are inconsistent with
new data are rejected. The remaining worlds represent the space of possible ways to
achieve the desired goals in the current situation. If all worlds are rejected, then HT4 is
run again using all the available data.

5 Practicality

Abduction has a reputation of being impractically slow [8]. Selman & Levesque show that
even when only one abductive explanation is required and 7 is restricted to an acyclic
theories, then abduction is NP-hard [39]. Bylander et. al. make a similar pessimistic
conclusion [4].

In practice these theoretical restrictions may not limit application development. The
core computational problem of HT4 is the search for &’;. Earlier versions of HT4 [10,
11, 22] computed the BEST worlds W via a basic depth-first search chronological back-
tracking algorithm (DFS) with no memoing. These systems took days to terminate [25].
Mackworth [21] and DeKleer [6] warn that DFS can learn features of a search space, then
forget it on backtracking. Hence, it may be doomed to waste time re-learning those fea-
tures later on. One alternative to chronological backtracking is an algorithm that caches
what it learns about the search space as it executes. HT4 runs in four “sweeps” which
learn and cache features of the search space as it executes. For details, see [24, 25]. In
experiments with 94 models run 1991 times, HT4 proved to be practical for models of up
to 800 vertices in D [25, 27].

In those runtime experiments, a worlds-level BEST was used for worlds assessment.
Such worlds-level BEST operators have the drawback that they cannot be used by a local



propagation algorithm to cull the search space. There is no reason why certain BESTs
could not applied earlier; e.g. during proof generation. For example, if it is known that
BEST will favour the worlds with smallest path sizes between inputs and goals, then a
beam-search style BEST operator could cull excessively long proofs within the generation
process.

More generally, we characterise BESTs into the information they require before they
can run:

o Vertex-level assessment operators can execute at the local-propagation level; e.g.
use the edges with the highest probability.

e Proof-level assessment operators can execute when some proofs or partial proofs
are known; e.g. beam search. Ng & Mooney report reasonable runtimes for their
abductive system using a beam-search proof-level assessment operator [28].

e Favoring the world(s) that cover (e.g.) the greatest number of outputs (i.e. the val-
idation process described above) is a worlds-level assessment operator which cannot
execute till all the worlds are generated.

While the complexity of BEST is operator specific, we can make some general state-
ments about the computational cost of BEST. Vertex or proof-level assessment reduce
the complexity of proof generation (since not all paths are explored). Worlds-level assess-
ment is a search through the entire space that could be relevant to a certain task. Hence,
for fast runtimes, do not use worlds-level assessment. However, for some tasks (e.g. the
validation task), worlds-level assessment is unavoidable.

6 Conclusion

A single inference procedure (abduction) can support many of the sub-routines required
for an intelligent decision support system; i.e. validation, detection, diagnosis, alternative
generation and assessment, and monitoring. Hence, we propose the use of abduction as a

framework for IDSS.
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