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Abstract

We present a theoretical framework for compar-
ing visual languages. This framework was devel-
oped in order to teach an introductory visual pro-
gramming subject. The subject aims at teaching
students general principles of visual programming
rather than just the details of a particular visual
programming systems. To support these aims, we
also developed an evaluation framework for visual
programming concepts. Such frameworks would be
useful for other educators as well as novices to vi-
sual programming who want a quick introduction
to the numerous publications in this field.

1 Introduction

A summary of the visual programming (VP) field
is a report of an emerging field which is still de-
veloping its theoretical foundations (though see [5]
for an interesting approach to a precise theory of
VP). An introduction to VP must therefore be an
ezxploration of an emerging field, rather than a re-
port and summary of an established field.

This paper presents two overview frameworks
developed for SFT5030, a one semester postgradu-
ate VP subject run by the Department of Soft-
ware Development of Monash University. This
subject adopts the exploratory approach. In
SFT5030, students are encouraged to actively cri-
tique the claims on any particular paper. An
evaluation framework was provided allowing stu-
dents to assess VP systems (see Section 3). Lec-
tures presented different classic VP systems (usu-
ally from [10, 11]), using the theoretical frame-
work. Students had to select their own VP system
and present it as a seminar using the same theo-
retical framework. In tutorials, students assessed
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commercially available VP systems (1ITHINK, Vi-
SUALAGE, and the QBE editor of MicrosoFT Ac-
cess). A theoretical framework was also pro-
vided that allowed students to compare differ-
ent VP systems (see Section 2). This theoret-
ical framework is based on (i) short overviews
of the VP field [5, 18]; (ii) evaluation criteria
for different VP systems [26, 36]; (iii) collections
that “snapshot” the state-of-the-art in VP at var-
ious times [10, 11, 17, 19, 32]; (iv) the anecdotal
notes (and an excellent bibliography) found in the
comp.visual.languages frequently asked ques-
tions (FAQ) list; and (v) discussions with SFT5030
students.

The rest of this paper presents the theoretical
and evaluation frameworks. An appendix shows
the evaluation of a commercial VP system (the
composition editor of VISUALAGE) using the the-
oretical framework.

2 A Theoretical
Framework for VP

As a rough rule-of-thumb, a visual program-
ming system is a computer system whose execu-
tion can be specified without scripting except for
entering unstructured strings such as ¢ ‘Monash
University Banking Society’’ or simple ex-
pressions such as a > 7. Visual representations
have been used for many years (e.g. Venn dia-
grams) and even centuries (e.g. maps). Executable
visual representations, however, have only arisen
with the advent of the computer. With falling
hardware costs, it has become feasible to build
and interactively manipulate intricate visual ex-
pressions on the screen.

More precisely, a non-visual language is a one-
dimensional stream of characters while a VP sys-
tem uses at least two dimensions to represent its
constructs [5]. We distinguish between a pure VP
system and a visually supported system:



e A pure VP system must satisfy two criteria.
Rule #1: the system must execute. That is,
it is more than just a drawing tool for soft-
ware or screen designs. Rule #2: the spec-
ification of the program must be modifiable
within the system’s visual environment. In
order to satisfy this second criteria, the spec-
ification of the executing program must be
configurable. This modification must be more
than just (e.g.) merely setting numeric thresh-
old parameters.

e There exists a class of VP systems that are
not pure, but are visually supported systems.
Most commercial VP systems are not pure VP
systems, such as VISUAL BASIC, DELPHI,
and VIisUALAGE. For more details on visually
supported systems, see Section 2.3.

A very useful feature of a VP system is direct
manipulation [35]. A direct manipulation inter-
face:

e Makes directly visible the object of interest;

e Supports rapid, reversible, and incremental
actions;

e Replaces complex command structures by di-
rect manipulation of the object of interest;

e Supports a spiral model of learning. Mini-
mal initial knowledge is required to start with
the system. Complex operations can be learnt
subsequently, as required.

Note that direct manipulation is not a sufficient
condition for calling a programming system “vi-
sual”. Rather, it is a pragmatically useful feature
of a productive interface.

In the theoretical framework, two basic tools
are offered to students for analysing a visual sys-
tem. Figure 1 shows a sample “Shu Triangle” [36].
Shu triangles are discussed in Section 2.1 and Sec-
tion 2.6.

Figure 2 shows three dimensions along which
we can characterise VP systems: their expressions,
their purpose, and their design. These dimensions
are discussed in Sections 2.2, 2.3, and 2.4.

2.1 The Shu Triangle

Shu [36] defines three comparative criteria for as-
sessing VP systems: visual extent, language level,
and scope (see Figure 1.1). While other VP classi-
fication schemes may be more up-to-date or more
specific (e.g. [17]), we have found Shu’s criteria is
insightful and simple for novices to the VP field.

visual
extent

visual
extent

PIGS
0} (i)
Figure 1: The Shu triangle
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visual
expressions design
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Figure 2: Dimensions of a VP system

We explain the Shu triangle to students as fol-
lows:

o Visual extent refers to the intricacy of the vi-
sual entities used by the system. For exam-
ple, a system with only text has a very low
(? zero) visual extent while a virtual reality
system scores off the dial on visual extent.

e Language level is measured as the inverse of
the effort required to perform a particular
task. For example, compare the effort in-
volved coding a database query in raw C with
the same query in SQL. The programming
would have to type more in C. Therefore, for
this task, C has a lower language level than
SQL.

o Scope measure the generality of the VP sys-
tem. In Shu’s terminology, scope moves from
a low value of specific to a high value of
general. For example, there exist a class of
VP systems which can only be customised
by coding in a traditional text-based pro-
gramming language (e.g. XErox STAR [29],
and VISUALAGE- see appendix). These sys-
tems are less general than VP systems where



new sub-routines can be specified visually (e.g.
THINGLAB [3]).

Roughly speaking, the language level is a mea-
sure of what can be done with the VP system in
a limited amount of time (say, an hour) while the
scope is a measure of what can be done with the
VP system in an unlimited time.

The Shu triangle is a relative criteria. It
can only be meaningfully used when two
or more criteria are simultaneously displayed.
For example, Figure 1.ii compares a graphical
structure-chart editor/interpreter (PICT [12]) to
a Nassi-Shneiderman diagram editor/interpreter
(PIGS [28]). PICT has a very specific scope due to
the limitations of the language constructs which
it can handle. The graphics used for the Nassi-
Shneiderman graphics in PIGS are fixed while the
PICT visual editor is a general point-and-click icon
editor. Therefore PICT has a higher visual extent
than PIGS. Both have similar language level, but
Shu believes that PIGS can support a wider vari-
ety of language constructs. Hence, Shu argues that
PIGS has a higher language level.

Due to the comparative nature of the Shu tri-
angle, students must be given some initial sys-
tem to “calibrate” the triangle. In the first tuto-
rial of SFT5030, students spend an hour building
database queries with MiCROSOFT AccEss’s visual
query editor. Once this system was familiar to stu-
dents, they could use it as the baseline for future
comparisons.

Despite the merits of the Shu triangle for teach-
ing purposes, we found that we had to further re-
fine its criteria. These refinements are presented in
Section 2.6, after an expansion of our theoretical
framework.

2.2 Expressions in a VP System

Visual expressions are of at least six types in in-
creasing order of visual extent: text, simple forms,
tables, icons, diagrams, and “other” (see Figure 3).

Purely text-based systems have the lowest-level
of visual expressiveness. Simple form-based sys-
tems are slightly more expressive. These systems
let the user “fill-in-the-blanks” of some prototype
specification to generate a more specific specifica-
tion. Simple form-based systems may require very
limited graphical support and can be developed
on character-based screens. Such character-based
screens limit the representation of (e.g.) two-
dimensional graphs. Hence, simple form-based sys-
tems are low-end VP systems.

We take care to distinguish between “simple

other
(e.g CAVE)
diagram
visual (e.g. THINGLAB)
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(e.g. XEROX Star)
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Figure 3: Visual expression types

form-based” systems and more general form-based
systems such as Ambler’s FORMS system [1]. Am-
bler argues that forms are a really an extension of
the tabular/spreadsheet expression. FORMS uses
a sophisticated interface in which users can specify
the properties of adjacent cells by a single mouse
drag across multiple cells.

Tabular expressions make extensive use of the
position of their cells. For example, a spread-
sheet cell can be the sum of the cell above and
the cell immediately to the left. Having mentioned
spreadsheets, we stress that the current genera-
tion of commercially available spreadsheet pack-
ages are weak examples of VP systems. All non-
trivial spreadsheet applications require the use of
intricate syntax to define formulae or macros. A
better example of the use of tabular expressions
is the original QBE system [41]. QBE allows a
user to “draw” a database query on a character-
based screens. The drawing is a little table that
reflects the relational structure of the database be-
ing queried. Projects and selects can be specified
by filling in the cells of the drawn table with re-
strictions or matches for its values. Joins can be
specified by drawing the joined tables, then using
the same variable names in the different tables.

In icon-based languages (e.g. XErROX STAR [29]),
the position of the icon usually does not effect the
services offered by that icon. Typically, users can
click on the icon to access a menu of services. How-
ever, moving the icon around the screen can repre-
sent the transfer of data or the application of some
function to some data (e.g. moving a file between
a directory).

Diagrammatic systems utilise a wide variety of
pictures in their interface. Diagrammatic systems
are characterised by “plug-and-play”;i.e. the user
creates an diagram by linking up visual compo-
nents offered from a palette. Often, users can cre-
ate the visual analogue to a sub-routine by batch-
ing up a commonly used diagram into a single icon.



For example, a new visual part representing the
constraint that a point is (i) on a line and (ii) mid-
way between the two end points can be created in
THINGLAB [3] by placing these two existing vi-
sual constraints into the same “construction view”
area. Once there, the net constraints are the union
of the individual constraints. This new constraint
can be used subsequently in the same manner as
the constraints supplied with the start-up system.
The new icon for this construct can then be added
to a palette thus extending the system’s function-
ality. Alternatively, the icon stays on the screen
and only expands out into its full detail if the user
clicks on it.

Above diagrammatic systems, there
“other”, more intricate visual expressions such as
virtual reality (VR) systems; i.e. systems. ..

exist

...which provides real-time viewer-
centered head-tracking perspective with
a large angle of view, interactive control,

and binocular display [6].

In the CAVE and COSMIC WORM VR, systems,
users watch interactive displays of heavy fluids ly-
ing on top of a lighter fluid (the Rayleigh-Taylor In-
stability) and gravitational wave components pre-
dicted by Einstein’s Theory of General Relativ-
ity [6, 33]. The projection is in stereo, which means
that users wear high-tech 3D glasses producing
3D objects that “virtually beg to be touched” [6].
Such exotic visual expressions require non-trivial
resources to produce. The CAVE is powered by
five Silicon Graphics high-end work stations.

In practice, a VP system uses a combination of
many of the above visual expressions. For example,
MicrosoFT’s AccEkss database product implements
a QBE variant in which users can specify joins
across tables by drawing lines between icons rep-
resenting the different fields. Projects, selects are
specified via a tabular interface. The data dictio-
nary is controlled by a form-based interface while
screen designs are specified by an iconic interface.

2.3 Purpose of a VP System

Figure 4 shows a rough characterisation of the pur-
pose of a VP system: i.e. specifiers or visualisers.
Specifiers are tools that let the user record their
requirements visually. For example, an interactive
E-R diagramming tool could automate the gener-
ation of database tables directly from the entered
diagrams (e.g. SUPER [7]).

Specifiers may or may not be able to execute
their specification within their own visual envi-
ronment. Two interesting sub-categories of non-

design-only tools screen painters
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drawing tool) \/’/ (e.g. VISUAL BASIC)
no
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Tt < animators ¢ ’
Visually supported ESEREETEE :
systems (eg. BALSA)

Figure 4: Purpose of a VP system

executing specifiers are screen painters and design-
only tools:

e Screen painters (e.g. MICROSOFT’s VisuaL
Basic) give a developer an interactive point
and click environment for placing window wid-
gets (e.g. buttons, list boxes, text fields) on a
screen. Typically, these systems can then au-
tomatically generate the layout code for these
widgets. The developer must then use a tex-
tual language to code the semantics and inter-
actions of the widgets

e Design-only tools (e.g. an OO notation draw-
ing tool) give a designer an interactive point
and click environment for placing design nota-
tion icons on a screen. Depending on the tool,
relationships between the icons can be speci-
fied via specialised edge types. These tools
may or may not support automatic code gen-
eration. These tools are design-only in the
sense that the developer cannot watch the de-
sign execute within the environment of the de-
sign tool. Note that SUPER is not a design-
only tool since developers can watch database
queries executing within the SUPER environ-
ment.

Screen painters and design-only tools do not sat-
isfy RULE #1 of a pure VP systems since they do
not execute. However they are widely used in in-
dustry and so, pragmatically speaking, they repre-
sent a important category of VP systems. Hence,
we call non-executing specifiers visually supported
systems.

Executing specifiers can be divided into wvisual
specification shells and visual languages. A visual
shell hides a conventional syntactic language be-
neath an visual specification environment. The



shell executes by translating its diagrams down
into the underlying language (for example, PICT
converts its diagrams into a subset of Pascal [12]).
A visual language allows the user to specify new
language primitives. For example, recall the new
constraint added in the above THINGLAB exam-
ple. Specifiers may include a visual trace facility.
For example, whenever control moves to a part of
a program, its associated icon may highlight.

Visualisers can be divided into scientific visualis-
ers and animators. Animators try to represent in
a comprehensible way the inner-workings of a pro-
gram. In the BALSA animator system [4], students
can (e.g.) contrast the various sorting algorithms
by watching them in action. Note that animation
is more than just tracing the execution of a pro-
gram. Animators aim to ezplain the inner work-
ings of a program. Extra explanatory constructs
may be needed on top of the programming prim-
itives of that system. For example, when BALSA
animates different sorting routines, special visual-
isations are offered for arrays of numbers and the
relative sizes of adjacent entries.

Animators may or may not be pure VP systems.
BALSA does not allow the user to modify the spec-
ification of the animation. To do so requires exten-
sive textual authoring by the developer. BALSA
therefore does not satisfy Rule #2 of pure VP sys-
tem a visually supported system. However, there
is no theoretical reason why future animation sys-
tem could not permit visual specification of the
animations. Hence we draw animators in Figure 4
on the border of pure VP and visually supported
systems.

Scientific visualisers (e.g. THINKERTOY [15]
and 1THINK [16]) are tools for support simula-
tions. Arbitrary networks of computational de-
vices can be drawn and executed. Tools are pro-
vided for reporting visually the output of the ex-
ecutions. A particular focus of current scientific
visualisers is the display of changes to continu-
ous variables over time. Scientific visualisation re-
quires the presentation of large amounts of data.
THINKERTOY provides the user with numerous
visual tools that support (e.g.) the graphical dis-
plays of time-varying values; crystal growth across
some 3-D terrain; and the manipulation of data
values by user-specifiable filters. Since the user can
modify the specification of the simulation within
the visualiser’s environment, scientific visualisers
are also be executable specifiers.

2.4 Designing a VP System

When building a VP system, designers have to
specify a semantic base, a syntactic base and a
set of basic constructs which can be used in the
start up system. For a description of the syntactic
base, see the above discussion on visual expressions
(Section 2.2). Many systems permit the extension
of the basic constructs (e.g.) in the manner de-
scribed above for THINGLAB (see Section 2.2).
Note that if a base construct does not include some
sort of conditional branching, then the VP system
can only ever piece together building blocks defined
outside the VP system.

Semantics bases include control-flow, func-
tional, data-flow, constraint-based, logic-based and
procedural-based (see Figure 5). Procedural-based
systems convert their diagrams into some under-
lying language (e.g. recall that PICT is converted
into PASCAL). While this has some advantages
(e.g. simple execution), it implies that the idiosyn-
crasies of the language have to be handled at the
visual level. The other semantic bases listed above
strive for a simple uniform view of the program
structures. Such uniformity simplifies the inter-
face construction, decreases the amount a user has
to learn, and promotes a uniform mental model for
the user of the VP system.

syntactic base —= (see Figure 3)

procedural
(e.g. PICT)

design <—= pase constructs

data-flow
semantic base ~ (e.g. FABRIK,
LABVIEW)
control-flow
(e.g. PICT) \
declarative functional
A/\ (e.g. GARDEN/
constraint-based | ogic-based GELO)
(e.g. THINGLAB) (e.g. SUPER)

Figure 5: Design choices within a VP system

In a control-flow VP system, users ma-
nipulate iterator expressions (e.g. while-do,
repeat-until), conditional expressions (e.g.
if-then, case) and sequence expressions (e.g. do
this, then this, then that) to explicitly spec-
ify the control of the system. Control-flow sys-
tems model traditional flow chart systems. Inter-
estingly, PICT is both a control-flow system and a
procedural system.

An interesting variant of control-flow sys-



tems are functional VP systems (e.g. GAR-
DEN [30]/ GELO [31]). In these systems, users
manipulate expressions that can recursively con-
tain expressions. All the expressions respond to
the same high-level protocol. For example, send-
ing the message execute to an if expression will
result in the conditional part of that if being sent
the message execute. If this returns true, then the
if expression will send the message execute to its
action part, which will contain some sequence ex-
pressions. These will all be executed in turn. A
simple trace facility for such functional systems can
be implemented as follows. Whenever execute is
sent to an expression, its visual representation on
screen highlights. As this highlight moves over the
screen, users can watch the control flow. While
simple to implement, this approach has certain
intrinsic limitations. Only in a purely functional
system can the semantics of an expression be con-
tained in itself and its contained expressions. Cer-
tain global processing (e.g. joins across two rela-
tional tables) cannot be easily visualised by such a
local propagation trace algorithm.

In a data-flow VP system (e.g. LABVIEW [39],
FABRIK [24], and the systems reviewed in [17]),
control is implicit. Each expression manipulated
by the user describes:

e A set of data sources;
e Possibly, a set of conditionals;
e And action(s) to perform when:

1. All the data sources are available and

2. The conditions (if any) that use data
from those sources are satisfied.

If the actions are performed then the expression
is said to have fired. After firing, an expression may
become an available data source for some down-
stream expression. At runtime, the pattern of fir-
ings ripples out across a network of connected ex-
pressions. A simple example of a data-flow system
is a Petri net. In a basic Petri net comprising di-
rected arcs and places (i.e. edges and vertices re-
spectively), a set of tokens move out over the net.
A place is fired if out all of its incoming places and
none of its outgoing places have tokens. On firing,
tokens are removed from each incoming place and
one token is deposited in each outgoing place.

Hils argues [17] that a data-flow system is a good
design choice for the purpose of scientific visuali-
sation. Given a library of filters that can modify
data, it is a simple and intuitive process for users

to add filters to data-flow edges in order to trans-
form data. Monitors for data values can be added
in the same simple manner.

We view the data-flow model as a generalisa-
tion of the event-driven programming model. Each
event handler is like a data-flow node that waits
for certain data (events) to arrive. We note that
production systems can also be viewed as data-
flow systems. Production rules conditions act as
demons that await the arrival of certain data ele-
ments before executing their conclusion. The con-
nection between data-flow/event-flow and produc-
tion rule systems should be stressed to students.
Once this is clear in their minds, then it is a sim-
ple matter to introduce the visual programming
cognitive psychology research that is based on the
production rule metaphor (see the Larkin, Simon,
and Goel work discussed in Section 3.1) .

Note that a data-flow system could be used to
partially emulate a control-flow system. Consider
a hypothetical if-then-else expression visual el-
ement in a data-flow system. This expression could
have two outputs: one for the then part and one
for the else part. The conditionals of this expres-
sion could model the if part. If the if is satisfied,
then the then output could be enabled causing the
actions associated with the then to be fired. Oth-
erwise, the else output could be enabled. We call
this a partial implementation of control-flow dia-
grams for two reasons:

1. Using a data-flow system to emulate a control-
flow system may have significant computa-
tional overheads. Data-flow systems may in-
clude a complicated controlling algorithm that
searches for expressions to fire. Control-flow
systems do not need such complicated control:
the required control is built into the network
of control expressions supplied by the user.

2. Recursion is a common construct in control-
flow systems. Implementing recursion is more
that just visually attaching some output arc
back into an input arc. On each recursive en-
try to some function, new copies of that func-
tion’s variables have to be loaded into a sepa-
rate name space lest the processing at recur-
sive level N overwrites variables set at some
recursive level less than N. If such renaming
is not supported in the data-flow system, then
recursion cannot be implemented.

In a constraint-based VP
system (e.g. THINGLAB), the user visually speci-

IFor an introductory tutorial on the production rule
metaphor, see [23]



fies the invariants for each expression. At runtime,
a constraint-solver permits manipulations that do
not violate the invariants. Declarative constraints
can be used to test user-proposed actions or to pro-
pose valid-actions. Any user-proposed action that
violates the invariants is blocked. Given the cur-
rent state of the system, a constraint-based system
can generate menus of valid actions by generating
all variable bindings that would not violate the in-
variants, given the current state.

Constraint-based systems are a variant on logic-
based systems (e.g. SUPER). Such logic-based sys-
tems represent their expressions in a uniform re-
cursive manner. Expressions can contain logical
variables which can be bound at runtime and only
unbound after backtracking on failure. At runtime,
a general theorem prover is used to seek a set of
bindings that are consistent with the theory. Vi-
sual logic-based systems can be traced by updating
the display of expressions whenever a variable is
bound/unbound. Unlike tracing for functional sys-
tems, this logic-based tracing can visualised global
variables. For example, all the rows in a database
table are global. As the theorem prover searches
over the table, the attributes that satisfy the ex-
pressions are fetched and displayed.

2.5 Using this Framework

One important exercise performed by the students
was the application of the above framework to
commercial VP systems. The case study was
IBM’s Smalltalk VisuaLAGE system and is de-
scribed in the appendix.

2.6 A Second Look at the Shu Tri-
angle

Using the theoretical framework, we can clarify
some aspects of the Shu triangle.

o Visual extent: Clearly, the hierarchy of visual
expressions offered in Figure 3 mark different
levels in Shu’s visual extent axis.

e Scope: Shu argues that the scope of QBE is
more general than PICT but comments that
QBE is limited to simple flat tables. It was
hard to defend this claim to the SFT5030 stu-
dents. In the end, it came down to my own
contentious belief that declarative program-
ming is ultimately more powerful than pro-
cedural programming. A similar comparisons
was also problematic. In class, we tried to
compare a screen-painter system (VISUALAGE)

with a scientific visualiser (ITHINK). The at-
tempt failed when we realised that the goals
of the systems were entirely different. In no
sense can you do screen design in 1THINK.
Nor can you watch quantitative models exe-
cute in VisUALAGE. The general lesson from
this problematic scope comparisons is that it
is unwise to compare the scope of systems with
a different semantic base.

Also, after discussions with SFT5300 students,
we propose another clarification of the Shu crite-
ria. When measuring the language level, training
effects should be ignored. That is, language level
should be measured using subjects who have al-
ready been trained in the system. Otherwise, the
“language level” criteria would confuse ease of use
with ease of learning.

3 An Evaluation Framework
for VP

In the previous section we described a framework
of current directions in VP. In this section, we ex-
amine the systems built in that framework and as-
sess their utility.

Visual programming (VP) is an seen by many
as an exciting alternative to traditional text-based
computing. For example:

When we use visual expressions as a
means of communication, there is no need
to learn computer-specific concepts be-
forehand, resulting in a friendly comput-
ing environment which enables immedi-
ate access to computers even for com-
puter non-specialists who pursue applica-
tion domains of their own. [18]

Green et. al. [14] and Moher et. al. [25] sum-
marise claims such this as the superlativist po-
sition; i.e. graphical representations are inher-
ently superior to textual representations. Both the
Green and Moher groups argue that this claim is
not supported by the available experimental ev-
idence. Further, they argue against claims that
visual expressions offer a higher information ac-
cessibility; for example:

Pictures are superior to texts in a sense
that they are abstract, instantly compre-
hensible, and universal. [18]

We will return to the analysis of the Green and
Moher groups below. Section 3.1 argues for the



utility of VP. Section 3.2 reviews the available ex-
perimental evidence to argue that the utility of VP
over other representations has not been proved.
Section 3.2 will be somewhat negative about the
VP paradigm. However, recall that VP is a report
of an emerging field exploring a new direction. It
is to be expected that evaluation criteria are only
just being evolved. The VP approach should be
actively explored. When we change modalities to
a 2-d screen, we find our technologies and ter-
minology challenged and pushed to their limits.
For example, the core problem of constraint-based
VP systems is the incremental evaluation of con-
straints [8]. Also, when we created a controller
for our data-flow system, we have to address some
basic issues about distributed control. We should
study VP because it extends and tests our concept
of a computer. However, Section 3.2 does suggest
that we should be more precise about our claims

for VP.

3.1 Evidence For VP

Our own experience with students using visual sys-
tems is that the visual environment is very mo-
tivating to students. Others have had the same
experience:

The authors report on the first in a se-
ries of experiments designed to test the
effectiveness of visual programming for
instruction in subject-matter concepts.
Their general approach is to have the
students construct models using icons
and then execute these models. In this
case, they used a series of visual labs
for computer architecture. The test sub-
jects were undergraduate computer sci-
ence majors. The experimental group
performed the visual labs; the control
group did not. The experimental group
showed a positive increase in attitude to-
ward instructional labs and a positive cor-
relation between attitude towards labs
and test performance [40].

For another example of first year students be-
ing motivated by a VP language, see [12, p18-19].
However, merely motivating the students is only
half the task of an educator. Apart from moti-
vating the students, educators also need to train
students in the general concepts that can be ap-
plied in different circumstances. The crucial case
for evaluating VP systems is that VP systems im-
prove or simplify the task of comprehending some
conceptual aspect of a program. If we extend the

concept of VP systems to diagrammatic reasoning
in general, then we can make a case that VP has
some such benefits. Larkin & Simon [23] distin-

guish between:

e Sentential representations whose contents are
stored in a fixed sequence; e.g. propositions
in a text.

e Diagrammatic representations whose contents
are indexed by their position on a 2-D plane.

While these two representations may contain the
same information, their computational efficiency
may be different. Larkin & Simon present a range
of problems modeled in a diagrammatic and sen-
tential representation using production rules. Sev-
eral effects were noted:

e Perceptual ease: Certain features are more
easily extracted from diagrams than from sen-
tential representations. For example, adjacent
triangles are easy to find visually, but require
a potentially elaborate search through a sen-
tential representation.

e Locality aids search: Diagrams can group to-
gether related concepts. Diagrammatic infer-
ence can use the information in the near area
of the current focus to solve current problems.
Sentential representations may store related
items in separate areas, thus requiring exten-
sive search to link concepts.

In a similar study, Koedinger [22] argued that
diagrams optimise reasoning since they can model
model whole-part relations. Both the Larkin & Si-
mon and the Koedinger study argue for the com-
putational superiority of diagrams for representing
problems that have a two-dimensional component.

Other authors such as Goel and Kindfield ar-
gue that diagrams are useful for more than just
two-dimensional reasoning. Goel [13] studies the
use of ill-structured diagrams at various phases of
the process of design. In a well-structured diagram
(e.g. a picture of a chess board), each visual ele-
ment clearly denotes one thing of one class only.
In a ill-structured diagram (e.g. an impressionis-
tic charcoal sketch), the denotation and type of
each visual element is ambiguous. In the Goel
study, subjects explored (i) preliminary design,
(ii) design refinement, and (iii) design detailing
using a well-structured diagramming tool (Mac-
Draw) and a ill-structured diagramming tool (free-
hand sketches using pencil and paper). Free-hand
sketches would generate many variants. However,
the well-structured tool seemed to inhibit new



ideas rather than help organise them. Once some-
thing was recorded in MacDraw, that was the end
of the evolution of that idea.

One gets the feeling that all the work is
being done internally and recorded after
the fact, presumably because the external
symbol system (MacDraw) cannot sup-
port such operations [13].

Goel found that ill-structured tools generated
more design variants (i.e. more drawings, more
ideas, more use of old ideas) than well-structured
tools. We make two conclusions from Goel’s
Firstly, at least for the preliminary de-
sign, ill-structured tools are better. Secondly, after
the brain-storming process is over, well-structured
tools can be used to finalise the design.

Kindfield [21] studied how diagram used changes
with expertise level. Expert geneticists, expe-
rienced genetics students, and introductory ge-
netics students explored genetics problems using
diagrams of chromosones. Kindfield found that
novices used literal diagrams (i.e. exact replicas of
what could viewed down a microscopy) while ex-
perts used diagrams that showed only the subset of
the features in the literal diagrams. Interestingly,
the subset of the features found in the expert’s
diagrams changed according to the task at hand.
Kindfield argues that:

work.

Diagrams... serve as an external storage
device that frees working memory, allow-
ing for the performance of additional cog-
nitive tasks during the pause when the
problem solver is looking or touching the
diagram [21].

That is, according to Kindfield, diagrams are like
a temporary swap space which we can use to store
concepts that (i) don’t fit into our head right now
and (ii) can be swapped in rapidly; i.e. with a
single glance.

3.2 Evidence Against VP

The previous section discussed theoretical issues
or small experiments that argue for the utility
of visual/diagrammatic representations over tex-
tual/sentential representations. This section re-
views larger-scale studies which suggest that, de-
spite the arguments made in the last section, the
potential benefits of VP has yet to be conclusively
demonstrated.

It is not clear that any of the advantages of di-
agrammatic reasoning offered by Larkin & Simon,

Goel and Kindfield apply to general software engi-
neering. Many software engineering problems are
not naturally two-dimensional. For example, while
we write down an E-R diagram on the plane of a
piece of paper, the inferences we can draw from
that diagram are not dependent on the physical
position of (e.g.) an entity.

In terms of the ill-structured /well-structured di-
vision, the VP tools we have seen are a well-
structured tool. That is, they are less suited to
brain-storming than producing the final product.

Nor can we view most available VP systems as
Kindfield-style temporary swap spaces for forma-
tive ideas. Kindfield’s results suggest that such
swap spaces need to be filterable. We should be
able to hide away the details that are not rele-
vant to some current problem. A VP environ-
ment that supported such filtering would need to
(1) model the current task, (ii) store a library of
easily-applied filters, and (perhaps) have (iii) some
knowledge of the user’s level of expertise. None of
the systems we have reviewed here meet this crite-
ria.

Jarvenpaa & Dickson (hereafter, JD) report an
interesting pattern in the VP literature [20]. In
their literature review on the use of graphics for
supporting decision making, they find that most of
the proponents of graphics have never tested their
claims. Further, when those tests are performed,
the results are contradictory and inconclusive. For
example:

e JD cite 11 publications arguing for the supe-
riority of graphics over tables for the purposes
of elementary data operations (e.g. show-
ing deviations, summarising data). None of
these publications tested their claims. Such
tests were performed by 13 other publications
which concluded that graphics were better
than tables (37.5%), the same as tables (25%),
or worse than tables (37.5%)

e JD cite 11 publications arguing for the supe-
riority of graphics over tables for the purposes
of decision making (e.g. forecasting, plan-
ning, problem finding). None of these pub-
lications tested their claims. Such tests were
performed by 14 other papers which concluded
that graphs were better than tables (27%), the
same as tables (46%), or worse than tables

(27%).

Similar contradictory results can be found in the
study of control-flow and data-flow systems.

e The utility of flowcharts for improving pro-
gram comprehension, debugging, and extensi-



bility was studied by Shneiderman [35]. Shnei-
derman found no difference in the perfor-
mance of the subjects using/not using control-
flow diagrams.

¢ On the other hand, recent results have been
more positive [34].

e Studies have reported that Petri nets are com-
paratively worse as specification languages
when compared to pseudo-code [2] or E-R di-
agrams [37].

e On the other hand, another study suggests
that Petri nets are better than E-R dia-
grams for the maintenance of large expert sys-

tems [38].

Given these conflicting results, all we can con-
clude at this time is that the utility of control-flow
or data-flow visual expressions are an open issue.

Perhaps rather than seeking a the “best” repre-
sentation, we should acknowledge that any partic-
ular representation is useful only for certain tasks.
Recall our conclusion from Goel’s work: differ-
ent diagramming techniques are useful for different
stages of the design process. Other researchers ex-
plore the different circumstances under which cer-
tain types of visual expressions are useful: Gers-
tendorfer & Rohr [9] (hereafter, GR), Moher et.
al. [25] (hereafter, the Moher group) and Green
et. al. [14] (hereafter, the Green group). The GR
work distinguishes between visual, verbal, and for-
mal tasks:

e A GR visual task is inherently structural; e.g.
laying out a table so that related utensils are
near each other. GR visual tasks are best
specified and executed using diagrams.

e A GR verbal task is inherently sequential; e.g.
cooking a meal where the steps have a time
dependency on each other. GR verbal tasks
are best specified and executed using written
text.

e A GR formal task requires classification and
abstraction; e.g. to decide the cost of an or-
der, the order items have to be grouped into
abstract categories since each group has its
own price. GR formal tasks are best specified
and executed using tables.

In the GR study, subjects were trained and then
had to solve a layout, cooking, or costing problem.
For different students and for each problem, a vi-
sual/verbal/ or tabular presentation was used for
the training and execution of that problem. For
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both training and execution, using written text
proved to the slowest option. Visual presentations
lead to better training and execution times for GR
visual and GR verbal problems. However, tabular
presentations were best for training and executing

GR formal tasks.

The Green group explored two issues: superla-
tivism and information accessibility (defined above
at the start of Section 3). Subjects attempted some
comprehension task using both visual expressions
and textual expressions of a language. The Green
group rejected the superlativism hypothesis when
they found that tasks took longer using the graph-
ical expressions than the textual expressions. The
Green group also rejected the information acces-
sibility hypothesis when they found that novices
had more trouble reading the information in their
visual expressions than experts. That is, the infor-
mation in a diagram not “ instantly comprehensi-
ble and universal”. Rather, such information can
only be accessed after a training process.

The Moher group performed a similar study to
the Green group. In part, the Moher study used
the same stimulus programs and question text as
the Green group. Whereas the Green group used
the LABVIEW data-flow system, the Moher group
used Petri nets. The results of the Moher group
echoed the results of the Green group. Subjects
were shown three variants on a basic Petri net for-
malism. In no instance did these graphical lan-
guages outperform their textual counterparts.

The Moher group caution against making an al-
ternative superlativism claim for text; i.e. text is
better than graphics. Both the Moher and Green
groups distinguished between sequential program-
ming expressions such as a decision true and cir-
cumstantial programming expressions such as a
backward-chaining production rule. Both sequen-
tial and circumstantial programs can be expressed
textual and graphically. The Moher group com-
ments that:

Not only is no single representation best
for all kinds of programs, no single repre-
sentation is ... best for all tasks involving
the same program [25].

Sequential programs are useful for reasoning for-
wards to perform tasks such as prediction. Cir-
cumstantial programs are output-indexed; i.e. the
thing you want to achieve is accessible separately
to the method of achieving it. Hence, they are
best used for hypothesis-driven tasks such as de-

bugging.



3.3 Discussion

Theoretical studies and small scale experimental
studies suggest an inherent utility in visual ex-
pressions. However, when we explore the available
experimental evidence, we find numerous contra-
dictory results. For example, note that the Green
group’s conclusion that text expressions were al-
ways faster than visual expressions contradicts the
results of the GR study. We cannot resolve this
discrepancy here except to speculate that perhaps
the crucial factor determining the value of a repre-
sentation is not the surface features of a represen-
tation (e.g. its appearance). Rather, its relevance
to the task at hand seems more important.

However, one issue that is clear from this section
is that evaluation is an open-issue in VP research.
When we build VP systems, we should include in
them logging software that supports the evaluation
of these systems.

4 Discussion

We
and evaluation frameworks for SFT5030: a one
semester post-graduate introductory subject on
VP. Students find the subject describe here stim-
ulating, but demanding. If we had space in our
curriculum, we would divide SFT5030 into two:

have described the theoretical framework

e The VP-1 subject would teach graphical user
interfaces and visually supported systems us-
ing screen painters such VisuarL Basic. The
theoretical component of this subject would
be cognitive issues of interface design (per-
haps based on [27]) and some introductory
cognitive psychology. In tutorials, students
could explore the programming details of their
screen painter. For assignment work, students
could use the graphical widgets in their screen
painter to build a front-end to some applica-
tion. The front-end must have some decision-
support functionality;i.e. it would have to en-
courage the detection of some business prob-
lem.

e The VP-2 subject would teach pure VP sys-
tems via a review of the state-of-the-art in the
VP literature. VP-2 would present the the-
oretical and evaluation framework described
above. In their tutorials, students could prac-
tice evaluating real VP systems using com-
monly available systems such as ITHINK and
LABVIEW. For assignment work, students
could design some experiment to test the util-
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ity of the program they wrote for VP-1 sys-
tem. Also, students could present seminar pa-
pers assessing VP systems from the literature
using our theoretical framework.
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6 Appendix: Evaluating a
Commercial VP System

This section contains a sample evaluation of a com-
mercial VP system.

6.1 General Notes

IBM’s Smalltalk VisuaLAGE is a two-layered sys-
tem with numerous support tools:

e On top is the composition editor (hereafter,
C&). This editor allows the visual specifica-
tion of forms-style screens. In this editor, a
developer can draw lines between screen com-
ponents representing calls from (e.g.) a clicked
button to adding an item to a list.

e Underneath C&, is Smalltalk, an industrial-
strength object-oriented programming lan-
guage supporting an incremental compiler, a
well-developed class library, and automatic
garbage collection.

e VISUALAGE also includes numerous tools for
database connection, interfacing to C or
COBOL programs, and networking.

C& is a system for specifying event-based in-
terfaces. The interfaces specified by CE are pri-
marily form-based, but may include tables. Vi-
sual components can be specified, then partially-
encapsulated inside a ViewWrapper. In this way,
complicated specifications can be expressed in
parts. A single icon on a screen can expand, if
requested, into some intricate network of visual el-
ements. This net can then be contracted again
to a single icon to improve the readability of this
screen.



One advantage of CE over raw Smalltalk code is
that the relative positions of the screen items can
be specified visually. Such relative positions are
intricate to specify in raw Smalltalk. Impressive
forms-based screens containing (e.g.) drop-down
multiple-choice lists, buttons, text and graphics
panes can be created. However, the range of vi-
sual items is limited. For example, it is not pos-
sible to create a screen containing the C& inter-
face using C€. Such an editor would require the
ability to build a runtime screen where the user
can drop icons, then connect them with rubber-
banding lines. It is not possible to build such a
screen in CE.

6.2 Specific Notes

In terms of our theoretical framework, C& is a:

e Semi-direct manipulation system: CE& per-
mits some direct manipulation experimenta-
tion but the undo system is somewhat clumsy
which discourages experiments. Further, we
found that it is not a smooth transition from
initial experience to more expert use.

e [con-based diagramming tool. Developers pick
icons from a palette and add them to an arbi-
trary network of connections.

e Data-flow procedural system. C& is an event-
driven system. We discussed above the close
connection between event driven-systems and
data-driven systems. CE& is a procedural sys-
tem since its visual representations are exe-
cuted via the generation of Smalltalk code.

o Visually supported system. The CE documen-
tation is extensive but in all that documenta-
tion, there are only half a dozen purely visual
examples (i.e. use no scripting). We know sev-
eral professional VisuaLAGE developers who
all agree that to use VisuaLAGE, developers
must generate scripts. This scripting may be
non-trivial since it requires an understanding
of the underlying Smalltalk language. Since
the customisation of C& requires non-visual
coding, C& is not a pure VP system.

Figure 6 uses a Shu triangle to compare CE
with LABVIEW and PICT. We scored LABVIEW
higher on all axes than PICT since LABVIEW has
been under active development for longer.

As to the comparison between CE and these
other two systems:
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Figure 6: Shu triangle for C€

o Visual extent: CE, LABVIEW and PICT are
all icon/diagrammatic systems. CE lacks a vi-
sual concept of execution trace. Therefore we
score it lowest on the visual extent axis.

e Language level: LABVIEW and PICT have
simpler, more uniform interfaces than CE. It
could be argued that this uniformity simpli-
fies application development and that, hence,
C& has the lowest language level. However, af-
ter training, it is possible to built more intri-
cate applications in an hour in C€ than LAB-
VIEW and PICT. For example, CE comes with
(e.g.) mainframe database hooks so it is easy
to build a client-server application. Hence, we
say that C€ has an arguably higher language
level than the other systems but acknowledge
that this rating is debatable.

e Scope: Shu rated PICT very low on the scope
axis and we rate CE even lower. C€ cannot be
customised without leaving its visual environ-
ment. Hence, as a VP, we argue that C& has
a low scope (Shu gave XEROX STAR a low
scope rating for the same reason).

When working with CE, we often ran up against
the control-flow/ data-flow distinction. Control-
flow diagrams are a natural modeling tool for pro-
cedural code. However, it is difficult to use Visu-
ALAGE for general control-flow programming. We
considered extending CE with extra control icons
for if-then, while, etc. However, we rejected this
approach after considering the expansion factor,
and the recursion problem:

The ezxpansion factor: Visual programming is
a failure if the visual expression is more complex



than some alternative representation. With two
drag-and-drops, and a few additional mouse clicks,
CE& lets a programmer specify in seconds the posi-
tion of a button on a screen and the action that
happens when it is pressed. The same process in
Smalltalk would take dozens of lines of typing to
specify. In this example, C€ is a success since it
simplifies rather than complicates the specification
process. However C& is not always so successful.
We tried re-implementing some old first-year as-
signments in VISUALAGE. One assignment asked
students to display the available spare seats in an
airplane as a tool for supporting airline reserva-
tions. We considered visually specifying an itera-
tor that ran over the seats looking for an empty
one. However, the equivalent textual code was so
brief, that we could not justify the effort. C€ was
a failure in this case since the textual representa-
tion was far less verbose. More generally, we argue
that for tasks that actually involve detailed algo-
rithmic control, a data-flow environment like CE is
inappropriate.

The recursion problem: We have argued above
that implementing recursion in a data-flow envi-
ronment that does not support recursion is tricky
(see Section 2.4). C& supports an ObjectFactory
icon which can generate many instances of a class.
We could model a recursive function as a class that
can generate multiple instances of itself: one for
each recursive call. The generation process could
be organised by the ObjectFactory. Encapsu-
lated instance variables would separate the name
space of variables used at different recursive lev-
els. However, this seems a rather arcane use of
objects. Also it is not clear how to modify the C&
such that the visual representation of recursion is
intuitively displayed. Further, the VISUALAGE ex-
perts we spoke to about this proposal all felt that a
non-trivial degree of scripting was required to im-
plement this approach. Some were skeptical that
it was even a practical suggestion.
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