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Modern KA views KBS construction as the construction of inaccurate
surrogates models of reality. We argue that such potentially inaccurate
models must be tested, lest they generate inappropriate output for certain
circumstances. Testing can only demonstrate the presence of bugs (never
their absence) and so must be repeated whenever new data is available.
That is, testing is an essential, on-going process through-out the lifetime of
a knowledge base.

This view motivated our development of a general computational model for
automatically testing models in vague domains. A vague domain is (i)
poorly-measured; and/or (ii) lacks a definitive oracle; and/or (iii) is
indeterminate/non-monotonic. Testing in such vague domains necessitates
making assumptions about unmeasured variables and maintaining mutually
exclusive assumptions in separate worlds.  Most domains tackled by KBS
are vague; i.e. our definition of  test is widely applicable.

Surprisingly, our generalised test engine is also a generalised inference
engine. Domain-specific modelling constructs are mapped into a directed
and-or graph of edges E and vertices V. Consistent subsets of E are
extracted which explain  known observations in terms of known inputs to
the model.  This extraction process directly operationalises the model
extraction process which Clancey and Breuker argue is the core of expert
systems inference.  We find that the second generation knowledge level
modelling approaches (e.g. KADS) complicates and separates processes
that can be unified and simplified via our abductive framework.
Consequently, we propose replacing methodologies like KADS with our
abductive architecture that supports and simplifies both inference and
testing.

Limits to model testing are also limits to model construction since
potentially inaccurate models that can't be tested should not be used. We
find that our process is practical for model at least up to |V| = 850 and
|E|/|V| < 7. However, we lose the ability to test models in vague domains
above |E|/|V|  = 7. Based on surveys of  known fielded expert systems, we

conclude that: (i) our technique is practical for the models seen in current
KA practice; however, (ii) modern KA is teetering on the edge of model
testability/construction.



I hereby declare that this submission is my own work and that, to the best
of my knowledge and belief, it contains no material previously published or
written by another person nor material which to a substantial extent has
been accepted for the award of any other degree or diploma of the
university or any other institute of higher learning, except where due
acknowledgment is made in the text.

____________________________________

Tim Menzies

September 28, 1995



4

The gods did not reveal, from the beginning; All things
to us, but in the course of time; Through seeking we
may learn and know  things better; But as for certain
truth, no man has known it; Nor shall he know it,
neither of the gods; Nor yet of all the things of which I
speak; For even if by change he were to utter; The final
truth, he would himself not know it; For all is but a
woven web of guesses: Xenophanes
I raise my quill, I am responsible: Voltaire I'll play with
it first and tell you what it is later: Miles Davis. I have
made this letter longer because I did not have time to
make it shorter: Blaise Pascal (1656).  If the journey is
not what you expect, do not be surprised: Anonymous

A shrine is a venue for reverently worshipping the wisdom of others. A coffee shop is a

venue for heated debate. We believe that we should not view knowledge bases as shrines

for possibly out-dated insights. Rather, we should view them as coffee shops; i.e. venues

for constant intense argument and/or review and/or revision of contemporary ideas. This

research is about general engineering principles for such "argument environments".

In this chapter, we discuss why we believe that argument environments are so important.

We also offer a statement of thesis, a chapter plan, some notes on our pseudo-code

notation,  and our acknowledgments.

9 : 9 : ; < = > ? @ = > < ? A B C

D E D E D E F G H I J K I J L M J N O P Q I R J Q S

A general trend in the twentieth century is an increasing level of doubt about the things

we speak or write or try to enter into programs1. Many factors have combined to reduce

our belief that we can know the "truth" (in some absolute sense)  about our world; for

example: relativity2, Heisenburg's uncertainty principle3, the indeterminacy of quantum

mechanics4,  Gödel's theorem5,  the failure of AI to replicate human cognitive via

1 Doubts about the certainty of human knowledge are not a twentieth century invention, as testified by
Xenophane's poem at the start of this chapter.

2 Contrary to popular belief, Einstein did not say that "everything was relative".  However, he did demonstrate
that some of our oldest notions about basic physical concepts such as mass and time were only approximations
yielding useful results at velocities much less than the speed of light.  Einstein's challenge to certainty was to
illustrate that certain "truths" may only be approximately true, within certain boundaries.

3 Given pairs of certain measurements (position and momentum), knowing one exactly introduces an
unavoidable error into the measurement of the other.  This error is small (proportional to 6.634 * 10-34).

However, the realisation that everything is not precisely measurable  shocks  advocates of absolute truth.
4 Sub-microscopic events can just happen, without some identifiable cause.  The extrapolation  to macroscopic

events having no rational explanation is a possible consequence, but has not yet been demonstrated to be
commonly  true.

5 Within any interesting axiomatic system (i.e. at least powerful enough to express basic arithmetic),  there exist
a set of Gödel sentences that cannot be proved with respect to that system [106]. Gödel's theorem does not
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manipulation of symbols according to classical logic6,  chaos theory7,  and the inability

of human designers to get designs right the first time8.

Even if knowledge and truth existed in some abstract form, it seems human beings have

less-than-perfect access to it. Anderson observes:
Human reasoning does not always correspond to the prescriptions of logic.
People … fail to see as valid certain conclusions that are valid, and they see as
valid certain conclusions that are not. ([7] p264)

For example, experiments with human comprehension of a syllogisms9 demonstrates

how illogical human thought can be. In one study with the syllogism
P implies Q
Q is not true
therefore P is also not true

39% of the subjects incorrectly stated that the syllogism could only sometimes be true

while 4% wrongly stated that it was never valid  ([7] p267). Why is it that the same

problem can be processed in different ways by different people? Anderson discounts

explanations based on the different reasoning prowess of the sampled humans. In

another study,  90% of subjects incorrectly understood a syllogism, including trained

logicians; presumably, the most rational of all human beings ([7] p362).  The way a

problem is presented can effect how it is solved. Information is not accepted by human

beings at face value. Rather, the way data is presented has an effect on the importance

the decision maker attaches to that data.  Popular examples of this process are common:
It is evident that when the instances on one side of a question are more likely to
remembered and recorded that those on the other,  especially if there be any
strong motive to preserve the memory of the first, but not of the latter, these last
are likely to over-looked, and escape the observations of the mass of mankind:
John Stuart Mill.

comment on the importance of the unprovable sentences. You may be unable to know precisely the length of
the 39th hair  above your left hear, but it hardly matters. However,  Gödel's theorem should still makes you
nervous since you cannot prove that conclusions which do matter are not in your personal Gödel set.

6 If the universe was as logical and as rational as Plato suggested, then a fast theorem prover should be able to
reproduce human intelligence. This turns out not to be the case. Significant progress has been made only in
well-defined, limited, domains (e.g. [9, 25, 73, 117, 144, 157, 164, 171, 206, 236]). Attempts to replicate a
general-purpose, wide-ranging intelligence in AI continue. The CYC project  aims to build an explicit
representation of all the commonsense knowledge required to understand 1000 paragraphs out of an
encyclopedia [132]. This project has yet to publish conclusive results and we have some doubts  that it ever
will.

7 Even simple, apparently deterministic, systems can exhibit widely variable behaviour (especially under
feedback) [98]. Chaos theory is more of a threat to certainty than atomic physics. It could be argued that
seemingly distributing results about certainty in the sub-atomic world need not concern us out here in the
macroscopic world. However, chaos theory concerns itself with macroscopic events we encounter everyday
(e.g. the weather).

8 In a Platonic rational world, designers should be able to infer their way to correct initial designs. Norman
documents numerous examples where this is not the case, even for simple devices we have been building for
hundreds of years (e.g. doors and ovens) [179].  Norman argues convincingly that only  through trial-and-error
(which he politely euphemises to "iterative design") can we generate good designs. The reader who doubts this
conclusion is invited to re-consider their position the next time they  (i) can't tell whether to pull or push a door
open; (ii) can't work out which knob turns on which oven hot plate; or (iii) they install version N (N>1.0) of a
piece of software.

9 Structures of the following form: (i) all men are mortal; (ii) Socrates is a man.; (iii) therefore Socrates is a man
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Popular induction depends upon the emotional interest of the instances, not upon
their number. Bertrand Russell.
The death of a single Russian solider is a tragedy. A million death is a statistic.
Joseph Stalin.

More scientifically, Kahneman & Tveresky report experiments demonstrating that

different expressions of the same problem can consistently bias the way people process

that problem. In one study, physicians consistently choose one of two options according

to the way a problem was framed. Both options were actually identical, but one was

expressed in terms of absolute numbers and the other in terms of percentages. The

problem was framed in terms of lives-saved or lives-lost. Physicians presented with the

lives-saved frame were generally risk-avoiding; i.e. they elected to maximised the

absolute number of lives saved. Physicians presented with the lives-lost frame were risk-

seeking; i.e. elected to minimise the percentage of  lives lost.  Their general conclusion

was:
The same decision can be framed in several different ways; different frames can
lead to different decisions. ([118] p139)

D E D E T E U V L O W W R J X I J L M J N O P Q I R J Q S

The experience with expert systems is that the process of building consensus between

individuals or creating an explicit record of it in a knowledge base introduces

biases/errors. Kuhn notes that data is not interpreted neutrally, but (in the usual case)

processed in terms of some dominant intellectual paradigm [122]. Silverman cautions

that systematic biases in expert preferences may result in incorrect/incomplete

knowledge bases [235, 237]. Preece & Shinghal document fielded expert systems that

contain numerous logical anomalies such as unused inputs, unsatisfiable conditions and

unusable consequences [205]10. These expert systems still work, apparently because in

the context of their day-to-day use, this erroneous logic is never exercised.

The concept of "context-of-use" has become a key issue in knowledge acquisition

research. Human "knowledge" appears in some social context and that context can effect

the generated "knowledge". Phillips [192] and Bradshaw et. al.  [17] describe model

construction as a communal process that generates  structure that explicate a

community's understand of a problem. If the community changes then the explicit record

of the communities shared understanding also changes; i.e. "truth" is socially

constructed. Such an explicit expression of current beliefs may prompt further

investigation and model revision; i.e. writing down  models of "truths" can cause "truth"

to change. We later document cases where, quite clearly, the generated model changed

over time and did not seem to terminate on some idealised "true" model11. Agnew, Ford

10 These anomalies are listed in section  3.3.3.
11 See section 3.5.
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& Hayes summaries contemporary thinking in the history, philosophy and sociology of

science as:
…expert-knowledge is comprised of context-dependent, personally constructed,
highly functional but fallible abstractions  [4].

A model of some thing is different to that thing (the map is not the territory). Hence, the

model may contain less information than the modelled thing and may behave differently

in certain crucial situations. Thus the modelling process introduces errors into the

representation.  As to recognising a "true" a model, we agree with Karl Popper  [203]

that such a task is be fundamentally impossible:

• All "proofs" must terminate on premises; i.e. some proposition that we accept as

true without testing. If we request proofs of premises, then we potentially recurse

forever. It may be that we can terminate the recursion if the premises become

self-evident. However, note that many "self-evident" premises have not stood the

test of time (e.g. "the world is flat" or "the earth does not move").

• In terms of most human knowledge, a recursion to base premises is

fundamentally impractical.  For example, consider one individual trying to

reproduce all the experiments that lead to our current understanding of atomic

physics. Such an undertaking could longer than a lifetime and would be beyond

the resources of most individuals (e.g. building a five kilometre long linear

accelerator). Such a task has to be divided up and, sooner or later, our single

researcher would have to accept on faith the validity of another researcher's
statement that "while you were busy elsewhere, I did this, and I saw that. Trust

me.".

D E D E Y E Z J V [ W O L X O \ ] I K O L ^ S K Q O H K I J L M J N O P Q I R J Q S

Knowledge representation theorists acknowledge that the knowledge inside experts

systems is only an approximate surrogates of reality [17, 55, 260]; i.e. their accuracy is

doubtful. O'Hara notes that some knowledge representation theorists still make

occasional claims that their knowledge representation theory has some psychological

basis. However, when pressed, their public line is that representations are models/

surrogates only [181]12.

Clancey argues the knowledge structures found during knowledge acquisition (frames,

rules, etc) are structures created on-the-fly in response to the specifics of the situation in

which they were elicited: the example being studied;  the experts used; etc. That is,  they

have little/no isomorphism with structures present in an expert's information processing

system. Clancey is silent on where these structures come from but hints that the substrate

may be neural [39].

12 For more on this position, see sections 3.4.
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Feldman & Compton [47, 79] make a similar claim, arguing that our explicit KRs are not

records of structures inside the head of an expert. Rather, the "knowledge" tricked out of

an expert is a report customised to the specific problem, the specific justification, the

expert, and the audience; i.e. like Phillips and Bradshaw et.al. , they argue that "truth" as

expressed by human experts varies according to who says.

In summary, the extreme doubting Thomas' position is as follows. Attempts to write

down human "knowledge" on paper or in a program:

• will reflect sub-optimum reasoning;

• will reflect  certain biases in the way the domain is perceived by an individual;

• will reflect some consensual hallucination of a particular community;

• will not mirror the actual structures used in successful reasoning systems; i.e.

people;

• will be probably inaccurate;

• ultimately,  can't be proven correct.

D E D E _ E ` O P Q I R J Q S

Just as extreme as Thomas' position is the opposite Platonist/Baconist approach  which

we will call the Optimist position.  A Platonic optimist would expect to "see" the expert's
constructs and simply write them down. One prominent knowledge optimist is Edward

Feigenbaum whose pioneering work on expert systems lead to a view of knowledge

acquisition as a "expertise-transfer" approach (which Feigenbaum poetically describes as

"mining the jewels in the expert's head" [78], p104)13. Compton summaries this Platonic

approach, which he strongly objects to, as follows:
The reductionist assumption that one should be able to dig deep enough to find
primitive concepts and the relationships between them on which knowledge is
built finds its origins in Plato's concept of archetypes. That is, that there exist
(literally) archetypes for all the things in the world and the concepts we use…
Proposals such as (expertise transfer) are essentially statements of belief that if
the archetypes and relevant logical relationships can be found and manipulated
intelligent thought can be reproduced. ([46], p280).

Plato's metaphor for explaining human confusion was a cave where we built our feeble

fires against ignorance. These fires threw light onto the archetypes of the things that

were really  true. Sadly, according to Plato, us poor cave dwellers can only see the dim

shadow of the archetypes, flickering and randomly distorted by the wind on the fire and

the bumps on the wall.

Medewar sarcastically summaries the Baconian perspective as follows :

13 Expertise transfer and its relation to modern KA is discussed further in sections 3.4 and 8.2.
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…truth lay all around us- was there for the taking-waiting like a crop of corn,
only to be harvested and gathered in. The truth would make itself known to us if
only we would observe nature with that wide-eyed and innocent perceptiveness
that mankind is thought to have possessed in those Arcadian days before the Fall
- before our sense became dulled by prejudice and sin.  ([150], p70)

If the optimist's position was correct then the decline in belief of certain knowledge in

the twentieth century14 would not have occurred. In fact, given the rapid increase in

scientific research in the last few decades, our Platonic optimist would have expected

greater certainty as long lists of proven truths rolled out of our new research labs.

Nevertheless, there must be some value in the optimist's position.  If all human

knowledge is as  relative and inaccurate as Thomas tells us, then we would not have any

basis for rejecting obvious absurdities. For example:
Scientists in Tasmania recently report a set of revolutionary studies on amphibian
cognitive processing. Two samples of frogs were placed on a laboratory bench.
Half the frogs had their legs amputated. In a statistically significant number of
trials, after a researcher ran towards the bench shouting "Jump! Jump!", only
those frogs with legs left the bench.  Researchers concluded that amphibian
understanding of English was stored in their legs.

We believe that this story is ridiculous. Further, we can believe that we can tell this story

to numerous people and share a chuckle since knowledge about frogs, legs, jumping, and

Tasmanians seems constant amongst most humans.  Thomas would be at a loss to

explain how such consensual knowledge could arise15. Clearly, some consensual view of

the world exists between people. Perhaps not all knowledge is a whim invented on the

spur of the moment. Antibiotics really do save lives. Men really walked on the moon.

This report is  really being written on a complicated combination of hardware and

software. If human knowledge is the poor tool that Thomas claims, then these

technological advances would be very unlikely. As Agnew et. al. see it, the constructs

we write down to represent human knowledge are grounded in something, and

sometimes that something might even be true.
Some knowledge and expertise are more than disposable cultural myths or highly
personal empirical or symbolic fabrications… Anyone who has carried out
experiments… has not only experienced social context pressure but also felt the
non-negotiable force of the constraints imposed by the ontic (real) world.
Ontological reality manifests itself to use (sometimes quite emphatically) when
we bump into some of the constraints that it imposes on our activities…and our
beliefs.  Some of the shadows on the wall of Plato's cave kicks back. [4].

Like Agnew et. al., we believe that not all knowledge is relative. Concepts that we have

been working with for a while are now fairly well debugged. With time, inductive

generalisation of the human experience has lead to a set of beliefs that accurately  predict

the future about certain things (usually). Predictions relating to the physical or basic

14 See section 1.1.1.
15 Although Thomas may be pleased to see that the reference to Tasmania may have confused non-Australian

readers.  Unfortunately  for Thomas, these overseas readers may be able to derive a common interpretation
from the context.
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biological events that our Neanderthal ancestors encountered  will probably be fulfilled.

For example, we don't really doubt that we can predict what will happen when we drop

something, stub our toe, or eat when we are hungry. Such old knowledge might even be

"true", in a Platonic sense.  Gaines & Shaw comment:
In a well-established scientific domain it is reasonable to suppose that there will
be consensus among experts as to the relevant distinctions and terms- that is
objective knowledge that is independent of individuals. However, the "expert
systems" approach to systems development has been developed for domains
where such objective knowledge is not yet available. [90]

We agree with Gaines & Shaw that  most of the knowledge entered into expert systems

is new knowledge that is still being debugged; for example: how to best configure a

computer; what constitutes a risky loan applicant; how to diagnosis biochemical

disorders; what antibiotics we should prescribe; or how to best schedule a Space Shuttle

mission.

D E D E a E ^ Q P G N Q G P O L b O K Q R J X

Sadly, human knowledge is not marked with labels indicating whether or not it is "old

knowledge we can trust" or "new knowledge we are still debugging". In terms of writing

knowledge bases, one reaction to this uncertainty is to abandon all attempts to codify

human knowledge. This is the reaction of Dreyfus, who argues that the context-

dependant nature of human knowledge makes it fundamentally impossible to codify

symbolically [71]. Searle takes a similar stand, claiming that the only device that can

replicate human intelligence is another human [229].  Figure 1.1 places Dreyfus' and

Searle's position into a continuum of other researchers.

.

The Cautious:
e.g. Silverman,

Preece

The Complete
Doubters

e.g. Dreyfus,Searle

C
er

ta
in

ty

cf=1

cf=0

QUESTION:  can anomalies be removed prior to use?

 ANSWER-1: what anomalies?

 ANSWER-2: yes

 ANSWER-3: no,  therefore            Give up

                             Always use an active test procedure

a few

doubts

lots of

doubts

no doubts complete

doubts

The

Optimists

e.g. Feigenbaum,

Plato, Bacon

The

Very Nervous

e.g. Popper, Compton,

Agnew et al.  Menzies

Figure 1.1: The knowledge base certainty continuum. Shaded areas

indicate the degree of doubt associated with each position (the optimists

have no doubts).

We agree with Searle and Dreyfus that our knowledge representation  research is

somewhat flawed if we uncritically enshrine the contents of our knowledge bases.
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However, we believe that Searle and Dreyfus are taking an unnecessarily extreme

position16. Knowledge may be wrong, in some absolute Platonist sense, but still suffice.

For example, Newtonian mechanics was superseded by relativity but is still useful for

those bits of the universe travelling much slower than the speed of light.  Many

researchers argue for a process of structured testing   for the generation of sufficing

knowledge:

• Popper argues the authority of an idea arises from its ability to survive active

attempts to refute it [203].  To Popper, all ideas should be aggressively attacked,

as a matter of routine.

• Agnew et al,  reacting to a rising tide of knowledge relativism, argue for

continued application of the scientific method since it "has evolved and

institutionalised mechanisms for evaluating the durability of knowledge

constructions" [4]. That is, the scientific method is like a life-insurance policy for

an idea. To insure survival, ideas have to be developed according to certain

criteria (e.g. criticised via peer review).

• Preece and Zlatereva describe test programs based on the logical structure of

rule-based expert systems. Price's tools detect anomalies in those structures (e.g.

circularities) [204] while  Zlatereva's tools analyse that structure to generate a test

suite which will exercise all parts of the rule-base [272].

• Compton proposes a structured patch environment for rule-based systems.

Applying the heuristic Si fractum non sit, noli id  reficere (if it ain't  broke don't
fix it), Compton's ripple-down-rule environment forbids re-organising rules that

have proved their utility in the past. Instead, if a new case is handled

inappropriately by the current rules, new rules are added onto existing rules  that

patch the error in the context of it arising. This seemingly-naive technique has

proved its worth in the domain of biochemical interpretation [206] and has out-

performed techniques based on apparently more-sophisticated representations

[159, 187]17.

• Gaines & Shaw explore techniques for resolving conflicts in terminology. The

conceptual systems of different experts are explicated and compared using a

technique called entity-attribute grid elicitation [90]18.

• Boose et al. describes group decision support environments containing suites of

tools combined to form a knowledge acquisition environment [14].   Boose et.

16 For an illuminating public debate between Searle and defenders of the AI program, see Hofstadter and
Dennett's review (p373-382 of [105]) of Searle's position [229], and the subsequent argument [67, 230, 231].
Our own reading is that Searle can only repeat his initial eloquence, while Hofstadter and Dennett can marshal
a broader and more substantial case.

17 For more on ripple-down-rules, see section 2.3.7.
18 For more on entity-attribute grid elicitation, see section 2.3.8.
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al.'s system focuses on the development of models of the group decision support

process19.

• Silverman advises that attached to an expert system is an expert critiquing system

which he defines as:
…programs that first cause their user to maximise the falsifiability of their
statements and then proceed to check to see if errors exist. A good critic program
doubts and traps its user into revealing his or her errors. It then attempts to help
the user make the necessary repairs.  [237]

Silverman divides an expert critiquing system into (i) a deep model  which can

generate behaviour; (ii) a differential analyser  which compares the generated

behaviour with the expected behaviour; and (iii) a dialogue generator that

explains the errors and assists in correcting them.

D E D E c E d H e W O H O J Q R J X ^ Q P G N Q G P O L b O K Q R J X

Only Compton, Silverman and Zlatereva discuss testing via assessing the possible

inputs-outputs of their systems.

• Popper and Agnew et.al discuss general principles for human exploration. They

do not propose automatic tools that support the process they advocate.

• Preece's preferred testing tools assess a knowledge base according to internal

syntactic criteria (which we will call verification). Such  an internal syntactic test

may be irrelevant to the issue of  a model's ability to reproduce known

behaviour20.

• Gaines & Shaw focuses on  identifying and resolving conflicts in the meaning of

individual terms, not on conflicts in the semantics of the models built using those

terms as primitives.  A model-level conflict detection requires a execution

module.

• Boose's et al system lacks an execution module for the generated models as part

of the group decision support environment. Boose et al assume that once the

group's mode is elicited, it will be subsequently exported into an executable

form.

However, in terms of general engineering principles for the construction of structured

testing environments, the performance modules of Compton, Zlatereva, and Silverman

are incomplete:

• Compton's  design is optimised for maintenance of propositional rule-bases only.

Experts cannot browse and recognise their models inside the patch tree. This

19 For more on Boose et al's work on decision support systems, see section 7.2.3.
20 For more on Preece's work, see sections 3.3.1 and 7.2.2.
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research began as an experiment in a maintenance environment where experts

could browse and freely modify the knowledge21.

• Zlatereva's tools can generate the inputs for a test suites that will exercise an

entire rule-base. However, an expert still has to decide what output  is appropriate

for each generated input. This can introduce a circularity in the testing procedure.

After an expert describes their world-view in a model, that same expert will be

asked to specify the results of certain inputs. If the expert then uses the same

model to predict the output, then they would be using a potentially faulty model

to generate a potentially faulty prediction about the output22.  Our preferred

approach is for the input-output test pairs to be generated totally separately to the

current model; e.g. from real-world observations of the entity being modelled in

the rule-base.

• Silverman's research seems to be aimed at an implementation-independent

analysis of the process of "critiquing" a program. His focus seems to be on

defining "critiquing" as an add-on to existing systems, not as a built-in that is

fundamental to the whole KBs life cycle23. We believe that while this approach is

useful, a more extensible approach would to change the structure of knowledge-

bases systems such that critiquing is built into the system. In the case where the

design of the system can be altered to integrate a testing module, we believe that

the built-in approach is superior since built-in critics could guide the knowledge

acquisition and maintenance process.

D E D E f E g V I W K

Model review is a two-stage process: fault + fix. Here, we explore faulting models only.

We are sensitive to criticisms that this work is incomplete without a working "fix"

module. In our defence, our experience has been that experts have no problems with

generating any number of new models/ revisions to existing models. However, assessing

those new models is very difficult. Hence, our goal: general implementation principles

for deep models and differential analysers.  Mahidadia explores dialogue generation in

this domain using inductive logic programming [137, 140]24.

Our goal is somewhat ambitious in that a generic testing module implies a generic

execution engine. We will argue that an abductive inference procedure, with

customisable inference assessment operators, is such a device25. This claim will be

21 See chapter 2.
22 For more on Zlatereva's work, see section 3.3.2.
23 Expert critiquing systems are discussed further in section 7.2.4.
24 For more on Mahidadia's work, see section 2.3.6.
25 For more on inference assessment, see the discussions on the BEST operator in section 2.3.5.4.  For more on

our abductive framework, see section 7.1.2.
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supported by a literature review that maps our validation-as-abduction process into a

surprisingly wide range of knowledge-based systems (KBS) tasks26.  We will discuss

general implementation techniques for such a module, supply a detailed design,

experimentally examine its complexity, and uncover computational limits to doubt.

Given our belief that testing is an important part of building knowledge bases, we will

also argue that these limits to testing are also the limits to knowledge acquisition.

Further, we will argue that numerous "knowledge level" tasks such as diagnosis,

prediction, and monitoring are actually blurred reflections of a single, more basic,

process. That is, our generalised testing architecture will help to clean up confusions at

the knowledge level.

9 : h : i ? j ? k l k B ? = m n o k p A p

This research is a generalisation of prior work by Feldman and Compton on qualitative

hypothesis testing [79, 80]. We will argue that:
Generalised qualitative hypothesis testing is a essential,  simple, customisable,
practical, general,  and radical  method of developing and executing a wide
range of knowledge tasks.

9 : q : r o j s ? k t u v j B

The subsequent chapters expand the underlined sections of the statement of thesis:

Chapter 2: Describes the historical predecessor to this work. QMOD/JUSTIN was a

structured hypothesis testing environment for qualitative models in data-

poor environments.

Chapter 3: Argues that a process like QMOD/JUSTIN is an essential  extension to

modern knowledge based systems (KBS) practice.

Chapter 4: Discusses the implementation of a generalised hypothesis tester. At its

core, it is a simple process (called Core ).

Chapter 5: Core  executes over a very low-level structure. Chapter 5 describes a

customisable layer on top of Core  that is suitable for knowledge

acquisition.

Chapter 6:  The practical utility of Core is demonstrated here via three experimental

studies.

Chapter 7: Formally, Core is abduction and abduction is general to many KBS

tasks. Chapter 7 explores the use of the Core validation algorithm as an

inference engine.

Chapter 8: Given that chapter 6 demonstrated that Core can act as a test engine and

chapter 7 demonstrated that Core can act as an inference engine, chapter

26 See chapter 7.
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8 argues for replacing a wide range of knowledge tasks  with abductive

architectures such as Core. Given the current interest in the KA

community for high-level abstracted representations,  proposing the use

of a  low-level routine such as Core is  a radical proposal.

Chapters one and three present the motivation for this work. Chapter two describes the

related work that spawned this research. Other related work is discussed through out this

report, the major one being the abductive literature reviewed in chapter seven. Chapters

four, five, and six describe the implementation and experimental work that is the basis of

this work. Chapter seven is the most theoretical and explores the equivalence of this

work to other knowledge representation research. Chapter eight is somewhat provocative

and argues that the proposal presented here is not only equivalent, but better, than the

knowledge level modelling proposal currently favoured by the knowledge acquisition

community.

Certain chapters can be read in relative isolation to the rest of the report. For details on

how to build an generalised qualitative hypothesis tester, see chapter four. For a "symbol

level" critique of current trends in "knowledge level" modelling, see chapters seven and

eight. For relaxation, read chapter ten.

Non-technical readers may find chapters one, three, eight, nine and ten the most

approachable.

Each chapter starts with N  (N> 1) quotes. Quote N=1 are historical examples of a classic

error in reasoning. Chapter quote N  (N>1) set the tone of that chapter.

9 : w : u > < v A x j ? A = B p

Portions of this work have been published previously [152-156, 158-161]. Note that the

terminology used here supersedes the terminology defined previously.

9 : y : z = ? j ? A = B

Chapters two and four use a Pascal-ish pseudo-code notation, with certain additions:

• Some polymorphism; e.g. a special non-typed records called any ; variable

procedure names called methods  that can be bound at runtime; a generic

number type that works for both integers and reals

• Efficient bitstring  processing;

• An explicit return   statement in functions.

• Functions with one statement do not require begin-end  statements.

• The ability to define type/procedure/function above or below the definition of the

types/procedures/functions that it uses;

• The use of -- to denote comments;
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• Built-in list  types which can grow to arbitrary length, hold any  type, respond

to size(list)  and average(list)  (the latter returns the mean of the

numbers in the list ).

• Lists  auto-initialise to [], sets to {} ,  and integers auto-initialise to zero.

• { X} and [X] denote sets and lists respectively containing one element X.

• If X is a set or a list, then X + Y adds the item Y to X. If X is a list, Y is now the

last item in that list. If X and Y are sets or lists, then X  ∪ Y is the combination of

the two. In the case of sets, the result is guaranteed to have no repeats. In the case

of lists, Y is appended to the end of X. If either one is empty, then the other is

returned unchanged. If both are empty, then the empty set/list is returned. If X

and Y are sets or lists, then X  ∩ Y is the intersection of the two. If X  is a set or

list, then X  + Z denotes adding item Z to X. In the case of lists, it is appended at

the end.

• "For" loops that can iterate over all items in a lists or all subsets of a list.

• Automatic garbage collection (so we don't have to free ).

9 : { : ; x | B = } v k ~ C k l k B ? p

This work was supported partially by an Australian Research Council Grant

#A49030091.

My supervisors each had their special role to play. A/Prof. Paul Compton fanned the fire

when the spark was dim while A/Prof. Claude Sammut stamped out the forest fires27.

They also performed several miracles regarding funding, for which I will be eternally

grateful and promise never to tell a soul.

Dr. "Enrico" Coiera (HP Labs, Bristol), Dr. Ashwin Srinivasan (Logic Programming

Group, Oxford University) and Dr. Cindy Mason (AMES Research Labs, NASA) were

my ambassadors to the international AI  community. Thanks to their friendship, I had an

unusually close contact with a wide range of AI researchers around the world. Also,

"Enrico" (who will always be Ric to me) deserves extra thanks for demonstrating that

PhDs were not only for other people.

I owe the QMOD long-suffering domain expert, Dr. George Smythe of the Department

of Chemical Pathology, St. Vincent's Hospital, Sydney, a large debt and marvel at his

endless patience.

Special thanks to Dr. Max Kanovich of the Moscow Humanitarian University. At a time

when I was suffering from a bad dose of methodological constipation, Mad Max arrived

27 Though sometimes the experience was like playing with matches round a petrol tank and walking to the South
Pole…
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and convinced me that theorem provers were just programs which real people like me

were allowed to implement.

Dr. Clarke Quinn, Dr. Ray Lister, and Dr. Bob Cohen were kind enough to read various

versions of this thesis in great detail, and offer many useful suggestions. Bob's reading

was the most arduous since it necessitated reading the penultimate 200-page draft.

Dr. Michael Cameron-Jones politely corrected a glaring flaw in our treatment of

explaining "steadies".

My fellow PhD students all helped, in their own ways:

• Graham Mann's contribution was as indescribable as it was unique, enthusiastic,

sometimes inspirational, sometimes confusing, but  definitely top of  the list.

• Ashesh Mahidadia and Maria Lee made significant and timely contributions to

the many features of this work. I wish them well in their related research.

• Hugh Clapin tried to keep me honest about the philosophy (though I fear he did

not totally succeed: my fault, not his).

• Dr. Andrew Taylor (who, in his heart, is still a PhD student) took the time to

explore my work. His surgical precision was very useful.

• Grasp Heaven (a.k.a. Byeong Ho Kang) was always cheerful and polite, until I

taught him to swear in Australian. I hope his family can forgive me.

• And to the rest (Phil, Ashley, Michael, and the rest of the AI Lab gang), many

thanks.

The Newcastle University Departments of Information Science and Computer Science

helped the latter stages of the PhD with coffee, part-time work, and an environment

where I could complete this work.  Special thanks to Dr. Jo Caldwell for excusing me

from a mountain of first-year marking at a time when my thesis needed a lot of attention.

Extra thanks to Rowena Claire-Noble Yatsamatzu for coping with my strange work

practices and long-hours. See you in eight years' time.

I've saved the very best for last. Clare Morgan helped, just by being there. While my

fellow PhD students were going crazy in their own strange ways, Clare kept me balanced

(moderately) and sane (relatively) during the last two years of this process. She was

always good for company, love, support, and the offer of a gin. Well, if you're having

one…
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They couldn't hit an elephant at this dist… : Last words
of General John Sedgwick,  Battle of Spotsylvania,
1864.
The sciences do not try to explain, they hardly even try
to interpret, they mainly make models. By a model it is
meant a mathematical construct which, with the
addition of certain verbal interpretations, describes
observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is
expected to work: John von Neumann.

Experiments with qualitative hypothesis testing (QMOD/JUSTIN) were the historical

pre-cursor  to this work. This chapter discusses qualitative and quantitative hypothesis

testing and introduces compartmental modelling (a technique we use later).

We begin with a discussion on quantitative hypothesis testing and give an example of

how we would develop a mathematical model suitable for quantitative hypothesis testing

via compartmental modelling. This mathematical approach requires numerous

measurements of the domain in question. We then introduce QMOD/JUSTIN: an

experiment in adapting compartmental modelling to poorly-measured domain.

h : 9 : � > j B ? A ? j ? A � k � � s = ? o k p A p n k p ? A B C

Quantitative hypothesis testing is a well developed statistical technique for testing that

two sets of numbers are similar. If a domain supports a mathematical model, then

quantitative hypothesis testing can be used to generate a set of numbers representing the

behaviour of a model. This output can then be compared to measurements from the

entity being modelled. A model passes this quantitative hypothesis test if the

measurements are statistically the same as the model output.

T E D E D E � � I H e W O

For example, consider a drug injected into the blood. The level of the drug in the blood

decreases as (i) it diffuses into body tissues and (ii)  the drug is cleared by the liver.

Also, (iii) the drug in the blood tissues may diffuse back to the blood. We can model this

system using compartmental modelling [148]. Compartmental models utilise the

principal of conservation of mass and assume that the  sum of flows of substance in and

out of a compartment must equal zero. Flows are typically modelled using a time-

dependant expediential function since the rate of flow is often proportional to the amount

of stuff  in the compartment. We can model our drug with the three compartment system

of Figure 2.1.
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Figure 2.1 Representing drug levels in the blood using a three
compartment model. Example from  [97] p183-185.

The functions fi  model the flows between the compartments using three constants:  k1,

the rate of flow of the drug into the tissues; k2 the rate of clearance by the liver and k3

the rate of  flow of the drug into the blood plasma. Applying conservation of mass, we

get A, the matrix for the system:

A =

dx1
dt

= − k1 + k2( )x1 + k3x2

dx2

dt
= k1x1 − k3x2

















This systems characteristic equation has roots p calculated as follows:

det A − pI( ) =
−(k1 + k2) − p k3

k1 −k3 − p






 = 0

∴ p1,2 =
−(k1 + k2 + k3) ± (k1 + k2 + k3)2 − 4k2k3[ ]

2

Since this is a well-measured domain, we have values for the initial conditions of this

model: X1(t=0) = C; X2(t=0) = 0; and the flow rates: k1 =0.5; k2 = k3 = 1. Therefore,

p1 = -1/2 and p2 = -2. Given this knowledge of the roots, we can re-express our

differential equation as follows:
dx dt = Ax

x(t = 0) = xo







⇒ xi t( ) = cie
pi t

i =1

N
∑ = De

− t
2 + Ee−2t

Using our initial conditions again, this equations becomes:

D + E = C,dx1
dt = −3C

2 = −D / 2 − 2E

∴ D = C
3,E = 2C 3

∴ x1 t( ) = C
3e

− t
2 + 2C

3e−2t

Figure 2.2. graphs this function for  C = 0 to 10000 and T = 0 to 3. We see that blood

plasma levels x1 varies from 0 to 6000 and degrades smoothly as a simple exponential

function.
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Figure 2.2. Change blood-levels for X1 from the model of figure 2.1.

T E D E T E � K K O K K H O J Q

Our example seems impressive. We have been able to deduce a detailed mathematical

model suitable for statistical hypothesis testing  from a seemingly simplistic

approximation to human physiology (three compartments).  However, recall the amount

of data we required:

• 3 of the 3 flow rates (100%)

• Measurements of 2 of the 3 compartments  (67%) at the same time interval.

Further, in order to assure statistical significance, we would have to make many such

measurements of the entity being modelled.  In many poorly-measured domains, this is

not possible. Consider, for example, neuroendocrinology: the study of the interaction of

glands and nerves.   Obtaining values for certain chemicals within the body is not as

simple as, say, attaching a volt meter to an electric circuit:

• In one extreme case, 300,000 sheeps brains had to be filtered to extract 1.0

milligrams of purified thyroptin-releasing hormone [121].

• In the usual case,  delicate measurements have to be made by skilled staff using

expensive equipment. Some of the values measured are in the pico-MOLE range

(10-12).

Measurement in this domain can therefore be an expensive process and not all entities

are fully measured. For example, in the QMOD study (described below), data on a

sketch of a model of glucose regulation [240] was collected from six journal articles. In

all, none of the flow constants were known and only 39% of the compartments were

measured and not all at the same time interval28.

The problems associated with  quantitative modelling in poorly-measured domains

encouraged Feldman & Compton to explore qualitative approaches.

28 The Smythe '89 data set is shown in Table 6.5 in section 6.2.1. Only 141 values are available for the 12
variables measured in 30 experiments. 141*100/(30*12) = 39.17%



21

h : h : � > j v A ? j ? A � k � � s = ? o k p A p n k p ? A B C � � � � @

The QMOD/JUSTIN project was Feldman & Compton's experiment in creating  "live"

knowledge about scientific publications [79, 80].  That system is introduced below using

their  terminology of [79, 80]. The precise semantics of these two systems was the focus

of this research and will be detailed in subsequent chapters.

T E T E D E U V Q R � I Q R V J

Modern science produces mountains of paper. There are now at least 2000 medical

scientific articles published per week in internationally recognised journals [79].  In the

medical literature alone, there now over a 1000 on-line databases (e.g. MEDLINE) with

half a billion entires (1990 figures, from [250]). Clearly, without automatic tools, no

researcher could ever hope to keep up-to-date with it all.

In their current form, this mountain of published material is "dead" knowledge.  For

example, if a researcher in Britain  publishes a paper that describes a model that subtly

disagrees with a publication from Argentina, we have no automatic method for detecting

the inconsistency:

• The current generation of on-line systems support only a small number of

syntactic indexes, usually only on parts of the paper such as the abstract.

• While a paper may discuss some new model, or proposes an edit to an existing

model, we can't call up that model, execute it, see what behaviour it generates,

and note how any differences between the behaviour of different models

proposed for the same domain.

The QMOD dream was the creation of an international electronic book used by

researchers around the world were to record all their experimental data and hypothetical

models.  The book was meant to "wake up" and complained if someone wrote down

something that disagreed with its contents. When a new model is proposed, it could be

entered into the knowledge base and checked for consistency with  both  the existing

knowledge base and data.

The  QMOD  philosophy was based on a division of labour between people and

computers:

• Human beings use their insight to formulate new models. This is an imagination-

intensive exercise that is (currently) best down by people.

• Computers check the consistency of the proposed new models.  This is a clerical-

intensive exercise that is best done by computer.

Rather than automating creativity,  QMOD aimed at supporting human insight.  Humans

don't need know when their theory is right. Such a discovery prompts zero activity

except, perhaps, some patting on the back or a round of drinks at the bar. However, the
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discovery of an error can prompt frenzied activity. Tedious, global searches of large

knowledge bases in order to test the applicability of data to a model is best implemented

by computer.

Figure 2.3: The vague causal diagram from [240] used by Feldman &
Compton as the input to their experiment .

T E T E T E � U � � ` V H e V J O J Q K
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Feldman & Compton started with the vague causal diagram of Figure 2.3 which they

derived from a review paper on glucose regulation [240]. Figure 2.3 was converted into a
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qualitative compartmental model; i.e. a compartmental model with no numbers attached.

A fast-entry format for scientific models was defined and implemented using a

Hypercard-based [8] point-and-click editor. Figure 2.3 became 13 models, one of which

is shown in Figure 2.4.

Acth

ADRX

Figure 2.4: A QMOD screen.  In part, this figure is "saying" that (i) acth
promotes cortisol  production; (ii) glucocorticoid inhibits acth production;
(iii) an adrenalectomy (adrx) disables cortisol production by removing the
input from cortisol production. The two unnamed boxes  (left-hand-side)
are "sources"; i.e. unlimited streams of "stuff".

Models of neuroendocrinology were created using a graphical syntax taken from

compartmental modelling, with some changes:

• Causal links were added between compartments and flows or compartments and

compartments. These links were of two kinds-  plus/ minus nodes that

respectively increased/decreased the level of stuff in a compartment or a  flow

rate.

• Facts that represent experimental perturbations of the model. These perturbations

either enabled (added) or disabled (removed) links.

• No numeric data was required for the model. QMOD's models were qualitative.

Model construction was not inhibited by a lack of numeric data (as is the case

with quantitative compartmental models).
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A database of observations relating to entities in the QMOD models was maintained.

Each observation had a "context" CXT ; i.e. an associated set of facts.  Modelled entities

could be measured in various contexts including control,  the empty set context.

For example, the Smythe '87 study [239]  made observations relating to connection

between serum corticosterone and neuro-noradrenergic activity (measured as the ratio of

noradrenaline to its post-cursor, 3,4-dihydroxphenylethethyleneglycol (DHPG)).  Neuro-

noradrenergic activity (nna), serum corticosterone (cortico) and adrenocorticotropin

(ACTH) were measured in lab rats in different contexts:

• the dex group, which were given an injection of dexamethasone (dex) at 100

mg/kg;

• the cold swim group, which were subjected to a two minute swim in a bath of ice

cold water;

• the cold swim plus dex group, which were subjected to both a cold swim and an

injection of dex;

• the control group, which received no treatment at all.

Some of the observations from Smythe '87  are shown in Table 2.1.

                                 Context
Value {} = control {dex} {coldSwim} {dex , coldSwim}

nna (no units) 0.122 0.105 0.210 0.246
serum cortico (nmol/L) 129.0 11.3 1232.0 32.8

serum acth (pg/ml) 89.0 0.0 240.0 0.0

Table 2.1: Observations from various experimental contexts (from  Smythe
'87 [239]).
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QMOD models were assessed according to their ability to reproduce known behaviour

(as expressed in the database of observations). Pairs of contexts were compared.

Changes in the measurements were called the effects FX and changes in the context were

called the causes C. The JUSTIN model error detection component (short for

justification-in-context, written in Prolog) sought explanations for the effects in the

terms of the changes in the contexts; i.e. some pathway through the model starting at a

cause and ending at an effect.  If such pathways traverse compartments for which we

have no measurements, we assume a value for that compartment that is required for the

pathway. If after (i) making every assumption possible; and (ii) generating all pathways

possible,  a model still cannot  used to explain changes in the observations, then the

model was deemed faulty.

For example, returning to Table 2.1, when comparing CXT1 = {Cold Swim} with

CXT2 = {Dex}, causal pathways would have to start on one of C = {ColdSwim/less,
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Dex/more} and end on one of the effects FX = {nna/less,  cortico/less, acth/less}. In

between: (i) compartments can be assigned either "less" or "more" as required by the

explanation, providing that assignment does not conflict with known causes/effects; (ii)

compartments can use any of the arcs provided by the expert via the Hypercard editor. If

some link was conditional on the presence or absence of an experimental perturbation,

then using that link was conditional on that perturbation appearing in C.

Pathways can contain mutually exclusive assumptions (e.g. cortisol production/more,

cortisol production/less). Therefore, once all possible pathways are generated, they had

to be "resolved": i.e. separated into compatible subsets (which we call worlds). Each

world was then explored to find the number of effects it could explain. JUSTIN reasoned

generously; i.e. it would return the world(s) that covered (i.e. explained) the greatest

number of effects. If cover  < 100%   then JUSTIN reported a faulty model.
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While QMOD theories can be cyclic (see Figure 2.4: cortisol corticoid prod 

glucocorticoid acth production cortisol production cortisol), JUSTIN generated

pathways are non-cyclic.   Cyclic explanations are required for time-series data; e.g. X

went up, then it went down, then it went up again. However, JUSTIN cannot generate

such cyclic explanations. If such cycles were permitted, then JUSTIN's search for all

possible pathways would enter an infinite loop.

QMOD/JUSTIN could be used for such  time-series data. For problems that require such

cyclic explanations over T time intervals: (i) use one new compartment for each

combination of known compartment plus time-stamp; (ii) add a time_increment  flow

that represents a compartment at time T  connecting to a compartment at time T +1.

The practicality of this proposal for proofs for large  T  is an open-research issue.

Subsequent research showed that QMOD/JUSTIN  runtimes are apparently worse-than-

cubic and potentially exponential on model size29. The model required for  N

compartments measured over T  time intervals would be of size N*T   and have runtimes

O(XN*T). QMOD/JUSTIN  is hence indicated for domains where either:

• The model is non-cyclic.

• The model is cyclic,  but  behaviour does not include time-series data and experts

do not require time-based explanations (e.g. the QMOD test data).

• The model is cyclic and behaviour only includes a small number of time

intervals.

• The model is cyclic and behaviour includes many of time intervals, and the

processing can be somehow heuristically culled. The general QMOD/JUSTIN

processing is the generation of all possible explanatory pathways. However, in

29 See section 6.3.2.1.
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special-case domains where an non-exhaustive approach will suffice, then we can

cull some of this processing30.
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QMOD/JUSTIN analysed Smythe '89: a summary paper on glucose regulation  [240]

and 343 data points collected from six related research papers. The summary model

included 27 nodes, and 82 links (and included figure 2.4). Causal explanatory pathways

could not be generated for 109 of the data points (32%). The types of inconsistencies

included clerical errors in translating models into the representation. Some of the

inconsistencies were due to deliberate simplifications of the model by the researcher.

However, the most important result was that the norepinephrine data in hypothyroid rats

who had been given an alpha-2 adrenegeric blocker could not be explained. This was a

novel finding that the authors of the [242] research paper were not aware of. The authors

of [242] had only considered the effects of the alpha-2 adrenegeric blocker on

hypothyroid rats  rather than effect of hypothyroidism  on alpha-2 adrenegeric blocker

treated rats. That is, they had not considered the cross-experiment data comparisons.

Although the data was highly statistically significant, the cross-comparison was not

made since the authors were primarily  interested in stress, not hypothyroidism. They

therefore studied the effects of stress in the presence of hypothyroidism, to see whether

or not the same mechanisms were operative as in other stress situations. The reverse

comparison looks at the effect of hypothyroidism  in the presence of stress, a question

that the authors were not addressing.  The result is of importance since it suggests that

the interaction between serotonin and norepinephrine described in [242] will have to be

relocated. This represented a major re-organisation of the  [240]  model and to our

understanding of the interaction between norepinephrine and serotonin.

Our own subsequent study  corrected some features of the Feldman & Compton study to

increase the inexplicable percentage from 32% to 45%31. Another smaller study [153]

found faults in another published scientific theory (Smythe '87 [239]32).

Apart from the insights into neuroendocrinological models, the above result is

interesting for several reasons:

• The faults detected by QMOD/JUSTIN were invisible to existing model review

techniques in neuroendocrinology. All the analysed models and data were taken

from international refereed, journals. 32-45% inexplicable data seems

surprisingly high for models that have run the gauntlet of international peer

review. We will later find that the complexity of the QMOD/JUSTIN inference

30 For examples of non-exhaustive domains, see chapter 7.
31 See section 6.2.3.
32 See section 6.1.
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process is very slow, perhaps even exponential. It is therefore no surprise that

human beings, with their limited short-term memory [175], do not completely

test their models.

• Significantly, this study faulted a model using the data published to support that

model. Clearly, human researchers do not rigorously explore all the consequences

of their observations (perhaps since the process is so computational complex).

The results of the QMOD/JUSTIN suggest that waiting in all the publications in

the books in all the libraries around the world is a backlog of extra inferences that

we could make about existing knowledge, without having to perform expensive

further experimentation.
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This section describes research closely related to QMOD/JUSTIN. Some of the

references discussed here were not known to Feldman & Compton at the time of their

1989 research.
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Swanson shares the QMOD/JUSTIN dream of an active document repository [250]. He

describes one study that found extra inferences hidden within  existing publications.

Texts were manually examined for syllogisms. If text 1 supplied A  B and text 2

supplied B C, then Swanson makes the extra inference that  A C. Some non-trivial

examples of this described: e.g. (i) fish oil can help Reynaud's disease; (ii) magnesium

could benefit migraine sufferers; and (iii) arginine intake assists aging patients with their

declining levels of thymic function and protein synthesis.

Swanson's approach emphasises the use of existing texts, which implies a manual

processing of that material. Until the day when natural language processing research

matures sufficiently to generate active models from such texts, these texts will be unable

to automatically generate behaviour.  Hence, while we find his results pragmatically

useful, we believe his approach to be limited and their scalability unlikely.

Executable documents are the focus of the ROUNDSMAN system [219].

ROUNDSMAN is a  publication-centred  tool for augmenting a physician's reasoning.

The salient details of a patient's case are matched against cases stored in published

medical literature represented as frames in the  ROUNDSMAN knowledge base.  A

comparison is made between the case presented and the type of patients mentioned in the

trials used in the literature. Treatment is critiqued based on the trials. Trials are assessed

according to how close they are to the actual patient.

Unlike  QMOD, the  ROUNDSMAN system does not attempt to model the underlying

physiology of the domain.  The internal knowledge structures of  ROUNDSMAN are
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declarative descriptions of the publications and pointers to related publications. The

system has no causal knowledge of disease processes.  In essence,  ROUNDSMAN is  a

representation of the  discussion  and not the domain  of the medical research literature.

ROUNDSMAN's critiques of a clinicians plan is made with respect to the knowledge

base. No validation tools are proposed for this knowledge base. Hence, ROUNDSMAN

is not a tool for hypothesis testing.
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Darden [53]  discusses theory anomaly localisation based on an analysis of the

development of genetic theory in the early part of this century. While it was not their

intention, the study also demonstrated the central role of causal links33 in model anomaly

localisation.

The technical appendix to the Darden study describes how their theory was represented

in a system called FR. While the FR representation was useful for structuring a

complicated domain, most of the architecture was not needed for the anomaly

localisation. The essential part of the implementation required for the localisation

process were the causal links between parts of the theory (modelled as "function

frames"). Anomaly localisation was a process of walking backwards from the final state

back towards the initial state, inquiring at each point whether the intermediate state had

been entered. Later versions of the program, as yet unpublished, are more sophisticated

and used more of the FR architecture. Entities within the domain are bundled into groups

(using functional knowledge) and anomaly localisation proceeds by groups, rather than

by mere entities [169].

The goal of the program used in the Darden study was to illustrate how a functional

representation such as FR could yield a systematic generation of possible faults that

could be fixed in a process of redesign. That is, unlike our work, they were exploring an

existing representation rather than seeking the minimal architecture needed for model

refutation. At most, we could argue that the Darden study demonstrates that in  terms of

model  revision, the useful features of a representation are the causal links between

entities. At the very least we observe that validation does not fall out straight away from

all knowledge representations, but requires some additional architecture.
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Mainstream qualitative reasoning (QR) focuses on the processing of systems which are

(i) piece-wise well-approximated by low-order linear equations or by first-order non-

linear differential equations; and (ii) whose numeric values are replaced by one of three

33 Such as the edges of Figure 2.3 before section 2.2.2.



29

qualitative states: up, down, or steady [263]. Differential equations in the format of  (ii)

are called qualitative differential equations (QDEs) [111].

A fundamental property of qualitative systems is their indeterminacy. Consider two

influences (I1 = up) and (I2 = down) on a variable X . Lacking quantitative information

about the relative size of I 1 and  I2 , we cannot determine if X goes (i) up, (ii) down, or

(iii) remains steady since the I 1  influence cancels out  I2 . The three alternatives must all

be considered and processed in separate worlds.  When extended over several levels in a

network, this can lead to an intractable branching of behaviour.  Meta-knowledge can be

used to tame some of this indeterminacy. For example, the Waltz filtering of the QSIM

system34 ruled-out a transition of the first derivative of a variable from increasing to

decreasing without first going through a zero state. In practice, however, many possible

behaviours will still be generated [86] and must be somehow handled by the program

calling the qualitative simulator.

Initially, two qualitative ontologies were proposed: DeKleer & Brown's parts-based

CONFLUENCES [60, 61] and Forbus's process-based qualitative process theory  (QPT)

[81, 84]. The distinction between parts and processed-based ontologies is the construct

given modelling primacy.  A parts-based ontology gives the parts within the model

primacy and higher-level processes (e.g. heat flow) are deduced concepts.  QMOD is a

parts-based ontology.

Later work recognised that both confluences and QPT processed QDEs. Qualitative

modelling systems were then devised to process equations. Kuipers describes his QSIM

system as a special-purpose theorem prover for QDEs [123, 125].  Compilers were

written to convert QPT  models into the QSIM representation [52].  In other work,

Iwasaki & Simon's causal ordering system used meta-knowledge of the order in which

an equation solver solved its equations to generate an network of  the causal influences

of variables on each other [112, 114]35.

Subsequent work studied the asymptotic long-term behaviour of more complex systems

of equations [108, 263].  Meta-knowledge of mathematical models was applied to

deduce the phase-portrait of the equations.  For example, Yip used meta-knowledge to

infer a library number of valid phase-portraits36 and deducing a system's long-term

behaviour (i.e. its phase portrait) was a process of matching known system properties to

this library  [263-265].  Ishida used results taken from process control theory to

34 See section 2.3.5.3.
35 This early research into qualitative reasoning is well-documented. For extensive introductions see [43, 111].

Tutorial material can be found in [26]. Summaries of the then state-of-the-art may be found in [77, 261]. For
updates, see  the proceedings of IJCAI and AAAI. Interesting historical perspectives can be found in [60, 84,
112, 124, 125]. A famous public debate between proponents of different QR approaches can be found in [62,
113, 114].

36 I.E. the  area-preserving properties of a conservative Hamiltonian system with two degrees of freedom. See the
Yip references for details.
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demonstrate that the eventual behaviour of certain mathematical models can be

accurately predicted from an analysis of real parts of the eigenvalues of a  system's sign

matrix37 [108, 109]. Interestingly, Ishida's work seems to parallels earlier independent

work by Puccia & Levins [207].   Puccia & Levins show that their intuitive loop tracing

approach is really calculating the eigenvalues of a sign matrix. While the "loop analysis"

approach of Puccia & Levins mimics JUSTIN's  tracing out of causal pathways, it is

inappropriate for our purposes:

• Ishida's pessimism about the complexity limits of his approach [109] also applies

to Puccia & Levins' process.

• The maths that underlies loop tracing and Ishida's technique crucially depends on

a construct that is illegal in QMOD: inhibitory loops of length one.

• Our reading of loop analysis is that it can only process symmetrical causal

connections (e.g. mathematical proportionality). It is not clear how this technique

can be applied to arbitrary causal connections (which may be asymmetrical38).

Standard QR grants mathematical equations modelling primacy. After some experiments

with such an equation-based approach, Feldman & Compton rejected equational

approaches. The explicit pathway generation/resolution process of JUSTIN seemed a

more direct method of implementing a qualitative hypothesis tester. Other reasons for

moving away from standard QR are its poor handling of causality and unnecessary

behaviour generation. These are discussed in the next two sections.

While standard QR is equation-based, their are several notable exceptions:

• Bond graphs: In the bond graph approach, models are built out of components

representing abstract energy sources, sinks, storage, and dissipater devices [252,

253].  We still group bond graphs with the rest of equation-based QR since bond

graph models serve as a front-end to equation specification.

• KARDIO: KARDIO generated a rule-base for heart disease via a machine

learning program that condensed the output from an indeterminate qualitative

model of heart disease [18].

• Clancey's work:  Clancey argues that the feature that distinguishes a conventional

program from an expert system is that the latter contains qualitative models.

Further, Clancey characterises expert system inference as constructing the

system-specific model (SSM) from the general qualitative model in the KB. The

SSM is an instantiated subset of the general model in the KB that is relevant to

the task at hand.  Inference proceeds via introspection on a blackboard that

contains the current copy of the SSM [38, 40].

37 A signed matrix As of a set of simultaneous equations A is  defined as follows: (As)ij  = +,-,0  if (A)ij  >0, <0, =0
respectively.

38 See the discussion on creators and destroyers in section 5.4.1.
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We do not explore Clancey's work or KARDIO in this section since neither focused

primarily on  causality39.
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Early attempts to model QMOD/JUSTIN with QSIM  proved unfruitful. QSIM produced

so many behaviours from the Smythe '89 model40 that it quickly overwhelmed the

resources available. Further, for the purposes of assessing whether a set of effects FX

were possible, QSIM can generate irrelevant behaviours. For example, consider figure

2.5  with known input causes C = {b}  and effects we wish to explain FX = {j} .

 A  B  C

 D  E  F  G

 H  I  J  K  L

Known
input

Known
output

Figure 2.5: An or-graph of possible inferences. For example, e if a or b; k
if f or g. Known inputs and outputs are circled.

Given b, we could infer {b,e,f,i,j,k} using a QSIM-like algorithm. However, for the

purposes of testing if j  can be explained, the inference to {i,k}  is unnecessary. For

indeterminate models, we should restrict our inferencing as much as we can. We should

not compute total envisionment: i.e. all behaviours inherent in some fixed collection of

objects in some configuration, for each possible state; e.g.{a,b,c,d,e,f,g,h,i,j,k,l}. Nor

should we compute the QSIM-style attainable envisionment: i.e. all behaviours possible

from some given initial state; e.g. {b,e,f,i,j,k}) [82].  In order to tame our indeterminacy

we should only compute the relevant envisionment:  i.e. the subset of the attainable

envisionment that leads to desired output states; e.g. {b,e,f,j}.
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In this section we will discuss QMOD's interest in causality and review the QR's

community research into causality.  In summary,  QR has not resolved the causality

issue and QMOD/JUSTIN explored alternative approaches.

39 For more on Clancey's work, see section 7.3, 8.2, and 8.3.
40 See Figure 2.3 before section 2.2.2.
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A concern at the heart of QMOD is causality.  If we listen to two feuding experts using

experimental evidence to argue about the internal mechanisms of a model,  we will hear

statements of the form "this causes that" or "what caused that?". Understanding/

explanation need some causal sequence; e.g. statements of the form "A  can be explained

by B".

Causality is difficult to formalise.
One might say "my earning poor grades caused the class average to drop" as
well as "heat caused the ice to melt". Both seem to be reasonable uses of the word
cause,yet the sense of causation in each case seems slightly different. [112]

Separating causality from other inferences is just as difficult. Consider the two rules:
rule1 drunk obnoxious

rule2 in oncology_clinic cancer

Such rules could be used to generate explanations for observations such as obnoxious

and cancer .  Our explanation generation meta-rule could be:
rule3 ((a b) & b)  a explains b

Applying rule3  to rule1 , we could conclude that drunk  is an explantion for

obnoxious . Naturally, this is only a guess based on the available knowledge (i.e.

rule1 ).  This is not a definite inference since other factors may have caused the

observed obnoxious  behaviour; e.g. loss of job on that day.  Nevertheless, it is a

somewhat reasonable guess. A less reasonable guess would result from applying rule3

to rule2  to conclude that being in the oncology_clinic is a cause for cancer .  This

clearly wrong since only patients with cancer  enter the oncology_clinic . Cancer  is

the cause of their presence in oncology, not visa versa (example adapted from [34],

chapter 8). The confusion here results from rule1  being strictly-causal while rule2  is

merely a conjunction of events.

Separating causality from mathematics is also problematic, as two examples

demonstrate:

• Consider the statement "when I flick the switch, the lights go on". This

expression could be converted into a mathematical equation relating the angle of

the switch in its housing to voltages across lightbulbs. However, in doing so, the

one-way causality in the original statement would be lost. A mathematical

algorithm could incorrectly deduce that when the light goes on, for what ever

reason, then this will cause  the switch to flick.

• Ohm's law R=V/I relates resistance R, voltage V, and current I.  Note that

changes in voltages and current do not cause changes in resistance, even though

the mathematical formula suggests this is possible. Resistors cannot be

manufactured to a certain specification merely by attaching an arbitrary wire to
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some rig and altering the voltage and current over the rig. Ignoring the effects of

temperature and high-voltage breakdown, resistance is an invariant built into the

physics of a wire. Hidden within Ohm's Law are rules regarding the direction of

causality between voltage, current, and resistance. Such rules are invisible to a

mathematical formalism.

Despite of its problems, causality is a commonly-used construct. Iwasaki comments:
... it is clear that causality plays an essential role in our understanding of the
world ... to understand a situation means to have a causal explanation of the
situation. [110]
Human beings seem to have an innate need to understand and explain everything
which happens in the world in terms of cause and effect…Causality is a highly
intuitively concept and as such, an ill-defined one. But it is crucial for
understanding human ability to reason about the world. [112]

Causality was a central concern in QR until the mid-80s:
A concern at the heart of qualitative reasoning is the notion of causality. Indeed,
one of the motivations for early work in qualitative physics  was to develop an
explicit treatment of causality that was unavailable in traditional physics. [43]

Systems developed in the late 1970s let the domain expert specify explicit networks of

causal connections.  Early work demonstrated the utility of this approach; e.g. CASNET

[258] and MECHANISMS LAB [221]41. This latter system had some similarities with

QMOD/JUSTIN; some of its causal links were conditional on some pre-condition42.

Subsequent work argued for adding abstraction hierarchies to causal models; e.g. ABEL

[187]. Causal models at various levels of abstraction permit inferencing down/up/across

abstraction  level(s) if more/less/same abstraction is useful in the reasoning.

These early systems were significant pieces of original and innovative research and

successes in their own right. However, they failed to provide general principles for later

work and did not address the issue of hypothesis testing. None of these systems regarded

their causal models as hypothetical constructs that required review and revision. The

additional architecture required for such review was the focus of QMOD/JUSTIN.

QMOD/JUSTIN could not use CASNET-style causation strengths on its connections

between compartments  since like most numbers in our domain, these strengths are

unknown. Nor are ABEL-style abstraction hierarchies  relevant since in JUSTIN's search

for all possible answers, the entire theory is explored across every abstraction level; i.e. a

bigger search.
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In a search for such general principles, many researchers in the QR field moved to

equation-based approaches in the 1980s. Causality in equation-based QR is a deduction

41 For other work, see the list [261], p2.
42 For example, in Figure 2.4 in section 2.2.2.1, the link into the cortisol node is conditional on the absence of

ADRX.
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from some non-causal source. For example, CONFLUENCES assigned causality

according to the way a disturbance is propagated from one variable to others around a

model (controlled by the QDEs in the nodes and arcs of its representation) [62]. Causal

ordering and its clones [11, 92, 112, 114, 131] deduce causal networks from equations.

As an example of equation-based causality, consider the bathtub of Figure 2.6.i and its

associated equations in Figure 2.6.ii.  In figure (i), qOut is the quantity of water flowing

out of the system; qIn is the quantity of water flowing into the system; I is  the pressure

at the bottom of the bathtub; a is the amount of water in the bathtub; k is the valve

opening at the base of the tub; and c1, c2, and c3 are constants. The five equations E of

Figure (ii) are saying that  (E1) the value opening k and (E5) the input flow rate qIn are

exogenous (externally controlled); that (E2) the output rate qOut is  proportional to the

pressure p; that (E3) the pressure p is proportional to the amount of water a; and (E4)

when the system is in equilibrium, the input flow qIn  equals the output flow qOut.

qIn

A

k

p

qOut

E1........k = c 3

E2..qOut = k * p
E3....a = c 1 * p
E4....qOut = qIn
E5......qIn = c2

[k,c3]
[qOut,k,p]
[a,c1,p]
[qOut,qIn]
[qIn,c2]
[c1]
[c2]
[c3]

qOut p a

qIn k

c2 c3 c1

(i) (ii) (iii) (iv)

Figure 2.6. Casual ordering: the bathtub example. From [110],

Figure 2.6.iii converts each equation into its qualitative form; i.e. E1 is a relationship

between k  and c3.  Causal ordering uses meta-knowledge of the inference engine of a

equational solver to deduce the order in which an  inference engine processes the

variables within a model. Causal ordering looks for collections of N statements in the

qualitative representation of an equation with N unknowns. Since N equations with N

unknowns can be solved algebraically,  causal ordering declares that these N unknowns

are "solved" and the process repeats till all the variables are solved. If at any cycle, N

equations with N unknowns can't found, then causal ordering declares "solved" the

variables in the smallest number of equations that could be solved simultaneously.  If

variables at cycle N require variables solved for at cycle N -1, then the latter are "caused"

by the former. For our above example, the first cycle finds E1 and E5 and declares

known  k and qIn. In the next cycle, causal ordering finds E4, which declares qOut

solved. The next two cycles uses E2 to solve for p, then E3 to solve for a.  The resulting

causal model is shown in Figure 2.6.iv.
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Causal ordering reserves the term "structural equation" to describe equations that

articulate the core mechanisms of a system.  Deciding which equations are structural  is a
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subjective process.  Experts may differ as to what are the relevant or active processes in

a domain43. If different world views yield different structural equations then there is no

guarantee that a unique "true" causality will be deduced from a QR system that computes

a casual network from some given model.

Causality within QSIM is an open question. Kuipers' own summary of his early work

notes that his program(s) did less "causal" inferencing than constraint propagation and

satisfaction ([124], p130). Optimisation techniques for constraint-satisfaction may

preclude the generation of causal sequences.  Kuipers [125] acknowledges that the Waltz

filtering of QSIM is a textbook application of Mackworth's arc-consistency algorithm

[135, 136]. This algorithm builds a set of all the possible links between states, then

removes (in polynomial time) the links that violate known constraints. The resulting set

can be queried for what states assignments for a variable are possible, but not for an

explanatory causal sequence of state transitions from known causes to those legal

states44.

After an inconclusive public debate in 1986 between the causal ordering and

CONFLUENCES approaches [62, 113, 114], the term "causality" was avoided by many

QR researchers.  Forbus's 1992 summary of causality in QR is somewhat negative. After

observing that his QPT system does not handle causality properly, he adds:
"... In terms of violating human intuitions, each system of qualitative physics fails
in some way to handle causality properly. Like (QPT) theory, deKleer and
Brown's confluence theory... fails to distinguish between equations representing
causal versus non-causal laws. Kuipers QSIM contains no account of causality at
all..." [83]

In summary, experiments with understand causality via qualitative equations were

inconclusive. A mathematical equation is fundamentally not suited for causal

descriptions, be it a qualitative or quantitative equation. Causal modelling requires

primitives that can specific causal directions.  Mathematics condones many directions

(e.g. our Ohm's Law example above). QMOD's causal links do not model that

"causality" of standard equation-based QR.

Since latter-day QR has no modelling primitive for single direction causality, techniques

like CONFLUENCES, QPT, QSIM and causal ordering an unsuitable for

QMOD/JUSTIN. Feldman & Compton therefore returned to the earlier QR style of

CASNET/ ABEL/ MECHANISMS LAB, with one important difference. The causal

network supplied by humans are open to critique and review. QMOD/JUSTIN added

testing tools that assessed the utility of the entered causal links.

43 See section 1.1 for a discussion why this is so.
44 Mackworth comments that once the legal transitions are deduced, then a standard search algorithm could

traverse the reduced sets of links [136]; i.e. explanations could be generated by a post-processor.  Such a post-
processor was not part of the QSIM formalism.



36

§ ¨ © ¨ � ¨ ½ ¨ ¿ Â � Å Â µ » ¹ À Â Å � � ¹ » ² ¼ Â µ ® ¼  ´ · ´ ¼ º ´

Standard QR research does not resolve the issue of the semantics of the causal links in

QMOD graphs.  Are the links really "causal" or do they are kludged up version of other

kinds of inferences?  We finesse the issue with the following argument.

The modelling intent of Figure 2.7 is, in part, that increases in ACTH can possibly lead

to increases in CORTICO.

NNA ACTH CORTICO

Figure 2.7. A  sample  QMOD graph.
What do   and   mean?

A variety of inference operators "can possibly lead" to one thing from another; e.g.

logical implication. However,  the edges of a QMOD graph are not simple logical

implication. The first-order-provable statement:
 ACTH(up)  CORTICO(up).

could be derived from Figure 2.7. Such a statement would have to be processed by a

meta-interpreter that assessed the utility of using this inference on the basis of a criteria

global to the entire model: i.e. "does it lead to the most number of explanations?". Nor

should we convert these models to equations of the form (e.g.)
CORTICO=k1*ACTH

(where k1 is some constant of proportionality).  Such an equation potentially condones

more explanations than our expert intended. For example, using this equation, we could

conclude that we could explain decreases in ACTH due to decreases in CORTICO (using

ACTH = CORTICO/k1) . However, the modelling intent is exactly the opposite:

CORTICO increases can explain ACTH  decreases via an  edge.

Our only pre-condition for asserting X can possibly lead to Y  is that a user will accept X

as an explanation for Y.    This is an uncertain inference.  Uncertain inferences generate

assumptions. Some assumptions are controversial; i.e. clash with other assumptions.

Worlds are generated via the  separation of  the controversial assumptions into subsets

which are maximal with respect to the number of pathways they permit and are

internally consistent; i.e. th JUSTIN resolve process. Each world contains some subset of

the inputs, some subsets of the outputs, a set of world-defining controversial

assumptions that are internally consistent, and a list of explanatory pathways that are

consistent with the assumptions. The believed worlds are selected by a domain-specific

BEST operator. Sample BEST operators are shown in Table 2.2.
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BEST 1 Select the world(s) that use the least number of assumptions.
BEST 2 Select the worlds that use the fewest causes.
 BEST 3 Select the "simplest" world(s); i.e. those worlds  with smallest proof size.
BEST 4 Select the world(s) that include the most number of effects.
BEST 5 Select the world(s) that include the least number of edges from a source

you disagree with; e.g. some rival expert.
BEST 6 Select the world(s) that include the smallest percentage of base

controversial assumptions . A base controversial assumption is an
controversial assumption that has no other controversial assumption
upstream45.

BEST 7 Select the world(s) that uses edges of highest probability.  For example, a
MYCIN rule could link a set of premises to a conclusion and this
inference was assessed via a certainty factor attached to the rule [24].

Table 2.2. Sample BEST operators. QMOD/JUSTIN used  BEST4.

That is, edges in a QMOD graph are an optional inference that we can make, if that will

satisfy a BEST operator. Note that:

• There is no one "best" BEST operator. QMOD/JUSTIN used BEST4. One

advantage with BEST4 is that it is very hard to argue against. A model that can't

reproduce known behaviour is definitely faulty46. Whatever BEST is selected, it

amounts to a small piece of code that is a post-processor to an inference engine47.

Hence, it can be customised. Any of the above, or more, could be used singularly

or in combination. Whatever BEST is used, feuding experts must agree to it

before the process of hypothesis testing begins.

• The effects that are termed inexplicable are those that do not appear in the BEST

worlds. In the case where BEST returns more than one world, we argue that all

the effects in the BEST  worlds should be deemed explained. This is an overly-

generous inference since not all the worlds may be compatible. However, it is the

simplest resolution of the multiple BEST  worlds problem and even with this

generous approach, we find we can still generate a significant level of model

critique48

We are sensitive to the criticism that this definition of can possibly lead to  could blur

important distinctions. Various researchers caution against mixing up different inference

operators  in the same knowledge base:

• For example, Poole argues that the difference between different styles of

diagnostic reasoning are defined only for knowledge bases that use

fundamentally different inference operators [197]. DeKleer-style consistency

45 The connection between base controversial assumptions and the minimal environments of the ATMS are
explored in chapter 4.2.2.4 and 4.2.2.5.

46 Counter argument: the data collection was faulty. For the purposes of this research we will ignore this counter
argument and assume that our measurements are perfect but our models may be faulty.

47 For sample code for  BEST1, BEST2, BEST3, BEST4, and BEST6, see section 4.3.8.

48  See sections 6.2 and 6.3 (in particular, Figure 6.22).
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diagnosis uses inference as logical implication while Poole-style set coverage

requires inference as causality49.

• For other examples, see above text50.

Perhaps if we were to explicate the differences between different types of can possibly

lead to, then we could restrict the range of valid explanations  permitted by each sub-

type of can possibly lead to .  We do not explore such distinctions since:

• The framework we develop defines can possibly lead to as a small table (the links

relation of the data-compiler51) describing which value V1 of what an object of

class C1  can lead to downstream objects of class C2  to have the value V2.   More

restrictive versions of can possible lead to  could be implemented as different

links tables.

• Due to its lack of distinctions between different causal inferences, our  can

possible lead to operator is over-generous with its proposed explanations. Even

with this over-generous  explanation capacity, we can achieve a non-trivial level

of critique52. We therefore believe that our generic critiquing process need not

await more precise definitions of can possible lead to .  This is a fortunate

observations since…

• The precise semantics of causality have been unsuccessfully explored by

numerous researchers53 and a consensus semantics has yet to emerge.

• We are not overly concerned with possibly incorrect inferences in our system

since we embed causal constructs inside editors  that allow an expert to specify

directed causal networks that are subsequently checked against a library of

observations (e.g. QMOD/JUSTIN).
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We find that other researcher share our view of "causality" as probable inferences that

must be assessed. One well-developed assessment criteria is mathematical probability, as

used in Pearl's belief networks  (BNs). BNs deduce causal connections from a statistical

analysis of the frequency distributions of variables in a sample to deduce acyclic

"networks" (which are really trees) of causal relationships between variables [188, 190].

Current state-of-the-art BNs assumes acyclic models [93] (whereas the models in our test

domain are usually cyclic54).

49 See Figure 7.3 in section 7.1.3 for an example of the difference between consistency-based diagnosis and set-
covering diagnosis.

50 See the examples in section 2.3.5.1.
51 A sample links relation is described in section 5.4.1.
52  See sections 6.2 and 6.3 (in particular, Figure 6.22).
53 See the previous section on causality research in QR in section 2.3.5.3.
54 For example, see Figure 2.3 before section 2.2.2.



39

Generating belief networks requires access to large amounts of data is available on all

the entities in the domain. Our domain is characterised as being hypothesis-rich, but

data-poor. Obtaining values for certain chemicals within the body is not as simple as,

say, attaching a volt meter to an electric circuit. Often delicate measurements have to be

made by skilled staff using expensive equipment. The measurement must be repeated a

statistically meaningful number of times. Also, in certain domains, it may take years to

gather the data (e.g. large-scale epidemiological studies). Hence, the data required to

assist feuding experts debating different versions of the same model may be

unobtainable or incomplete.  Consequently, in the Smythe '89 study, the majority of the

model was poorly measured.

Like most inductive generalisation machine learning algorithms55, BNs   make little use

of the current background theory; i.e. they make no attempt to preserve current beliefs.

In our domain, we find this unacceptable.  Various users would treasure their favourite

portions of their model(s) (typically, the ones they have developed and successfully

defended from all critics). It would be unacceptable to permit a learning algorithm to

scribble all over this knowledge. Learning programs for this domain must strive to

preserve the current background theory, an approach explored by Mahidadia in this

domain in an inductive-logic-programming framework.  His research seeks the minimal

change to a first-order theory (minus function symbols) such that it can prove all the

known positive examples  E+ of model behaviour.  Mahidadia's background theory B  is

a Prolog version of the Smythe models represented as a set of edges E and vertices V.

The hypothesised change to the theory H is a set of minimal vertices V1 and edges E1

such that the new model <V0 + V1, E0 + E1> satisfies B H  E+ [137, 139-141]56.
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It is informative to contrast QMOD/JUSTIN with Compton's other main research area:

building maintainable classification systems using the ripple-down-rules technique

(RDR) [47].  In RDR, whenever a case results in an inappropriate conclusion, the patch

knowledge is entered in as an unless  test beneath the rule that resulted in error. As the

specification develops, it grows into a binary tree with knowledge patches stored at

every node (see figure 2.8). At runtime,  the final conclusion is the conclusion of the last

satisfied node.

rule 1

a & b

then x1
if false

if true
(x1 is true
unless...)

if false

if true
then x2

rule 3

d

then x3

rule 2

c

then x2

  null

  null

Figure 2.8: An RDR-tree. At runtime, the
output conclusion is the conclusion of the
last satisfied node.

55 E.G. the ID3 system described in section 3.5.
56 For more on inductive logic programming, see section 7.1.10.
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The advantage of this approach is that  knowledge that works is never changed. New

knowledge is always an addition to the specification, never a re-write. Whenever a new

rule is added, the input case that prompted the rule addition is cached with the new rule.

Such cases are called cornerstone cases. The unless logic is generated  by the expert via

a simple selection from a difference list. To generate this difference list, the RDR shell

computes the set difference between all the possible descriptors for the input case and

the cornerstone case of the incorrectly last-satisfied node. This is presented to the expert

who can select N (N >= 1) items off this list for inclusion into the new rule. For example:

• If the relevant cornerstone case had referred to a measurement of thyroid

stimulating hormone (TSH) as  high and the T4 hormone as low; and

• If the incorrectly classified case referred to TSH as high and T4 as high;

• Then the difference list would comprise one item: T4 = low. References to TSH

would be dropped since the TSH attribute(s) of the incorrectly classified case was

the same as the TSH attribute(s) of the relevant cornerstone case.

With this difference list, the condition of the patch rule could only be if T4 = low then ....

The astute reader will note that this is only a patch on the rule that was discovered to be

anomalous for this case. The same logic anomaly could exist in other rules in different

branches and would remain unpatched by the above process. In practice, the process of

tracking down these other anomalies occurs as part of correcting other cases. Hence,

tracking down anomalies on other branches does not noticeably increase the

maintenance effort described above.
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Note that the RDR formalism makes no commitment to tree structures that are optimal.

An RDR tree can contain repeated tests, redundant knowledge, and its sub-trees can

overlap each other semantically.  There exists some experimental evidence suggesting

that the redundancy rate may not be significantly large:

•  RDR trees tend to be broad and flat (maximum number of patches in a 2037 rule

system  = 8, average = 2-3).

• Gaines and Compton describe techniques for the machine learning of RDR trees.

When given cornerstone cases from existing RDR trees, only a 50% size

reduction was observed [89].

• The seemingly inefficient RDR trees have never proven to be too slow in

practice.

Further, while redundancies and logically overlapping sub-trees are  less than optimal in

a computational sense, it is somewhat misguided to attempt to optimise an RDR tree to

(e.g.) remove the redundancies or separate out the overlaps. The important feature of an

RDR tree is that it is optimised for maintenance. Alternative knowledge representation
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schemes may run faster  but incur the penalty of harder maintenance.  To see why RDR

simplifies maintenance, consider how a conventional expert system would encode the

knowledge of Figure 2.8. Most probably, they would enumerate all the logical paths in

the RDR tree and write one rule for each path. Assuming the RDR  interpreter, then the

logical  paths for Figure 2.8 are shown in Table 2.3.

Rule If Then
1 a & b & not c & not d x1 Table 2.3: A propositional system
2 a & b & c x2 that is equivalent to Figure 2.8.
3 a & b & not c & d x3

If the knowledge of the system is patched, then in a conventional rule-based expert

system, this patch could extend over many rules. Repeating our above example,  the

patch on the x1 anomaly requires an edit to one rule (rule1) and the creation of another

(rule2). Further, the new logic refers to c which is a new concept that must be

propagated down to all related rules (rule3). The more related rules, the more edits. As

the knowledge base grows, so to does the number of edits. Hence the time taken to make

a change increases and we have a bad maintenance environment.

In RDR, existing knowledge is frozen and we only extend the knowledge base. The time

taken to change the knowledge does not increase as the knowledge grows since the

knowledge base author does not have to  tour all the knowledge to make a patch. Instead,

at patch time, the system presents the author with a list of candidate delta logic and the

author selects item(s) off that list. These items are added beneath the incorrect node. This

is the action at every knowledge patch time. Maintenance time is hence reduced. For

example, see the section on the PIERS systems
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Large expert systems are notoriously hard to build and maintain [243, 255].  Neither of

these problems were found to be true with the use of RDR for the PIERS system. PIERS

is an expert system for interpreting biochemistry results in routine daily use at St.

Vincent's Hospital Sydney [206]. PIERS's expertise covers  20% of the biochemical tests

performed at the hospital.  PIERS processes 500 cases per day at 95% accuracy, contains

2037 rules, and is one of the largest expert systems in routine use in the world today.

PIERS solves a non-trivial problem:

• PIERS  models 20% of human biochemistry sufficiently to make diagnoses that

are 99% accurate.

• PIERS was originally built for one "domain" (thyroid tests). It now covers a

dozen domains.

• Many areas of human biochemistry are open research issues.
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• Prior experiments in the same domain used extensive and elaborate abstractions,

but never made it out of the prototype stage (e.g. the ABEL system described

above [187]).

Development was simple. Minimal preliminary analysis was required. After the database

connections were made (using standard software engineering techniques), experts just

considered the cases presented on a particular day and told PIERS what to say for each

such case. Maintenance time is constant (2-6 new rules per day) and very simple (a total

of a few minutes each day).
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Despite the advantages of the RDR approach (e.g. easy maintenance), RDR makes two

assumptions that are not relevant in all domains.

• The expert does not wish to browse the knowledge base. RDR allows experts

only to view the portion of the KB used by a particular case. Any other, more

global, analysis of the KB is prevented by the RDR interface.

• The KBs generated via RDR will not be used for purposes other than

interpretation by an RDR system. A KB generated by a RDR system cannot (e.g.)

by ported to a qualitative reasoning system for simulation purposes.

Therefore, for the purposes of modelling neuroendocrinological theories, Compton

encouraged Feldman to work on tools that explicitly represented an experts current

perception of a model. Hence QMOD/JUSTIN.
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Despite the many differences between RDR and QMOD/JUSTIN  (e.g. the explicitly

represented model), the two systems are instantiations of Compton's view on how to

develop knowledge based systems.

To Compton, all knowledge is a context-dependant construct. Compton-style KBS

systems represent their knowledge using the lowest possible representational primitives.

To do otherwise, in the Compton view, allows person-specific abstract constructs to

pollute general representations. Hence (i) RDR represents its knowledge as simple

propositional object-attribute-value triples; and (ii) QMOD/JUSTIN assume no level of

abstraction in its models above  the level of directed edges which connect vertices that

can only be in one of N  mutually exclusive states.

Knowledge base development should be driven by direct experience with the domain

and not by gedankens experiments. In a Compton-style KBS development approach, test

cases play a prominent role. Hence (i) RDR only modifies its knowledge base as a result

of an incorrect inference for a particular experiment and (ii) QMOD/JUSTIN defines a

good/bad model only in terms of that model's ability to explain known test cases.
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Compton-style systems use very simple inference procedures. So simple, in fact, that the

pre-experimental intuition is that they will not work. For example:

• RDR makes no use of intermediary conclusions; i.e rules cannot make an

assertion that another rule uses later in the inferencing. Such a system may not

adequately model some time-based domain (such as the progression of a disease).

• Consider the indeterminate qualitative models process by QMOD/JUSTIN. Such

a poorly-constrained system could offer explanations for very many possible

behaviours. If so, then its ability to categorically state that a particular behaviour

was impossible would be very limited.

Both these pessimistic pre-experimental predictions proved to be unfounded.  Using

RDR large systems that interpret time-series data (e.g. PIERS is a 2037 rule system) can

be built and easily maintained without knowledge engineers. Using QMOD/JUSTIN,

data found in published papers can be used to fault the models proposed by those papers

(these faults are invisible to other techniques). The constructs used in these systems were

significantly simpler than constructs required by other approaches.  We wonder if

underlying the intricacies of existing expert systems are a minimal set of KR techniques

that are the essential components of artificial expert competency.  We ask proponents of

alternative methodologies requiring more intricate design constructs if they have

experimented with simpler alternatives? We note that designs that seem naive at first

glance may in fact produce satisfactory competency with comparatively less effort.

 

    2 1 4 7 5 6 8 3
 4  9 7 9 9 9 9 9 1   4  good value
 5  3 5 7 9 9 9 9 5   5  heavily marketed
 8  1 3 6 7 7 9 9 9   8  innovative features
 2  1 6 6 8 7 8 8 9   2  versatile
 6  1 5 6 8 7 7 7 9   6  many features
 1  1 5 4 6 6 9 7 6   1  fashion trend
 3  1 6 4 4 3 3 5 9   3  high cost
10  3 5 5 5 4 5 3 9  10  complex production
 7  4 6 6 7 6 7 1 9   7  high inventory costs
 9  9 9 9 4 5 5 5 9   9  cheap development
    2 1 4 7 5 6 8 3

                      3  existing Starstream
                      8  ideal new product
                      6  new Starlight+colors
                      5  new Starlight
                      7  new Starlight+rotator
                      4  market lead - Raymark
                      1  existing Starlight
                      2  existing Heatfast

not so good value
weakly marketed

standard features
limited

minimal functions
stolid

low cost
simple production

low inventory costs
expensive development

Figure 2.9: Repertory grid analysis of terms used by a product
development group concerned with relevant existing and competitive
products, and with new product proposals under consideration. From
[234].
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Both QMOD/JUSTIN and RDR emphasis the use of examples when changing a

knowledge base. The repertory grids of Gaines & Shaw build non-executable models of

conceptual systems in an analogous manner. Experts are asked to identify dimensions

along which items from the domain can be distinguished. The two extreme ends of these

dimensions are recorded left and right of a grid. New items from the domain are

categorised along these dimensions. This may illicit new dimensions of comparisons

from the expert which will cause the grid to grow [90].  For example, see Figure 2.9. The

grids can be used to compare terms in the domain (e.g. Figure 2.10).

4  good value
5  heavily marketed
8  innovative features
2  versatile
6  wide variety of features
1  fashion trend
3  high cost
10 complex production
7  higher inventory costs
9  lower development costs

3  existing Starstream
8  ideal new product
6  new Starlight + colors
5  new Starlight
7  new Starlight + rotator
4  market lead - Raymark
1  existing Starlight
2  existing Heatfast

100 90  80 70  60 50

100 90  80 70  60 50

Figure 2.10:  Repertory grid analysis of the differences between
terminology and items from the domain of Figure 2.9. For example, an
ideal new product seems closest to the Starlight product and furthest away
from the Starstream product. From [234].

Once the dimensions stabilise, and a representative sample of items from the domain

have been categorised, then the major distinctions and terminology of a domain has been

defined. Differences between the conceptual views of different experts can be identified

(e.g. their categorisations are different). Gaines & Shaw describe automatic tools for

generating plots representing the proximity of different expert's conceptual systems  [91,

234]. Their work focuses on identifying and resolving conflicts in the meaning of

individual terms, not on conflicts in the semantics of the models built using those terms

as primitives.  Such model-level conflict detection requires a execution module (e.g.

QMOD/JUSTIN).
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In this section, we step back from the Feldman & Compton implementation to  describe

aspects of their approach which were crucial to this subsequent research.

The basic QMOD problem was multiple expert knowledge acquisition in poorly-

measure domains. This problem is characterised by a lack of oracle:

• There exists no human with final authority to  tell us "what is really true".

• Machine learning or statistical techniques have insufficient data to automatically

generate any theory with confidence.

• The models/ knowledge bases of QMOD were constructed from many sources,

some of which were in opposition. For example, an on-going debate within

neuroendocrinology concerns how glucose production is regulated. Certain

European researchers argue for peripheral control by the pancreas while certain

Australian researchers argue for  central control by the brain. Neither group has

convincingly refuted the other, despite years of debate.

Feldman & Compton did not take the usual verification approach for knowledge-based

systems (e.g. search for inconsistencies, tautologies, redundancies or circularities as done

in other systems such as [178, 205]). Their experience with neuroendocrinological

theories was that such concerns were orthogonal to the process of model review. Models

may contain less-than-optimum internal features, but still be optimum in terms of their

comparative ability to explain known behaviour. Feuding experts will not reject their

preferred models due to (e.g.) the presence of tautologies within the model. However,

reports of the failure of their model to explain certain known behaviour can prompt

furious activity.

The union of a set of possibly conflicting ideas has certain interesting properties:

• The total model may be inconsistent; i.e. we can use it to generate false.

• We will often be in the situation where we have to use models that are known to

contain inconsistencies. In hypothetical domains such as neuroendocrinology, the

process of removing an inconsistency may take years of research.  In the

meantime, we will use the best knowledge available knowledge to solve our

immediate problems. Our current models that may well be inconsistent, but

represent our best understanding to-date of the domain.

• The total model may not explain all known behaviours. This is an unexpected

experimental result from the Feldman & Compton experiments57. That is, only

subsets of the model may be consistent and only subsets of the data may be

reproducible from these consistent subsets.

57 We reproduce their results below. See section 6.2.
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• These models are not neutral to our feuding experts. An expert may go to great

lengths to defend a model they have built up over years of research.

• Models may refer to entities that are not fully measured. For example, entities

may be fundamentally hard to measure, or the purpose of constructing the model

may be to explore a previously unstudied/unmeasured phenomena. Therefore:

• QMOD models include some qualitative component and, hence, are

indeterminate.

• QMOD-style model review can not dictate to the environment what data it

required for model review. Instead, the review process has to make do with

whatever observations are available.

The goal of the QMOD inference is the resolution of arguments between feuding

experts; i.e. some decision that  one model is "better" than another.  "Better" is defined in

terms of coverage of known behaviour. The output of QMOD should be a categorical

statement that, after comparing  model M1 and model M2, that one of them is BEST  at

reproducing known behaviour. Since QMOD models are indeterminate, all indeterminate

possibilities must be explored. Heuristic statements that M1  is only probably worse than

model M2  may not terminate the argument58.  We can tell an expert that their model

cannot explain known observations only after exploring every possible behaviour of

their model. Note that this exploration of all possibilities is fundamentally a slow

process. One of our subsequent goals, therefore, must be some exploration of the

runtimes for this system.

Note that "better" does not mean "perfect". One model may be "better" than another

without being able to reproduce all known behaviours. Hence, the goal is not "prove the

model is wrong" but to comparatively evaluate competing models. Feldman & Compton

were proponents of Popper's view of knowledge: i.e. models are never "true" in some

absolute sense. Rather, the models we currently believe are the ones that have survived

active attempts to refute them [203]. Significantly, if a Popperian model can explain all

currently known behaviour of the entity being modelled, there is no guarantee that it will

explain subsequently observed behaviour. Popperian models should be re-tested

whenever new data is available for verification.

If we map the above discussion into computational terms, then we can implement

Popperian model review (e.g. QMOD) as a search for a consistent subset of a model (i.e.

one that cannot generate false) that explains the largest subset of the known behaviour

(e.g. using deduction). We describe that search below. For the sake of clarity, this will be

a simplified version of QMOD/JUSTIN.

58 The M1  author could realise that "You mean that there is  a chance that my model is still better than theirs? I
knew I  was right!!".
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The input to QMOD is a set of models  and known behaviours  for those models . A

model is a graph  comprising edges  and vertices  reflecting the dependencies

between entities in the expert's world view.  Each vertex  contains a list of vertices

that it contradicts .   Each model is augmented with a numeric measure of its value;

i.e. the percentage of known outputs it can explain.  Behaviour  is a list of inputs ins

and outputs outs  which are lists of vertices.

vertex = record about : any; -- some entity in the
 -- expert's world view

contradicts: vertices end;
edge = record from,to: vertex end;
vertices = set of vertex;
edges = set of edge;
graph = record v: vertices; e: edges end;
model = record g : graph; value: integer end;
models = list of model;

 behaviours = list of record in, out: vertices end;

From a set of edges in a user model, we can extract the vertices , roots , and

leaves  they contain as well as the number of outputs  they explain (called the

cover ):

function contents(es: edges) : vertices
-- returns all e.from and e.to for e ∈  es;

function roots(es : edges) : vertices
-- return all contents(es) that have no parents in es

function leaves(es : edges) : vertices
-- return all contents(es) that have no children in es

function cover(es : edges, outputs : vertices) : integer
return size(contents(es) ∩  outputs);

A set of edges is inconsistent if any two vertices  in that set exist within each other's

contradicts set.

function inconsistent(es: edges) : boolean
return contents(es) ∩ forbidden(es)   <> ;

function forbidden(es: edges) : boolean
var out : vertices; begin

for e ∈ es do out out ∪ e.from.contradicts ∪  e.to.contradicts;
return out;

end;

A set of edges constitutes a valid explanation if it all its roots  are inputs and all its

leaves  are outputs and it is not  inconsistent .

function valid(es : edges; in,out: vertices) : boolean
var roots, leaves: vertices;

roots  roots(es); leaves leaves(es);
return size(roots) > 0 and roots ⊆  in and

size(leaves) > 0 and leaves ⊆  out and
not inconsistent(es);

end;
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The main loop of SIMPLIFIED_QMOD allows an expert to create and/or edit models

and/or libraries of behaviours , then assess those models  with respect to those

behaviours .

procedure SIMPLIFIED_QMOD
repeat

M edit_models; B edit_behaviour;
print(best_models(M,B));

until stopped
end;

Edit_models  and edit_behaviour  are routines that allow experts to sketch their

models and enter their data59.  The core semantics is inside best_models , which calls

SIMPLIFIED_JUSTIN  as a sub-routine.

function best_models(M : models; B : behaviours) : models
var m: model begin

for m ∈ M do SIMPLIFIED_JUSTIN (m,B);
return models_with_most_value(M);

end;

function models_with_most_value : models
-- return the models with largest m.value

SIMPLIFIED_JUSTIN  set a model's value to its average percentage maximum

coverage of the valid explanations which can be generated from the model  for each

behaviour .  Note that the easy  explanations are the member of out  that are also

within in . The hard  outputs to explain are the members of the outs  set that are not

easy . We only need to search for edges between in s and the hard  set.

1. procedure SIMPLIFIED_JUSTIN(var m : model; B : behaviours)
2. var done, max, b       : integer;
3. coverage           : list of integer;
4. in,out, easy, hard : vertices;
5. xplains            : edges;
6. begin
7. for b in 1 to  size(B) do
8. begin in  B[b].in     ; out B[b].out;
9. easy in ∩  out   ; hard out - easy;
10. done size(easy) ; max   done;
11.   for  xplains ⊆  m.g.e do  -- for all edges subsets do
12. if valid(xplains,in,hard)
13. then max maximum(max, done + cover(xplains,hard));
14. coverage coverage + (max*100/size(out));
15. end;
16. m.value average(coverage);
17. end;

The core computation of QMOD/JUSTIN is the generation and evaluation of

explanations (lines 11,12 and 13).   SIMPLIFIED_JUSTIN  is clearly impractical since

it is exponential on the number of edges in a model. Feldman & Compton's

implementation first ran a pre-processor to generate all paths from outputs back to inputs

59 E.G. Figure 2.4 and the database of results shown in Table 2.1.
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using a naive  depth-first  backtracking search (with no memoing). These paths were

then resolved  into valid  subsets. This implementation permitted the proof-of-concept

work described in [79, 80]. However, their implementation was still very slow. One goal

of this research is to explore alternative inference procedures.
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The energy produced by  the breaking down of the atom
is a very poor thing . Anyone who expects a source of
power from the transformation of these atoms is talking
moonshine: Ernest Rutherford.
For this, indeed, is the main source of our ignorance-
the fact that our knowledge can be only finite, while our
ignorance must necessarily be infinite: Karl Popper.
We are all fallible, and prone to error; let us then
pardon each other's folly. This is the first principle of
natural right: Voltaire.

At its core, qualitative hypothesis testing (QMOD/JUSTIN) was a tool for checking

qualitative models without requiring large amounts of data. In this chapter we will argue

that such a tool is an essential component for knowledge acquisition  systems.
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This section argues that many non-toy domains are insufficiently measured to use

quantitative hypothesis testing; i.e. a generalised test module must include a qualitative

component.

Many domains are poorly-measured:

• Neuroendocrinology:  See above discussion regarding the QMOD/JUSTIN

work60 .

• Economics: Experiments with data collection for economic modelling indicate

that economics is a poorly-measured domain. The (in)famous "Limits to Growth"

study attempted to predict the international effects of continued economic growth

[149].  Less than 0.1% of the data required for the models was available [44].

• Ecology: Puccia & Levins comment on the utility of exhaustive data collection

on ecological modelling:
 In a complex system of only a modest number of variables and interconnections,
any attempt to describe the system completely and measure the magnitude of all
the links would be the work of many people over a lifetime ([207] , p5).

They claim that this observation from ecological modelling also applies to

sociological models. For example, it is well known that many crimes go

unreported. A literature review on crime statistics shows that the resources

required to gather empirical data on the level on unreported crime is prohibitively

high [151].

60 See section 2.1.2.
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With only one partial exception61, all the domains explored by the author in his

knowledge engineering career (1986-1994) can be characterised by insufficient available

measurements for the construction of a quantitative model. The reasons for this lack of

data, and the methods used to cope with this problem, varied from domain to domain:

• Process control: ICI Chemicals Australia required an automatic controller for

one of its petrochemical plants. A mathematical controller could have been

constructed, but would have necessitated the purchase of a set of parameter

values from the engineering firm that built the plant. Further, generating intuitive

explanations from these system suitable for the average plant operator would

have been very difficult62. These two issues of purchase price and explanation

motivated ICI to build a heuristic rule-based controller [164].

• Farm management: The PIGE system was an intelligent back-end to  AUSPIG,

a mathematical model of pigs growing in a piggery developed by the Australian

Commonwealth Scientific Industrial Research Organisation (CSIRO). Using

PIGE,  the intelligence of CSIRO experts can be applied to increase the profit of

a piggery by recommending changes to pig diet, housing, or (in the extreme case)

genotype  [157]. Raising pigs is big business. As of  1988,  Australia raised 4.8

million pigs a year (net worth $AUS 500 million). This represented one-third of

one percent of the international pig herd (1,440,000,000 pigs). Despite the

enormity of the international porcine enterprise, much of the pig remains

unmeasured. Building and verifying the AUSPIG model required the collection

of new data, especially for that model.  This data collection/ model development

process took decades of work by CSIRO's top experts in pig nutrition. The

package was then sold on a one-off basis to an American manufacturer of feed

stocks. Note that (i) the important data required for the model construction/

verification was not originally in the public domain and had to be especially

collected over several years; and (ii) once the data was collected, it was promptly

bought and hidden by a private corporation for their exclusive use.

• Consumer lending and superannuation: For 3 years, the author worked for a

large Australian insurance company. Experiments with machine learning in a

consumer lending and superannuation63 domain demonstrated that consumer loan

approval and superannuation plan generation are poorly-measured domains. The

organisation we worked for had large databases of (i) prior loan approvals; (ii)

past and current superannuation plans; (iii) defaulted loans.  Much of this data

61 See section 3.1.1.
62 Mathematical models are very poor at generating intuitive explanations This was the original motivation for

much of the qualitative reasoning work described in section 2.3.5.2.
63 Superannuation is a special insurance policy that matures near the holder's retirement date that supplements

their government pension.
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pre-dated certain crucial changes in Federal legislation making it irrelevant for

current use. Construction of expert systems for consumer lending and

superannuation was therefore a process of creating new models for new domains

that were yet to be measured.

Note that there is no theoretical barrier to the accurate measurement of any value in any

of the poorly-measured domains listed above. Given unlimited resources:

• ICI Australia could have obtained the numeric parameters required for its

mathematical controller;

• All the parameters required for the construction of precise global economic

models could be measured.

• Sociologists can interview sufficient people to determine the levels of unreported

crime;

• Neuroendocrinologists can measure all the chemicals in all positions around the

human body to a pico-mole accuracy.

• CSIRO can completely measure all the parameters relating to internal pig

physiology

• We could collect all relevant data for consumers requiring loans or

superannuation prior to expert system construction.

However, organisations have limited staff , time, and money. Model construction is

hence a resource-bounded activity. The problems with data collection catalogued above

may reflect a fundamental problem with numbers; i.e. there exist useful numbers that we

may wish to measure but lack the resources to collect.  In the absence of sufficient data

for model development and testing, we must turn to qualitative (i.e. non-numeric)

methods.
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The one partial-exception we are aware of to our general rule of "all non toy-domains are

characterised by a lack of data" is the diagnosis of electrical circuits. Electrical circuits

are an artificially constructed domain and it is theoretically possible to add

instrumentation to circuitry to make all values accessible.

This is a significant exception to our general rule since that area has developed an

inference architecture similar to ours64, yet does not concern itself with model

validation. In the diagnosis of electrical circuits, the model can be often described with

certainty since it is a product of the VLSI design feed into the CAD system that

generated the chip.  However, even in that domain, we can find some concern with

model construction [2, 48].

64 See section 7.1.3.
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This section argues that a fixation with precise measurement is somewhat misguided.

Modellers may loose sight of a domain when working with numbers that confuse (rather

than clarify) the important concepts. That is, qualitative modelling is an essential part of

knowledge acquisition.

Precision, and in particular, numeric precision is seen by many as the best way to

understand a domain. For example:
Through and through the world is infested with quantity. To talk sense is to talk
quantities, It is no use saying the nation is large- how large? It is no use saying
that radium is scarce- how scarce? You can not evade quantity. You may fly to
poetry and music  and quantity and number will face you in your rhythms and
your octaves.  - Alfred North Whitehead

However, an over-enthusiasm for quantitative analysis can confuse, rather than clarify, a

domain. Puccia & Levins comment:
For systems whose parts are not listed in a catalogue, which evolve together,
which are difficult to measure, and which show unexpected capacity to form new
connections, the results of (quantitative) simulation techniques have been less
than impressive. The masses of data required make the procedure very costly; the
demand for qualitative precision often forces the exclusion of many variables
(e.g. stress in diabetes: poorly quantified but vitally important); the predictions
apply only to the original single system from which the models were derived, and
are not easily extended even to similar systems ([207], p4).

It is a mistake to confuse numbers with meaning. Numbers are often intermediary

concepts  which may be required to achieve some interpretation which is best expressed

in some qualitative, summary form.  This is the lesson of decision support systems.

Numbers can overload a decision maker with too many irrelevancies. Data must be

condensed to be useful for supporting decisions [3]. For example, suppose we tell

Whitehead that the country's size is "ten million hectares", is that answer meaningful?

Perhaps a more meaningful answer would be the qualitative statement that "this country

is the same size as country X".

Many formalisms lead the expert through a process of supplying all the relevant details

of their domain.  As such, they are a worthy thing and should be encouraged. However

an obsession with precisely defining models can confuse rather than clarify modelling

issues. For example, consider applying quantitative compartmental modelling to

neuroendocrinology. Quantitative methods force the expert to spend time on precisely

quantifying certain details while the real task of debugging their basic models is delayed.

Further, when the resulting quantitative compartmental model "works" (i.e. can predict

the behaviour of the actual system), it is unclear if the correct behaviour is the result of

the correct theoretical model, or a lucky guess of the parameters of an quantitative

model.  For example, in one text on mathematical modelling in neuroendocrinology, a
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chapter is devoted to generating various quantitative models of ovulatory cycles. After

producing eight different models, the authors conclude:
The most striking feature evident from studying these models is the variety of
equations which give reasonable representations of the observed experimental
data... In each model these apparently appropriate equations have been  derived
from quite different assumptions and simplifications and use different
parameters. ([148], p 224)

They go further and comment that deeper than the non-unique empirical models are

the…
 ...theoretical models  (sometimes called analytical or mechanistic)  which
embody our concept of what causes the behaviour observed. ([148], p4)

That is, the precise numeric details of a model may be less important than the underlying

qualitative concepts of some deeper model.
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In this section we will argue that models can be assessed via either internal syntactic

criteria or external semantic criteria. We will argue that external semantics is more

important. A widely-applicable external semantic criteria is test-suite assessment (a re-

expression of the JUSTIN process).

G H G H I H J K L M N K O P Q M R L S K T

Any program has a internal structure and an intended use. Internal tests assess the

internal structures. Examples of internal tests in an object-oriented software engineering

domain are modularity, encapsulation and methods per object  [210]. Examples of

internal tests in a KE domain are KBS verification systems surveyed by Preece, Shinghal

and Batarekh (PSB) [204] (e.g. [178, 205, 249]).

PSB define a taxonomy of rule-based KBS  "anomalies" (see Figure 3.1) and argue that a

variety of KBS verification tools target different subsets of these anomalies (perhaps

using different terminology).

Anomaly
---- Redundancy
---- ---- Unusable rules
---- ---- Redundant rules
---- ---- --- Duplicate rules
---- ---- --- Subsumed rules
---- Ambivalence
---- ---- Conflicting sets of rules
---- Circularity (inference loop)
---- Deficiency
---- ---- Missing rules
---- ---- Missing values

Figure 3.1: The PSB
taxonomy of KBS anomalies.
From [204]. These terms are
defined below.

Some of these anomalies require meta-knowledge about knowledge base literals:
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•  A literal is PSB askable if it represents a datum that the knowledge base can

request from the outside world.

• A literal is a PSB final hypothesis if it is declared to be so by the KB author and

only appears in a rule conclusion.

A rule is PSB redundant if the same final hypotheses are reachable if that rule was

removed. An unusable redundant rule has some impossible premise. A knowledge base

is PSB deficient if a consistent subset of askables leads to zero final hypotheses.    A

PSB duplicate redundant rule  has a premise that is a subset of another rule premise.

PSB define duplicate rules for the propositional case and subsumed redundant rules for

first-order case (where instantiations have to be made to rule premise variables prior to

testing for subsets).  PSB define ambivalence as the case where, given a consistent

subset of askables,  a rule-base can infer final hypotheses.

PSB stress that the entries in their taxonomy  of KBS anomalies may not be true errors.

For example, the dependency network from a rule-base may show a circularity  anomaly

between literals. However, this may not be a true error. Such circularities occur in (e.g.)

user input routines that only terminate after the user has supplied valid input65. For this

reason, the "errors" detected by internal testing are called anomalies, not faults. Internal

test anomalies are used as pointers into the system which direct the developer to areas

that require a second glance.

G H G H U H V W L M N K O P Q M R L S K T

External tests  are better detectors of faulty semantics. External tests relate a piece of

isolated software to the environment in which it will execute; i.e. they assess the ability

of a program to fulfil its function. Examples of external tests in an object-oriented

software engineering domain are user-acceptability and robustness  [210]. One example

of external tests in a KE domain  is  test suite assessment.  The inputs and outputs of the

rule base are identified and a library is built of input/output pairs representing the

expected output given the input. The inputs are then run against the rule base and the

output compared with the expectation.

External testing is harder than internal testing since it implies making a decision about

the correct behaviour of a system in a wide range of circumstances. This is an expert task

and a lengthy analysis process. Further, in domains that are poorly understood (e.g.

economics. ecology, neuroendocrinology), the goal of model construction may be to

predict what the domain would do in certain circumstances.  In such domains,

information for test suite construction is limited and external testing is fundamentally

difficult. External testing is therefore harder to apply and is used less frequently than

65 See Table 3.1  in Section 3.3.3 for other anomalies that may not be true errors.
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internal testing.  External tests are rarely reported in the literature (exceptions: MYCIN

[269], CASNET  [258], PIERS [206]66, PIGE  [157], QMOD [79, 80, 153]).

One interesting variant on external testing are the automatic test generation procedures

offered by the dependency-network approaches of Ginsberg [95, 96] and Zlatereva [271,

272]. The dependencies between rules/conclusions are computed and divided into

mutually consistent subsets. The root dependencies of these subsets represent the space

of all reasonable tests.  If these root dependencies  are not represented as inputs within a

test suite, then the test suite is incomplete. Test cases can then be automatically proposed

to fill any gaps67.  The advantage of this technique is that it can be guaranteed that test

cases can be generated to exercise all branches of a knowledge base. The disadvantage

of this technique is that, for each proposed new  input, an expert must still decide what

constitutes a valid output. This decision requires knowledge external to the model, least

we introduce a circularity in the test procedure (i.e. we test the structure of M using test

cases derived from the structure of M ).  Further, auto-test-generation focuses on

incorrect features in the current model. We prefer to use test cases from a totally external

source since such test cases can highlight what is absent from the current model. For

these reasons, we caution against automatic test case generation.

G H G H G H X Y S Z Y S R [ \ N M J ] ^ \ N L O K L _

This section argues that external testing is more important than internal testing.

Relying on internal tests is an uncertain process. Rajaraman & Lyu comment:
Experts in software engineering agree that the presence of these (internal)
attributes will ensure the existence of the external attributes expected by software
users…This is treated almost as an axiom. Despite the important intuitive
relationships that exist between the internal structures of software products and
their external attributes, there has been little scientific work to establish the
precise relationships between the internal and external attributes  ([210], p305).

That is, there is no guarantee that a model that has passed internal testing will satisfy

external testing. The syntactical assessment made by internal testing may be completely

orthogonal to the semantic assessment made by external testing.

Consider the case where N alternative competing models are available (e.g. QMOD).

Such an N model situation could occur in the case KA from multiple experts (when

expert opinion is divergent, e.g. experts are feuding), group decision support systems, or

the construction of expert systems by a single expert in a new domain with an unknown

structure. In this N model case, what is required is some judgement about the relative

merit of model X over model Y that cannot be disputed by different competitors.

66 See section 2.3.7.2.
67 More precisely, these systems use the truth-maintenance architectures discussed in the next chapter.
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A judgement based on internal criteria could be disputed. Programs in routine use can

fail internal tests, yet still be deemed useful.  Preece & Shingal detected multiple internal

test failures in fielded expert systems  [205]; see Table 3.1. Yet these systems were

passing their day-to-day external operational test (i.e. their behaviour was acceptable).

Preece & Shingal offer several reasons why this might be so:

• A rule base's inference engine can tame a subsumption anomaly (e.g. by always

picking the rule with the largest satisfied condition).

• Missing rules may reflect the "do nothing" default case [205] or may be out-of-

scope for the domain (e.g. our washing rules above).

• As mentioned above, circularities may exist as part of some looping process that

terminates in a special condition (e.g. prompt the user for input until they provide

us with a satisfactory answer).

Application
MMU TAPES NEURON DISPLAN DMS1 Hit

Size (literals) 105 150 190 350 540 Rate
Subsumption68 0 5/5 0 4/9 5/59 14/73 = 19%
Missing rules 0 16/16 0 17/59 0 33/75 = 44%
Circularities 0 0 0 20/24 0 20/24 = 83%

Table 3.1. Some internal errors detected in fielded expert systems.
Fractions represent  anomalies/faults. Anomalies were detected
automatically. Faults are anomalies that were assessed by the experts to be
true errors. The hit rate is the fault detection rate. Note that the  hit rate is
much less than 100%.

Table 3.2 enumerates all the combinations of failed/passed internal/external tests and

considers for which combinations a model should definitely be rejected. Note that if our

goal is judging categorically when to reject a model, then external testing is the sole

determinant.

Passed internal tests? Passes external tests ? Definitely reject model ?
no no yes
no yes maybe
yes no yes
yes yes no

Table 3.2.  Failed external tests are always means reject a model. Failed
internal tests are not always reasons to reject a model.

< = ` = a b 7 c B 6 d B 8 A 8 B 6 : 9 ;

In this section, we note that modern KA practice is an iterative refinement of

approximate models. Since approximate models may be wrong, they must be tested.

That is, testing is an essential part of knowledge acquisition. This section offers only a

brief overview of modern and pre-modern KA69.

68 Preece uses the term "redundant rule pairs" for subsumption.
69 For further details, see sections 8.2 and 8.3.



58

Gaines reports a recent change of perspective in the KA community from a "expertise-

transfer" perspective to a "knowledge-modelling" perspective.  Since a 1989 symposium

on cognitive aspects of knowledge acquisition70...
"... the knowledge-modelling perspective has become widely adopted and
terminologies reflecting an expertise-transfer perspective have been quietly
dropped."  [88]

The "expertise-transfer" perspective was the dominant KA paradigm up until the late

1980s. It is best typified by Feigenbaum's characterisation of expert system construction

as "mining the jewels in the expert's head" [78]. We would characterise expertise-

transfer as a Platonic/Baconist view of knowledge.

Expertise transfer was developed during the pioneering days of expert systems.

Subsequently, expert systems practitioners found that they could not adequately

generalise or formalise expertise transfer techniques. An alternative to expertise-transfer

is knowledge-modelling. "Modelling" is the generation of an artefact that is simpler to

manipulate than the entity being modelled. Most modern KA theorists advocate a

knowledge-modelling approach (e.g. KADS [260], generic tasks [32], components of

expertise [246], model construction operators [40], SPARK/ BURN/ FIREFIGHTER

(SBF) [145]71). Knowledge modelling characterises KE as the construction of multiple

partial models. In the KADS case, for example, the models are: organisational,

application, task, expertise, cooperation, conceptual, and design [260].

Modern KR practitioners acknowledge the dubious nature of the models in their

knowledge bases. Davis et. al. define KRs are inaccurate surrogates of reality [55].

Silverman cautions that systematic biases in expert preferences may result in incorrect or

incomplete knowledge bases [235, 237]. Note that any model of some thing is different

to that thing (the map is not the territory). Hence, the model may contain less

information than the modelled thing and may behave differently in certain crucial

situations. Thus the modelling process introduces errors into the representation.

Experienced modellers caution us that:
A model is an intellectual construct we study instead of studying the world. Every
model distorts the system under study in order to simplify it. ([207], p2)

Summary: We argue that the rejection of expertise-transfer and the adoption of

knowledge-modelling perspective requires the addition of a testing module to a KBS.

We reason as follows:

• Knowledge-modelling relaxes the Platonic assumption and is a process of the

construction of partial/approximate models.

• Partial/approximate models may be wrong.

70 At the 1989 Banff Conference on Knowledge Acquisition for Knowledge-Based Systems.
71 One significant exception is Doug Lenat who remains true to expertise-transfer [132].
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• Potentially wrong models must be tested prior to their use least they produce

inappropriate output in certain circumstances.

• Therefore, testing is an essential process for the products of KA as knowledge-

modelling.

• We have argued above for external test suite assessment as the preferred form of

testing.
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This section argues that, ultimately, we can never be sure that a model is ever correct,

even after extensive maintenance. Models must be tested as often as possible. That is

testing is an essential part of knowledge maintenance (KM).

An optimist may disregard our gloomy warnings regarding the correctness of a model.

"Sure", they might argue, "models are never perfect. However, we can make them pretty

good and that'll do". However, when we explore experimental studies of model

maintenance (be they knowledge-based models or otherwise), we find that the usual case

is that they models  (i) are clearly not "pretty good"; (ii) will not "do"; and hence (iii)

require constant maintenance.

Our first study is a small thought experiment. The reader is invited to maintain a one-line

mathematical model of exponential population growth:

EQ1 : dN/dT = rN.

In EQ1,  r is a constant reflecting environmental conditions, T is time, and N is the

population. Note that this model is wrong72 since population growth must taper off as it

approaches C the maximum carrying capacity of the environment; i.e.

EQ2 : dN/dT = rN(1-(N/C)).

If the reader can correctly answer the following question, then we have anecdotal

evidence for believing that humans can read and critique models:  is  EQ2  correct?  If

the reader cannot find all errors in a one-line model (which they probably studied

extensively in high school), then we should be suspicious of claims that the truth status

of larger models can be accurately determined by people.

EQ2  is incorrect.  In the case of a hostile environment and over-population, N > C, r  <

0, and our intuition is that the population will fall. However,rN(1-(N/C)) > 0; i.e. the

maths says that population will increase. (example from [207]). Our experience has been

that the error is not apparent to many people. Note that we have failed to ascertain the

truth status of a one-line mathematical model.

72 If you cannot detect the error before reading on, then Q.E.D.
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Myers [172] reports controlled experiments with a 63 line model. 59 experienced data

processing professionals hunted for errors in a very simple text formatter (63 line of

PL/1 code). Even with unlimited time and the use of three different methods73, the

experts could only find (on average) 5 of the 15 errors  in this 63 line model [172]. This

result, and the thought experiment, does not inspire confidence that experts can

accurately assess larger models.

As to other studies, recall the results of the Feldman & Compton study74:  109 of 343

(32%) of the known data points from six studied papers could not be explained using a

glucose regulation modelled developed from international refereed publications [79, 80,

240]. A subsequent study corrected some modelling errors of  Feldman & Compton to

increase the inexplicable percentage from 32% to 45%75. A similar study successfully

faulted another smaller published scientific theory [153]76.

Shaw reports an experiment where a group of geological experts built models for the

same domain, then reviewed each other's KBs as well as their own twelve weeks later

[233]. Note the two context changes: (i) different experts; (ii) a period of elapsed time

between assessing a knowledge base.  For the twelve week review study, it was found

that an expert's understandability and agreement with their own knowledge was less than

total (see table 3.3).

Expert Understands
(max = 100)

Agrees
(max = 100)

E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

Table 3.3: Does an expert understand and agree with a knowledge base
they wrote 12 weeks previously? From  [233]. Note that  an expert's
understanding may be quite low (e.g. expert E1 only understands three-
fifths of her own thinking three months ago).

For the cross-expert review, it was found that experts disagree significantly with each

other [233] (see table 3.4).

73 (i) Reading the 30 line specification, then generating test cases which were run through an executable version
of the program; (ii) As before, but also reading the 63 line code listing; (iii) As with (ii), but testing was done
via manual walk-throughs/inspections. Programmers only used one of (i), (ii) or (iii).  Programmers using (i)
and (ii) worked alone. Programmers using method (iii) worked in groups of three.

74 See section 2.2.3.
75 See section 6.2.
76 See section 6.1.
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Expert
pairs

Understands
(max = 100)

Agrees
(max = 100)

E1,E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3,E1 42.9 33.3
E2,E3 44.4 20.0
E3,E2 71.4 33.3

Table 3.4: Do experts agree with each other? Three experts  reviewed
each other's knowledge base. Levels of understanding may be low (e.g.
expert  E1 only understands expert  E2's knowledge base 31.2% of the
time). Levels of agreement may be even lower  (e.g. expert  E1 only agrees
with  expert  E2's knowledge base 8.3% of the time).

We conclude from the Shaw study that experts may disagree with each other, and even

with themselves. Consequently, the assessments of the validity of a model by an expert

is not definitive. This result concurs with our small thought experiment and Myers'

result.

Compton reports other studies that documented the changes made to models of

biochemistry diagnosis systems. He documents one expert system (Garvin ES-1) which

was developed using an iterative prototyping methodology. Rules that began as simple

modular chunks of knowledge (e.g. Figure 3.2.i) evolved into very complicated and

confusing knowledge (e.g. Figure 3.2.ii).

RULE(22310.01)
IF
   (bhthy or
    utsh_bhft4 or
    vhthy)

and not on_t4
and not surgery
and (antithyroid or

        hyperthyroid)
THEN

DIAGNOSIS("...thyrotoxicosis")

RULE(22310.01)
IF ((((T3 is missing)

or (T3 is low and T3_BORD is low))
and TSH is missing
and vhthy
and not (query_t4 or on_t4 or

surgery or tumour or antithyroid
  or hypothyroid or hyperthyroid))
or ((((utsh_bhft4 or
    (Hythe and T4 is missing and

   TSH is missing))
    and (antithyroid or hyperthyroid))
or  utsh_bhft4
or  ((Hythe or borthy)
    and T3 is missing
    and (TSH is undetect or

       TSH is low)))
    and not on_t4 and not (tumour or

 surgery)))
    and (TT4 isnt low or T4U isnt low)

THEN DIAGNOSIS("...thyrotoxicosis")
(i) (ii)

Figure 3.2. A Garvin ES-1 rule proposed in (i) 1984 and maintained till
(ii) 1987. From  [45]. Note that initially simple expressions of knowledge
can grow into very complex structures.

This particular expert system never reached a logical termination point, despite years of

maintenance (see Figure 3.3). There was always one more major insight into the domain,

one more major conceptual error, and one more significant addition [47].
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Figure 3.3: Non-termination of the maintenance cycle of an expert system
(from [47]).  Figures for KB size (measured in kilobytes) is shown in figure
(i) and graphed in figure (ii) with plausible curve fits y1  and y2).

The data of Figure 3.3.i is consistent with either a linear or logarithmic growth:

• Logarithmic growth would be consistent with the Platonic belief that an objective

reality exists which we can asymptote towards. However note that the asymptote

is very slow (see curve y2 in Figure 3.3.ii). We can only expect to  find Platonic

reality after years of effort.

• A linear growth would be consistent with the doubting Thomas position77; i.e.

recorded human "knowledge" will always be incorrect and will always need

correction.

Compton is monitoring the maintenance of PIERS [206], a much larger system (which is

version 2 of the above diagnosis system78). A y = x0.5  growth in KB size has been noted

in that system. Significantly, the user-group sponsoring the project  have created a

permanent line item in their budget for maintenance. They anticipate that routinely every

day, an expert will review the generated diagnoses and change some of the KB. That is,

they believe that the model will never be finished/correct79.

We find that experiments in  machine learning endorse our belief that any version of a

model can be improved. Machine learning programs input training data to generate a

model. For example, Quinlan's ID3 program inputs the training data in Figure 3.4.i to

generate the decision tree of Figure 3.4.ii.

77 See section 1.1.3.
78 For more on PIERS, see section 2.3.7.2.
79 Compton '94, personal communication.
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% data(outlook, temperature,humidity,windy,playGolf?)
data(sunny, hot, high,   false, no)
data(sunny, hot, high,   true, no)
data(overcast, hot, high,   false, yes)
data(rain, mild, high,   false, yes)
data(rain, cool, normal,  false, yes)
data(rain, cool, normal,  true, no)
data(overcast, cool, normal,  true, yes)
data(sunny, mild, high,    false, no)
data(sunny, cool, normal,  false, yes)
data(rain, mild, normal,  false, yes)
data(sunny, mild, normal,  true, yes)
data(overcast, mild, high,   true, yes)
data(overcast, hot, normal,  false, yes)
data(rain,    mild, high,    true, no)

outlook

sunny overcast rain

humidity

high normal

play golf = no play golf = yes

windy

true false

(i) (ii)
Figure 3.4. When shall we play golf? After watching expert golfers, we
collect the training cases shown in Figure (i). ID3 uses these examples to
generate the decision tree of Figure (ii) (e.g. if outlook=sunny and
humidity=high, then don't play golf). ID3 generates models based on an
heuristic taken from information theory (for details see [208, 209]). Note
the absence of the temperature attribute from Figure (ii). ID3 is smart
enough to see that adding temperature to the learnt model does not usefully
increase its information content. Example from  [208].

Catlett's research explored the following area. Given a large amount of training data (e.g.

thousands of training cases such as Figure 3.4.i), is it necessary to use it all? That is,

after a certain number of examples, is further experience superfluous? To test this,

Catlett used an ID3-variant [209] to generate 20 decision trees for eleven machine

learning problems using either (i) all the training cases or (ii) half the cases (randomly

selected). The results are shown in Table 3.5.  In all cases, Catlett found that a more

accurate model could be generated using all the training data, rather than some randomly

chosen subset. For each domain 20 trees were created from the training cases, then

assessed using the test cases. Note that while the theory from the N cases may be only

marginally better than the N/2 tree,  the size of the better theory is 30% to 90%  bigger;

i.e. more examples prompted a significant reorganisation of the model (exception: the

demon domain) [30]. Conclusion: We never know enough to create the correct model.

Summarising the Garvin ES-1, PIERS, and Catlett results, we say that any new

experience can lead to significant re-organisations of a model. As knowledge bases are

maintained, they will encounter such new experiences. The re-organised model will need

to be tested. Therefore, testing is an on-going component of knowledge maintenance.
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% error rates Tree size
A B A B

Domain
training
cases

test
cases mean sd mean sd mean sd mean sd

demon 5000 2000 0.193 0.089 0.368 0.201 20.800 5.022 21.300 5.440

diff 5000 2000 1.582 0.313 2.268 0.380 87.700 6.131 59.800 6.101

othello 3000 2000 16.768 1.023 20.791 1.349 352.500 22.090 208.900 21.161

heart 3000 2000 2.889 0.617 4.389 0.542 74.200 9.611 45.900 6.882

sleep 3000 2000 25.242 0.647 27.617 0.847 234.700 20.787 135.200 17.686

hyper 5000 2000 1.081 0.195 1.286 0.265 26.100 4.833 15.000 4.304

hypo 5000 2000 0.597 0.191 0.699 0.199 27.700 4.692 19.100 4.025

binding 5000 2000 2.106 0.310 2.567 0.426 46.900 8.837 30.900 7.063

replace 5000 2000 1.408 0.340 1.756 0.339 30.700 7.658 22.100 6.274

euthy 5000 2000 0.556 0.178 0.909 0.249 37.400 3.705 28.000 4.425

wave 5000 2000 24.799 1.008 25.931 0.908 625.000 41.085 326.900 23.633

Table 3.5.  When do we know enough to create a correct model? Catlett's
results show that in all cases, N training examples produces a better model
than N/2.  "A"  denotes using N  case and "B"  denotes using N/2 randomly
selected cases. From [30].
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Testing can reveal the presence of bugs, but never prove their absence.  External test

suite assessment must be repeated whenever new data comes to hand describing

appropriate system input/output. Most models are developed in poorly-measured

domains. Hence, we would expect to be using some model before all entities in the

domain have been measured. For models in routine use, we would expect it to

sometimes encounter new measurements from the domain. Whenever such new data

arrives, the model should be re-tested. That is:

• a model's test procedure should be a constant background process.

• the test process continues throughout a model life-cycle from KA to knowledge

KM.

< = l = m c D D n @ o

• Contemporary KA views its goal as model construction.

• Any model is a potentially inaccurate surrogate of the thing being modelled and

must be tested.

• External test suite assessment is better than internal syntactic assessment.

• Test suite assessment in poorly-measured domains requires a qualitative reasoner.

• Most KBS domains are poorly-measured. Testing must therefore be an

opportunistic process that is repeated whenever new data comes to hand.

Pragmatically, this means it must be repeated during KA and KM.
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• QMOD/JUSTIN was a facility for testing qualitative models in poorly measured

domains using external test suite assessment.

• Therefore, systems like QMOD/JUSTIN are an essential component for modern

KA and KM.
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I can accept the  theory of relativity as little as I can
accept the existence of atoms and other such dogma:
Ernst Mach.
If you have built castles in the air, your work need not
be lost; that is where they  should be. Now put the
foundations under them.: Henry David Thoreau. Our
life is frittered away by detail… simplify, simplify:
Henry David Thoreau. For never anything can be
amiss, when simpleness and duty tender it: Theseus, A
Midsummer's-Night's Dream V.I. Everything should be
as simple as possible, but not simpler: Albert Einstein.

In the previous chapter, we motivated the construction of a tester of indeterminate

qualitative models that did not require measurements for all entities being modelled. In

this chapter and the next, we describe how to build one.   This description is an attempt

to abstract above the QMOD-process and so is not defined in terms of QMOD-specific

terminology. The next chapter describes a customisation layer that allows the core to  be

used for various domains. The customisations required for QMOD (called QCM) are

described there.

We base our claim on simplicity  is based on the pseudo-code described in this chapter.

This pseudo-code is less than 350 lines long and  is a near-complete specification of our

core algorithm (including optimisation techniques and low-level implementation details).

This pseudo-code was generated from a reverse engineering of a type-less object-

oriented implementation (in Smalltalk). It dramatically simplifies the description of our

prototype (hacked together over 15 months) and contains numerous enhancements to the

existing system. The pseudo-code is expressed in a Pascal-like syntax80.

In order to understand this code, we first present a tutorial example of our process. A

preliminary complexity analysis will then show that a basic chronological backtracking

algorithm (i.e. no memoing) is inadequate for this domain. We need to  represent the

assumption space explicitly. Hence, we will use a truth maintenance system.  The

pseudo-code for this system will then be presented.

Caveat emptor: this pseudo-code is a paper design of the as-yet unimplemented next

version of our system and may contain small errors.

80 For specifications of non-intricate procedural processing, we prefer using Prolog.  We turned to Pascal after
several attempts to specify this system in pure logic, Prolog, an object-oriented notation, and an entity-
relationship notation. However, in terms of describing the intricacies of our inference procedure, we found that
Pascal is the most appropriate.
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We introduce our process with the following example. Suppose an expert has sketched

up a diagram that reflects her intuitions about some domains (see Figure 4.1).

C

A B

D

E

H -- I
++

G
--

++

++
++

++
++

++

++

F

Figure 4.1: A sketch of influence relations

She tells a knowledge engineer that "++"  means "encourages" and "--" means

"discourages". The knowledge engineer explores the expert's perception of encourage

and discourages to  develop the rules in Figure 4.2.

rule0: X Y means (i) X can lead to Y and
(ii) Y could be explained by X.

rule1: if ++(X,Y) then X=up Y=up and X=down Y=down
rule2: if --(X,Y) then X=up Y=down and X=down Y=up
rule3: X can't be in two states at once;

     i.e. forbidden: (X=up and X=down) or (X=down and X=up)

Figure 4.2. An expert's perception of the semantics of Figure 4.181.

In an attempt to apply QMOD/JUSTIN style validation to the model, the knowledge

engineer asks the expert for some example behaviour. In reply, the expert says that when

C and H go up, B, D, and G goes up while I  does down. For each output of the expert's

example (i.e. B=up, D=up, G=up, I=down), the knowledge engineer writes down all

ways the output can be linked back to the input (i.e. C=up , H=up), ignoring loops.

There are seven such proofs P (see Figure 4.3).

P[1] = H=up  E=down F=down  I=down
P[2] = H=up  I=down
P[3] = C=up  E=up  F=up  G=up  
P[4] = C=up  A=up  B=up  D=up
P[5] = C=up E=up  F=up  D=up
P[6] = C=up  A=up  B=up
P[7] = C=up  E=up  F=up  D=up  A=up  B=up

Figure 4.3: Seven ways to prove {B=up, D=up, G=up, I=down} given
{C=up, H=up} using Figure 4.1.

The knowledge engineer notices that some of these proofs differ in what assumptions

they make (i.e. the statements they make about items we have no direct knowledge; e.g.

A=up, B=up, E=up, E=down,F=up, F=down). Some of these assumptions are mutually

exclusive. For example, P[1]  assumes E=down while P[3]  assumes E=up. Each set of

internally consistent assumptions defines a world. The proofs that are compatible with

81 For more notes on the meaning of see section2.3.5.4.
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that world can explain certain outputs. Our knowledge engineer writes down each world,

and the outputs they can explain (see Table 4.1).

World
#

Maximal consistent subsets
of the assumptions.

Contains Explains

1 A=up, E=up,
F= up

P[2], P[3], P[4],
P[5], P[6], P[7]

I=down,G=up,
D=up,B=up

2 A=up, E=up, F=down P[2], P[4], P[6] I=down,D=up,B=up
3 A=up, E=down, F=up P[2], P[4], P[6] I=down,D=up,B=up
4 A=up, E=down, F=down P[1], P[2], P[4], P[6] I=down,D=up,B=up

Table 4.1: The proofs of Figure 4.3 make certain assumptions. Maximal
consistent subsets of those assumptions define four worlds.  Each world
can explain different outputs.

Our knowledge engineer notices that one world contains everything we wanted to

explain (World[1] ). That is, there exists at least one set of assumptions in which the

model can explain all known behaviour. Hence, the model of the expert's intuitions is not

invalid, with respect to known behaviour.

The expert is impressed. "You've just tested an informal qualitative model without

requiring much data." she says. "Normally, I would have to spent months in the labs

determining the precise quantitative details of competing influences. You've given me a

tool that lets me quickly build and check vague intuitions. This could save me a lot of

time. Hey, I've got lots of drawings like that and lots more examples. Lets do it for all of

those".

The knowledge engineer builds a depth-first search procedure in Prolog to automate the

above process, then notices that the runtimes are exponential on model size. The Prolog

system82, while semantically elegant, could only handle very small models (only a few

dozen vertices). Returning to Table 4.1, our knowledge engineer realises that there is

some wasted computation involved in assessing combinations of assumptions that are

impossible. For example, note that no path contains both the E and F assumptions of

World[2]  and World[3] .  The reason for this is clear from the model of Figure 4.1: F

is fully dependant on E. Hence, assumptions of different values for E and F will never be

occur in the one proof. Ideally, the Prolog program should only have generated

World[1], World[4], and perhaps another world containing the proofs using none

of the controversial assumptions (e.g. E=up).

After thinking about the complexity of the program he is implementing83, our

knowledge engineer realises that he requires a fundamentally different approach using a

specialised proof procedure. Accordingly, he reaches for his pseudo-Pascal compiler and

82 Partially described in the appendix to [153].  Note that this code incorrectly handles explaining "steadies".
83 See section 4.2.1.
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builds the system defined below84. The new system explicates structures that are only

tacit in the chronological backtracking system (i.e.  assumptions sets and worlds).

Note that the observed runtimes of the resulting system are still apparently exponential

on model size.  However, our experimental results shows that the new system does tame

the runtime growth  sufficiently to permit the processing of models at least as large as

those seen in contemporary knowledge engineering practice85.   Further, the new system

runs 127 times faster than QMOD86 (which used a chronological backtracking

hypothesis tester) and can handle 18 times as many experimental comparisons.
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The process described above can be summarised as generate and test: all worlds are

generated, then assessment by some assessment operator.  The operator above favoured

the world(s) that includes the greatest number of outputs. In terms of complexity, this is

an unfortunate choice of operator. The utility of each local inference has to be assessed

by a meta-interpreter using some a global criteria  "will it eventually lead to maximal

coverage?". Such a global criteria cannot be applied till after all possible paths are

collected; i.e. it cannot be used to cull the search space.

An inability to cull the search space is somewhat alarming since our search space can be

very large. QMOD generated its input and output sets from a pair-wise comparison of a

database of known experiments. For each pair of experiments, variables measured in

both experiments are annotated  up, down, or steady.   These annotations become our

output set. The input set is computed from the difference in the experimental context

between the two experiments87. Outputs must be explained in terms of the inputs. Given

a database of T experiments, and that a comparison of T1 to T2 is symmetrical to a

comparison of T2 to T1, then there are  α   = (T2-T)/2  such comparisons88.

Pearl & Korf describe depth-first-search (hereafter, DFS89) as follows:

84  Our pseudo-code notation is described in section 1.5.
85 See the section 6.3.
86 See chapter two for a description of QMOD. See Figure 6.14 in section 6.2.3 for the runtime speed results.
87 See the example of the data compiler in section  5.4.2.

88 In the special case of non-symmetrical models,  then  α   = (T2-T).  Non-symmetrical models are discussed in
the section 5.4.2. For the purposes of this complexity analysis, we ignore this subtlety since it only effects a
constant term.

89 DFS = Depth-first search without memoing that performs chronological backtracking on error.
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Backtracking traverses the variables in a predetermined order, provisionally
assigning  … values to a subsequence (X 1,…,X i) of variables and attempting to
append it to a new instantiation such that the whole set is consistent…. If no
assignment can be found for the next variable X i+1, a dead-end situation occurs
and the algorithm backtracks to one of the earlier variables and changes it
assignment.  [189].

Hypothesis testing requires:

• One DFS  from each change (i.e. an up or a down in the outputs)  searching for

any cause.

• Two DFS  from each member of each pair of parent assignments that could

combine to explain each steady .   Why two? Steadies can be explained either by

(i) their non-connection to exogenous events; or (ii) two parent nodes that want to

send the steady node both up and down (net result being steady). If the average

number of parents of a vertex is the branching factor B, then the number of

possible assignment combinations is (B2-B)/2.  Each steady therefore implies

2*(B2-B)/2 = B2-B   calls to DFS.

Let the number of steadies and changes be S and C  respectively and S ∪ C be the

outputs.   We must call DFS   β  number of times where β   = C + ( S *(B2 -B)).

In the language of truth-maintenance systems, the proofs we extract from a model are a

stable state of a dependency network (i.e. contains no contradictions).  A model is said

to be coherent iff is has only one stable state [273].  In the case of knowledge acquisition

in poorly measured domains where no absolute oracle exists (e.g. the

neuroendocrinological domains studied by Feldman & Compton), we cannot guarantee

that our models are coherent. Worse still, they may not even  contain one stable state that

includes all desired outputs and some known inputs90.  Our search goal must therefore

be the largest subset of the outputs which we can explain.  A naive hypothesis tester

would have to be repeated for all subsets of inputs and outputs; i.e. χ  number of times

where χ  = 2C+S.

The outputs and inputs are vertices in a dependency graph between literals. Let the

average number of parents of a node be the branching factor B. Let the number of

vertices be N.  Starting at X = C + S  outputs, there exist δ  number of paths through the

model where:

δ = X * BN− B * B −1( )!

In the case of a DFS   from all vertices of a fully connected graph B = N -1, X = N,  and

this expression becomes:

90 For example, in  Table 4.1 of section 4.1, world[2],  world[3] , and world[4] are only able to explain a
subset of known outputs.
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δ = N * (N −1)N− N−1( ) * N −1( ) −1( )!
= N * (N −1)N− N+1 * N −1−1( )!
= N * (N −1) * (N − 2)!

= N!

as we would expect [191]91.  The total search space is ε  =α ∗ β ∗ χ ∗ δ   which is a

function of  <C,S,N,B,T>. Table 4.2 shows values for these parameters from the Smythe

'89 model used in the QMOD/JUSTIN experiment92.

Item Notes Value
C Average number of changes 3.98
S Average number of steadies 1.29
B Branching factor (average number of parents) 1.5
N Number of vertices in the model 80
T Number of experimental contexts 31

(i)

α Number of experimental comparisons 465

β Average number of depth first searches called 4.95

χ Average number of output subsets 38.6

δ Number of paths per depth first search 3.5*1014

ε Total search space: α ∗ β ∗ χ ∗ δ 3.11*1019

(ii)

Table 4.2: Search space size ε for hypothesis testing assuming DFS. Table
(i) shows  figures from one model. Table (ii) shows the search space
calculation.

Table 4.2. shows that the search space ε is dishearteningly large. This worst case

behaviour is not seen in practice. Nevertheless, hypothesis testing is a very slow process.

The QMOD/JUSTIN study, restricted to the 24 comparisons with only one input and no

steady outputs, terminated in 2 days. An analysis of the all  465 QMOD comparisons

would therefore take (2/24) * 465=38.75 days. This runtime is too slow to be practical.

Clearly, we need to tame the complexity of hypothesis testing. Our earlier prototypes

(HT2, HT3) explored different techniques for taming this complexity. HT2 and HT3

were Prolog programs that applied knowledge of constraints93 incrementally during the

generation of the proofs to cull the search space prior to applying world assessment.

Various additions were tried such as growing the subset of explainable outputs from

smallest to largest and not growing to size i+1  if size i  was inexplicable94.  HT2 and

HT3  demonstrated that incremental constraint application was insufficient to tame our

91 Previous descriptions of this expression  [154] ignored the case where X <> N.
92 See Figure 2.3 before section 2.2.2.
93 I.E. two nodes can't be up and down in the same world.
94 For sample code, see the appendix of [153]. Note that this code incorrectly handles explaining "steadies".
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complexity.  HT3, running overnight on the model of Table 4.2.i. did not terminate for

even one comparison.
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The fundamental problem of HT2 and HT3 was the use of DFS.  DeKleer [56] and

Mackworth [135] caution against chronological backtracking. If the search algorithm

learns some feature of the domain, it can forget it on backtracking and be doomed to re-

learn that feature later (e.g.  Figures 4.4 & 4.5). Such repeated effort can significantly

increase runtimes.

V1 V2

V3

V4 V5

F> F>

F>
F>

F>

Domain of V1, V2 = {a,b,c}
Domain of V3, V4, V5 = {a,b}

F>  is a constraint between neighbouring values that
demands that upstream vertices are strictly

lexicographically greater than downstream vertices; i.e.
F>(a,b) = F>(a,c) = F>(b,c) = true

Figure 4.4. The problem: assign letters to each vertex such that parents
are strictly lexicographically before their children. Note that no such
assignment is possible for this model. Example from  [135].

a aa  aaa
  aab
 ab  aba
  abb
 ac  aca
  acb
b ba  baa
  bab
 bb  bba  bbaa
   bbab  bbaba
    bbabb
  bbb
 bc  bca  bcaa
   bcab  bcaba
    bcabb
  bcb
c  ca  caa
  cab
 cb  cba  cbaa
   cbab  cbaba
    cbabb
  cbb
 cc  cca  ccaa
   ccab  ccaba
    ccabb
  ccb  ccba
   ccbb

F>(V3=X,V2=a)

fails for all X is
discovered three times

F>(V5=X,V4=b) and

F>(V3=a, V5=X)

 fails for all X,  is
discovered four times.

A

B

C

D
E

F
G

}

}

}

}

}

}

Figure 4.5: A basic chronological backtracking algorithm (i.e. no
memoing) trying to solve the Figure 4.4 problem. State assignments for
V1,  V2,  V3,  V4,  V5 are tried left to right. ccabb (for example) = {V 1=c,
V2=c,  V3=a,  V4=b,  V5=b}. There exists no assignment  X such that  V3=X <
V2=a. This is discovered three times at points A,B,C. There exists no
assignment such that  V3<  V4 &  V 3 <  V5 &  V 4 <  V5. This is discovered
four times at points D, E, F, G. Figure from  [135].

Pearl & Korf discuss look-ahead schemes and look-back schemes techniques for

reducing the wasted CPU cycles from DFS [189]. Look-ahead schemes make an

informed guess of what assignment to make next, based on meta-knowledge of (e.g.)

what would constrain further search. Look-back schemes control the actions when dead-
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ends occur; i.e. what variables should we return to and explore alternative assignments.

Simple chronological backtracking (i.e. the approach taken in  Figure 4.5) returns to the

last bound assignment and tries another. More intelligent look-back schemes  are  either

go-back to source of failure or constraint recording.
| } ~ } ~ } ~ } � � � �

Mackworth's PC-3 algorithm is a constraint recording system [135].  PC-3 algorithm

reduces the need for chronological backtracking by a pre-processor that performs a

global analysis of valid assignments.

First, PC-3 discards invalid assignments to single vertices (node consistency), then to

pairs of vertices joined by a single edge (arc consistency), then to triples of vertices

joined by two edges (path consistency). Since all paths are sets of two adjacent edges,

then once path consistency is achieved, all paths of more than two edges must also be

consistent. The resulting set of assignments is a smaller search space for a chronological

backtracker. In essence, PC-3 generates a search space containing all the stable states.

This approach, while achieving polynomial inference times, has several disadvantages:

• The global analysis of PC-3 precludes the generation of intuitive proof trees of

the form "this assignment was made which lead to that state assignment".

Systems based on this technique (e.g. the QSIM system [125]95) find it hard to

provide explanations for their behaviour.

• Let  Sav and N be the average number of states per vertex and the number of

vertices respectively. PC-3's time complexity C = Sav5*N 3 [136]. For

QMOD/JUSTIN model96, Sav = 3, N = 97,  C = 2.22E8.  While this number is

smaller that the DFS-based complexity value97, it is still very large. Nor does it

represent all our processing. Since we cannot guarantee that our models contain

even one stable state,  we would have to repeatedly call PC-3 on all subsets of

models, adding an unwanted exponential term to the time complexity.
| } ~ } ~ } � } � � � �

Doyle's truth-maintenance system (JTMS98) is a go-back to source of failure or

"dependency-directed backtracking approach" [70].  A JTMS maintains a dependency

network between beliefs. When a dead-end is detected, the JTMS queries the data

dependencies network and only reinstantiates decisions that are implicated in the failure.

95 See Figure 2.3 before section 2.2.2.
96 Described in Table 4.2, section 4.2.1.
97 See Table 4.2.ii.
98 Originally, Doyle's system was just the TMS. However, after the invention of the ATMS, an extra "J" was

added to distinguish it from deKleer's work.
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All JTMS propositions P are augmented by two sets of beliefs: Pin and Pout.   P is

believed if x ∈ Pin  are believed and no y ∈ Pout is believed. System premises have

empty in and out lists. Conclusions reached by simple monotonic deduction have empty

out lists and non-empty in lists. Default beliefs, i.e. things we can believe unless we have

evidence against them, is represented by propositions with non-empty out lists.

The interesting case is contradiction: when members of  Pin and Pout are both believed;

i.e. we have reasons for and against believing P.  In this case, the JTMS explores the

dependencies of  Pin  and Pout looking for default beliefs we can retract to removes the

contradiction. The other propositions that use the now retracted default beliefs in their

Pin  and Pout  lists must then be checked, which may result in changes to the belief status

of other default beliefs. This recursive process ripples out over the network till a stable

state is reached; i.e. no belief is contradictory.

A JTMS stable state is an hypothesis testing world. The recursive traversal of the

dependency network looking for retractable assumptions is called world-switching.

DeKleer notes that in highly-dynamic systems where new beliefs are frequently arriving

or in systems with many worlds, a JTMS can spend the majority of its time world-

switching [56]. This can be an expensive process since the TMS forgets world i when it

switches to world i + 1.  If the system later needs to return to world i  , then all the

computation involved in generating and testing world i   must be repeated.

While theoretically interesting, the JTMS does not help the hypothesis testing problem.

The general case in hypothesis testing is that some subset of the model is stable. If the

subset is less than the entire model then the JTMS will not terminate on a stable state.

Like PC-3, if we were to use the JTMS for hypothesis testing, then we would have to

call it on each subset of the model (i.e. adding an exponential term to the time

complexity).
| } ~ } ~ } | } � � � �

To avoid the overhead of world-switching, DeKleer's assumption-based truth

maintenance system (ATMS) builds and caches the information required to quickly

determine membership of a literal in multiple stable states [56-58, 85].  Each world is

defined in terms of the minimal environments . An environment is a set of assumptions

which  can be used to infer that environment. Environments must not violate a nogood

set; i.e. sets of literals which if believed at the same time, would create a contradiction.

DeKleer's insight into the truth maintenance process was that an environment contains a

minimal (with respect to size) subset which uniquely determine the other assumptions in

that world. Defining worlds in terms of their minimal environments saves time and

space.
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In DeKleer's scheme, an inference engine incrementally passes to an ATMS

justifications for any inferences it makes. Each proposition in the ATMS is labelled with

the set of minimal environments in which it hold. The inference engine can ask the

ATMS if a proposition p is believed, with respect to a set of minimal environments  (see

Figure 4.6).  This is a simple matter of checking a node's label.

INFERENCE
ENGINE

ATMS

Justfications

Beliefs

Figure 4.6: The DeKleer ATMS architecture

Expressed in terms of a directed dependency network:

• A justification is a node, with a list of parent nodes it was inferred from. The

ATMS incrementally adds this to an evolving dependency network, recomputing

the minimal environments as required.

• A minimal environment is computed from a traversal upstream from the

justification's node. If an assumption is dependant on an upstream assumption,

the downstream assumption is not added to the minimal environment.

Note that there is no world-switching in this architecture. When considering all

possibilities (i.e. all worlds), then we need only switch between minimal environments.

For an example of the labelling process,   suppose  the justifications of Figure 4.7.i had

been passed to an ATMS. Conceptually, these form the dependency network of 4.7.ii.

The labels for the propositions of 4.7.i are shown in 4.7.iii.

P Q R   

A B   

B R S      
S  C  T   

P

Q

R

&
´S

A

B

S

C
& T

downstreamupstream

 R: P Q
 B: A

 S: (A P)  (A  Q)

S: A ( P  Q)

 T: ( A C) ( P Q C)

(i)
Justifications

(ii)
Dependency network

(iii)
 Labels

Figure 4.7. A problem solver has passed the justifications of figure (i) to
an ATMS which computes the labels of figure (iii). Figure (ii) shows the
dependency network tacit in figure (i). Example adapted from  [95].

Formally, an ATMS world is an extension of Reiter's default logic [76, 216, 218].

Formulae in default logic have three parts: (i) a prerequisite; (ii) a consequence; and (iii)

a special test call the justification. If the prerequisites are known, and the justifications

are consistent (i.e. their negation can't be proved), then the consequence can be inferred.

Should the  justification later become inconsistent, then the consequence must be

reviewed.  Justifications are akin to the nogood sets.
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An extension  E  of a default theory is a set of literals from the theory with consistent

justifications. All formulae whose prerequisites are satisfied by E  and whose

justifications are consistent with E are also in E.   An extension can be interpreted as an

acceptable set of beliefs one may hold about the world. Like the worlds of hypothesis

testing, a theory can generate multiple extensions. A model's total envisionments99 can

be computed via the generation of all possible extensions.  Each extension would be one

envisionment.

Despite DeKleer's early claims about the efficiency of the ATMS ([56], p153), the

system proved to exhibit exponential runtimes on input size [232]. While it is true that

the overheads of world-switching are avoided, the minimal environments have to be

precomputed and cached. This is a fundamentally slow process.  It can be shown that

this process is isomorphic with  known NP-hard problems [27, 232].  DeKleer himself

has moved away from pure dependency-directed backtracking [64] and now uses

probabilistic heuristics to tame the complexity of his technique [66].
| } ~ } ~ } � } � � � � � � � � � � � � � � �

Since only  a subset of our models can form a stable state, hypothesis testing cannot use

PC-3 or the JTMS. The ATMS seems more promising. It permits reasoning about a

subset of the total model, while explicitly representing the assumption sets that were

manipulated in the example at the start of this chapter. However, the ATMS does not

remove the exponential runtime problem. Hence, we elect to experiment with variants to

the standard  ATMS approach. For the sake of efficiency:

• We restrict definitions of invariants to an arity of two.  This has the advantage

that, given one literal, its contradictory literals can be quickly determined. Most

of the examples of invariants  we see in the literature have an arity of two

(typically, invariant(X, ¬X)  false).

• We assumes a parts-based qualitative ontology. That is, our models comprise

entities that may be in one of N  mutually exclusive states. This will simplify the

worlds search (see the discussion below on world excluding assumptions).

• We will use bitstrings for set manipulations.  A bitstring  is a set of integers

whose binary representation denotes set membership. For example, if we have 4

vertices, then a bitstring  denoting vertex  1 and 3 would be 4 bits wide

with bits 1 and 3 set (i.e. 0101; note that bitstring places are counted from the

right-hand-side). Sets manipulation defined over bitstrings can be executed by

very  direct calls to hardware. Assuming that a bitstring holds one integer, then:

{} =  0;  S1 S2 =  S1 bit-and S2 ;   S1 S2 =  S1 bit-or S2;  S1 - S2 = S1 bit-and

S2 (where S2 denotes reversing all 1's with 0's and visa versa); subset test:  S1 -

99 I.E. the set of all consistent behaviours inherent in some fixed collection of objects in some configuration, see
section 2.3.4.
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 S2 = 0. If the number of required bits is greater than the bits in the local

implementation of an integer, define a bitstring as a list of integers. The above

operations are then defined as an iteration over that list.  Certain processes (e.g.

returning a list of integers for the set bits in a bitstring) can benefit from a pre-

computed cache of all the possibilities.

• We restrict ourselves to propositional theories. Logical theories with variables are

not supported since such variables can generating (potentially) an infinite number

of terms. Such an infinite set would represent an infinite search space for an

hypothesis tester searching for all possible paths.

Hypothesis testing has no other "problem" other than world creation. Hence, we do not

separate the problem solver from the ATMS.  Nor does hypothesis testing require

incremental updates to the dependency network/ minimal environments. We can

compute our minimal environments in one batch run.

We will use domain knowledge to reduce the search space as much as possible:

•  A small pre-processor computes the relevant literals; i.e. those reachable from

some input set.

• Hypothesis testing extensions can be restricted to the relevant envisionment;100.

The relevant envisionment is computed by growing proofs backwards from

outputs over relevant vertices. The union of the vertices downstream from the

inputs (i.e. the relevant ones) and upstream from the outputs is the relevant

envisionment.

For example, consider the hypothesis  testing problem:

model: b if a; c if a; e if (b or c);
d if b; f if c; z if y.

contradicts: {d,f}
inputs: {a}
outputs: {e}

The relevant literals are {a,b,c,d,e,f} and the irrelevant literals are{z,y}. Hypothesis

testing would generate two proofs which could exist in the one world:

P[1] {a,b,e}; P[2] {a,c,e}

We need not label d or f, since these are not required for proofs of outputs {e} with

respect to known inputs {a} .  We need not label {z,y}  since they are irrelvant to proof

generation. Standard ATMS/ default logic would label all literals to generate two

extensions (one with d and the other with f). Both of these extensions would contain the

same proofs of E in terms of A. We view this as wasted computation. Hence our

restriction to the relevant envisionment. Note, however, that if Reiterian extensions were

100 I.E. literals that are reachable from the inputs, but not required for proofs of outputs, see section 2.3.4.
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really required, hypothesis testing could still support it. We would merely ask the

hypothesis tester to try and prove all non-input literals in the theory.

Input to the hypothesis tester are four sets of vertices supplied by the knowledge

engineer: inputs, outputs,  maybes and facts.  These sets specify the search goals, and the

search space.  Explanatory proofs are attempted for all members of outputs. A proof is a

list of adjacent vertices that connect that output back to any member(s) of inputs. The

space we are allowed to search for proofs is the maybes set.  Facts   must not be

contradicted101.  Prior to inferencing, we can categorically rule out assumptions that

contradict facts.

These four sets serve to restrict the general ATMS problem to the specific hypothesis

testing problem at hand. This search restriction, while heuristically useful for culling the

search space, precludes the use of some classic-ATMS-style pre-processor that generates

all possible extensions.

Since we use relevant envisionments, our  label generation tacitly assumes some set of

inputs and outputs. When moving between generated worlds, we can safely assume that

they were all generated using the same inputs and outputs. Our definition of a minimal

environment hence ignores the roots of the dependency network. An environment of a

hypothesis testing world is defined using the base controversial assumptions .

• An  assumption is controversial if it belongs to the contradicts set of any relevant

literal.

• A controversial assumption is base if it is not dependant on any other

controversial assumption.   Note that these may be vertices internal to the

dependency network. Hence, we should not always "unwind" our labels right

back to root nodes102.

For example, recall the proofs generated in our introductory example103 using outputs =

{I=down, G=up, D=up, B=up} using inputs  = {H=up,C=up}:   If facts = inputs

∪outputs, then these proofs have made assumptions for E=down, F=down, E=up, F=up,

and A=up. Assuming that no single variable can be in two states simultaneously, then

the E and F assumptions are controversial. Of these, E is always upstream of F, so the

base controversial assumptions are E=up, and E=down.

From the base controversial assumptions, we can compute the list of minimal

environments: i.e. subsets of the base controversial assumptions that are consistent and

maximal (with respect to size). To compute this list, we:

101 In the QMOD case, facts = inputs ∪ outputs.

102 For an example of a full unwind, see Figure 4.7.iii.  in section 4.2.2.4.
103 See Figure 4.3 in section 4.1.
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1) Extract a list X  of all the variables mentioned in the base controversial

assumptions. Examples:

(i) For our above proofs104, X1 = {E} ;

(ii) If the base controversial assumptions were {day=mon,day=tues,

time=am,time=pm, who=paul, who=tim},  then X 2 = [day,time,who].

2) Augment this list with the states of these variables in the base controversial

assumptions  to form Y. Examples:

(i) From X1  we get Y1 = [{E=up, E=down}] ;

(ii) From X 2  we get Y 2  = [{day=mon,day=tues}, {time=am,time=pm},

{who=tim, who=paul}],

3) Compute all combinations of Y[i] with  Y[j] for all i,j  in Y.  To this list, we add

the empty set to represent the environment where no assumptions were required

to form the minimal environments.  Examples:

(i) From Y1 we get:

minimalEnvironment[1] = {}
minimalEnvironment[2] = {E=up}
minimalEnvironment[3] = {E=down}

(ii) From Y2, we get:

minimalEnvironment[1] = {}
minimalEnvironment[2] = {day=mon, time=am, who=tim}
minimalEnvironment[3] = {day=mon, time=am, who=paul}
minimalEnvironment[4] = {day=mon, time=pm, who=tim}
minimalEnvironment[5] = {day=mon, time=pm, who=paul}
minimalEnvironment[6] = {day=tues, time=am, who=tim}
minimalEnvironment[7] = {day=tues, time=am, who=paul}
minimalEnvironment[8] = {day=tues, time=pm, who=tim}
minimalEnvironment[9] = {day=tues, time=pm, who=paul}

4) Reject any minimal environment that contains contradictory assignments. In our

examples, no such contradictory minimal environments exist.

The label of an output in an hypothesis tester is the list of worlds that can support its

proof. More precisely, an output is in a world if its proof does not contradict the minimal

environments of that world. This is consistent with the general hypothesis testing

approach of reasoning generously and condoning all possible inferences.

 To compute proof membership in a world,  we first compute the list of world excluding

assumptions; i.e. worldExcluding[i]  equals the assumptions that contradict the

minimalEnvironment[i].  A proof is in a world[i] if it does not overlap with

worldExcluding[i].  In our parts-based ontologies, the  world excluding assumptions are

the states mutually exclusive with the minimal environments.  Also,  worldExcluding[1]

104 See Figure 4.3 in section 4.1.
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are the base controversial assumptions (hence, a proof in world[1]  uses no controversial

assumptions).   Examples:

(i) From Y1, the world excluding assumptions are:

worldExcluding[1] = {E=up, E=down}
worldExcluding[2] = {E=down}
worldExcluding[3] = {E=up}

(ii) The world excluding assumptions from Y2  are:

worldExcluding[1] = {day=mon,day=tues,time=am,
  time=pm,who=paul,who=tim}

worldExcluding[2] = {day=tues, time=pm, who=paul}
worldExcluding[3] = {day=tues, time=pm, who=tim}
worldExcluding[4] = {day=tues, time=am, who=paul}
worldExcluding[5] = {day=tues,  time=am, who=tim}
worldExcluding[6] = {day=mon, time=pm, who=paul}
worldExcluding[7] = {day=mon, time=pm, who=tim}
worldExcluding[8] = {day=mon, time=am, who=paul}
worldExcluding[9] = {day=mon, time=am, who=tim}

The core of hypothesis testing is two nested for  loops that iterate over (i) each world

excluding assumptions set and (ii) each proof.   If no overlap is found between proof[i]

and worldExcluding[j], then proof[i]  is added to world[j] . That is:

function sort_into_worlds 105

begin exclusions  worldExcludingAssumptions(Assumptions)
for x in size(exclusions) do

begin W[x]  ∅
for p ∈ P do

if p ∩ exclusion[x] = ∅
then W[x] W[x] + p

end end;

Completing our Y1 example,  we find that:

world[1] = proof[2], proof[4], proof[6]
world[2] = proof[2], proof[3], proof[4], proof[5], proof[6], proof[7]
world[3] = proof[1], proof[2], proof[4], proof[6]

This corresponds to three worlds we should have generated ideally in our introductory

example106.  Note that we have generated them without chronological backtracking. As

our inference proceeds, it discovers and caches crucial information about the search

space (i.e. the possible proofs and the base controversial assumptions).

We can calculate the base controversial assumptions (and hence the world excluding

assumptions) as a side-effect of proof generation. As proofs rise from outputs to inputs,

they can carry with them the set of controversial assumptions encountered along the

way. On arrival upwards at a new controversial assumption, the proof's list of

controversial assumptions is replaced by the newly-encountered assumption. On arrival

105 A more-complete specification of this function may be found at the end of section 4.3.7.
106 I.E. not the four worlds found in Table 4.1, section 4.1.
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at an input, the proof's controversial assumption set is guaranteed to be base. This

algorithm ensures that the base controversial assumptions are restricted to only those

used by proofs.

This proof/world generation process grants no special semantics to negated propositions.

We saw above that the ATMS-label of a negated proposition ¬X   was computed from

X107.  Hypothesis testing treats literals in a uniform manner and does not automatically

connect ¬X   and X . Vertices in the dependency network are created for each proposition

or negated proposition used in the model. Knowledge that  ¬X   and X  cannot appear in

the same world is supplied by the knowledge engineer who includes ¬X   in the

contradicts set of X and visa versa. If ¬X  appears internal to the dependency network,

and if we have to prove it, then we do so via an exploration of its upstream neighbours.

If ¬X   appears at the roots of the dependency network, and we have to prove it, then we

do so via testing for  its membership of the supplied list of known facts.
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Core  is a function that returns the Best  worlds that explain some subset of the

Example  of known behaviour using a Model  that is a  graph of dependencies between

literals 108.  Best  is a subjective judgement. The Best operator of our example

returned the worlds that explained the largest number of outputs .

function core( Model : graph;
Example : behaviour;

 Upstream, Best: method;
Options : settings

 ) : nworlds     -- Return the "best" worlds
type -- Definition of data types (see below)
var StartTime: integer;

ExplainedViaIsolation : bitstring;  
E: edges; V: vertices; -- Model components

begin cleanup; setup;    
if bad_example
then return Options.badExampleMarker
else begin mark_relevant_verticies;

ExplainedViaIsolation  missed_missables;
mark_contraversial_assumptions;
return  Best(sort_into_worlds(all_proofs),

 Example);
end end;

Certain details that are explained later (i.e. Options, StartTime, cleanup,

setup,bad_example, badExampleMarker, ExplainedViaIsolation,

107 For example, see the label for T in Figure 4.7.iii. in section 4.2.2.4.
108 If p is a proposition, then p and ¬p are literals.
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missed_missables  Upstream, mark_relevant_verticies, mark_

contraverisal_assumptions ).

The inner secrets of the structure of a literal are mostly invisible to Core .  The only time

Core  ever looks deeper than a literal is at the end of the processing to see what

objects are involved (see below, the world_excluding_ assumptions

procedure).  For the moment, we will say that (i) a literal points to some

proposition ; (ii) a proposition is some test  that at some time , an object

had a certain value ; (iii) that an object  has a unit id  and belongs to  one of a set

number of pre-determined class es; (v) and a literal points to a vertex  on the

dependency graph . That is:

any = … -- some local implementation of polymorphism
method = … -- a function name bound at runtime
class = record name : string;

  domain: list of any;
kind: {discrete, continuous} end;

object = record name: string; id: integer;
class: class;
familiarity, probeCost: integer; end;

proposition  = record object: object; value: any;
test:{ ≤,<,=, ≠,>, ≥};
time: integer; end

literal = record negated: boolean;
p : proposition;
v: vertex  end;

literals = list of literals;

� �   � ¡ � ¢ £ ¤ ¥ ¦ § ¨ § © ª ¨ « ¬ §

The Model  is generated from some source statements entered by the user. For example,

the rules of Figure 4.8.i form the model of Figure 4.8.ii.

r1 if a=up or b=2 then c=yes
r2 if not d<7 and c=down then e=yes
r3 if b=1 then e=yes
r4 if not f=yes and e=yes then not g=no

a=up

b=2 c=down

e=yes

not d < 7

and037

b=1

not g=nonot f=yes and038

(i) (ii)

Figure 4.8. Converting (i) the source statements from a knowledge base
into a (ii) model. And037 and and038 are and vertices that uniquely
identifiers generated for the used conjunctions.  The diagrams assumes a
declarative domain; i.e. the time field for each propositions is the same
(hence, the time field values are omitted).

Model  comprises a set of edges E and vertices V,  each with their own unique id . Each

vertex  V[x] is either an and  vertex or an or vertex  (denoted by the boolean field

and . If not V[x].and,  then the vertex  is an or).   Each edge  E[x] has a source

pointer to the statement which generated it (e.g. in Figure 4.8.i., one of r1, r2, r3, r4) as
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well as a kindOf  fields denoted the edge type (e.g. implication, specialisationOf, part-

of, processed-by, causes).  Not every edge type can be used for proving literals in terms

of other literals. For example, it is not usual to generate explanations of some literal via a

part-of  relationship.  However, Core  has no knowledge of these different edge types.

Selection of edges to be used for  proof generation is done by the supplied function

Upstream  (specified below). The price of using an edge for a proof is its cost  (default

= 1)109.

Edges  are directed and point from  some vertex to  some downstream vertex . The

reverse direction is called upstream. Edges  also support two counters: (i) an attempts

count which records the number of times we traverse the edge upstream looking for an

explanation; (ii) a successes  counter which records the number of times we return

from that edge after an explanation.  The routines success  and trying   increment

these counters.

procedure success(es:edges; n : integer) begin
for e ∈ es do e.succeses  e.succeses + n

end;

procedure trying(es: edges; n : integer)  begin
for e ∈ es do e.attempts e.attempts + n

end;

One vertex is created for each combination of object -value -test-time  found in

the source .  Using meta-knowledge of test  and the domain of object , negation can

be removed from literals. For example,  not day = tuesday  is also day=monday or

day=wednesday or … or day=sunday.  However, this expansion adds six vertices for six

days into Model  while the unexpanded literal  adds only one vertex . In terms of

runtime speed, the  fewer vertices the better.

V[x].contradicts  reflects the semantic invariants I and is the set of vertices that

contradict V[x].  For example, since  b=1  contradicts  b=2  then the vertex for each

such literal would contain a contradicts   set that refers to the other110.  Note that

Core  does not compute the contradicts   set since this could require extensive meta-

knowledge about incompatibilities in different object s. The Model  passed to Core

must have its contradicts   already set.

109 Edges may have different costs in the case of (e.g.) rules representing pre-conditions for the use of some
procedure. For example, date_of_birth=known then age=known has the cost of calculating age from date of
birth . This cost may be significant for complicated calculations (e.g. person=known then
life_expectancy=known may trigger the application of a complicated maths package which computes the
life_expectency).

110 This  implementation assumes that I  has an arity of two (I/2). This was chosen for reasons of efficiency: given
one literal, then its incompatible literals are known. I/2   is consistent with the examples we know of in the
literature. I/X, X > 2  would be more intricate.
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source = … -- some structure in the user view
posint = 1 .. MaxInt;
posints = list of posint;
vertex = record l : literal; parents, kids: posints;

id: posint; contradicts: bitstring;
and, input, relevant,
impossible, controversial: boolean;

end;
vertices = list of vertices;
edge = record id : posint; from,to: posint; kindOf: thing;

attempts,successes,cost: integer;
source: source  end;

edges = list of edge;
graph = record e : edges ; v : vertices end;

For example, the rule r5 if not person_age > 7  then toddler=true could be compiled into

a  graph connecting the left-hand-side literal not person_age to the right-hand-side literal

toddler=true :

vertex004(
 l      : literal005
 parents    : [1];
 kids      : [ ];
 id      : 2;
 contradicts  : 0;
 and     : false
 input     : false
 relevant     : false
 impossible   : false
 controversial: false)

vertex003(
 l      : literal001
 parents    : [];
 kids      : [2];
 id      : 1;
 contradicts  : 0;
 and     : false
 input     : false
 relevant     : false
 impossible   : false
 controversial: false)

literal001(…;
 v : vertex003;
 …) literal005(…; v:vertex004;…)

edge007(
 id    : 1;
 from   : 1;  to : 2;
 kindOf  : "implication";
 attempts  : 0;
 successes: 0;
 cost   : 1; from : r5)

graph006(
 e: [edge007];
 v: [vertex003,
   vertex004])

vertex003(
 l      : literal001
 parents    : [];
 kids      : [2];
 id      : 1;
 contradicts   : 0;
 and     : false
 input     : false
 relevant     : false
 impossible   : false
 controversial: false)

vertex004(
 l      : literal005
 parents    : [1];
 kids      : [ ];
 id      : 2;
 contradicts   : 0;
 and     : false
 input     : false
 relevant     : false
 impossible   : false
 controversial: false)

graph006(
 e: [edge007];
 v: [vertex003,
   vertex004])

edge007(
 id    : 1;
 from   : 1;  to : 2;
 kindOf  : modusPonens;
 attempts  : 0;
 successes: 0;
 cost   : 1; from : r5)

literal005(…; v:vertex004;…)

literal001(…;
 v : vertex003;
 …)

Figure 4.9. Data structures generated from Figure 4.8.

Each vertex  has a unique id  which is used in other vertices' parent  and kids  slots.

The contradicts  sets are empty bitstrings (0) since for all the vertices in our graph ,

there are no contradictions. With the exception of and , the boolean flags of each

vertex  are dependant on each Example (see below). Since a single Model can be

processed by many examples, one duty of  Core  is to reset these flags.
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procedure cleanup
var v: vertex
begin for v ∈  V  do

v.input v.relevant v.impossible v.controversial false;
end;
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Data modellers will note that there exists a one-to-one relationship between vertices and

literals, yet we choose to separate them. Further, we seem to have made some arbitrary

decisions regarding when a set is or is not a bitstring. All these design decisions are

justified in terms of efficiency. Runtime inference concepts, such as the booleans reset in

cleanup , are separated from the logical model of a literal. Sets we use a lot in the

inferencing are stored as bitstrings in non-literal records.

Bitstrings are a very low-level representation. They can be processed very quickly and

are very memory compact. These advantages notwithstanding, they have two drawbacks:

• Bitstrings enshrine the existence of the legal members of a set. This is a valid

assumption for  a universe of discourse containing a static number of entities.

However, if the number of entities grows and shrinks, then bitstrings may retain

set bits to now non-existent things. For simplicity's sake, Core  assumes a fixed

number of literals; i.e. it is defined for finite propositional theories.

• Bitstrings are somewhat pesky in that sometimes the program is handling (i) a

bitstring set; or (ii) an integer offset into some other list; or (iii) a list of numbers

generated from the bitstring.

Core  needs the following bitstring functions defined. Note that their implementation

should be as optimised as possible.

function bclear!(b: bitring; i: posint): bitstring
-- clears the ith bit

function bempty(x : bitstring) : boolean
-- true if no bits set in x

function bdifference(x,y: bitstring): bitstring
-- bits in x but not in y

function bintersection(x,y:bitstring): bitstring
--return bits in x and y

function bits(x: bitstring) : posints
-- the set bits of x

function bunion(x,y: bitstring) : boolean
-- return bits in x or y

function boverlap(x,y: bitstring): boolean
return not bempty(bintersection(x,y))

function bset?(b: bitring; i: posint): boolean
-- true if bit i is set

function bset!(b: bitring; i: posint): bitstring
-- sets the ith bit

function bsubset(b1,b2: bstring) : boolean 
-- true if b1 ⊆ b2
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For the purposes of model validation, Core  should run to termination. However, we will

later argue that Core 's generation of consistent worlds from a model with respect to

known data is a non-trivial description of knowledge-based inferencing. If Core is to

be used as a general inferencing tool then,  for domains that do not require the

exhaustive enumeration of all possibilities, Core require heuristic abort points111:

•  StartTime  records when Core  executes (see setup , below). Core  aborts at

time StartTime + Options.longTime.

• When the cost of a particular proof exceeds a Options.highCost , then that

proof is aborted.

• Proofs from any vertex are only generated Options.enough  times. For

exhaustive domains, set this to  MaxInt .

options =  record 
highCost,enough: posint;
longTime : integer;
dodgeControversial: boolean;
badExampleMarker : any

end

function tooExpensive(i: integer): boolean
return i ≥ Options.highCost

function tooSlow: boolean
return now > StartTime + Options.longTime

function enough (successes) : boolean
return tooSlow or successes > Options.enough

The field  badExampleMarker  is  explained later.
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Behaviour is defined as five sets of  literals :

behaviour = record inputs,outputs,
facts,maybes, missables: literals end;

Missables  are literals that we can explain via their non-connection to inputs. For

example, in the neuroendocrinological domain, we can explain a steady measurement via

(i) two parents trying to drive it both up and down; or (ii) via its non-connection to

exogeny (e.g. the reason why the rainfall did not change was because nothing affected

it).  Facts  are the literals we believe in absolutely. Since we will never surrender our

beliefs in facts , all vertices that contradict facts  are impossible . Procedure

setup initialises this impossible flag (as well as some other variables global to all

functions/procedures within Core) .

111 For example, the data presented in chapter 6 was collected with a timeout of 5 minutes.
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procedure setup
var l1,l2: literal; v: posint; begin

V Model.v; E Model.e;
  StartTime now;

for l1 ∈  Example.inputs do  l1.v.input  true;
for l1 ∈  Example.facts do

for v ∈  bits(l1.v.contradicts) do V[v].impossible  true end;
end;

Inputs  and outputs  denote the start and end points of an explanatory proof .  Core

is required to generate explanations for all literals within outputs . In our example

from the start of the chapter:

Example.inputs  [C=up , H=up].
Example.outputs [B=up, D=up, G=up, I=down]
Example.facts inputs ∪ outputs
Example.maybes [A=up,B=up,C=up,D=up,E=up,F=up,G=up,H=up,I=up,

A=down,B=down,C=down,D=down,E=down,F=down,G=down,
H=down, I=down]

Example.missables []

Behaviour  can be used to control the search space. The search for explanatory

proof s always avoid impossible , not relevant  (defined below) vertices, as well

as vertices that are not maybes .

function should_not_use (v: vertex) : boolean
return not v.relevant or v.impossible or

not bset?(Example.maybes,v.id) or
 (Options.dodgeControversial and v.controversial);

Core  make no assumption that inputs, facts,  and outputs  do/ do not overlap.

Such decisions are for the knowledge engineer. However, Core  does assume that facts

are consistent;  i.e.  the union of their contradicts  set does not contain facts. Further

outputs  are assumed to be a subset of facts , and the missables  must be a subset

of outputs . Lastly, a ll the behaviour literals  must be subsets of maybes

(otherwise it is pointless to include them in a behaviour  record). If this is not the case,

then C o r e  aborts proof generation and returns an error flag

(Options.badExampleMarker )

function bad_example : boolean
var v : vertex
begin with Example do

if not bsubset(outputs facts) then return true;
if not bsubset(missables,outputs) then return true;
if not bsubset(facts,maybes)  then return true;
if not bsubset(outputs,maybes)    then return true;
if not bsubset(inputs,maybes)  then return true;
if not bsubset(missable,maybes)  then return true;

end;
for v ∈ V do if  v.input and v.impossible then return true;
return false;

end;
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Any vertex that is not reachable from the Inputs  is irrelevant to proof generation.  The

precondition for a relevant and-vertex is all its parents (i.e. the vertices immediately

upstream) being relevant. The precondition for a relevant or   vertex  is either (i) it is

an input  or (ii)   one of its parents is relevant. As a heuristic to speed up proof

generation, Core  runs a small pre-processor to deduce relevancy prior to proof

generation. The pre-processor is the mark_relevant_verticies  procedure.

procedure mark_relevant_verticies (ls : literals)
var l:literals;

begin for l ∈ Example.inputs do visit(l.v.id);
end

procedure visit(v1: posint)
var v2: posint;

function pre_conditions_satisfied(v1: posint) : boolean
var v2: posint;
begin if V[v1].and then for v2 ∈ V[v1].parents do

if not V[v2].relevant or V[v2].impossible
then return false;

else return true
end;

begin V[v1].relevant  true;
for v2 ∈ V[v1].kids do

if not V[v2].relevant and preconditions_satisfied(v2)
then visit(v2)

end;

The preconditions_satisfied   function is called only when one of its parent has

been found to be relevant.  Hence, there is no need to test for a relevant parent within

preconditions_satisfied   in the case of  or  vertices.

Once we know which literals are relevant, we can determine which of the missables

literals are explicable in terms of their non-connection to exogeny (i.e. their absence

from the set of relevant vertices).

function missed_missables: bitstring
var out : bitstrings;
begin for l ∈ Example.missables do

if not l.v.relevant then bset!(out,l.v.id);
return out;

end;
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An explanatory proof  is a set of connected edges that (i) are upstream of the

outputs ; (ii) downstream of the inputs ; (iii) only include literals that are maybes ;

(iv) contain no literals that contradict  other literals in the proof ;  (v) its roots

(called the proof' s inputs ) are members of  Example.inputs ; (vi) it has one leaf

(called the proof' s output ) which is a member of Example.outputs ;  (vii) and

includes only relevant  vertices.
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Proof s contain a set of vertices used in the proof  (called the route ) and a set of

vertices that cannot be used in the proof  (called the forbid  set). This forbid  set is

grown incrementally. As the proof  grows up from outputs  towards inputs , the

forbids  set includes all the vertices  incompatible with literals  on the proof .

Proof's also store the output  they are a proof for, the inputs  where the proof

terminate112, the cos t  of the proof  (cost defined above), and the proof's

environment .

proof = record output: posint; inputs: posints;
cost: integer;
route,environment,forbid: bitstring end;

nproofs = list of proof;

A proof' s environment  is the most-upstream controversial assumptions

encountered during a search from the output  to the inputs .  Core  only stores

controversial assumptions in a proof since the multiple-world generation will only

iterate through the assumptions that crucially effect what can be believed (i.e. the

controversial assumptions).  If a proof' s environment  is empty, then there are no

pre-conditions on accepting a proof ; i.e. it is acceptable in every possible world.

For proofs to build their environments sets, the controversial assumptions must be

known prior to proof generation. A vertex is controversial if (i) it is relevant; and (ii) it's

relevant contradict set overlaps with another relevant vertex. The relevant contradict set

of a vertex is its contradict  set, less irrelevant  and impossible  vertices

computed in mark_controversial_assumptions .

procedure mark_controversial_assumptions
var temp : set of literal; l1, l2: literal;

relevant, irrelevant, impossible, avoid : bitstrings;
begin relevant   "all v.ids that satisfy V[v].relevant";

irrelevant  "all v.ids that satisfy not V[v].relevant";
impossible "all v.ids that satisfy V[v].impossible";
avoid      bunion(irrelevant,impossible);
for l1 ∈ bits(relevant) do begin

temp  bdifference(V[l1].contradicts, avoid);
if not bempty(temp) then begin

V[l1].controversial true;
for l2 ∈  bits(temp) do V[l2].controversial   true;

end end end;

Core  attempts to build proofs for every item in the Example.outputs  set.

112 Proof.inputs  ⊆  Example.inputs and Proof.output  ∈  Example.outputs
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function all_proofs : nproofs
var l: literal; out : nproofs;

function some_proofs : proof
var p:proof begin p.output  l.v.id; return prove(l.v.id,0,p); end;

begin for l ∈   Example.outputs  do begin
out out ∪ some_proofs(l);
if tooSlow then return out;

end;
return out

end;

Every time a vertex  v is added to a growing proof  , its V[v].contradicts  set is

added to forbid .  Before new vertices are added to the proof, Core  (i) checks that they

do not belong to the proof 's forbid set; (ii) that the cost  of the new proof does not

exceed the maximum proof cost; and (iii) that the new vertex will not introduce a loop in

the proof. If these tests are passed, and if the new vertex is an input vertex, then a

successful proof has just occurred. On success, a copy of the temporary proof built up on

the stack of recursive calls to the proof  procedure is added to the output list of proofs.

Since we do not assume that only Model  roots are inputs, we must then recurse upwards

looking for more proofs.

function prove(v: posint; delta_cost: integer; p: proof) : nproofs
var  out: nproofs;

procedure add_v_to_proof
begin p.forbid bunion p.forbid, V[v].contradicts);

p.route  bset!(p.route,v);
p.cost  p.cost + delta_cost

end;
function looping : boolean  return set?(p.route,v);
function proved : proof
var p1: proof

begin p1 copy(p); p1.inputs {v}; return p1
end;

begin if not should_not_use(v) and not looping(p,v) then begin 
add_v_to_proof(p,v);
if not illegal(p) and not tooExpensive(p.cost) then  begin

if V[v].input then out [proved(p)];
if V[v].and then out  out ∪ prove_and(v,p,ps)

   else out  out ∪ prove_or(v,p, ps);
end end;
return out ;

end;

function illegal(p: proof) : boolean
-- A proof is illegal if it overlaps with its forbid set.
return boverlap(p.route, p.forbid);

If a proof uses no and nodes, then the environment   is simply the highest

controversial assumption meet during the proof generation.
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function prove_or(v: posint; p:proof): nproofs
var e1: edge; p1: proof; ps, out : nproofs;

successes : integer;
begin if V[v].controversial then p.environment {v};

for e1 ∈  Upstream(v) do begin
trying({e1},1);
ps  prove(e1.to, e1.cost, p);
successes successes  + size(ps);
success({e1}, size(ps));
out out ∪ ps;
if enough (successes) then return  out;

end;
return out

end;

Note the call within prove_or  to Upstream  to return a sequence of edges that the

proof procedure should try next.  Upstream  can be used in non-exhaustive domains to

optimise the search. The proof procedure will iterate over the output, left to right.

Preferences in search strategies can be implemented by ordering or ordering/truncating

the edges returned by Upstream . At the very least, Upstream  should just return the

relevant_parents . For example:

function Upstream(v :vertex): edges return relevant_parents(v);

function relevant_parents(v :vertex): edges  
--return all edges to parents p from v with p.relevant = true

Enough  must be used with care. As prove_or  iterates over the parents of an or-

vertex, the proofs to date are kept in a temporary variable out  and the number of

successful proofs is kept in the successes  counter. If enough  signals a premature

termination, then out  is returned. The test for Enough  must therefore be at the end of

each processing loop, least it leaves some variables in some half-way state.

Prove_or  is a simple function. The situation is more complicated for proofs that use an

and-vertex since at the and, the proof procedure must ascend all parents. The

environment in this case is the union of the proofs of the parent environments. More

precisely, if an and node X has i  parents and  each parent has j proofs, then X has one

possible proof for each member of the cross-product of the j proofs from the i parents.

Note that each such member will be a list of proofs (one from each parent) and must be

combine d.  Further, if the combination is illegal , then that combine d proof should

be rejected.
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function prove_and(v: posint; p: proof) : nproofs
var temp:list of nproofs; successes, i:integer; ups:edges;

   e1: edge; proofs,out : nproofs; p1: proof;
begin ups Upstream(v); trying(ups,1);

for e1 ∈  ups do begin
proofs prove(e1.to, e1.cost, p);
if size(proofs) = 0 or tooSlow then return [];
temp[inc(i)] proofs;

end;
for ps ∈ cross_product(temp) do begin

p1 combine(ps);
if not illegal(p1) then begin

successes successes+ 1; success(ups,1); out out ∪ {p1};
if enough (successes) then return out end

end;
return out

end;

function cross_product(x : list of list) : list of list
-- e.g. cross_product([[1,2]],[[fred]],[[a,b]]) =
-- [[1,fred,a], [1,fred,b], [2,fred,a], [2,fred,b]].
-- If any member of x is the empty set, then the
-- cross-product is also an empty set.

function combine(ps : nproofs) : proof
-- Return a proof that whose route, environment, forbid,
-- inputs sets are a union of those sets in ps. The cost of a
-- combined proof is the maximum of the cost of the costs in ps.

function inc(var i: integer): integer begin i i+1; return i end;

Prove_and  has much the same structure as prove_or . Temporaries keep track of

proofs and the number of proofs generated to date. If enough  signals early termination,

then the temporary list of proofs is returned. If any parent of an and-vertex returns no

proofs, then the and-vertex cannot generate a proof and we need not test any other

parent. Hence, the return of an empty set if size(proofs)=0. One heuristic for

culling the search space would be to customise Upstream  to return the upstream edges

of an  and-vertex  sorted by the ones that are most likely to fail first (determined from

the attempts /successes counter).
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Any two generated proof s within Proofs  can overlap (i.e. use the same literals).

Further, some proof s can be mutually exclusive (i.e. they use maybes  that are

contradicts with literals used in other proof s ). Hence, a proof can exist in

multiple worlds.

The general Core  process is the generation of all possible proof s of the above form.

A world  is a maximal subset of proof s (maximal with respect to number of

containing proof s) such that none of the literals in its proof s contradict each other.

The union of all the literals in all the proofs of W[x]  is W[x].context.  A world



93

contains a subset of the inputs  and outputs  from Example . A world's

environment  is the union of the environment 's  of its proofs . A world's

forbidden  set are all the literals that contradict the context .
world = record  environment,inputs,outputs,

context, forbidden: bitstring;
proofs : nproofs end;

nworlds = list of world;

The label  of a literal is the list of all the worlds in which it can be proved. We could

add pointers from each literal to each world. However, in the general case, this could be

a large number of pointers. An alternative is to deduce labels as required via a function:

function label(l : literal, ws: nworlds) : nworlds
-- return all worlds w ∈ ws for which  bset?(w.context,l.v.id)

Worlds are defined in terms of the world excluding assumptions set. This is calculated

from the proof environments in the function world_excluding_assumptions .

First, we compute a list of all literals used by each object in the proofs' environments

(lines 16-21) . Then, we find all combinations of object-literals (via a cross-product)

(line 25). Next, we find the excluded  literals; i.e. the literals that each combination

contradicts (lines 27-31). If a combination is consistent (i.e. does not overlap with its

excluded set), then the forbidden literals for combination[i] has index i  in the out

list. Note that out[1]  is reserved for the base controversial assumptions (see line 23 of

the following code).
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1. function world_excluding_assumptions(ps: nproofs):
2. list of bitstring
3. type l_lists: list of set of literal;
4. var baseControversialAssumptions: bitstring;
5. integer;  combination : literals; l : literal;
6. used,excluded: bitstring; out: list of bitstring;
7. function object(i:integer):integer
8.  return V[i].l.p.object.id;
9. function compress(in : l_lists) : l_lists
10. var out : l_lists; v,i: integer;
11. i 1; for v ∈ bits(baseControversialAssumptions) do
12. out[inc(i)]  in[object(v)];
13. return out;
14. end;
15. function literal(i: integer) :integer return V[i].l;
16. function used_literals_for_each_object : l_lists
17. var out: l_lists; v: integer;
18. for v ∈ bits(baseControversialAssumptions) do
19. out[object(v)] out[object(v)] +  literal(v);
20. return out
21. end;
22. begin baseControversialAssumptions combine(ps).environment;
23. out[1]  baseControversialAssumptions;
24. i   1;
25. for combination  ∈ cross_product(compress(
26.        used_literals_for_each_object)) do
27. begin used excluded 0;
28. for l ∈ combination  do begin
29. used      bset!(used,l.v.id);
30. excluded bunion excluded,V[v].contradicts);
31. end;
32. if not inconsistent(used,excluded)
33. then out[inc(i)]  excluded;
34. if timeOut  then return out ;
35. end;
36. return out
37. end;

function inconsistent(b1,b2: bitstring): boolean
return boverlap(b1,b2);

Low-level implementation detail:  the list of used literals for each object will contain

gaps at index positions of unused objects. To fill in the gaps, we have to copy the used

index positions across to a temporary list with one entry for each used object (lines 9-

14).

Sort_into_worlds  implements the resolve of JUSTIN113. It contains two nested

loops: one for each world excluding assumption and an inner loop for each proof. If a

proof does not contradict a world's excluding assumptions, then it is added to that world.

When a new world is created, it's context  and explained outputs  sets are initialised

to the literals that we have explained via their non-connection to exogeny. After each

world is generated, we can add some of the ExplainedViaIsolation literals. Such

113 See section 2.2.2.3.
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literals could belong in every world since their explanation requires no assumptions.

However, just to be safe,  the procedure add_missables_to_world  only adds the

ExplainedViaIsolation literals that do not contradict the forbidden  set of that

world.

function sort_into_worlds(ps : nproofs) : nworlds;
var p: proof;   w: world;

exclusions : bitstring;
ws: nworlds; i: integer;

begin i 0;
for exclusions ∈  world_excluding_assumptions(ps) do
begin

inc(i);
ws[i] w new(world);
for p ∈ ps do
begin if not inconsistent(ps.route,exclusions)  then

   add_proof_to_world(w,p);
if timeOut  then  return  ws;

end;
add_missables_to_world(w);

end;
return ws

end;

procedure add_proof_to_world(var w : world; p : proof)
begin w.environment bunion(w.environment,p.environment);

w.outputs     bset!( w.outputs, p.output);
w.inputs      bunion(w.inputs, p.inputs);
w.forbidden   bunion(w.forbidden,p.forbid);
w.context     bunion(w.context, p.route);

end;

procedure add_missables_to_world(var w : world)
var addable : bitstring;
begin addable     bdifference(ExplainedViaIsolation,w.forbidden);

w.context bset!( w.context, addable);
w.outputs bset!( w.outputs, addable);

end;
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Best  returns the preferred worlds. Its general form is:

function best(ws : nworlds; example : behaviour): nworlds

Best  is a domain-specific computation. We have previously described various best

operators114, some of which are specified below. Note that the customisation of the

world selection process is just a few lines of code.

Best1  returns the worlds that use the least number of assumptions; i.e. the members of

its context  that are not known facts .

114 See Table 2.2 in section 2.3.5.4.
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function best1 (ws : nworlds; example: behaviour) : nworlds
var  w: integer; x : bitstring; l : literal;

score: list of posints;
begin  for w in 1 to size(ws) do begin

x ws[w].context;
for l ∈ example.facts do  bclear!(x, l.v.id);
score[w] size(bits(x));

end;
return least_score(score,ws);

end;

function least_score(score : list of number; ws: nworlds) : nworlds
var min : number; out: nworlds, w: integer;

min  MaxInt;
for w in 1 to size(ws) do  min minimum(min,score[w]);
for w in 1 to size(ws) do  if score[w]=goal then out out+ ws[w];
return out;

end;

Best2  returns the worlds that use the fewest number of inputs .

function best2 (ws : nworlds; example: behaviour) : nworlds
var  w: integer; x : bitstring;

  score: list of posints;
begin for w in 1 to size(ws) do score[w] size(bits(ws[w].inputs));

return least_score(score, ws);
end;

Best3  returns the worlds which, on average, use the smallest number of proofs per

thing explained.

function best3 (ws : nworlds; example: behaviour) : nworlds
var  w: integer;  score: list of real;
begin for w in 1 to size(ws) do

score[w] size(bits(ws[w].context))*100/
  size(bits(ws[w].outputs));

return least_score(score, ws);
end;

Best4  returns the worlds with maximum cover; i.e. explain the most number of effects.

function best4 (ws : nworlds; example: behaviour) : nworlds
var  w: integer;  score: list of real;
begin for w in 1 to size(ws) do score[w] cover(w);

return best_score(score, ws);
end;

function cover(w: world) : real
return (size(bits(w.outputs)) * 100)/ Example.outputs;

function best_score(score : list of number; ws: nworlds) : nworlds
var max : number; out: nworlds, w: integer;

max -MaxInt;
for w in 1 to size(ws) do  max maximum(max,score[w]);
for w in 1 to size(ws) do  if score[w]=goal then out out+ ws[w];
return out;

end;
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Best6  returns the worlds with the smallest percentage base controversial assumptions;

i.e. a world's environment .

function best6 (ws : nworlds; example: behaviour) : nworlds
var  w: integer;  score: list of real;
begin for w in 1 to size(ws) do

score[w] size(bits(ws[w].environment))* 100/
size(bits(ws[w].context));

return least_score(score, ws);
end;
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In this section, we make some notes about lumping and caching, two unsuccessful

attempts at optimising  Core .

Cache   was a simple idea inspired by the memoing of Warren's OLDT resolution [257].

Memoing is the processing of remembering  solutions when they are generated. When

problem solving, before looking for a new solution,  the inference engine checks its

knowledge of old solutions. Rather than repeat a prior computation, if an old solution

exists, it is simply returned.  Warren claims that memoing can reduces exponential time

complexity to polynomial time.

Caching in Core  is apparently simple. Before prove  exits a vertex, it caches the proofs

generated from that vertex. When prove  arrives a vertex, if a cache exists for that

vertex, then it returns the cache rather than repeating the computation.

Cache    was tested by running Core  with and without caching. A four-fold speed-up

was noted in the execution time of a large model (|V| = 554).  However, 8% of the

generated proofs were different suggesting that Cache had introduced some

incompleteness into the inferencing. After some investigation, it was realised that the

proofs found by prove  at a vertex were dependant on the route taken from the output

being explored to that vertex. Recall that proof generation is constrained by the forbid

set built incrementally as a candidate proof grows. Proofs generated along different

routes have  different forbid  sets. If prove  arrives at a vertex from two different

routes, then (potentially) different upstream vertices are usable by that proof (i.e. those

that do not conflict with the forbid  set).

To use memoing in Core , all possibly proofs from a vertex must be generated,

unrestrained by proof-specific invariant violations; i.e. move the illegal test of prove

into proved . If the proved proof was illegal (i.e. it's route  overlapped with it's

forbid  set), then the proof is not added to the out  set. This version of the program ran

out of memory as every visited vertex cached every proof it could generate from itself up

to any member of inputs . Cache was hence abandoned.

Lump was a small program that ran just after mark_con t rave rs ia l_

assumptions . If a relevant vertex had only one relevant parent, then they were both
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combined into one lump. All other vertices were assigned their own lump containing

only themselves. Proof generation jumped lump to lump. Experiments with sample

models showed that around 40% of vertices were lump-able. It  was hoped that Lump

would shorten the average proof length L and hence decrease the proof generation time.

Lump  proved to be tricky that anticipated. In the case where an input or controversial

assumption occurred within a lump and not at the root of a lump (i.e. it is lump-internal),

lumping became rather convoluted. It was realised that lump generation has to be

constrained to those lumps which do not violate the invariants. Note that this is a proof-

dependant computation. Consider the difficult case where (i) an input IN   is lump-

internal of some lump L  ; (ii) a proof P  reaches L;   (iii) some vertex V within  L  lump is

inconsistent with the proof; and (iv) V is upstream of  IN , i.e. the proof could terminate

using L contents downstream from IN. If a proof treated all the vertices in a lump as one

entity, then the proof would incorrectly ignore IN  since when it accessed the members

of the lump, it found an contradiction V.

The solution would be to allow proof generation to use lump  portions separately.  In the

special case of non-cyclic theories, some partial ordering could be maintained of lump

contents such that the inference engine could efficiently access portions of a lump

upstream/downstream of some vertex. In the general case of possibly-cyclic theories,

this is not possible.

Dividing a lump in a proof-specific manner negates the utility of lumping. Lump was

hence abandoned.
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In this section, we use the pseudo-code to discuss the complexity of backtracking-less

hypothesis testing without lumping or caching.

The above code can be summaries as follows. After a forward sweep pre-processor finds

all the literals reachable from the inputs, a backward sweep executes from every output

looking for members of the  input. This search is restricted to the space found by the

forward sweep. The backward sweep outputs a list of proofs and, as a side-effect, the

minimal environments that describe the assumptions space. This knowledge is passed to

a worlds sweep that assigns proofs to worlds via two nested for-loops:  (i) an iteration

through the minimal descriptions of the assumption space; and (ii) the proofs. These

worlds are then filtered via the best operator.

We denote the total Core  time complexity of the forward sweep, backward sweep,

worlds sweep and best operators as ϕ = λ+φ+γ+η  where λ,φ,γ  and η  denotes the time

complexity of the best operator, forward sweep, backward sweep,  and worlds sweep

respectively.
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The forwards sweep is implemented by  mark_relevant_verticies   and visit .

Visit  leaves a trial as it executes (the set relevant flags). If it arrives a previously

visited vertex, it ignores its children. Worst case performance for visit  arises in the

case of a fully-connected graph of size N containing only and-vertices; i.e. each vertex

has N-1 parents and N-1 children.  N vertices will be visited. At each visit,

preconditions_satisfied  must test N-1 parents. Vis i t  is then called

recursively N-1 times on its children. This recursive call terminates if it arrives on a

previously v is i ted ver tex.  Tota l  worst -case complexi ty  for

mark_relevant_verticies  is therefore  φ =  N*N-1*N-1 = O(N3). Usually,

Model  is sparse. Hence the average case performance is usually better than O(N3).  It is

not  recommended t ry ing to opt imise C o r e  via optimising

mark_relevant_verticies   since this is not the rate-determining step (the

backward and worlds sweeps are much slower).

For the backward sweep, every pathway over a directed graph from a set of start vertices

to a set of end vertices must be traced out.  If these proofs: (i) are generated from  X

outputs; (ii) have an average length of L; (iii) and are generated over a dependency

network with an average fanout  of B; then there are  X*BL such proofs.   Therefore γ =
Ο(BL).

For the worlds sweep, Core  must iterate over all X*BL  proofs for every member of the

worlds excluding assumptions set. The number of worlds is equal to the number of

consistent members of the world excluding assumptions. These are generated from all

combinations of state assignments to the A objects references in the base controversial

assumptions. If these base assumptions use, on average, S states from their A objects,

then the upper limit on the number of worlds is SA.  Therefore η = O(BL *  SA).

An inspection of the specification of the best  operators defined in the previous section

shows λ is linearly proportional to the number of worlds. Therefore  λ = Ο(SA).

Total complexity for Core  ϕ = φ+γ+η   is therefore a function of  <B,L,S,A,N>.   N and

B  are static parameters while A ,L, and S are runtime parameters that are dependant on

model topology. Clearly, Core  is impractical for models with long proofs (i.e. large L)

and many base controversial assumptions for many objects (i.e. large A).  The chapter

Practical  explores this limit experimentally and finds that the current implementation

can handle N ≤ 800 vertices (generated from 140 objects). Based on the available data on

dependency networks of current expert systems, it will be argued this is adequate for the

type of models we see in contemporary practice.
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Heaven and earth were created all together in the same
instant on October 23rd, 4004 B.C. at nine a.m. in the
morning: Dr. John Lightfoot, vice-chancellor of
Cambridge University, just before the publication of the
Origin of the Species.
What really matters is the name you succeed in
imposing on facts, not the facts themselves: Cohen's
Law.  Every dream has a name and names tell your
story: David Byrne.

In the previous chapter, we described the inner core of an hypothesis tester. In terms of

building a usable system, Core  is like the machine code of a computer. In this section,

we describe the layer we added on top of Core  to make it useful for modelling purposes.

The claim that hypothesis testing is customisable is based on the observation that this

added layer can be fully specified/ modified by editing a few small tables/ procedures.

The key to customisation is the identification of the modification points of some basic

structure which apply to numerous domains.  Our proposed basic structure is that of a

vague causal diagram  (VCD)115.  VCDs can be processed using Core  via a

customisable model compiler116 and data compiler117.  We claim that the customisations

required to reproduce Feldman & Compton's  QMOD/JUSTIN work [79, 80] are general

to parts-based ontologies118. We therefore give those customisations a special name:

QCM, short for Qualitative Compartmental Modelling.
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We view all symbolic knowledge bases119 as vague causal diagrams  (VCDs):

• We call them v a g u e to emphasis their hypothetical120 and possibly

indeterminate/non-monotonic121 nature.

• We call them diagrams  since Core  executes over a direct graph whose vertices

contains literals from the expert's domain of discourse and whose edges represent

the space of possible proof trees.

115 See section 5.1.
116 See section 5.2.
117 See section 5.3.
118 See section 5.4.
119 Non-symbolic knowledge bases include neural networks and knowledge compiled into tables of mathematical

probabilities.
120 See chapter 1.
121 See section 3.2.
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• We call them causal to emphasis their role in explaining known behaviour. Our

general theme is that a knowledge base that cannot offer explanations of known

behaviour is definitely invalid. Testing for validity is hence a process of

generating possible explanations. Explanation and causality are intertwined.

Purists could argue that a purely propositional system or a system of equations has no

causal reading since it contains statements of acausal logical implication or mathematical

inter-relationships. This may be so, but a usable knowledge base also contains an

inference engine that operationalises the knowledge.  As far as an expert is concerned. a

working expert system is the knowledge plus  the inference.  States that led to other

states within the inference engine are definitely causal.   Our belief that all knowledge

bases  have a causal interpretation are supported by our informal observations of experts.

When  trying to understand the inner workings of a system, they often make causal

connections between knowledge base entities122.

Normally, VCDs are viewed as precursors to other modelling techniques which

necessitates further knowledge acquisition. In quantitative fields, a VCD such as the

Smythe '89 model123 can be translated into a numeric compartmental model124.  In

equation-based qualitative fields, VCDs are generated by replacing continuous variables

with the sign of their value or first-derivative, then deducing the dependency graph from

the equations (e.g. causal ordering125).

Our approach is to explore what semantics can be granted to VCDs, without having to

request more information from the expert(s) or the domain. That is, we would like a

system that can understand  (e.g.) hastily scribbled whiteboard sketches. We say we can

a VCD is understood iff we can extract for it a deductive theory can explains some of

our known behaviour without also entailing inconsistencies. We can also understand that

VCDx is better than VCDy iff the deductive theory extracted from VCDx can explain

more known behaviours that the theory extracted from VCDy. .

The imprecision of VCDs typically makes them indeterminate. VCD inferencing must

assume multiple possibilities and manage mutually exclusive possibilities in separate

worlds (i.e. the Core  inference process). When generating possibilities, only a subset of

the indeterminate VCD may be consistent; i.e. VCD inference is a search for subsets of

the edges of the VCD which (i) are consistent and (ii) mention literals that we want to

include in our reasoning (e.g. observations & effects).

122 E.g. "Lets' see... that was retracted which lead to this being asserted which, once the conflict with the other
thing was detected,  blocked the path to the thing I wanted." or "That went up which is linearly proportional to
this so this went up as well."

123 See Figure 2.3 before section 2.2.2.
124 See section 2.2.1.
125 See section 2.3.5.2 and the example in Figure 2.6.
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Our claim is that the processing of VCDs is applicable to many knowledge bases. We

support this claim with examples (see next section).
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Informal vague causal diagrams  are a common technique for illustrating and sharing

expert intuitions. Such diagrams consist of nodes connected by arcs labelled (e.g.)

"inhibits", "+", "promotes",  "-", or "blocks". Our neuroendocrinological expert could

find five such graphs in as many minutes from the first two textbooks he took from

bookshelf (e.g.  figure 5.1).

. .
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α
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α-hunger cell

- -

--

-
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Figure 5.1. Reciprocal
circuits proposed for the roles
of α- and β−adrenoceptors in
the control of feeding of rats.
The inhibitory and excusatory
receptors are denoted by
negative and positive signs
respectively. From [10].

Our expert expressed much of his physical intuitions regarding neuroendocrinology is

such a graphical form (e.g. Figure 5.2).

nna

cortico

acth

+

+ - -

Figure 5.2: VCD for connections between serum
adrenocorticotropin (acth), serum corticosterone (cortico), and
neuro-noradrenergic activity (nna - measured as the ratio of
noradrenaline to its post-cursor, 3,4-dihydroxphenyl-
ethethyleneglycol). VCD drawn by the author of [239]126

Once the eye is sensitised to VCDs, they can be spotted frequently. Spohrer &

Riesbeck's models of economics, designed for language comprehension programs, are

clearly VCDs (see Figure 5.3).

Clark & Matwin used a VCD to constrain the search space of a machine learning

program learning the rules of economics (see Figure 5.4). Their term for a VCD was

RSpace: the space of rules from which ideal domain rules can be learnt. RSpace

represents…
…background knowledge (which) may be over-general (for the performance
task), ambiguous, and contain more inconsistencies. The learning task is thus
partly one of knowledge extraction (from the background knowledge). [41]

126 For another VCD from the neuroendocrinological domain, see Figure 2.3 before section 2.2.2.
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representation
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The internal graphs of Reiger & Grinberg's MECHANISM LAB [220] are not-so-vague

VCDs. MECHANISM LAB augments its causal diagrams with  (i) quantitative

information; (ii) conditional links; (iii) invariant knowledge (for example see figure 5.5).

Reggia argues that a problem-oriented attribute hierarchy (read VCD) is a "general

conceptual framework for representing information about domain-specific problems

whose solutions are desired" [214]. Sample VCDs from Reggia are shown in figure 5.6.
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state change in
hieght of float
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loc water: supply
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X
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Figure 5.5. A portion of a MECHANISM LAB
causal graphs from [220]. X  Y denotes
that Y occurs after some threshold value of X..
X  Y denotes that X causes Y. The
connection may be conditional on some other
event (as in the flush value closed example). X

.

X  Y denotes X being incompatible with Y.
X   Y denotes X enables Y.  X 

Y
denotes X continually causing Y.

type of stroke
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time course of
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lumbar puncture
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........

(i) (ii) (iii)

Figure 5.6: VCDs from a medical domain. Figures (i) and (ii) show
specific examples. Figure (iii) shows the general form. From Reggia [214].
Note that Reggia precluded cycles. We make no such assumptions.

Note that VCDs are not necessarily drawn diagrams. VCDs are a visual representation of

a common natural language construct describing gradual knowledge; i.e. statements of

the form: (i) the more X, the more Y; (ii) the less X the less Y; (iii) the more X, the less Y;

or (iv) the less X the less Y. Dieng et al call such statements topoi and give numerous

examples from their records of interviews with experts [68]:
• The more there is water infiltration in the roadway body, the worse the

foundation risks to be.
• The higher the speed of the vehicles, the more important the measure of

importance relative to the roadway comfort.
• When the geometry increases, the mass increases and the frequency decreases.
• If there is a punctual undressing and if the roadway is between five and fifteen

years old, then the causes "too old coating" is all the more certain since the
roadway is older.

VCDs can be inferred from some other non-VCD source. A diagram showing the

dependencies between literals in a  propositional knowledge base is a VCD.  The VCD

of the propositional system of Figure 5.7.i is shown in  Figure 5.7.ii.   Note that the

inferred VCD is less determinate than the original knowledge base. An inference engine

executing Figure 5.7.i might arrive at a  situation where more than one rule could be

fired next. A conflict resolution strategy would then be used to select some subset of the
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satisfied rules for actual firing. VCDs from propositional systems contain the

dependency knowledge, but lack the conflict resolution knowledge. Hence, it may be

non-monotonic. Note that Figure 5.7.ii can  infer both jail  and its negation. The

processing of such a VCD must fork multiple worlds and apply an assessment operator

to chose between the worlds (i.e. the Core  process).

if infant or moron
then ¬ legally_responsible.

if age > 7
then infant.

if ¬legally_responsible and
 guilty
then  ¬ jail.

if motive and means and 
opportunity and witnesses

then guilty.

if guilty
then jail.

age > 7

moron

motives

means

opportunity

witnesses

infant
 ¬ legally_
responsible

guility

 ¬ jail

&  jail

&

(i) (ii)

Figure 5.7: Figure (ii) shows a VCD deduced from Figure (i).

The VCDs listed explicitly represent all the vertices and edges in the model; i.e. they are

explicit. Newell & Simon's problem space  [126] are like an implicit  VCD. In a problem

space, an agent searches for a goal state from a current state. Each state has a set of

operators which can transform the current state to a new state. New states can be

generated at runtime. If we pre-compute and cache all possible states, and the and-or

graph that connects them, the implicit search space of the problem space becomes an

explicit VCD:

• States become a set of literals combined by an and-vertex.

• The operators have been compiled away into the and-or graph.

• The goal state becomes the only member of the outputs  set.

• The initial current state becomes the inputs  set.

Similarly, VCDs also exist implicitly in first-order theories. We can converting the

implicit search space in a first-order theory into a propositional form with an explicit

search space via partial evaluation. In partial evaluation, terms are unfolded; i.e.

replaced with the body of their defining clauses. Variables bound during the unfolding

can cascade across to other terms [107].

Lest we overstate our case, note that not all implicit search spaces can be represented

explicitly.  Infinite first-order theories127 implies infinite unfolding in which case, the

generation of ground instances will never terminate. Also, non-infinite theories/ implicit

127 E.G. the space of all variables that are either 1,  or twice X where X is some number already in the theory. In
Prolog, we could represent this as  inf(1). inf(X) :- inf(Y) , X is 2 * Y.
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problem-spaces that have a very large explicit representation that  may be impractical to

process.

VCDs can also represent equations. For example Iwasaki & Simon's causal ordering

algorithm generates causal diagrams from equations [112, 114]128 is both vaguer and

more precise than QMOD VCDs:

• Vaguer: Causal ordering as defined by Iwasaki and Simon does not augment its

links with "encourages" or "promotes". However, this is a small extension to the

basic algorithm.

• More precise:  From the space of all possible dependencies between terms in

equations, causal ordering selects a minimal subsets that is a simple tree.  Hence,

the route from exogeny to any variable is determinate.  Exception: in the case

where simultaneous equation solving is required, then there exists some

indeterminacy in the order that the variables in the simultaneously solved

equations were solved.

The algorithm was proposed as a general approach to causality in equational systems

[238]. It was somewhat controversial and has been extensively debated (see [62, 112-

114]). We make no comment here except to say that in the approach described below,

the program that generates a VCD from a knowledge base (e.g. a set of equations) is a

customisable model-compiler operator. The use of meta-knowledge of the inner

workings of an equation solver to guide a VCD creation for equations is a  reasonable

heuristic. Causal ordering could hence be used as part of the front-end to Core .  For

other VCD-from-equation model-compilers, see  [109, 131, 207].
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Abstracting from the above examples of VCDs and the QMOD work, we say that a VCD

is a directed, possibly cyclic, and-or graph whose edges represent the superset of

explanations acceptable to the VCD author. A VCD's vertices  are literals from some

knowledge base.  Certain sets of literals may be mutually exclusive. VCD processing is

the extraction of a subset of the edges that are relevant to the task at hand that do not

contain mutually exclusive literals.

Any general framework has limitation. For the sake of efficiency, Core  makes certain

assumptions about its VCDs:

• Literals are assumed to refer to objects that take one of finite, small, and pre-

determined number of mutually exclusive values. That is, the VCD is explicitly

represented before inference starts (i.e. not the implicit representation of Newell

& Simon's  problem space). The emphasis on a finite number of literals restricts

128 See section 2.3.5.2 and the example in Figure 2.6.
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the processing of objects with continuous domains129. Hence, Core  cannot

process all the VCD examples  described in the last section. For example, Core

could not process the quantitative links of MECHANISM LAB.

•  Knowledge of mutually-exclusive literals is restricted to pairs of literals. That is,

the invariant rules have an arity of two.

Our own experimental investigation of the limits to our technique shows that our  current

implementation  fails at N > 850 vertices and models with an average number of parents

an average fanout > 7130. This places some limitation on the processing of domains that

use time-based simulations. Our system must create one literal for each legal state of

each attribute at every time tick with measurements. For example, if our model contains

40 attributes which can take one of 3 states, then we can process 850/(40*3) = 7 time

ticks.

Within these limits, our experience has been that a customisable VCD processor can be

specified by:
<sources, objects, OVCs, literals, model-compiler>

where model-compiler is a program specified by:

<classes, invariants, local-rules, links>.

The VCD can be tested via:

<data-compiler, Model , Best , Core >.

where Model  is a VCD and data-compiler is a program specified by:
<data, prep,  ok2fail>

Model, Core  and  Best were described in the previous chapter. In summary, Core

extracted all consistent  explanations relating to some example data from the space of

possible explanations suggested by Model . This set was then filtered by Best to

generate the preferred explanations.

As to the other components:

• A knowledge  base is a set of assertions, each called a source statement. The

propositions of a literal of a source statement is a OVC.

• An object-value-comparisons (OVC) is a test that at some time, an  object's value

passes some comparison test;  e.g. The OVC cortisol=up  uses the object cortisol,

the comparison "=" and the value up.

• Each object must be one of pre-defined number of classes.  Each class has a pre-

defined domain.

129 See perhaps not completely restricts; see section 5.2.5
130 See the section 6.3.
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• Invariants  return true if two literals are incompatible. In parts-based ontologies,

objects values of a certain class are incompatible with some other value from the

domain of that object. However the invariants may also include statements about

other objects.

• The links  relation defines the valid connections between values in the domain of

the known classes of objects. For example, the direct link models proportionality.

If measurement M1 is directly linked  to measurement M 2, then M 2=up can

connect to M2=up and M2=down can connect to M1=down.

• A data-compiler that maps data into sets of vertices in the VCD. Prep assigns

any required extra significance to special vertices (e.g. the vertices that are valid

end-points for an explanation). Prep computes the inputs,outputs,

facts, and missables  sets passed to Core  in the Example  behaviour.

• A model-compiler that inputs source statements in the knowledge base and

outputs it's associated VCD. This compilation feature can contain domain-

specific processing described in the local-rules.

The output of the model-compiler is a VCD with two sets of components: the obvious

vertices/edges and the tacit vertices/edges. Obviously,  VCDs contain:

• One or-vertex for each literal in the source. If we restrict vertex generation to

only the literals mentioned in the source, then the Model  size is reduced.  Each

vertex also stores a list of contradictory vertices. This is compiled from the

invariants knowledge.

 • One edge for each dependency between vertices condoned by  the knowledge

base and approved by the definitions of legal inter-actions (i.e. the links relation).

For example, if a source statement was direct(cortisol, dexamethasone), then the

e d g e s  {edge1(cortisol=up,dexamethasone=up), edge2(cortisol=down,

dexamethasone=down)} exist as shown in Figure 5.8.

.

dexamethasone
=up

dexamethasone
=down

acth
=up

acth
=down

cortisol
=up

cortisol
=down X

X
X

Figure 5.8: Obvious VCD edges
from the source statement
direct(cortisol, dexamethasone),
assuming that cort isol and
dexamethasone can take the
values  u p or down. As with
MECHANISM LAB, X 

.

X

 Y
denotes an incompatibility (i.e. Y
is in X 's contradicts' set and visa
versa)131.

Less obviously, VCDs also contain tacit components:

131 For a larger examples of model expansion, see Figure 5.19, section  5.4.2 and Figure 7.8, section  7.3.



109

• And-vertices that represent combinations of literals which give rise to some net

effect.

• Edges for certain causal connections that are tacit in the specification.

For more details on the tacit components, see the section Model-Compiler.
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An hypothesis tester model-compiler inputs the source statements and outputs its

associated VCD Model . This VCD must include all the tacit components. Our current

implementation caches the generated VCD. In the case of passing multiple examples to

Core , using the cached VCD saves model-compilation time.

A customisable model compiler for parts-based ontologies can be specified via:

<classes, invariants, local-rules, links >

These terms are described below.

Classes was described above (see the type  definitions for class 132).

Invariants is a function that accepts two literals and returns true if they are incompatible.

The contradicts  set for each Core literal  is computed by  passing all pairs of

literals to invariants.   An invariant hard-wired into Core  is attributes are single-valued;

i.e. any value of an object contradicts any other value for that object.

Links is a table with five attributes that describes the legal links between objects:
links(name,class1,value1,class2, value2)

For example, our direct link could be specified as:
links(direct,measure,up,  measure,up).  
links(direct,measure,down,measure,down).

Links can be used to control an interactive specification environment. Queries to the link

table can provide control information for such an environment:

• User selection of vertices can be scoped by known object types (i.e. the unique

members of the union of columns 2 and 4).

• A user may click on a graphical representation of object1 and try to attach it to

object2. The  specification environment could constrain the set of the legal

object2s to those object of a type that can connect to the type of object1.

• Source statements could be checked in batch mode. If the edges they propose

violate links , then a warning message could be printed.

Local-rules are a set of domain-specific functions that add the non-obvious components:

• A VCD from an equational system could be generated using Iwasaki & Simon's

causal ordering algorithm.

132 In section 4.3.1.
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• Two commonly used non-obvious components in QCM  are ablers and steadies.

These are explained in the section Local-Rules133.

The experience with the current implementation is that while writing  local-rules may be

a tedious task, the resulting rules are very short. For example, the QCM local-rules

(described below) are 89 lines long of Smalltalk code. That is, local-rules are simply

customised. The rest of this section of model compilers describes the local-rules for

various domains.
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In propositional domains, we would represent modus ponens134 with edges from premise

literals to consequence literals (with appropriate and-vertices added). We would then add

additional edges from the negation of the conclusion to the negation of the premise (i.e.

the modus tollens135 edges).

When deducing a VCD from a rule-base, we caution against expressing conclusions that

are negative literals as the negation of their pre-conditions.  If applied recursively, such a

re-expression is exactly the same process as unwinding a label to the roots of a

dependency graph136. We noted in the previous chapter that such enthusiastic label

generation can discard knowledge of incompatible proofs if the incompatibility lies in

one of the literals expanded away by over-zealous labelling.

Note that if  the VCD also contains the negation of the negative literal, then an invariant

should be added that X and ¬X  cannot occur simultaneously.
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For non-infinite first-order domains, we can partially evaluate the first-order theory to

generate a ground instance of the same program. The resulting ground theory can be

represented as a VCD.

Naively, we could create one object with domain {yes,no} for each ground term in the

unfolded theory. However, we can be smarter. Given domain knowledge, a more

economical representation may be possible. For example:

(i) If the ground theory contained the terms {day(mon), day(tues) day(wed)}, then it

could be represented as a day object from the class date with the domain {mon,

tues, wed};

 (ii) With meta-knowledge of terms, we could unfold Figure 5.9.i into Figure 5.9.ii.

133 See sections 5.2.4.2 and 5.2.4.3.
134 Modus ponens: {B, A if B}   A
135 Modus tollens: {¬ A, A if B}  ¬ B
136 E.G. Figure 4.7.iii in section 4.2.2.4.
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chills  presence(P,S) 
         inflammatory(P).

pain  presence(P,S) 
       located-in(S,R).
inflammatory(abscess).
located-in(liver,upper-right).

jaundice  presence(P, liver).

chills=yes

presence=upper-right-liver

and

pain=upper-
        right and

inflammatory-abscess=yes

located-in=liver-upper-right

jaundice=yes

(i) (ii)

Figure 5.9: A smart unfolding of Figure (i) yields Figure (ii).
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To create a VCD from a frame system [16, 211, 213] we use Hayes' isomorphism

between frames and logic [101]. Hayes' noted that much of the declaractive aspects of

Minsky's frame representation  [167] can be re-expressed as a set of batched assertions

referring to one object.  A VCD generated from a frame system would create one literal

for every slot and frame, then edges from slots to frames and from subclasses to

superclasses.  Child frames would imply parent frames (e.g. duck bird).

In domains where frames can only be activated by a full-match to slot contents, the slots

would connect to an and-vertex. This and-vertex would then connect to (e.g.)

personFrame=active. In domains where frames can be activated by a partial-match to

slots contents, then the slots would connect directly to the personFrame=active  vertex;

i.e. evidence for any slot is evidence for its frame being active.

For example, frame-based reasoning, as explored by Reggia [213, 214] is a partial-match

algorithm. Known inputs trigger the frames containing the slots that match the input. The

matched frames are assessed according to various criteria. For example, Reggia's

SYSTEM-D sought the minimum number of frames which could explain the known

input.  In the case of different explanations, Reggia used a heuristic 4-valued symbolic

probability system was used to rank alternatives: <a>  denotes a symptom that is always

present; <n>  denotes a symptom that is never  present; and <h> or <l>  denotes a

symptom that is usually present or sometimes present respectively.  A sample SYSTEM-

D frame is shown in Figure 5.10.

dizziness-secondary-to-barbiturate-or-other-sedatives
[description:

dizziness [course  = chronic <h>, re$t <l>];
   current medication = barbiturates or other sedatives <a>;

diplopia <l>;
   nystagmus [occurrence = spontaneous;       
          type = horizontal <h>;  vertical <m>]].

Figure 5.10: A sample SYSTEM-D frame [212] that lists various reasons
for believing that a patient's dizziness is a result of the intake of certain
drugs.   re$t <l> denotes that all non-chronic dizziness ' courses are
sometimes present for this frame.

This frame uses data points defined in the attributes section of a System-D knowledge

base (see Figure 5.11).
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dizziness (val) [elaboration: 
type(sgl): vertigo, syncopal, giddiness, imbalance;
course (sgl): acute and persistent,

episodic [elaboration:episode duration(sgl):minutes,days, hours;
   occurrence (sgl):orthostatic, positional,…, 

only while urinating, non-specific];
chronic]].

current-medications(mlt): …, l-dopa, insulin, barbiturates or other sedatives, … .

;NEURO-OTOLOGICAL SYMPTOMS
neursx (mlt):  diplopia  [elaboration: duration (sgl):

transient during dizziness, persistent],… .

;NEUROLOGICAL SYMPTOMS
neurex (mlt):  optic atrophy, …,

nystagmus [elaborations: occurrence(mlt): positional, spontaneous;
                  type(mlt): horizontal, vertical, rotatory;
                  duration(sgl):transient during dizziness,persistent],
….

Figure 5.11: Definition of  SYSTEM-D attributes relevant to Figure 5.10.
Attributes that can take multiple values are denoted (mlt).  Attributes that
can take only one of a set of values are denoted (sgl). ... denotes details
irrelevant to this example.  Nested attributes are denoted with the keyword
elaborations. For example, one observation made during a neurological
examination could be neurex.nystagmus.duration is  persistent or transient
during dizziness.

A model-compiler for frames could input Figure 5.10 and 5.11 to generate the and-or

graph of Figure 5.12.  Frames expressed in this form can be run using generalised test. In

such a format, they offer a clean semantics for the SYSTEM-D symbolic probabilities.

<a>  and <n> are positive or negative literals that must be and-ed to explain the frame.

<h>  and  <l>  are used by BEST to assess different worlds. BESTSYSTEM-D would  return

the worlds with fewest "causes" (number of literals denoting frames i.e. has a value

active) and with more <h>  literals than <l>  literals.

.

dizziness-course-episode-occourance = orthostatic

dizziness-course-episode-occourance = positional

dizziness-course-episode-occourance = only-when-urinating

dizziness-course-episode-occourance = non-specific

dizziness-course= acute-and-persistent

dizziness-course=episoidc

dizziness-course=chronic

X

dizziness-course-episode-duration = minutes

dizziness-course-episode-duration = days

dizziness-course-episode-duration = hours

neurex-nystagmus-type
= vertical

neurex-nystagmus-type
= horizontal

neursx-diplopia-duration
= transient-during-dizziness

neursx-diplopia-duration
=persistent

dizziness-secondary-to-
barbiturate-or-other-sedatives
= active

and041

or009
=yes

neurex-nystagmus-occurence
= spontaneous

current-medication = barbiturates or other sedatives

neursex-diplopia

X

X

X

Figure 5.12: An and-or graph generated from the frame of Figure 5.10 and
attributes of Figure 5.11. Sgl values are mutually exclusive; denoted by 

.

X
.

Nested attributes are evidence for the outer-level attribute; hence (e.g.)
neursx-diplopia-duration=persistent  neursex-diplopia. <a> attributes
denote essential slot contents; hence the and041 vertex. All other slots can
be partially matched, hence the or099 vertex.
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An important variant on the frame-approach is the CLASSIC family of systems

pioneered by KL-ONE system [16]. As these systems evolved, Brachman & Levesque

came to realise that certain invariants they wished to apply to a particular frame required

information that was non-local to that frame. As they generalised their system, they

evolved a twin representation system. The sentence such as "all elephants are gray"

defined its terms (e.g. elephant, gray) in terms of an inheritance system called the T-Box

while the sentence its self was a global assertion in a first-order system called the A-Box

[15].

HT4/Core  would view A-Box/T-Box systems as input to a model compiler. T-Box

statements would be  compiled as above.  A-Box statements would be partially evaluated

to generate a propositional theory that used a set of literals found in the T-Box

statements. One advantage of viewing A-Box/T-Box systems in terms of HT4/Core is

that multiple-worlds reasoning comes for free.
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Model compilation for the obvious components of a qualitative model can be controlled

by a simple table look-up.  Statements of the form direct(a,b) could be compiled into the

graph G = <V,E> where V = {a=up, a=down, b=up, d=down} and E = {edge(a=up,

b=up), edge(a=down, b=down)}.

More generally, we can say that given (i) a statement of the form l i(objectj , objectk)); (ii)

knowledge of the domain of each object (which can be deduced from the class of that

object), and (iii) the links relation, which is of the form:

links(name,class1,value1,class2, value2)

then we can create one edge from objectj=value1 to objectk=value2 for each entry in the

links relation where li  equals name and class1 is the class of objecti and class2 is the

class of object2.

Further, if we create two vertices from the same domain, then we can add each to the

other's contradicts  set; i.e. in a qualitative domain, variables can take only one value

at the same time.

The less-obvious components are concerned with the conditional edges and the steady

vertices (see below).
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Suppose we have a knowledge base assertion that the link X,Y is conditional on some

other literal Z. The MECHANISM LABS research arrived at a simple device for

implementation such conditional edges: a new and-vertex is added between X and Y

whose parents are X and Z. Explanations across this new and-vertex are conditional on

the conjunction of X and Z. For example, suppose we have rats in basement which run
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around and short out the wiring. The link between flicking the light switch and

increasing the illumination in a room is conditional on the absence of the rats; i.e. if not

rats then  direct(power, lights) . If power and lights are both measurements and rats is of

the class event with domain {present,absent,arrived, left}, then we have the dependency

graph shown in Figure 5.13.

.

power=up and033 lights=up

power=down lights=downand034

rats=absent

XX

Figure 5.13. Tacit edges
from the source statement
i f  no t  ra ts  then
direct(power,lights). This
diagram is evolved further
in Figure 5.14.

Note that the domain of an event represents not only their current state{present absent}

but also some comparison with a former state {arrived, left). The reason for this is

explained shortly.

Literals such as rats=present  are called ablers. rats=present  is a disabler since its

presence disables some link. The opposite enabler literal enables some link if it is

present. For example in the case of if transportAvailable then direct(schools, literacy),

transportAvailable=present is an enabler.

Ablers not only permit explanations in terms of other literals, but can be the roots of

explanations. Recall our statement if not rats then direct(power, lights). In the case of

power not rising (but on) and the rats being present, the lights are dark. Now consider

the same situation, but the rats suddenly disappearing. The lights going up can now be

explained in terms of a change in the rat population. More generally, changes to an

object's value downstream of an abler link can be explained in terms of changes to the

abler. Mahidadia argues cautiously that any change in the downstream vertex can be

explained in terms of any change to the abler [138]137. We view this as an overly-

generous approach and refine it below.  However, it is consistent with our general goal

of faulting models after making all possible consistent assumptions to generate the

largest cover.  Assuming for the moment that we adopt the Mahidadia rule, then  if not

rats then direct(power,lights)  expands as per Figure 5.14.

137 Recall that Mahidadia works on a parallel project. While we focus on faulting theories, Mahidadia explores
correcting faulted neuroendocrinological theories in an inductive-logic programming paradigm [137, 140].
See section 2.3.6.
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.

power=up and033 lights=up

power=down lights=down

rats=absent

X

ratsChange=arrived

ratsChange=left

X

and034

X

X

Figure 5.14. Assuming
Mahidadia's rule, we can
add certain tacit edges
and vertices to Figure
5.13. This diagram is
evolved further in Figure
5.16.

Note the creation of the ratsChange vertex.  Core  works best when no one object can be

in two states at once.  Hence, we cannot model the departure of the rats with the two

vertices rats=present and rats=left. We therefore create a new object called ratsChange.

Note that:

• ratsChange can be used to deduce the present/absent status of the rats; i.e the

edge ratsChange=left to rats=absent shown in Figure 5.14 as well as the edge

ratsChange=arrived to rats=present;

• ratsChange has certain incompatibilities with rats ; i.e. rats=absent 

.

X

ratsChange=arrived and rats=present   

.

X

 ratsChange=left.

• ratsChange=steady  is absent from Figure 5.14. A steady ratsChange is not a

change and so it is not required by Mahidadia's rules.
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Measurements of "no change" in an object (i.e. steady) can be explained in one of two

ways:

• Non-connection to exogeny: If a steady vertex is not downstream from some

perturbation to a model, then a plausible explanation for the steady is that nothing

effected it.

• Competing upstream influences: In the case of connection to exogeny, if two

parents of an object want to sent it both up and down, the net results could be a

cancellation of the exogenous effect; i.e. up + down = steady.

For example, suppose we have direct(cortisol, dexamethasone), and direct(acth

dexamethasone) (where acth is of class measurement). Two and-vertices exist above

dexamethasone=steady  connecting to the pairs of parents that can combine to produce a

net steady effect on dexamethasone;   i.e. {cortisol=up, acth=down} or {cortisol=down,

acth=up}.   These two direct links therefore give rise to Figure 5.15 .
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.

X

dexamethasone
=up

dexamethasone
=down

acth
=up

acth
=down

cortisol
=up

cortisol
=down

X

dexamethasone=
steady

and031

and032

X

XX
X

Figure 5.15: direct(cortisol,
dexamethasone) and direct(acth
dexamethasone)  implies that
measurements of no changes in
dexamethasone can be
explained by a conjunction of
opposing influences from its
parents.  And031 and and032
are specially-created and-
vertices.

The possibilities of steady explanations implies that we have not finished with our rats.

Observe that the lights vertices of Figure 5.14 have more than one parent. Therefore, we

can explain measurements of no changes in lights via combinations of competing

upstream influences (see Figure 5.15).

.

power=up and033 lights=up

power=down lights=down

rats=absent

X

ratsChange=arrived

ratsChange=left

X

and034

X

X

lights=
steady

X
X

and035
and036

*

Figure 5.16: All the tacit
components of if not rats then
direct(power,lights). Given the
possibilities to steadies, we must
add and-vertices to figure 5.14 .

The edges marked with  are
arguably unnecessary  (see
below).

Recall that Figure 5.16 was based on Mahidadia's argument that any change in the

downstream vertex can be explained in terms of any change to the abler.  Creating edges

from all downstream vertex states to all abler states increases the number of behaviours

the model can explain. If we cannot explain a behaviour given this generous assumption,

then the model must indeed be faulty. While we cannot conclusively disprove

Mahidadia ’s argument, we have never found an case in which the following two

restrictive edge-conditional expansion rules did not suffice:

1) An enabler C influencing a link AB is linked CB  in the same manner as AB. For

example, if transport then direct(education, literacy)  implies the tacit link

direct(transport,literacy).

2) Disablers are linked in the opposite manner. For example, direct links model

qualitative proportionality. Inverse links model qualitative inverse

proportionality. The model inverse(a,b) expands to E1(a=up,b=down) and

E2(a=down,b=up). The model if not rats then direct(power,lights)  implies the

tacit link inverse(rats,lights).
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The effect of these two rules is to reduce the causal connections between entities; i.e.

according to these two rules, assuming restrictive edge-conditional expansion, then (i)

Figure 5.16 has been over-generous in its causal assignments; and (ii) the edges marked

with  are not required.
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The above discussion tacitly assumes discrete domains. Objects representing numeric

values are non-discrete and (in the general case) can take one of an infinite number of

numeric values.

In order to process continuous domains in Core , we use a partial evaluation trick. We

create one literal for each range mentioned in the source. For example, if (i) age is

continuous; (ii) has the range 0 to 120; (iii)  is referenced only  in the source statement if

age > 16 then adult; then we would create two literals for age 16  and age > 16.
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Once the source statements are compiled into an and-or graph, the database of known

observations must be mapped into that graph. This mapping process is accomplished by

the data compiler. The data compiler is specified by:
<data, prep,  ok2faill>

The data-compiler inputs the data to produce a set of example input and output  pairs.

Prep takes each example in turn, generates a behaviour  record. In general

facts = inputs ∪ outputs  and maybes  = V (i.e. the whole model may be

searched).

Most data-compilers are simple.  For example, for propositional domains, lists of input

and output literals map directly into behaviour  records.  However, even propositional

problems have their subtleties. If a domain requires default reasoning138 then the

knowledge engineer might define a prep that adds literals that are all root vertices (i.e.

have no in edges) to inputs  and maybes . If these roots are also in facts , then they

represent definite observations about the world outside the model. If these roots are not

in facts , then they represent literals we can assume, since we have no evidence to the

contrary.

One place were the generality of our formalism has been tainted by domain-specific

details is the missables  field of the behaviour record. One method for explaining

steadies is to prove their non-connection to inputs . Hence, within Core , steady

vertices must be handled slightly differently (see the references to

ExplainedViaIsolation   in Core ). Missables  is an attempt to abstract away

138 E.g. we can believe not day=tuesday  if we have no evidence to the contrary without (i) having to specify the
domain of day; and (ii) expanding the negation into a belief of its complement (e.g. day=monday or
day=wednesday or ...).
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from this domain-specific processing from the domain of qualitative reasoning. QCM's

data-compiler sets missables  to the union of the id of the steady vertices.

With the exception of missables , Core is shielded from the inner details of data by

the data-compiler. Hence, we have no need to it specify its details here, except to say

that data-compiler is dependant on the structure of data (i.e. they should be implemented

as a pair). For an example data-compiler, see the definition of QCM (below).
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This section gives an example of a data and a model compiler for qualitative causal

models (QCM). This definition uses the restrictive edge-conditional expansion rules139.

Our definition of QCM has a different status to the rest of this report. QCM reflects our

intuitions about qualitative modelling for QMOD-style domains.  If the reader disagrees

with any other portion of this research, we can offer a reasoned defence.  However if the

reader disagrees with the intuitions in this section, then our bottom-line defence is this: if

some aspect of QCM does not reflect your domain intuitions, then change the

customisation tables.
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Figure 5.17 will be our example model that we will pass to the QCM model-compiler.

ADRX

source of
cortisol

Figure 5.17 A  portion of the Smythe
'89 model [240]140. The QCM model
compiler inputs this diagram and
outputs the edges of Figure 5.18.

The links relation for QCM (see below) uses two classes, events  and measures.  Events

model experimental interventions (such as surgical removal of the adrenal gland; e.g.

ADRX from Figure 5.17). Measures model continuous variables that take one of three

states: up, down, or steady.

Six edge types are known in QCM: direct, inverse, creator, destroyers , inverse creators,

and inverse destroyers denoted ++, --, +-+ , +--  , ---+ and ---  respectively:

139 Note that it would be a small change to use the Mahidadia expansion rules instead.
140 See Figure 2.3, before section 2.2.2.
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• Direct and inverse edges model qualitative proportionality and inverse

proportionality respectively.

• Creator and destroyer edges model  the flows of compartmental modelling.  In-

flows to a compartment can only increase the amount of stuff in the compartment

while out-flows can only decrease the amount of stuff. Hence, while an increase

in a in-flow/out-flow can raise/lower (respectively) the amount of stuff in a

compartment, a decrease in a in-flow/out-flow does not effect the compartment.

In Figure 5.17, cortisol production is a creator of cortisol and no destroyers are

shown.  Creators and destroyers are the only example we know of in the literature

of asymmetric causal relations.

• The  restrictive edge-conditional expansion rules require knowledge of the

reverse of edge types. Direct and inverse  are reverse. We define a inverse

creator to be the "reverse" of a creator and a inverse destroyer to the "reverse" of

a destroyer.  By "reverse" we mean "hold the output influence of the edge

constant whilst flipping the input influence". This will become clearer when we

defined the QCM links relation.

The definitions of these edges is stored in the links relation141. As we explore the

definition of links, note that we will use a lot of words to explain a very small relation;

i.e. intricate domain semantics can be captured by a small/ customisable links  relation.

A vertex of a certain class C1 assigned a certain value V1 can explain another vertex of

another class C2  having a certain value V2  via some Link if (i) these two classes can

effect each other; (ii) V1 and V2 are in the domain of C1 and C2; and (iii) that Link

supports that explanation; i.e.:
links(Link,C1,V1,C2,V2) :- can_effect(C1,C2),

domain(C1,V1), domain(C2,V2),
links1(Link,C1/V1,C2/V2).

It is reasonable to assume that the physics that influenced one vertex could apply to

another  of the same class and that a change in one such vertex can influence the other.
can_effect(C,C).

Should QCM permit propagation between vertices of different classes? Consider

propagation between measures of different types (e.g. measures to events). Events are

binary state devices and measures are continuos real-numbers. In the general case,

influences between vertices of different class are nonsensical. Exception: domain-

specific semantics may permit propagation between nodes of different types. For an

example, QCM permits events to influence measures, but not visa versa; i.e.:
can_effect(event,measure).

141  For the sake of brevity, we express that relation here in Prolog (even though our current implementation is in
Smalltalk).
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In the specific case of neuroendocrinology, we use domain-specific modelling semantics

to argue that an event-measure link is shorthand for a somewhat arcane construct which

can be simplified to event-measure links. Consider the modelling intention behind the

event-measure link direct(coldSwim ,nna).  We justify the validity of the event-measure

link as follows.

• ColdSwim is an event representing a two minute swim in ice water. Nna is a

measure of brain stress. The model direct(coldSwim,nna) has the following

modelling intent: "long swims in cold water increases levels of stress".

• If coldSwim=absent, then assuming all other influences being unchanged, the

value of nna is unchanged.

• If coldSwim=present becomes true then it is as if some new mythical measure M

has been suddenly connected to nna and the level of nna  has increased.

• If coldSwim=absent then becomes false, then the connection between nna and

this new measure M disappears.

• In terms of our ablers, it seems that the coldSwim enables a direct link between a

mythical measure M and nna; i.e.:

M nna

coldSwim

enabler

++

• Applying restrictive edge-conditional expansion  rules, we add the tacit edge

direct(coldSwim,nna):

M nna

coldSwim

enabler

++

++

• Note that we have no measurements for M; i.e. it will never appear in an inputs

set. . Hence, no proof will ever terminate on  M. Consequently, Mnna will never

be used and so the coldSwim enable effect on Mnna will never be tested. These

links are redundant and therefore can be removed.

enabler

++

++

M nna

coldSwim
⇒

nna

coldSwim ++

• The final graph is a simple event-measure connection.

Links1/3  describes the explanations supported by  various edge types. Class-specific

terms are classified as "positive" or "negative" and supported explanations are specified

in terms of mappings between positive and negative terms.
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links1(++, X1,X2) :- pos(X1), pos(X2).  % direct
links1(++, X1,X2) :- neg(X1), neg(X2).  % direct
links1(-- ,X1,X2) :- pos(X1), neg(X2).  % inverse
links1(-- ,X1,X2) :- neg(X1), pos(X2).  % inverse
links1(+-+,X1,X2) :- pos(X1), pos(X2).  % creator
links1(--+,X1,X2) :- neg(X1), pos(X2).  % inverse creator
links1(+--,X1,X2) :- pos(X1), neg(X2).  % destroyer
links1(---,X1,X2) :- neg(X1), neg(X2).  % inverse destroyer

The 2nd, 3rd, and 4th arguments of class/4  define the "positive", "negative", or

"neutral" value for various classes

%class(name,  positive,           neutral,  negative).
class(event,  [arrived, present], [],       [left, absent]).
class(measure,[up],               [steady], [down]).

A value is "positive" or "negative" depending on where it is defined in its class.

pos(C/V)     :- class(C,Positive, _,_), member(V,Positive).
neg(C/V)     :- class(C,_,_, Negative), member(V,Negative).
neutral(C/V) :- class(C,_,Neutral, _),  member(V,Neutral).
domain(C,V)  :- pos(C/V) |

   neg(C/V) |
   neutral(C/V).

We can represent our example VCD142 as the following assertions:

1) creator(acthProduction,acth).
2) direct(acth, cortisolProduction).
3) if not adrx then creator(cortisolProduction, cortisol).
4) direct(sns, cortisolProduction).

With our links knowledge, we can expand these assertions into a set of edges.

% edge(id, source, from, to).
edge(1,[1], acthProduction=up, acth=up).
edge(2,[2], acth=up, cortisolProduction=up).
edge(3,[2], acth=down, cortisolProduction=down).
edge(4,[3], cortisolProduction=up, cortisol=up).
edge(5,[4], sns=up, cortisolProduction=up).
edge(6,[4], sns=down, cortisolProduction=down).

Our local rules for steadies tells us that, in certain circumstances, we can explain a

cortisolProduction=steady. These leads to the following edges.

edge(7, [2,4], sns=up, and052).
edge(8, [2,4], acth=down, and052).
edge(9, [2,4], sns=down, and053).
edge(10,[2,4], acth=up, and053).
edge(11,[2,4], and052, cortisolProduction=steady).
edge(12,[2,4], and053, cortisolProduction=steady).

Further, our local rules for conditional edges tell us to  insert into edge #4 an and-vertex

to represent the disabler.

edge(4', [3], cortisolProduction=up, and054).
edge(4'',[3], and054, cortisol=up).
edge(13, [3], adrx=absent, and054).

142 See Figure 5.17.
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Finally, the local rules also tell us that we can explain an increase in cortisol by the

departure of the ADRX disabler.

edge(14, [3], change(adrx)=left, cortisol=up).

The final set of edges are shown in Figure 5.18.

acthProduction=up ACTH=up

cortisolProduction=up

ACTH=down

SNS=up

SNS=down
and052

cortisolProduction=steady

and053

and054

cortisol=up

 adrx=absent

 change(adrx)
=left

cortisolProduction=down

1

2

35

6

7

8 9

13 144'

4''

10
11 12

Figure 5.18: The edges
generated from Figure
5.17. The edge numbers
refer to the edges
described in the text.

Note the absence in our edges of the vertex in Figure 5.18 marked "source of cortisol".

Standard compartmental modelling demands that a flow must have an input and a output

compartment.  Pseudo-compartments called "sources" and "sinks" are therefore used to

model infinite input and output streams. Such sources and sinks represent entities whose

inner-details are not required for the current model.   QCM could enforce that

convention. However,  recalling the above discussion regarding event-measure links,

such sources and sinks would have the same status as  the mythical M  compartment; i.e.

present in the model but never used in a proof. Therefore, QCM just ignores them and

models of flows that connect to sources and sinks are terminated at the flow143.
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Having creating a model, the data compiler must map known observations into the

vertices of that model. We will use the example from [153] to illustrate the data compiler

since (i) it is a small example; (ii) it is an example of a neuroendocrinological theory

published in an internationally refereed journal [239] that can be faulted with Core 144.

Table 5.1 repeats some of the Symthe '87 results which we saw earlier145.

Context
Value {} = control {dex} {coldSwim} {dex , coldSwim}
nna 0.122 0.105 0.210 0.246

serum cortico 129.0 11.3 1232.0 32.8
serum acth 89.0 0.0 240.0 0.0

Table 5.1: Sample experimental data  (from [239]).

143 For another example of the QCM model-compiler, see Figure 5.19, section  5.4.2 and Figure 7.8, section  7.3.
144 See section 6.1.
145 Copied from Table 2.1 in section 2.2.2.2.
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The rows of Table 5.1 record the values of various measures taken during the different

experiments. The column of this table represent different experiments (conjunctions of

events). For example: (i) the control  experiment is the case where dex and coldSwim

where both absent; (ii) the {dex, coldSwim} experiment is the simultaneous events of a

coldSwim and an injection of dexamethasone (dex). Note the closed-world assumption. If

a event is not mentioned in a column header, it is assumed to be absent; e.g. the event

{dex} is really dex & ¬ coldSwim.

The data of Table 5.1 refers to measurements of the entity being modelled in Figure

5.19.i.

nna

cortico

acth

coldSwim

dex

temp

++
++

++

++

++

--
--

nna

change(
coldSwim)
= arrived

nna

acth

cortico

cortico

acth

temp

temp

nna

acth

and061
and062

and063

and064

temp

and065 and066

change(coldSwim)
=left

change(dex)=arrived

change(dex)= left

(i) (ii)
Figure 5.19. (i) Connections between serum adrenocorticotropin (acth),
serum corticosterone (cortico), and neuro-noradrenergic activity (nna). The
temp vertex models the intuition that dex acts in the same manner as
cortico. Drawn by the author of [239].  (ii) The edges generated by the
QCM model compiler from  Figure (i) assuming that coldSwim and dex are
events while nna, acth, cortico and temp are measures. Isolated vertices
(e.g. cortico ) are not shown.

The QCM data-compiler has to convert the values in Table 5.1 into values from the

domains of the classes of the entities being modelled. Recall that measures have the

domain {up, down, steady}, events have the domain {present, absent} and  eventsChange

have the domain {arrived, left}.  For the purposes of explanation, we represent Table 5.1

as the following Prolog data/1  fact.

data([experiments    - [   [],    [dex],  [coldSwim], [coldSwim,dex]],
                       %----------------------------------------------
      results/nna    - [   0.122,  0.105,     0.210,    0.246],
      results/cortico- [ 129,     11.3,    1232,       32.8],
      results/acth   - [  89,      0,       240,        0]]).

We define certain accessors to query data/1 . Event/1 finds all valid events (i.e. all

the experimental interventions mentioned in the experiments definition line of data/1 .

For example, event(dex) is true.
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event(X)       :- events(All), member(X,All).
events(Events) :- setof(Event, events1(Event), Events).
events1(E)     :- experiments(Exps), member(Exp,Exps), member(E,Exp).
experiments(X) :- data(Data), member(experiments - X,Data).

M/3 finds all the value X of a measurement M in an certain Experiment  (e.g.

m(nna,[dex],0.105) ).

m(M,Experiment,X)         :- experiments(Exps), results(M,Resutls),
                  m1(Experiment,Exps,Results, X).

results(M,Results)        :- data(Data),
                             member(results/M - Results, Data).
m1(Exp,[Exp|_], [R|_], R) :- !.
m1(Exp,[_|Exps],[_|Rs],R) :- m1(Exp,Exps,Rs,R).

Low-level details taken care of, we can now turn to the top-level driver for the QCM

data compiler.  For all valid experimental comparisons  <E1, E 2> (defined below),

QcmDataCompiler/6  computes the inputs , outputs , facts , missables , and

maybes  sets for the behaviour  record. Inputs /outputs  are a report of the

comparative state of the events between   E1  and  E 2 . in the events/measures

respectively. Facts  is a set of all known observations; i.e. the union of inputs and

outputs .  QCM has no heuristics for culling the search space. Hence, the search space

maybes  is simply all the vertices from the model.

qcmDataCompiler(E1, E2, Inputs, Outputs, Facts, Maybes, Missables) :-
  twoExps(E1,E2),               % for two experiments E1 and  E2
  values(event,E1,E2,Inputs),   % inputs  = values for events in E1, E2
  values(measure,E1,E2,Outputs),% outputs = values for changes in E1,E2
  union(Inputs,Outputs,Facts),  % facts   = inputs union outputs
  allModelVertices(Maybes),     % maybes  = all vertices in the model
  allSteadyVertices(Missables). % missables = all steady vertices.

Union/3  is a set union predicate. AllModelVertices/1  is a hook into the model

data structure which returns all the vertices of the model. AllSteadyVertices/1

returns all the X=steady  vertices from the model. The other sub-goals of

QcmDataCompiler/6 are described below.

Given N  experiments, the QCM data compiler generates one behaviour record for all

each valid experimental comparisons.

% get a valid experimental comparison
twoExps(E1,E2) :-
 experiments(N),
 member(E1,N),           % E1 is any experiment
 member(E2,N),           % E2 is any experiment
 (not(model(symmetrical)) -> not(E1=E2) | E1 @> E2).

Given N experiments, there exist N2-N , such pairs (i.e. we ignore the trivial case of

comparing two identical experiments). In the case where the comparison <E1,E 2> is

the same as  <E2,E 1>, then the comparisons are fully symmetrical and we can ignore

half the possible pairs (e.g. process <E1,E 2> and ignore <E2,E 1>). A model is fully
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symmetrical when all its links are symmetrical. For example, consider the model

direct(coldSwim, nna) and the data:

data([experiments    - [   [],    [coldSwim]],
      results/nna    - [   0 ,     1]]).

Recall that direct(coldSwim,nna) expands to two edges:
 edge(1,coldSwim=arrived, nna=up).
edge(2,coldSwim=left,nna=down).

For the comparison <E1,E2> = <Control, [coldSwim]>, then:
 <Inputs, Outputs> = <{coldSwimChange=arrived}, {nna=up}>.

For the reverse comparison  <E2,E1>:
 <Inputs, Outputs> = <{coldSwimChange=left}, {nna=down}>.

Note that the explanation for <E1,E2> is
 {coldSwim=arrived, nna=up}

which is symmetric to the explanation for  <E2,E1>;  i.e.
 {coldSwim=left, nna=down} .

That is, everything that is explicable for <E1,E2> is explicable for <E2,E1> . This

model is fully symmetrical and we can save CPU time by  ignoring inverse comparisons

(i.e. <E2,E1>) .

Now consider the same data, but the asymmetric model creator(coldSwim, nna). Recall

that creator links can only increase the downstream value, never decrease it.

Creator(coldSwim,nna) expands to one edge:
 edge(1,coldSwimChange=arrived, nna=up)

For the <E1,E2>  and <E2,E1> comparisons, the <Inputs, Outputs> sets are as above.

However, while we can explain nna=up in <E1,E2> , we can't explain nna=down in

<E2,E1>. This model is not fully symmetrical and we cannot save time by ignoring the

inverse comparisons.

The knowledge engineer configuring the QCM data compiler must define the

model(symmetr ical)  rule used within twoExps/2 . A QCM model is

asymmetrical if it contains creators, destroyers, inverse creators, or inverse destroyers.

Ablers also make a model asymmetric since the permitted explanations when the abler

permits the link can be very different to the permitted explanations when the abler

forbids the link.  For example, while the Smythe '87 model is symmetrical, the Smythe

'89 model146 is not.

For each valid experimental comparison <E1,E2> , the QCM data compiler compares the

events and measures in E1 and E2 to deduce their values.  The simplest case is the

computation for measures.   A measure is assigned the value up , down, or steady

according to the change in their numeric value.

146 Informally drawn in Figure 2.3 (before section 2.2.2)  and fully described in Figure 6.11 (section 6.2.1).
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% get all values for all objects of a certain type
values(Type,E1,E2,Out)   :- bagof(X,E1^E2^value(Type,E1,E2,X), Out).
value(measure,E1,E2,X=V) :- m(X,E1,M1), m(X,E2,M2), delta(M1,M2,V).

delta(N , N , steady).
delta(N1, N2, up    ) :- N1 < N2.
delta(N1, N2, down  ) :- N1 > N2.

Strictly speaking, delta/3  should compute up/down/steady  for measures after

applying a t-test to a significant number of measurements to compare the means. Here,

we show the simplest delta. Note that it would be a simple matter to change the QCM

data compiler to handle t-test delta comparisons.

Note that value/4  for measures fails if it can't find a value for X in both E1 and E2. In

poorly measured domains, such failures would be common.

Computing the value of the change(event) is analogous to computing the deltas for the

measurements. If an event was in E1 and isn't in E2, then it has left . In the converse

case, it has arrived .

value(event,  E1,E2, change(X)= arrived):- event(X), not(member(X,E1)),
                                           member(X,E2).
value(event,  E1,E2, change(X)= left)   :- event(X), member(X,E1),
                                           not(member(X,E2)).

We assign the present/absent values to events by checking for their presence in

E2.

value(event, _, E2, X=present) :- event(X), member(X,E2).
value(event, _, E2, X=absent)  :- event(X), not(member(X,E2)).

Running the compiler on Table 5.1 generates the following output:

?- qcmDataCompiler(E1, E2, Inputs, Outputs, Facts, Maybes, Missables).
...
E1 = [dex]
E2 = [coldSwim]
Inputs = [coldSwim=present, dex=absent,

 change(coldSwim)=arrived, change(dex)=left]
Outputs= [nna=up, cortico=up, acth=up]
Facts = [coldSwim=present, dex=absent, change(coldSwim)=arrived,

 change(dex)=left, nna=up, cortico=up, acth=up]
Maybes = [acth=down, acth=steady, acth=up, coldSwim=absent,

 coldSwim=present, cortico=down, cortico=steady, cortico=up,
 dex=absent, dex=present, nna=down, nna=steady, nna=up,
 temp=down, temp=steady, temp=up, change(coldSwim)=arrived,
 change(coldSwim)=left, change(dex)=arrived, change(dex)=left]

Missables=[acth=steady, cortico=steady, nna=steady, temp=steady]
...

� � � � � � + 9 # / 0 " � +

Generalised test is a customisable process. On top of the Core  inference procedure, we

can build domain-specific data and model compilers. Such compilers  may reflect

intricate domains semantics, whilst remaining quite small/customisable.
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Flight by machines heavier than air is unpractical and
insignificant, if not utterly impossible: S i m o n
Newcomb, 18 months before the Wright  brothers took
off at  Kitty Hawk
Not to know certain things is a great part of wisdom:
Hugo Gratius. We have many sayings, but no doings:
Anonymous  Certum quod factum (i.e. one is certain of
only what one builds): Giovanni Battista Vico 1668-
1744. Avagoyamug:  Generic Australian. I come from
the frenetic "build-a-model-then-rip-it-apart" per-
suasion within Artificial Intelligence, because it has
been my experience that , no matter how clever one is,
he never uncovers the real problems by gedankens-
experiments. Rather, he thinks a while, builds a model,
runs it, watches it fail, thinks some more, revises it,
runs it again, and so on: Chuck Reiger.

Previously, we have (i) motivated the need for testing, (ii) defined a generalised test

engine for propositional domains, and (iii) described domain-specific customisation

layers which allow us to use the test engine for models from different domains. In this

chapter, we demonstrate the practicality of the system defined above. This demonstration

be done in three stages:

• The Smythe '87 study. In this study, a paper from an internationally refereed

neuroendocrinological journal [239] is faulted [153] using HT4, the prototype

system that we reversed-engineered to generate the Core   specification. This will

demonstrate that Core/HT4  can find faults that are invisible to other techniques.

• The Smythe '89 study. We describe our corrections to the Feldman & Compton

study which increased the percentage of inexplicable results from 32% to 45%.

This study demonstrates that Core /HT4 scales to medium-sized models.

• The mutation study.  Hundreds of models were artificially generated using the

Smythe '89 models as an initial reference point.  These models were then

analysed using HT4 to identify the limits to our process. These limits will be

found to of the same order as the models developed by current knowledge

engineering practice.
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We have previously describe the data set147 and model148 used in the Smythe '87 study

[153, 239]. The section is an annotated trace of the execution of  our Smalltalk

implementation of Core  running over the Smythe '87 model/data.  Recall that Smythe

'87 had 4 experiments: control= {}, {dex}, {coldSwim}, and {dex, coldSwim}. Smythe '87

is  fully-symmetric so we only need compare (42-4)/2 = 6 experiments.

D � 2 � � � G � � � 5 � �

Our first comparison is <E1, E2> = <{},{dex}> .

1. ======================================================
2. name .............. [014. Smythe 87]
3. date .............. [(Sep 20, 1994 14:50:48)

4. ----| comparison 1 |----------------------------------
5. experiments.........[Control to (dex)]
6. inputs..............[((change(dex) up))]
7. outputs.............[((acth down) (cortico down) (nna down))]

8. Conclusion: cant do.[()]
9. % cant do...........[0]

10.  PROOFS(S):
11. (acth down) ....... [(change(dex) arrived) (temp up) (nna down)

 (acth down)]
12. (acth down) ....... [(change(dex) arrived) (temp up) (acth down)]
13. (cortico down) .... [(change(dex) arrived) (temp up) (nna down)

 (acth down) (cortico down)]
14. (cortico down) .... [(change(dex) arrived) (temp up)

 (acth down) (cortico down) ]
15. (nna down).. ...... [(change(dex) arrived) (temp up) (nna down) ]

Figure 6.1 Trace of the comparison between control and dex.

Core  reports that all the outputs can be explained (i.e. the cantdo  set is empty, see

lines 9-10). It then offers (i) two explanations for the changes in acth  (lines 11 and 12);

(ii) two explanations for the cortico  change (lines 13 and 14); and (iii) one

explanation for the change in nna  (line 15).  The two cortico=down e xplanations

are shown in Figure 6.2.

147 See Table 5.1, section  5.4.2.
148 See Figure 5.19, section .5.4.2
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(change(dex) arrived)
(temp up)(acth down)

(cortico down)

(change(dex) arrived)
(temp up) (nna down)

(acth down) (cortico down)

nna

cortico

acth

coldSwim

dex

temp
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down
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down

change(dex)
= arrived

temp=up
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cortico=
down

acth=
down

change(dex)
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temp=up

++
++

nna=down

++ --

(i) (ii) (iii)

Figure 6.2. Two proof from (ii) line 14 of Figure 6.1 and (iii) line 13 of
Figure 6.1. Note that proofs are subsets of the edges in Figure (i).

Like comparison 1, the next three comparisons can explain all the outputs in a single

world.

16.  ----| comparison 2 |----------------------------------
17.  experiment ........ [Control to (coldSwim)]
18. inputs ............ [((change(coldSwim) arrived))]
19. outputs ........... [((acth up) (cortico up) (nna up))]

20. Conclusion: cant do.[()]
21. % cant do ......... [0]

22.  PROOFS(S):
23. (acth up) ......... [(change(coldSwim) arrived) (nna up) (acth up) ]
24. (cortico up). ..... [(change(coldSwim) arrived) (nna up) (acth up)

 (cortico up)   ]
25. (nna up) .......... [(change(coldSwim) arrived) (nna up)]

Figure 6.3. Trace of the comparison between  control and coldSwim.

26. ----| comparison 3 |----------------------------------
27. experiments ....... [Control to (dex coldSwim)]
28. inputs ............ [((change(coldSwim) arrived)         

  (change(dex) arrived))]
29. outputs ........... [((acth down) (cortico down) (nna up))]

30. Conclusion: cant do.[()]
31. % cant do ......... [0]

32.  PROOF(S):
33. (acth down) ....... [(temp up) (acth down) (change(dex) arrived)]
34. (cortico down) .... [(change(dex) arrived) (temp up) (acth down)

 (cortico down)   ]
35. (nna up) .......... [(change(coldSwim) arrived) (nna up)]

Figure 6.4. Trace of comparison between control and {dex, coldSwim}.

Comparison 4 has one interesting feature. Note the numerous proofs (lines 43-50 in

Figure 6.5).
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36. ----| comparison 4 |----------------------------------
37. experiments ....... [(dex) to (coldSwim)]
38. inputs ............ [((change(coldSwim) arrived)

 (change(dex) left))]
39. outputs ........... [((acth up) (cortico up) (nna up))]

40. Conclusion: cant do.[()]
41. % cant do ......... [0]

42.  PROOFS(S):
43. (acth up) ......... [(change(coldSwim) arrived) (nna up) (acth up)]
44. (acth up) ......... [(change(dex) left) (temp down) (acth up) ]
45. (acth up) ......... [(change(dex) left) (temp down) (nna up)

(acth up) ]
46. (cortico up) ...... [(change(dex) left) (temp down) (nna up)

(acth up) (cortico up)  ]
47. (cortico up) ...... [(change(coldSwim) arrived) (nna up) (acth up)

(cortico up) ]
48. (cortico up) ...... [(change(dex) left) (temp down) (acth up)

(cortico up)  ]
49. (nna up) .......... [(change(dex) left) (temp down) (nna up) ]
50. (nna up) .......... [(change(coldSwim) arrived) (nna up)]

Figure 6.5. Trace of comparison between  dex and {coldSwim}.

Comparison 5 reports that two-thirds of the outputs are inexplicable (see line 56). Only

nna=up can be explained.

51. ----| comparison 5 |----------------------------------
52. experiments ....... [(dex) to (dex coldSwim)]
53. inputs ............ [((change(coldSwim) arrived))]
54. outputs ........... [((acth steady) (cortico up) (nna up))]

55. Conclusion: cant do.[((acth steady) (cortico up))]
56. % cant do ......... [67]

57.  PROOF(S):
58. (nna up) .......... [(change(coldSwim) arrived) (nna up) ]

Figure 6.6. Trace of comparison between  dex and {dex, coldSwim}.

The cause of the inexplicable outputs is two-fold. Firstly, the only input to cortico  is

from acth  (see Figure 6.2.i). To explain cortico=up , we require acth=up  but this

is forbidden by the observation that acth=steady (see line 54, Figure 6.6). Secondly,

since acth  is downstream of the exogeny {coldSwimChange = arrived} , then

we can only explain its steady value by a conjunction of competing upstream influences;

i.e. either (i) temp=up  & nna=up  or (ii) temp=down  & nna=down . Explanation (ii)

is incompatible with the observation that nna=up  (see line 54, Figure 6.6) so the only

candidate is (i). However, to explain temp=up , we need some input from one of its

upstream vertices. There are only two: cortico=up , which can't be explained for the

above reasons ; and change(dex)=arrived , which is not possible since it is not

found in the inputs (see line 53, Figure 6.6). Hence, we cannot explain acth=steady

or cortico=up .

As an aside, we note that the addition of one extra link in Smythe '87 would permit

explanations of all the outputs of {dex} vs {dex,coldSwim} (see Figure 6.7).
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Figure 6.7: The addition
of the one edge shown in
Figure (i) permits  the
explanations shown in
Figure (ii) for  acth=std,
nna=up and cortico=up.

(i) (ii)

Returning to the original Smythe '87 model, comparison six says that we can't explain

nna=up.

59. ----| comparison 6 |----------------------------------
60. experiments ....... [(coldSwim) to (dex coldSwim)]
61. inputs ............ [((change(dex) arrived)
62. outputs ........... [((acth down) (cortico down) (nna up))]

63. Conclusion: cant do.[((nna up))]
64. % cant do ......... [33]

65.  PROOF(S):
66. (acth down) ....... [(change(dex) arrived) (temp up) (acth down) ]
67. (cortico down) .... [(change(dex) arrived) (temp up) (acth down)

(cortico down)]

Figure 6.8. Trace of comparison between  coldSwim and {dex coldSwim}.

The reasons why nna=up failed are instructive. Possible proofs for nna=up are given in

Figure 6.9

1. nna=up
2. if (change(coldSwim)=arrived)
3. or if (temp=down
4. if (change(dex)=left)
5. or if (cortico=down
6. if (acth=down
7. if (nna=down)
8. or if temp=up )))

Figure 6.9. Possible proofs for nna=up149.

Note that line 2 and line 4 of the proof fails since the required events are not in the inputs

(see line 61, Figure 6.8).   The alternative proof offered in lines 5 to 7 fails since

nna=down (line 7) is incompatible with the outputs (line 62, Figure 6.8). The final

alternative proof in line 8 fails since temp=up  is incompatible with another assumptions

along the proof; i.e. temp=down .

D � 2 � H � 8 � � E � � � � � �

The 4 experiments studied here from the Smythe '87 paper contained 16 measurements.

3 of these are inexplicable with respect to the model proposed by its author

149 Deduced by an inspection of Figure 5.19.ii.
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({acth=steady, cortico=up} in comparison 5; {nna=up} in comparison 6). Significantly,

the author was not aware of these errors until we showed them to him [241].  Further,

these errors escaped international peer review.

Even small models, such as Smythe '87,  can generate large numbers of proofs (see lines

43-50). This observation leads to two comments:

• Without an automatic tool to handle the low-level mechanics of proof generation,

human readers can find it tedious/unmanageable to explore all these proofs. This

problem with the computational overhead associated with the simple technique is

one of the  reasons why generalised test can discover previously undetected

errors.

• A pre-experimental intuition is that since a large number of behaviours are

possible then, for complicated models, any behaviour at all could be reproduced.

If this was the usual case, then generalised test would not be a useful tool since

its critiquing power  would be zero. This is the Pendrith objection to generalised

test150. In the case of Smythe '87, we saw that this was not so in 3 of the 16

measurements. However, this one case does not give us confidence that, in the

general case, the Pendrith objection does not hold.   Consequently, we will check

for the Pendrith limit in all our subsequent studies (see below).

D � 2 � 1 �  � � E 5 � � � � �

For small models such as Smythe '87, generalised test can detect errors that are invisible

to other review techniques such as visual inspection and international peer review. The

Smythe '89 study  (see below) checks if this result is true for larger models.

: � I � < = $ >  ? � = $ @ A J > � / C ?
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The Smythe '89 study was an attempt to repeat the results of Feldman & Compton. The

Smythe '89 model of glucose regulation [240]151 and data sets used in QMOD/JUSTIN

were converted into QCM and processed with HT4.

Smythe '89 is much larger than Smythe '87. It contained the events and measures of

Figure 6.10.

150 Named after the PhD student who first succinctly articulated this problem.
151 See Figure 2.3, before section 2.2.2.
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 ((e acutEdex)             (e adrx)                 (e chroniCdex)
  (e chroniCdiaz)          (e chroniCglucose)       (e chroniCinsulin)
  (e chroniCtolbut)        (e dex)                  (e diaz)
  (e etherstr)             (e gentle)               (e guan)
  (e hghInj)               (e hypox)                (e insulin10)
  (e insulin30)            (e insulinBolis)         (e msg)
  (e parg)                 (e ptu)                  (e stress)
  (e swimstr)              (e tolbut10)             (e tolbut20)
  (e tolbut30)             (e twoDg)                (e yoh)

  (m acth)
  (m acthProduction)       (m aluminium)            (m brainGlucose)
  (m brainGlucoseUptake)   (m catechole)            (m catecholeDisp)
  (m catecholeProd)        (m corticoidProduction)  (m cortisol)
  (m cortisolProduction)   (m crf)                  (m da)
  (m da2Hva)               (m daProduction)         (m dhpg)
  (m fiveHIAA)             (m fromGut)              (m fromLiver)
  (m fromPancreas)         (m ghProduction)         (m ghrh)
  (m glucagon)             (m glucagonDis)          (m glucagonProd)
  (m glucocorticoid)       (m glucose)              (m hgh)
  (m hva)                  (m insulin)              (m ne)
  (m ne2dhpg)              (m ne2Epin)              (m neControl)
  (m neProduction)         (m pHgh)                 (m pns)
  (m pPrl)                 (m prl)                  (m prlRelease)
  (m sateity)              (m serotonin)
  (m serotoninProduction)
  (m serotoninTOfiveHIAA)  (m sns)                  (m srif)
  (m t4)                   (m temp1)                (m temp2)
  (m temp3)                (m toKidneys)            (m toTissue)
  (m vagus))

 Figure 6.10. The 27 Events and 53 measures of QCM's Symthe '89. (e X)
denotes that X  is an event and (m Y) denotes that Y is a measure.

QCM's Smythe '89 had the edges of Figure 6.11.  These edges were generated by a

manual translation of the QMOD diagrams into the QCM syntax. The QMOD diagrams

were generated by the knowledge acquisition work of Feldman & Compton [79, 80] who

interviewed Smythe. [240] to translate that loose causal diagram into the qualitative

compartmental models of QMOD.
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( crf  '++'  acthProduction )
( acthProduction  '+-+'  acth )
( hypox  '--'  acthProduction )
( acth  '++'  cortisolProduction )
( if guan then not
   (sns  '++'  cortisolProduction ))
( if adrx then not
  (cortisolProduction  '+-+'  cortisol ))
( corticoidProduction  '+--'  cortisol )
( glucocorticoid  '--'  acthProduction )
( corticoidProduction
   '+-+'  glucocorticoid )
( dex  '++'  glucocorticoid )
( acutEdex  '++'  glucocorticoid )
( chroniCdex  '++'  glucocorticoid )
( if adrx then not
   (catecholeProd  '+-+'  catechole ))
( catecholeDisp  '+--'  catechole )
( if guan then not(sns '++' catecholeProd))
( daProduction  '+-+'  da )
( da2Hva  '+--'  da )
( prl  '++'  da )
( aluminium  '--'  daProduction )
( if msg then not ( da2Hva  '+-+'  hva ))
( parg  '--'  da2Hva  )
( glucagonProd  '+-+'  glucagon  )
( glucagonDis  '+--'  glucagon  )
( if guan then not (sns '++' glucagonProd))
( glucose  '--'  glucagonProd )
( insulin  '--'  glucagonProd )
( chroniCglucose  '++'  glucose )
( fromGut  '+-+'  glucose )
( fromLiver  '+-+'  glucose )
( brainGlucoseUptake  '+--'  glucose )
( glucose  '++'  brainGlucoseUptake )
( toTissue  '+--'  glucose )
( brainGlucoseUptake  '+-+'  brainGlucose )
( temp1  '++'  toTissue )
( glucose  '++'  temp1 )
( insulin  '++'  temp1 )
( temp2  '++'  fromLiver )
( insulin  '--'  temp2 )
( glucocorticoid  '++'  temp2 )
( pns  '--'  temp2 )
( catechole  '++'  temp2 )
( if guan then not ( sns  '--'  temp2 ))
( glucagon  '++'  temp2 )
( twoDg  '--'  brainGlucoseUptake )
( fromPancreas  '+-+'  insulin )
( toKidneys  '+--'  insulin )
( insulin  '++'  toKidneys )
( if guan then ( sns  '--'  temp3 ))
( catechole  '--'  temp3 )
( glucagon  '++'  temp3 )
( glucose  '++'  temp3 )
( pns  '++'  temp3 )
( temp3  '++'  fromPancreas )
( insulinBolis  '++'  insulin )
( insulin10  '++'  insulin )
( insulin30  '++'  insulin )
( chroniCinsulin  '++'  insulin )
( tolbut10  '++'  fromPancreas )
( tolbut20  '++'  fromPancreas )

( tolbut30  '++'  fromPancreas )
( chroniCtolbut  '++'  fromPancreas )
( neProduction  '+--'  da )
( if msg then not (neProduction '+-+' ne))
( ne2dhpg  '+--'  ne )
( ne2Epin  '+--'  ne )
( if msg then not (ne2dhpg  '+-+'  dhpg ))
( dhpg  '++'  crf )
( dhpg  '++'  sns )
( stress  '++'  neControl )
( glucocorticoid  '--'  neControl )
( brainGlucose  '--'  neControl )
( neControl  '++'  neProduction )
( neControl  '++'  ne2dhpg )
( ne  '++'  ne2dhpg )
( aluminium  '--'  ne2dhpg )
( ne  '+-+'  ne2Epin )
( hgh  '++'  neProduction )
( insulin  '--'  neProduction )
( swimstr  '++'  stress )
( etherstr  '++'  stress )
( yoh  '++'  neProduction )
( parg  '--'  ne2dhpg )
( gentle  '++'  stress )
( diaz  '--'  neControl )
( chroniCdiaz  '--'  neControl )
( pns  '++'  vagus )
( insulin  '++'  pns )
( fiveHIAA  '++'  pns )
( sns  '--'  pns )
( da  '--'  prlRelease )
( da  '--'  pPrl )
( prlRelease  '+--'  pPrl )
( if hypox then not(prlRelease '+-+' prl))
( fiveHIAA  '++'  sateity )
( brainGlucose  '--'  sateity  )
( if msg then not (serotoninProduction

            '+-+' serotonin ))
( serotoninTOfiveHIAA  '+--'  serotonin )
( serotoninTOfiveHIAA  '+-+'  fiveHIAA )
( hgh  '--'  serotoninProduction )
( t4  '--'  serotoninProduction )
( t4  '++'  serotoninTOfiveHIAA )
( serotonin  '++'  serotoninTOfiveHIAA )
( brainGlucose  '++'  serotoninProduction)
( insulin  '++'  serotoninProduction )
( pns  '++'  serotoninProduction )
( pns  '++'  serotoninTOfiveHIAA )
( parg  '--'  serotoninTOfiveHIAA )
( msg  '--'  serotoninProduction )
( pns  '--'  sns )
( ghProduction  '+--'  pHgh )
( if hypox then (ghProduction '+-+' hgh ))
( hghInj  '++'  hgh )
( fiveHIAA  '++'  ghrh )
( ghrh  '--'  pHgh )
( ghrh  '++'  ghProduction )
( glucose  '++'  ghProduction )
( glucose  '++'  pHgh )
( srif  '--'  pHgh )
( srif  '--'  ghProduction )
( crf  '++'  srif ))

 Figure 6.11 Edges of QCM's Smythe '89 model. See Table 6.1 for an
explanation of symbols.

Term Meaning Term Meaning
X ++ Y direct(X,Y) X  -- Y inverse(X,Y)
X +-+ Y creator(X,Y) X +-- Y destroyer (X,Y)

if X then Y X enables Y if X then not  Y X disables Y

Table 6.1. Explanation of terms in Figure  6.11.

Table 6.2 summaries the adjacency matrix formed by the edges shown in Figure 6.11.

When calculating the adjacency matrix, we grouped together the 27 events and the 53

measures of Smythe '89. Hence the adjacency matrix had four quadrants: (i) from events



135

to events; (ii) from measures to events; (iii) from events to measures; (iv) from measures

to measures.

Quadrant From To Number of edges % connectivity
e-e 27 events 27 events 3 3/(27*27) = 0.41%
m-e 53 measures 27 events 0 0.00%
e-m 27 events 53 measures 23 23/(27*53) = 1.60%
m-m 53 measures 53 measures 94 94(/53*53) = 3.35%

Table 6.2: Summary of the adjacency matrix formed by Figure 6.11.

Note that no edges occurred in the measures-to-events (m-e) quadrant since the QCM

semantics (defined in the links relation) forbids the connection of measures to events.

The edges in each quadrant where one of nine types (see Table 6.3).

% edge type in
each quadrant

Edge
name

Example e-e m-e e-m m-m

enabled
creator

 ( if hypox then
    (ghProduction  '+-+'  hgh ))

0 0 0 1

enabled
inverse

( if guan then
    ( sns  '--'  temp3 ))

0 0 0 1

disabled
inverse

( if guan then not
    ( sns  '--'  temp2 ))

0 0 0 1

disabled
direct

( if guan then not
    (sns  '++'  catecholeProd ))

0 0 0 3

disabled
creator

( if adrx then not
    (catecholeProd  '+-+'  catechole ))

0 0 0 7

creator ( corticoidProduction
      '+-+'  glucocorticoid )

0 0 0 11

destroyer ( corticoidProduction  '+--'  cortisol ) 0 0 0 15
inverse ( hypox  '--'  acthProduction ) 0 0 35 22
direct ( crf  '++'  acthProduction ) 100 0 65 39

Total 100 0 100 100

Table 6.3: Summary of the adjacency matrix formed by Figure 6.11. This
table says, for example, that 39% of the edges in the m-m quadrant were of
type direct.

The model-compiler converted Figure 6.11 into a directed graph described in Table 6.4.

Source N=|V| |E| fan out = |E|/|V|
Figure
6.11.

events:
measures:

total:

27
53
80

120 120/80 = 1.5

Model-compiler
output from
Figure 6.11

and-vertices:
other vertices:

total:

294
260
554

1246 1246/554 = 2.25

Table 6.4. Comparison of the adjacency matrices of Figure 6.11 and the
graph generated by the QCM model compiler from Figure 6.11. Recall that
and-vertices are generated when domain-specific inferencing is compiled
into an and-or graph. In this case, the and-vertices represent the steady
semantics and conditional edge semantics discussed in the last chapter.
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The experimental data used for the Smythe '89 study came from the 1989 Feldman &

Compton study (see Table 6.5). This data was taken from the papers used by Smythe to

write his overview paper of glucose regulation [240].

Measurement

Experiment
d
a

n
e

h
g
h

h
v
a

a
c
t
h

d
h
p
g

g
l
u
c
o
s
e

i
n
s
u
l
i
n

c
o
r
t
i
s
o
l

f
i
v
e
H
I
A
A

g
l
u
c
a
g
o
n

s
e
r
o
t
o
n
i
n

Control 10 10 10 10 10 10 10 10 10 10 10 10
msg 5 10 10 10 10 15
diaz 10 5 10 20 12 90 5 20
guan 7 30 5 5 50
parg 20 20 2 2 2 20
hypox 10 10 10 10 20 10
twoDg 10 8 20 20 20 15 50 10 15 12

acutEdex 10 10 15 10
gentle 15 8 10 8 10 10

chroniCdex 15 1 10 5
swimstr 10 10 12 20 20 100 9 12
etherstr 15 8 12 20 23 100 10 12
ptu  yoh 3 20 30 20 9 11
tolbut10 9 9 11 11 5 50 50 10 10 10
tolbut20 10 10 10 10 5 20 40 10 10 10
insulin10 11 50 9 5 8 20 10 10
insulin30 10 5 20 3 9 50
msg  parg 20 20 2 2 2 20

chroniCtolbut 10 10 10 10 7 10 10 15 10 10
chroniCglucose 7 10 10 10 12 10 10 7 10 10
chroniCinsulin 10 9 10 11 5 20 25 10 10

gentle  yoh 5 30 15 30 9 11
guan  twoDg 7 21 9 10 50
ptu  swimstr 10 9 18 20 15 90 18 12
ptu  etherstr 10 10 20 20 23 90 18 12

diaz  chroniCdiaz 10 10 10 10 10 45 5 20
hypox  hghInj 10 10 10 10 10 10

acutEdex  swimstr 10 45 20 50
chroniCdex  swimstr 10 1 21 6

chroniCglucose
chroniCtolbut

10 10 10 10 8 10 10 15 10 10

Table 6.5. Experimental results used for Smythe '89. Taken from Feldman
& Compton '89. Column 1 shows the events present for each experiment.
Note that the Feldman & Compton study used a Prolog that only supported
integers. Hence, they normalised and rounded their data. This is why all
the values  presented here are simple integers.

Table 6.5 demonstrates the poorly-measured nature of  neuroendocrinology.   The 30

experiments listed here measure 12 variables (da, ne, hgh,... serotonin).  However, note

the empty cells of Table 6.5. Not all the variables were measured in all the experiments.

Recall that for a variable to appear in the outputs set of a behaviour record generated by

the QCM data-compiler, it must be measured in two experiments. While there exist 12

possible comparisons,  the average number of outputs that are comparable for each

comparison is only 5.19.
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Figure 6.12 shows the distribution of the number of inputs and outputs that the QCM

data-compiler generated from Table 6.5.
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Figure 6.12. Number of
comparisons with X  inputs and Y
outputs from Table 6.5. Colours
denote different types of outputs:
white = steadies and black = ups
and downs. For example, the line
marked with an arrow says that
72 comparisons have 3 inputs
and 3 outputs. Of those outputs,
20% were steadies (marked by
the white region near the Y-axis)
while the majority were ups or
downs (numbers of ups and
downs marked by the black
region).
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HT4 executed the 870 comparisons in 12343 seconds (≈ 206 minutes) on a Macintosh

Powerbook 170 under System 7.0.1. HT4 was implemented in Smalltalk/V Mac version

1.0 running with 6MB of RAM.

On average, 45% of the outputs were found to be inexplicable (see Figure 6.13).
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Figure 6.13: Number of
comparisons with X% inexplicable
outputs. For example, 50
comparisons had 40% inexplicable
outputs. The average number of
explicable outputs was 55%. Note
the right-most bar: only  (150/870
= 17.2%) comparisons could
explain 100% of their outputs.
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Our average explicable rate of 55% is lower than the 68% reported by Feldman &

Compton. We offer four explanations for the observed difference in behaviour between

QMOD/JUSTIN and HT4:
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• HT4 ran over a different set of comparisons than QMOD/JUSTIN.

QMOD/JUSTIN had no semantics for steadies or multiple inputs. Hence, it ran

only on the 24 comparisons with one input and no steadies in the output. HT4

could execute over all 870 comparisons.

• Feldman & Compton did not use creator and destroyer links to model flows in

and out of compartments. Recall that creators and destroyers are asymmetrical

causal connections. While they can explain a change in one direction, they are

silent regarding changes in the opposite direction. Creators and destroyers are

better representations of the in-flow and out-flow semantics of quantitative

compartmental models.  In-flows and out-flows were modelled as direct and

inverse links in the QMOD/JUSTIN study. The introduction of these asymmetric

causal edges reduced the number of possible explanations.

• Compton, while checking our models, found several errors in the representation

of neuroendocrinological knowledge. HT4 used Compton's revised model.

• HT4 required the user to pre-specify all their vertex names prior to specifying the

edges. Edges that terminated on an unknown vertex generated an error message.

Using this simple error checking tool, several typographical errors were found in

the QMOD/JUSTIN models. HT4 used the corrected models.

Precise runtime figures on Feldman & Compton's runtimes are not available, but

Compton's believes that QMOD/JUSTIN took two days to run on a Macintosh SE ( a

machine four times slower than the Powerbook used for HT4). Comparatively, therefore,

HT4 executed Smythe '89 two orders of magnitude faster than QMOD (see Figure 6.14).

870

24





 *

12343

24* 2* 3600



 4

QMOD runtimes (seconds)

HT4 runtimes (seconds) hardware factor

Number of comparisons
handled by HT4

Number of comparisons
handled by QMOD

Speed-up = = 126.8

Figure 6.14. Speed-up of
HT4 over QMOD assuming
a 2 day runtime for QMOD.
Note: this figure of 2 days
is only approximate.

Given all the work we had done on optimising the testing process, we were disappointed

by the mere two-orders of magnitude speed-up.  The original goal of QMOD/JUSTIN

was an interactive environment that could check theories as fast as experts could propose

them. We now doubt the practicality of that goal: generalised-test seems more suitable to

an over-night batch run than an interactive environment.

D � � � 1 �  � � E 5 � � � � �

Smythe '87 demonstrated that utility of generalised test for small models. Smythe '89

demonstrated the utility of generalised test for medium-sized models. The level of
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critique is surprisingly high. Figure 6.13 tells us that only (150/870= 17.2%)

comparisons could explain all their outputs. Further, on average, nearly half the data

(100-55=45%) published to support Smythe '89 is not explainable with respect to that

model. This is both a disturbing and exciting finding.  It is disturbing in the sense that  if

the very first large-scale medical theory analysed by generalised-test contains significant

numbers of errors, it raises doubts as to the accuracy of theories in general. This result is

exciting in the sense that the level of critique is so high. Generalised test promises to be

a powerful tool for assessing vague theories.

The question of scalability remains. Smythe '87 and Smythe '89 are interesting studies,

but are too small a sample size to make general claims. The mutation study (see below)

widens that sample size in an attempt to find the limits to generalised test.
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The mutation study began with the following observation. While model-compilers and

data-compilers can vary from domain to domain, the structures they generate are

remarkably uniform and simple. At its lowest level, generalised test executes over a

directed graph between sets of vertices marked as inputs or outputs. Such graphs contain

vertices V and edges E and can be partially characterised by their size (N= |V|) and

average fanout (B = |E|/|V|)152. Generalised test is a process of finding explanations for O

outputs in terms of I inputs  (I  ⊆ V, O ⊆ V). Recall that the and-or graph of Smythe '89

had N = 554 and B = 2.25153 which was processed by 1 ≤ |I| ≤ 4 and  1 ≤ |O| ≤ 10154.

The mutation study had four sub-studies, each of which held three of <N,B,I,O>

constant while varying the fourth.  Table 6.6 shows the number of models and inferences

made during the mutation study.

Study Models # of runs |V| |E|/|V| |Inputs| |Outputs|
Changing N 94 1991 150…1250 2…2.25 1…4 1…10
Changing B 161 2588 480…554 2…10 1…4 1…10
Changing 0 1 872 554 2.25 1…4 1…53
Changing I 1 519 554 2.25 1…27 1…10

Total 257 5970

Table 6.6: The mutation study called Core  5970 times over 257 models of
varying sizes  (|V|) and fanout (|E|/|V|). Number of inputs and outputs were
also varied.

152 This computation for average fanout also yields the average fan-in; i.e. average fan-out equals average fan-in.
This must be so since average fanout and fan-in measure the average number of edges incident on a vertex.
Since an edge must (i) come out of a vertex and (ii) go into a vertex, then the mean number of input edges
(average fan-in) must equal the mean number of output edges (average fanout).

153 See Table 6.4, section 6.2.1.
154 See Figure 6.12, section 6.2.1.
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In all, 257 models were used for 6070 runs of HT4155.
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The changing N study varied N whilst keeping B,I, and O constant; i.e. 150 ≤ Ν ≤ 1250,

B = 2.2.5,  1 ≤ |I| ≤ 4, 1 ≤ |O| ≤ 10.

A  set of L  links of the  form of Figure 6.11 were generated as follows. X number of

vertices Xv were randomly created and set to be either  events or measures in the ratio

27:53 events: measures (the ratio of events to measures in the Smythe '89 model156).

Until L  links had been created, the model-generator picked two members of Xv  at

random and assigned them an edge consistent with known distributions from the Smythe

'89 model157. For example, no edges were assigned to measure-event pairs while 3.35%

of measure-measure pairs were given an edge. The nature of the edge was controlled by

with known distributions from the Smythe '89 model158. For example, all event-event

edges were direct while 15% of the measure-measure links were destroyers. If a link

was enabled or disabled, a third event vertex was chosen at random to act as the abler.

These L links were then passed to the QCM model-compiler to generate an and-or graph.

Smythe '89 has |L0 |= 120 links. 94 models were generated using |L| = 80,  100, 120, 140,

160, 180.  This resulted in and-or graphs that varied in size from 150 to 1250 with a

2.0 ≤ B ≤ 2.25. At runtime, between 1 and 4 events were chosen at random to be inputs

and between 1 and 10 measures were chosen at random to be outputs. In this way, the 94

models were run 1991 times. Figure 6.15 shows the number of comparisons made at

each and-or graph size.

When executed, it was found then that the N >1000 models did not terminate, even on

very long runs. Memory errors or an exponential runtime curve were suspected. A "give-

up" time of five minutes was built into HT4.
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The changing B study varied B whilst keeping N,I, and O constant; i.e. N=554, 2.25 ≤ Β
≤ 10,   1 ≤ |I| ≤ 4, 1 ≤ |O| ≤ 10.

The changing-B  graphs were generated as follows. Starting with the and-or graph from

Smythe '89, edges were added at random. After each addition, the average fanout of the

and-or graph was checked against the desired fanout.

155 Many of the sample sizes used in this study are not simple whole numbers. For example, 5895 is not 5000,
6000, or 10000. The results reported here were generated from thousands of runs of HT4, some of which
crashed for random reasons. When  we discarded the data from the crashed runs,  we were left with the sample
sizes described below.

156 See Figure 6.10, section 6.2.1.
157 See Table 6.2, section 6.2.1.
158 See Table 6.3, section 6.2.1.
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When executed, the runtimes were so low that it prompted further studies where  (i) the

fanout around and-vertices only was changed; (ii) the fanout around the or-vertices only

was changed.  At runtime, inputs and outputs were chosen as per the changing N study.

Preliminary results with the Smythe '89 model suggested that model criticability

decreased with increased fanout. This effect seemed important enough to warrant further

study. The Changing B (other models) study used the Changing N study model generator

to produce six new models. These new models were then mutated between a fanout of 2

≤ B ≤ 10.

Table 6.7 shows the number of graphs and data sets used in the changing B study.

Generated
graphs

Number
of runs

Basic changing B study. 76 1597 Table 6.7: Graphs and runs in
Changing B, ands-only 42 483 the changing B study.

Changing B, ors-only 37 433
Changing B, other models 6 75

Totals 161 2588
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The changing I study varied I whilst keeping N,B, and O constant at the Smythe '89

levels; i.e. N=554, B= 2.25   1 ≤ |I| ≤ 27, 1 ≤ |O| ≤ 10.

To perform the changing I  study, events were chosen at random from the  Smythe '89

and-or graph to be members of the inputs set. The upper limit of I =27 came from the

Smythe '89 model: it only had 27 events. Outputs were chosen as per the changing N

study.

In all, 519 runs of increasing I  size were executed across the Smythe '89 model.
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The changing O study varied O whilst keeping N,B, and I constant at the Smythe '89

levels; i.e. N=554, B= 2.25   1 ≤ |I| ≤ 4, 1 ≤ |O| ≤ 53.

To perform the changing O  study, measures were chosen at random from the  Smythe

'89 and-or graph to be members of the outputs set. The upper limit of O=53  came from

the Smythe '89 model: it only had 53 measures. Inputs were chosen as per the changing

N study.

In all, 872 runs of increasing O size were executed across the Smythe '89 model.
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Figure 6.15 shows the number of  comparisons in the Changing N study. As with all

results from the changing N study,  the results are averaged in "buckets" of size |V| = 50.
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Figure 6.15. Number of comparisons
run on and-or graphs of different
sizes (|V|) in the changing N study.
Black denotes runs that did not
terminate before the five minute give-
up time. For example: 36
comparisons were run over and-or
graphs of size 600.; and half of these
failed to terminate.  Note that none of
the runs  terminated after |V| =850.

Figure 6.16 shows how the runtimes varied with model size. The plateau after  |V|=800

was due to the give-up time of five minutes (300 seconds).
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Figure 6.16: Runtimes vs model
size for the changing N study. The
displayed runtimes are the means of
all the runtimes divided into buckets
of size | V |=50. Runtimes that
exceeded the give-up time of 300
seconds were assigned a runtime of
300. Error bars denote the standard
deviation σ of  tha t  mean,
normalised by the sample size of
each bucket; (sample sizes for each
bucket shown in Figure 6.15)  i.e.
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Figure 6.16 is inconclusive regarding the shape of the runtime curve. Any number of

curves (e.g. linear, exponential, low-order polynomial) could be fitted to it.  We tried to

prove that the curve was a manageable polynomial (i.e. O(N3) or less) with the following

experiment. Models with 800  N   950 were tested with a give-up time of 14  minutes.

At N 850, the majority of the runs did not terminate; i.e. the average runtimes above

N  = 850 is greater than 14 minutes. Figure 6.17 contrasts the observed HT4 average

runtimes with those of a cubic (O(N3)), quartic (O(N4)),  and exponential curve.
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O(N4), or O(eN)? The curve
marked with the black
squares denotes the
observed runtimes. Other
curve denote cubic, quartic,
or exponential curves. At N
= 850, all the runs did not
terminate; i.e. the runtime
curve grows somewhere into
the gray region shown on the
right.
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Figure 6.17 suggests that HT4 has a runtime complexity that is worse than cubic on

model size.  Our intuition is that most curves fitted through the observed runtimes plot

and the gray area of Figure 6.17 would be exponential. Further, we suspect HT4 must be

exponential on model size due to the exhaustive nature of its inferencing. In subsequent

chapters, we will develop a theoretical justification for believing that HT4/Core  is

exponential159.

Figure 6.18 explores the Pendrith limit for the Changing N  study. Recall that if the usual

number of explainable outputs was 100%, then the indeterminacy of the vague models

processed by generalised test would render HT4/Core  useless. Fortunately, the observed

levels of critique in the Changing N study (see Figure 6.18)  are non-trivial level of

critique. In the range where most runs successfully terminated (|V| < 850), between 45%

and 75% of the outputs were inexplicable.
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Figure 6.18: Average percentages of
inexplicable outputs observed in the
changing N study.
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Figure 6.19 shows the number of  comparisons in the Changing B Study. As with all

results from the changing B study,  the results are collected in "buckets" of size |B| = 1.
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Figure 6.19. Number of comparisons
run on and-or graphs of different
fanouts (|E|/|V|) in the changing B
study. Black denotes runs that did not
terminate before the five minute give-
up time. For example: 50
comparisons were run over and-or
graphs of fanout  5.; and none of the
runs  at fanout = 5 failed to
terminate.

Figure 6.20 shows how the runtimes varied with model size.

159 In summary: HT4 is an abductive  inference procedure and abduction is NP-hard. For more details, see section
7.1.2.2.
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Figure 6.20: Runtimes vs model
size for the changing B study. The
displayed runtimes are the means of
the runtimes divided into buckets of
size |B|=1. Runtimes that exceeded
the give-up time of 300 seconds
were assigned a runtime of 300.
Error bars denote the standard
deviation σ of  tha t  mean,
normalised by the sample size of
each bucket; (sample sizes for each
bucket shown in Figure  6.19)  i.e.
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The pre-experimental intuition was that runtimes would be exponential on fanout since

increasing fanout in a graph  containing two nodes X and Y increases exponentially the

number of paths between X and Y.  The observed B increases were therefore surprisingly

small. Figure 6.19 shows that very few of the runs failed to terminate while Figure 6.20

shows an apparent non-exponential growth. Several factors could inhibit increasing

runtimes:

• Frequent incompatibilities of  nodes on possible paths would cull the total

number of paths generated (i.e. violations of invariants cull the search space).

•  Adding links around an and-node increases the pre-conditions to propagation of

the search over that and-node. That is, sometimes adding links also adds extra

constraints which restricts the number of possible paths.   In order to demonstrate

this factor, two further changing B studies were performed. In the ands study,

edges were added only upstream of and-vertices. In the no-ands study, edges

were added only upstream of non-and-vertices. The results are shown in Figure

6.21.  Note that the runtimes increase slower when the edges are added upstream

of and-vertices (Figure 6.21.i).

ANDS-study

0 2.5 5 7.5 10 2.5 5 7.5 10

 X = And-or graph fanout (|E|/|V|) X = And-or graph fanout (|E|/|V|)

NO-ANDS-study

100

Runtime (in seconds) per comprison
for an and-or graph of fanout X

150

50

                             (i)                                                          (ii)
Figure 6.21. The effects of selective edge addition on runtimes. Figure (i)
shows the effects of adding edges only upstream of and-vertices. Figure (ii)
shows the effects of adding edges only upstream of non-and-vertices.
Runtimes were generated by processing 1 ≤ |I|  ≤ 4 and 1 ≤ |O| ≤ 10.
Errors bars denote normalised standard deviation (as per Figure 6.16).



145

Figure 6.22 records the level of critique found in the Changing B study for seven model.

Initially, the Smythe '89 graph was mutated to form 76 graphs of fanout B of

2.25 ≤ B ≤ 10. These graphs were executed 1597 times using  1 ≤  |I| ≤ 4 and

4 ≤ |O| ≤ |10|. After a fanout of 4, all the behaviours were explicable. This threshold

represents the upper limits to the HT4 model validation process; hence, it was explored

further. Six graphs were generated using the changing N study model generator with

|L| = 80; i.e. clones of Smythe '89.  These graphs, were of size 480 ≤ |V|  ≤ 535.  Before

increasing the fanout for each studied graph, five sets of inputs/outputs were executed

(1 ≤ |I| ≤ 2, 2 ≤ |O| ≤ 10|).   The results (see Figure 6.22) show that after B = 6.8, nearly

all the studied models could explain all known behaviour. The graphs are logarithmic:

89% of the presented behaviours could be explained after fanouts of B = 4.4.
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Figure 6.22: Average percentage of inexplicable outputs observed in the
Changing B study. Lines are labelled with the |V| of the mutated models.
The model labelled 554 is Smythe '89. The other models were generated
using the changing N study model generator. Note that after a fanout of 4.4
most behaviour is explicable and after a fanout of 6.8, nearly all
behaviours are explicable.

Based on this experiment, we conclude that (i) the Pendrith limit to generalised test is

B = 7 and (ii) the utility of generalised test is low after B =  4.5. The identification of

these limits is the major experimental result of this research.
b c d c e c d c f g h i g j k l m k l t u v o p q r m h w

A surprising result seen in both the changing I and changing O studies was a much-less-

than-exponential growth in runtimes with increasing I/O sizes. The pre-experimental

intuition was that increasing the size of I  and O would increase the runtimes. This was

reasoned as follows:

•  As I increases, the size of the zone sweeped out downstream of the inputs  also

increases. Since this zone is the space searched during proof generation, then  the

number of possible proofs would increase exponentially as more pathways

between two vertices became possible.
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• As O increases, the number of starting points for proofs would increase, this

increasing the time required for proof generation.

Neither of these expectations were realised. 100% of the changing O runs  and 88% of

the changing I  studies terminated within the give-up time.   Figure 6.23 shows the

observed runtimes. Bucket size for changing I/ changing O were 1 and 5 respectively .
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Figure 6.23: Runtimes vs model size for
the changing I and O study. The
displayed runtimes are the means of all
the runtimes divided into buckets of size
|I|=1 (changing I study) and |O| = 5
(changing O study). Runtimes that
exceeded the give-up time of 300
seconds were assigned a runtime of
300. Error bars denote the normalised
as per Figure 6.16.
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One way to summarise the result from the changing O study is as follows. In vague

domains, testing is complicated by having to manage assumptions. However, as more

data becomes available, testing becomes easier. Consider a variable with N states. If one

of those states is mentioned in I  or O, then all its mutually exclusive states are ruled out.

For example, if you are told that day=monday, then you can exclude from the search

space all the other states of day (tuesday, wednesday, etc). |O| = 53 for the Smythe '89

model is the case where all variables are measured; i.e. the domain is no longer vague.

At |O| = 53 for the Smythe '89 model, two-thirds of the search space has been ruled-out.

Hence the greatly-reduced runtimes seen in the changing O study.

As to the result from the changing I  study,  perhaps the same factors that restrict growing

runtimes in the Changing B study160 had some role in slowing down the growth rate of

the runtimes.

The B=7 limit found by the changing B study  imposes an upper limit to model

evaluation via generalised test. How restrictive is this limit; i.e. is B = 7 bigger than the

models we find in modern knowledge bases?  To answer this question, we need to know

the size and internal complexity of knowledge bases found in contemporary knowledge

engineering practice. Such data is very scarce161.  Relevant parameters from a small

160 See section 6.3.2.2.
161 That is, like most other non-toy problems, KA is a vague domain.
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survey of fielded expert systems are shown  in  Table 6.8162. We acknowledge that this

is a very small sample size. However, it does represent all the published data we could

find. We use Table 6.8 since it is consistent with the author's knowledge engineering

experience [157, 164, 206] and the neuroendocrinological models we are aware of.

Application

N
(number of

literals)

B
(average number of literals in a

rule antecedent)163

mmu 65 7
tape 80 4

neuron 155 4
displan 55 2
DMS-1 510 6

Table 6.8: Model size  N  and average fan-out B in the and-or graph of
real-world expert systems. From Preece & Shinghal  [205]. We call these
numbers "reliable" since Preece & Shinghal takes great care to precisely
define their terminology.

Based on that table, we observe that a practical inference procedure for contemporary

KBS must work at least for the range 50≤ (N=|V|) ≤ 510 and 2 ≤ (B =|E|/|V|)  ≤ 7.

Recall the limits found to HT4: N  ≤ 850 and B  ≤ 7.  Clearly, HT4 can process models

of the size N we see in contemporary practice. However, some limitation is imposed by

the fanout since we have seen that after a fanout of 4.4, most behaviours can be

generated from indeterminate models.
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The mutation study has shown that the generalised test system called HT4  is limited to

models with B=|E|/|V|  7  and N = |V|   850. The B limit seems fundamental to the

process of generalised testing.  After some level of internal model inter-connectivity,

indeterminate qualitative models can explain all known behaviour and we cannot assess

them with generalised test.  The N limit is a function of our current implementation.

However, we have theoretical reasons164 for believing that generalised test is

exponential. Our experimental results do not refute that theoretical belief. Hence, we

suspect that faster machines or smarter algorithms or languages will not significantly

increase the N limit.

The encouraging result is that for models underneath the Pendrith limit and N = 850, no

experimental evidence could be found for a limit to the number of explainable items for

a model. In fact, the changing O study suggests that the more definite data points to

explain, the faster the testing will be.

162 We exclude from this survey certain exceptional systems that are much bigger than the numbers reported here
since they are either extreme outliers (e.g. XCON [9]) or still under development   (e.g. CYC [99, 132]).

163 At first glance, number of literals in rule antecedents is fan-in. not fanout. However, recall from the above
discussion that mean fan-in always equals average fanout for a graph.

164 See section 7.1.2.2.
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The discouraging result is that while these restrictions do not inhibit the processing of

some of the models of the size/complexity we see in contemporary knowledge

engineering practice, it imposes strict limits on our ability to test models larger than

those developed in current practice. That is, current KA practice may be teetering on the

limits to testing.
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 Animals, which move, have limbs and muscles. The
earth does not have limbs and muscles; therefore it
does not move: Scipio Chiaramonti
The ultimate law: all general statements are false:
Anonymous. I only  know two tunes. One is  Yankee
Doodle and the other isn't: General President Ulysses
S. Grant. You can never successfully fully determine
before  hand which side of the bread to butter:
Anonymous

Previously, we focused on knowledge base validation. We have (i) motivated and

generalised the concept of testing;  (ii) described how to customise generalised test for

different domains; and (iii) demonstrated its practicality for models of the size seen in

contemporary KA practice. In essence, the process we have described generates multiple

containing consistent sets (worlds) of inferences. A post-processor (BEST) then assesses

the utility of those worlds. An external audience then uses that assessment to (perhaps)

declare a model faulty.  Note that the audience is external to Core .

In this chapter, we step back from the validation task and ask "what else can we use

Core  for?".  We will find that the generation of internally consistent inferences is a

computation useful in many non-validation domains. In its most general form, this is

exactly the model extraction process which Clancey and Breuker argue is at the core of

expert system inference. That is, our general test engine is also a general inference

engine for KBS.
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This section (i) demonstrates the connection between HT4/Core  and abduction; (ii) and

reviews applications for abduction/Core  . We will find that a theoretical level and at a

useful engineering level, abductive/Core -style processing is useful for a wide range of

problems.
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Consider a system with two facts a,  b and a rule R1: If a  b. Informally, we can say

that:

• Deduction is the inference from a  to b.

• Induction is the process of learning R1 given  examples of a and b occurring

together.

• Abduction is inferring a,  given b  [133].
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Abduction is not a certain inference and its results must be checked by an inference

assessment operator (e.g. the BEST operator of Core )165.

Descriptions of abduction date back to the "fourth-figure" of Aristotle [256]. In the

modern era, abduction was described by Charles Sanders Pierce in the last century as

follows. "The surprising  fact C is observed. But if A were true, C would be a matter of

course. Hence, there is reason to suspect that A is true" (from the forward of [182]).

Intuitively, abduction is inference to the best explanation.  This intuitive definition is

vague on the definition of "best" and "explanation". Definitions for these terms will be

discussed below.

Pople noted the connection between diagnosis and abduction in 1973. Pople's diagnosis

inference process explores a first-order theory  looking for hypotheses which, if

assumed, could explain known symptoms  [202].  For example, given the first-order

theory in Figure 7.1.i, we could hypothesis {presence(abcess,liver)} as an explanation

for the symptoms {chills, pain(upper-right)}. Pople characterised his process in terms of

a general logical theorem prover. We characterise it as the extraction of a proof tree from

the space of possible proof trees described in the VCD of Figure 7.1.ii166. This proof tree

must include the largest possible number of symptoms, have roots that are only

symptoms and have root(s) taken from the set of acceptable causes (in this case,

presence(X,Y)).

chills  presence(P,S) 
         inflammatory(P).

pain  presence(P,S) 
       located-in(S,R).

inflammatory(abscess).

located-in(liver,upper-right).

jaundice  presence(P, liver).

chills
presence(P,S)

inflammatory(P)

and

pain(R)
located-in(S,R)

and

inflammatory(
          abscess)

located-in(liver,
       upper-right)

presence(P,liver)

jaundice

(i) (ii)
Figure 7.1: The VCD of Figure (ii) was inferred from the first-order theory
of Figure (i) (Figure (i) from [202]). X  Y is read as "X could be
caused by Y".

The connection between diagnosis and abduction was confirmed later by Reggia in 1985

[215] and numerous other researchers since (for example, see the discussion below on

model-based diagnosis).

By the late 1980s, numerous researchers had recognised the applicability of abduction to

a wide-range of domains. The 1990 AAAI Spring Symposium on Automated Abduction

[182] lists the following domains as applications of abduction: natural language

processing, learning, financial reasoning, analogical reasoning, causal reasoning,

165 For a more precise definition of abduction, see Table 7.1 in section 7.1.2.1.
166 Though see Figure 5.9. (in section 5.2.2) for our preferred form of Figure 7.1.ii.
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probabilistic and qualitative reasoning, to name a few.  Several basic AI algorithms

proved to be fundamentally abductive in nature [27, 51, 133].  For example, the ATMS

is an incremental abductive inference engine. When a problem solver makes a new

conclusion, this conclusion and the reasons for believing that conclusion are passed to

the ATMS. The ATMS updates its network of dependencies and sorts out the current

conclusions into maximally consistent subsets [56, 59, 85] (which Core  would call

worlds).
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Given a theory T, a set of assumables A, and a set of goals G , then abduction is the

search for the subset of A (A') such that (i) the goals can be reached given some subset of

the assumables without (i) giving rise to contradictions.  That is, an abductive search

satisfies two rules:

 (i) A ⊆ A' , T A  G )

(ii): T  A  false

With some text substitutions, this definition is consistent with the definitions of

abduction as offered by various authors (e.g. [27, 50, 75, 116, 184, 199, 232]), with

certain variants.

In order to test for contradictions, invariant knowledge is required. Some abductive

formalisms include the invariants I as part of T  (e.g. Poole [199]), while others

explicitly represent them separately (e.g. Kabas & Mancarella  [116]).

Poole divides A into defaults, which are assumed to be true unless we have evidence to

the contrary, and conjectures, which are assumed only if we have evidence for them

[199].

Generally, T is a first-order theory. However, this is not universally true. Reggia's

diagnosis engine executes over ground frames (i.e. no variables) [213, 214]167. Formally,

Reggia's frames and slots are ground propositions.  In a partial match system, frames are

inferred if any of its slots are inferred; i.e. slot1 slot2 slot3 ... slotn  framex  [101].

T is typically acyclic (or, in the terminology of Console et. al. "hierarchic" [50]). Cyclic

theories present two problems for abduction: semantics and efficiency.:

• Semantics: In qualitative domains, explaining X in terms of X  could be

meaningful; i.e. we are explaining X at t1 via X at t2 (where t2 happened before

t1). However in non-temporal domains, cyclic explanations seem dubious.

Further, in the case of non-cyclic theories, a precise object-level semantics for

abduction can be proposed in  terms of deduction across the Clark completion of

a theory  [50]).

167 Recall section 5.2.3.
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• Efficiency:  Abduction is NP-hard168 (see below).  Algorithms for taming time

complexity in abduction often assume acyclic theories (e.g. [75, 201]).

Some researchers (e.g. Kabas & Mancarella  [116] and Console et. al. [49, 50])

distinguishes a special set of atoms in T. The abducible atoms are those atoms that do

not appear in the head of any clause in the logical theory T.  For example, in the

following theory, rained_last_night  and  sprinkler_was_on are abducibles.
rained_last_night  grass_is_wet rained_last_night  road_is_wet

sprinkler_was_on  grass_is_wet grass_is_wet   grass_is_cold_and_shiny

grass_is_wet  shoes_are_wet

Formal models of diagnosis further distinguish a special set of negated abducibles as the

abnormality predicates AB. Reiter's logical framework for diagnosis assumes that all

predicates relating to the behaviour of  model-component COMPi (or, in our

terminology, Vi ) assume a test for "acting normally"; i.e. ¬ABi  [63, 217].

The "explanations" reported by abduction can be either the abducibles  (e.g. Console et.

al. [49, 50]) or the proof trees generated through T  that terminate on G  (e.g. Poole

[199]). Most researchers agree that the explanations should be ground. A'  is either the

abducibles or the decisions made within the proof tree as it executes over an

indeterminate or non-monotonic model. For example, in the theory

T1 = { a  b, b z},

if G1 = {z} ,  then A' = {a} and A'  can be simply  the abducibles. Reiter's explanation for

a faulty model is a minimal set of assumptions of abnormal component operations  (i.e.

smallest number of ABi predicates). However, sometimes knowledge of the proof tree is

required for the complete picture. Consider the non-monotonic theory

 T2 = {a  b, a c,  b z, c d,  d z, b   c false},

and the case where  G2 = {z}. If we return an explanation Why2= A2'  = {a} , then we are

not commenting on how the inference managed the incompatibility between b and c. A

more complete explanation is the proof trees augmented with the critical assumptions

made along the way.  <T2 , G2  > has two proof-trees:

Why3 = {a  b,  b z}; A'3 = {a,b}

Why4 = {a c,  c d,  d z}; A'4 = {a,c}

Note how abduction treats T differently to deduction. In abduction, T is the space of

possible inferences, from which we can extract some subset of inferences that are useful

for explaining G.  In  classical deduction, no portion of T is optional. If the rule x if y

exists, then in every world where x is true, y is also true [199].  T seem better described

as the RSpace  of Clark & Matwin (i.e. a specification of the space of rules from which

ideal domain rules can be learnt [41, 42]169); or the scenarios of Poole:

168 See section 7.1.1.3 and 7.1.2.2.
169 Recall Figure 5.4, section  5.1.1.
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The user gives true facts and a pool of possible hypothesis they are prepared to
accept as part of an explanation to predict the expected behaviour (i.e. together
with the facts implies the observations) which is consistent with the facts (i.e.
does not predict anything known to be false)  [195].

Many theories can generate more than one explanation. Sets of consistent explanations

are often grouped together and called various terms such as contexts  [56], or extensions

[199] (after a term taken from Reiter's default logic [216]170).

Definitions of the "best" explanation differ widely. Most researchers argue that the best

explanations must at least cover all the known output. Some argue that the "best"

explanation is the "smallest" one; e.g. (i) smallest number of frames required to explain

G  [213]; (ii) smallest number of abducibles  [50]); or (iii) smallest proof size.  Smallest

proof size would select Why3 over Why4 while smallest number of abducibles would

prefer either Why3 or Why4.  Poole [194] and Console et. al. [50] have proposed the

additional criteria that the "best" explanation also  uses the most specific terms from a

taxonomic hierarchy; e.g. they prefer explanations in terms of emu rather than in terms

of the more general term bird. Other researchers reject minimally, arguing for more

context-dependant "best" assessment. For example,  a natural language processing

program asked to explain the sentences:
 John is an optimist. John was happy. The exam was easy.

could apply minimality to explain John's happiness in terms of his natural optimism.

However, the preferred explanation of John's happiness includes information about the

nature of the exam. Ng & Mooney use this example to argue convincingly that

sometimes the preferred explanation may be the more complex one [177] (see Figure

7.2).

 (happy j) if
(succeed j e) if

(exam e)
and (easy e)
and (study j e)

          and (take j e)

  (happy j) if
  (optimist j)

(i) (ii)

Figure 7.2: Different proof trees used to example "John was happy". Note
that the preferred explanation (i) uses more of the theory than the simpler
explanation (ii). From [177].

Due to the variable nature of the definition of "best", Bylander et al introduce a

plausibility operator pl to assess competing explanations [27]. The inner-workings of pl

are irrelevant to their abductive framework; it may be probabilities, symbolic likelihood,

a fuzzy value, etc. However, pl must (i) be able to generate a partial ordering on

explanations; and (ii) pl must be tractable.

170 Recall section 4.2.2.4.
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Various researchers note that these abductive definitions of "explanation" are

philosophically problematic. Charniak & Shimony comment that, pragmatically, the

above logical framework for "explanation" is a useful definition since "it ties something

we know little about (explanation) to something we as a community know quite a bit

about (theorem proving)." [35].  However, abductive explanation blurs causal

implication and logical implication. Charniak & McDermott [34]  and Poole [197]

caution against mixing up these operators in a single knowledge base. Many researchers

acknowledge this as a research area, but then quickly change the topic (e.g.  [34] p454,

[50] p663,  [27] p27, [133] p1061)171.
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Abduction is much slower than deduction. To see why, consider the theory:

 T3={a  b, b  c, b  c  false}.

Given a set of premises (e.g. {a} ), a deductive inference engine could forward-chain to

deduce {b,c}. The forward chainer's search for satisfied rules could be optimised in

numerous ways; e.g. an indexing scheme or compiling the  rules into a dependency

network.  Our forward chainer could run in near linear time [69, 119] like some well-

trained athlete streaking down the 100-metre dash. However, at the end of the race

(inference), the judges will disqualify the results since the deductions include false; i.e.

in the race to finish the deduction, we forgot to check for invariants. So, we run the race

again and this time, we run it abductively. When ever a new conclusion is made, we

check it against the invariants. We keep track of the pre-conditions of each conclusion so

that if we rule out some conclusion, we can also rule-out the literals that depend on it.

Abductive inference is like a race comprising of neurotics. After N steps, inference stops

and the current position is intensely criticised.  Runners (inferences) are sent back to the

start or edged forward in an attempt to make the race legal. After several unsuccessful

attempts, it may be realise that this particular race can't be run to any conclusion at all.

We may have to split the field and conduct partial races in independent worlds.

This is a slow process. From the space of possible inferences T, some subset is finally

chosen which allows us to achieve some goal without generating contradictions. A set of

size |T| has 2|T| subsets; i.e. a naive abductive inference engine is exponential on theory

size. However, even sophisticated abductive procedures may be non-polynomial. Selman

& Levesque show that even when only one explanation is required, and T is restricted to

acyclic theories, then abduction is NP-hard [232]; i.e. very likely to be computational

intractable in the worst-case.  An unfortunate feature of abduction is that this worst-case

behaviour is often the usual case: most known abductive inference engines exhibit

exponential runtimes for real-world inputs, even for sophisticated algorithms. Hence,

171 See sections 2.3.5.3  and 2.3.5.4 for  own analysis of this issue.
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many of the articles in [182] are concerned with heuristic optimisations of abduction.

Eshghi report a class of polynomial-time abductive inference problems, but this class of

problems require a non-cyclic background theory [75]. Bylander reports techniques for

tractable abduction [27], but many of these techniques (e.g. rule-out knowledge to cull

much of the search space) are not applicable to arbitrary models developed in poorly-

measured domains (e.g. our test domain of neuroendocrinology).
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The model validation algorithms called QMOD/JUSTIN and HT4/Core  were developed

in ignorance of the abductive literature. However, we believe that they can be best

characterised as abduction. Recall that a generalised test model M   is a graph <V,E>

comprising vertices V and edges E. Conceptually, each model has a set of invariants I

defined in the negative; i.e. if I(x,y) then x and y violate the known invariants. For each

behaviour B i = <Inputs,Outputs,Facts, Maybes, Missables> generated by the data-

compiler:

• A valid search space  is defined  comprising vertices that are in Maybes and are

not impossible; i.e. contradict  known Facts . That is:
Valid   Maybes   (V - Impossible)

Impossible   {v |v ∈ V, f ∈Facts   I(f,v)})

• The  inference engine attempts to generate proof trees P  for  Covered ⊆
Outputs.

• Initially, a deductive forward sweep finds all the reachable literals from the

Inputs (the Relevant set). This forward sweep is restricted to the Valid vertices

(i.e. Relevant  ⊆ Valid). Any vertex v  ∈ (Relevant  - Facts ) is  an assumption A.

As a side-effect of the forward sweep, the controversial assumptions Ac  ⊆ A are

detected (i.e. those assumptions which contradict another assumptions).

• Next, an abductive backwards sweep grow proof trees through Relevant   from all

Outputs, searching for Inputs.  These proof trees will be rooted in Causes  ⊆
Inputs, and use Relevant vertices, no two of which that do not violate I.  As a

side-effect of the backward sweep, the base controversial assumptions Ab are

detected (i.e. those controversial assumptions which are not downstream on other

controversial assumptions);  Ab ⊆ Ac.

• Ab  assume X  values for Y objects. The Core  minimal environments MinEnv are

the consistent combinations of X-Y object-value pairs (MinEnvi ⊆ Ac). The

assumptions that contradict MinEnvi   are the exclusions for a world Excludei .

• A proof is in Wi if the literals it uses do not intersect with  Excludei . A proof may

be in more than one world.
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• The Cover  of Wi is the number of output literals it contains, plus any Missables

that do not contradict the literals in the proofs of that world.

• Worlds are assessed by the BEST operator; e.g. BEST4 :  return all worlds with

maximum |Cover|.

Note that this maps into our definition of abduction with the substitutions of Table 7.1

Term Abduction Generalised test (HT4/Core )
Theory T M= <Valid,E'>   where E' are edges

that connect only Valid vertices.
Assumptions A' <Causes, Ab>

Causes  ⊆  Inputs
Invariants I I

Goals G Covered  ⊆  Outputs
Rules (1) T  A  G

(2) T A  false
(1') M Causes   Covered

(2') x,y ∈vertices(edges(1'))  
¬I(x,y)

Explanation A' or proof trees of rule 1. The E used in rule 1'.
Sets of consistent

explanations
Context,
extension

World Wx

Assessment pl (many different kinds) BEST (many different kinds)

Table 7.1: Generalised test is abduction, with some specialised
terminology. The functions called by rule 2' return the vertices used in the
edges used in the proofs generated in rule 1'.

Generalised test differs from standard abduction in the following way:

• T may be cyclic but P must be acyclic.

• Invariants are represented separately  to T.

• Explanations are proof-tree based.

• Our assumables are always literals.

• No assumption is made about G  being totally explained; i.e.

|Covered|  |Outputs|.

• No distinction is made between defaults and conjectures. Core  "defaults" are the

vertices that proofs can terminate on which may exist in different worlds; ie.

Inputs - Facts  while Core  "conjectures" = Inputs ∩  Facts

• Assessment operators are domain-specific, heuristic, and customisable.

• Generalised test is exhaustive, relevant  abduction:

• Relevant: Only those literals that are required for proofs of Outputs appear

in  a world. Consequently: (i) a literal may not share a world with all its

logical  consequences; (ii) a generalised test world must be defined by data

that controlled the inference that created that world, i.e.

<Causes, Covered, MinEnv>.
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• Exhaustive: Generalised test does not seek a single explanation, it seeks all

explanations. Hence, we would expect generalised test to be slower than the

standard abduction defined by Selman & Levesque. This is our theoretical

reason for believing that the changing N study runtime graph172 should be

non-cubic and probably exponential.

Core  worlds are relevant envisionments; i.e. subsets of the attainable envisionments173

and the total envisionments174 which contain only the literals that exist in proofs

connecting Inputs to Outputs.  However, if we simply tell Core  that the relevant

envisionment is the total envisionment, then Core  can be generate total envisionments.

To do this we:

• Set Inputs to all root vertices (i.e. vertices with no parents);

• Set Outputs to V - Inputs.

• Set Facts  to .

• Maybes = V

• Missables to some domain-specific value; e.g. in the qualitative domains,

Missables = all the steady vertices.

Note that this computation would be slow. Core 's general case is some subset of the

total model is ruled-out by known Facts or known to be not Relevant (i.e. not

downstream of some Inputs). This Core -as-total-envisionment algorithm rules out no

portion of the graph.
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HT4/Core  introduces certain restrictions (for reasons of efficiency):

• T is a directed and-or graph with a fixed number of edges and vertices. Such a

graph could model a finite propositional theory but cannot model an infinite first-

order theory. In order to process models with variables, they must first be

partially evaluated by a model compiler into a ground theory.

• I has an arity of 2.

Another technique for optimisations HT4/Core would be to remove the exhaustive

nature of the inference.  Generalised test is a unique AI algorithm in that it

fundamentally requires an exhaustive search.  However, in domains where less-than-all

solutions are required, then heuristic cuts can be used to reduce the complexity.  The

and-or graphs of Core would be suitable for standard heuristic search techniques175.

172 See Figure 6.16 and 6.17, section 6.3.2.1.
173 I.E. the literals that are reachable from the inputs, but not required for proofs of outputs, see section 2.3.4.
174 I.E. the set of all consistent behaviours inherent in some fixed collection of objects in some configuration, see

section 2.3.4.
175 See Pearl & Korf [189] for a general overview and Norvig for detailed implementation guidelines [180]. See

[270] for a specific discussion on optimising a KBS task.
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Note, however, that Bylander et al.  [27] caution that even finding one abductive

solution is NP-hard in the case of theories with…

• incompatibilities (e.g. the invariants I  of generalised test); or…

• cancellations (e.g. the and-vertices and negative propositions of generalised test)

that mean a conjunction of literals L1  L2 …  Ln rules out explanations that

are supported by L1   L2 …  Ln  in isolation.

One repeated lesson from AI research has been that theoretically intractable problems

may be solvable in practice. Norvig comments:
For a theoretical computer scientist, discovering a problem is NP-hard is an end
in itself. But for an AI worker, it means that the wrong question is being asked.
Many problems are NP-hard when we insist on the optimal solution but are much
easier when we accept a solution that might not be the best.  ([180], p146).

In the case of generalised test, we disagree with Norvig. In essence, the results of

generalised test is a statement that, after making all possible generous assumptions, we

still can't explain behaviours O1, O2, O3..... The search for all possible explanations is

fundamentally exhaustive. However, when applying HT4/Core to other domains, then

we agree with Norvig. Core could be modified to be non-exhaustive. Currently, Core

is a generate and test algorithm where all the worlds are generated, then subsequently

evaluated. Recall that different BEST operators require different information to execute.

For example:

• BEST7 returns the worlds that uses edges of highest numeric score (score being

set either heuristically via domain knowledge, via a probabilistic analysis, or via

some other means). BEST7 is a vertex-level inference assessment operator since it

could  be heuristically applied using only knowledge of the different scores on

the edges out-going from some current vertex.

• Best-first-search and beam-search can be characterised as proof-level inference

assessment operator that are applied during proof generation, given knowledge of

the cost of all current partial-proofs.

• BEST4 returns the worlds that covers the most number of outputs. BEST4 is a

world-level inference assessment operator since it can only be applied once all

the proofs and worlds have been generated.

If each BEST operator was augmented with a declarative statement of the information it

requires to execute, then it is theoretically possible to automatically reconfigure Core

inference such that BEST was applied as soon as practical to constrain proof and world

generation.

The rest of this chapter explores the application of Core  to non-exhaustive domains.

There are two cases:
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• In the case of Core  being inefficient for these domains, then this is a theoretical

exercise only that serves to unify our view of the processing of these domains.

This unified view will be used in the next chapter to assess current knowledge-

level modelling techniques.

• In the case of Core  being adequately efficient for these domains , then Core

could execute these domains directly: e.g. (i) the vagueness of the model is

reduced by careful data collection; or (ii) the operator-levels approach for the

BEST operators described above is used.

We believe that Core  is adequately efficient for many domains since the last chapter

taught us that, over a medium size of models (|V|   850), we lose our ability to test a

model in vague domains176. Subsequently, we will argue that we should limit model

construction to those models which we can test; i.e. Core  should never need to execute

more-than-medium sized models.
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Diagnosis has been discussed informally above. This section offers a more rigorous

analysis of diagnosis and its connection to abduction and HT4/Core .

The connection between abduction and model-based diagnosis is well documented.

Pople and Reggia acknowledge that their "diagnosis" systems are really abduction [202,

215]. Poole's abductive framework THEORIST can be used as a diagnosis tool [196, 197,

199]. Console & Torasso characterise the two main types of diagnosis as variants of the

same abductive inference algorithm [51]. Both types of diagnosis input (i) a system

description of the system to be diagnosed (i.e. a model177); (ii) a set of observations

OBS; (iii) and a context CXT in which the OBS were made. Two sets are then deduced:

(i) a set of observables that must be avoided Ψ− (i.e. any observables inconsistent with

OBS); and (ii) a set of observables that must be covered Ψ+.

Consistency-based diagnosis (e.g. [65, 94, 217]) sets  Ψ + =   while set-covering

diagnosis (e.g. [48, 197]) sets Ψ+ to OBS.   Set-covering diagnosis is best when the

knowledge base contains knowledge of faulty operations while consistency-based

diagnosis is best for knowledge bases containing knowledge of normal operation. For a

comparison of the two approaches, see Figure 7.3.

176 See Figure 6.17.
177 Console and Torasso further divide a model into  a set of components COMP and knowledge of the

behavioural modes  BM of those components.  We would convert <BM,COMP> into our and-or graphs.
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holed(oil_cup)

oil_below_car(present)

oil_level(low)

correct(oil_cup)

oil_level(normal)

engine(on)
&

engine_
temperature(high)

engine_
temperature(normal)

&

Figure 7.3: If   CXT = {engine(on)},
OBS  ={oil_below_car(present)}, and we
restrict the diagnosis to oil_cup, then set
covering diagnosis returns
{holed(oil_cup)} while consistency-based
diagnosis returns {holed(oil_cup)} or
{correct(oil_cup)}. Example from [51].

Konologie argues for the primacy of set-covering diagnosis. He notes that consistency-

based diagnosis returns answers that may not be relevant to causal explanations of OBS

[120] (e.g. correct(oil_cup) from Figure 7.3 has little bearing on the problem of

oil_below_car(present)).

Having stressed the differences, we note that generalised-test can be used for either

consistency-based or set-covering diagnosis (see Table 7.2).

Generalised test configured for
set-coverage diagnosis

Generalised test configured for
consistency-based diagnosis

Inputs CXT CXT
Outputs OBS V - CXT178

V - Maybes Ψ− =  {x | x ∈ V, y ∈ CXT OBS,
I(x,y)}

Ψ−

BEST favour the world(s) that cover all of
Ψ+ = OBS

return all worlds

Table 7.2: Generalised test configured for different model-based diagnosis
tasks of a model with vertices V.   For set-coverage, explanations are
attempted for all OBS. For consistency-based diagnosis, explanations are
attempted for all non-input vertices. V - Maybes  is the FORBIDDEN set.
In model-based-diagnosis, any vertex that contradicts  CXT OBS is
forbidden.

We argue that generalised test is a generalisation of model-based diagnosis since (i)

BEST permits the generation of worlds with partial coverage of OBS; and (ii) the BEST

operator allows for the customisation of the  world preference criteria.

A commonly used support-routine for diagnosis is probing; i.e. the guided search for

additional information which can confirm/ rule-out a diagnosis [54]. Given a set of

possible explanations, a carefully selected probe for a single piece of information can

cull numerous explanations. DeKleer uses the TMS structures of his general diagnosis

engine GDE to guide probe selection [65]. In the case of Core , a probe that checks for

the value of any assumption would cull the possible proofs. The usual case is that each

probes have an associated cost (e.g. taking a blood-pressure reading is a cheap probe

while performing exploratory surgery is an expensive probe). Probe selection is a trade-

off between information gain and probe cost. A heuristic Core -based probe-selection

algorithm could favour  probes of the base controversial assumptions Ab over probes that

178 This is the Core -as-total-envisionment technique described in the last section.
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test other assumptions since rejecting any of member of Ab can remove many worlds

with a single measurement.
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Like Poole [199], we note that the same architecture can support both explanation and

prediction . Core  can support prediction as follows:

• Set Inputs  to the known inputs; i.e. the things that our predictions will be based

on.

• Set Outputs to the model vertices that are not inputs; i.e.  V - Inputs

• Read the generated worlds are mutually exclusive predictions of what could

result  from the Inputs.

Note that:

• Core  was designed to handle the general case where X inferences are generated

in Y internally consistent worlds. Using Core  for prediction trivially implements

two hard cases for prediction: (i) the case where certain literals can be predicted

separately, but not together in the same world; (ii) the case where prediction

occurs in domains with less-than-certain knowledge. In case (ii), Core  can

manage the assumptions and BEST can favour (e.g.) those predictions that require

the least number of assumptions.

• This prediction algorithm computes the attainable envisionments; i.e. a  much

larger search space than the relevant envisionments executed by standard Core -

as-a-validation-algorithm. To cull that search space, use the context OBS

observations OBS distinction offered by Console & Torasso [51]. Let Inputs =

CXT and Facts = OBS  ∪ CXT . The best case for this prediction algorithm is

where |OBS| » |CXT|; i.e. very few starting points (CXT) for the prediction  and

lots of constraints (OBS) exist for possible values in the search space.  We says

that OBS constrains the search space since, recalling the changing O study, we

found increased amounts of data culls indeterminacy in the inference.

� y � y ¹ y º » ¼ � ² � ² � | � �

We have discussed above the definition of abductive explanation. This section explores

current research in explanation. This current view of explanation is more elaborate than

the "print the rules that fired" approach used in early expert systems such as MYCIN

[24].
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The traditional expert system explanation solution is to augment, prune,
transform, or in some other way manipulate a complete trace of the event to be
explained… Certainly, support knowledge can be added, describing the
knowledge found in the trace, but new knowledge of new movements through  the
knowledge base cannot be added. For example, traditional expert system
explanation methods cannot use additional symptoms to support the conclusion of
the expert system. [259]

In the current view,  explanation is a problem solving task in its own right.  Explanation

is an inference procedure that determines what is to be presented to the user.

Explanations are user-specific. "The audience of an explanation can significantly affect

the purpose and therefore the content of an explanation" [259].

Leake [129] and Paris  [185, 186] discuss  explanation algorithms where explanation

presentation is constrained to those explanations which contain certain significant

structures. Paris's significant structures are determined at design time while Leake

assigns significance at runtime.

• Paris's experimental results suggest that expert's use parts-based explanations

while novices use process-based explanations. Edges in her system are tagged as

being part either process-based or parts-based. Knowledge of the expertise of the

audience is used to tag each vertex as "known to user" or "unknown to user".

When faced with a choice of edges to be used in an explanation, Paris's

explanation algorithm selects either a process-based trace or a parts-based trace

according to an examination of the local vertices in the network. If the local

vertices are "unknown", then the process-based descriptions are preferred.

• Leake assigns significance at runtime according to a set of eight pre-defined

algorithms. For example, when the goal of the explanation is to minimise

undesirable effects, the runtime significant structures are any pre-conditions to

anomalous situations .

Leake clearly acknowledges  the connection of his work with abduction [130]. Note that

both Leake's and Paris's algorithms can be characterised in terms of  operators that select

some subset of the possible inferences according to a user/goal-specific criteria; i.e. they

are compatible with our BEST formalism.
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Applying the same notion of "significant structures", we can adapt our symbol-level

algorithm to a variety of classification algorithms. Consider the dependency graph of a

rule-base developed for classification purposes. The possible output classification

CLASSES are a special subset of all the literals in the knowledge base (e.g. all the literals

with in-edges, but no out-edges).

Core  views classification as a special kind of classification. BESTclassify  favours the

worlds with the most number of CLASSES. Note Core  handles two non-trivial cases for
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classification: (i) multiple classification where some classifications are inconsistent with

other classifications; (ii) classification with partial match. In case (i), multiple

classifications that were specified as incompatible would appear in separate worlds. In

case (ii), incomplete information can still be used to make a classification since Core

would merely make certain assumptions. to the classified classes.  Note that Core -as-

classification makes no distinction between  single and multiple-classification.

A common construct in classification system is a taxonomy hierarchy. To use such

hierarchies in Core , the model-compiler would add edges from sub-classes to super-

classes;  (e.g. animal if dog; organicThing if animal or plant). Specialised inferences

would trigger more abstracted inferences.

As to using the most specific terms from a taxonomic hierarchy (i.e. as proposed by

Poole [194] or Console et.al. [50]), we view this as a report issue. Once the worlds are

generated from a classification system, the presentation of those worlds to the user could

be customised according to (e.g.) the expertise level of the user. Users fully conversant

with all concepts in the domain could be presented with all conclusions at the lowest

level of taxonomic abstraction. Beginners might prefer a presentation based on more

familiar, and more general conclusions.
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Like Poole [200], we note that the same architecture can support both explanation and

planning. In the case of Inputs ∪ Facts =   the knowledge engineer is asking Core  to

hypotheses sets of mutually consistent pre-conditions that would lead to the desired

results (Outputs). The proof trees connecting these pre-conditions to the results are a

plan for achieving the Outputs.

Kanovich uses exactly this schema to optimise functional evaluation. Kanovich [119]

characterises the processing of functional knowledge as a three-stage process:

• Given a task of the form "for the knowledge base KB, find Z given X…"

•  …determine whether the functional dependency X Z follows from the KB…

• …synthesis a solution to the task; i.e. using the laws of the KB, compose a

program which, given X computes an output list Z.

Note that Kanovich's solution is a plan to reach Z, from X.

Re-expressed in terms of Core , Kanovich's formalism becomes (i) X = Inputs ; (ii) Z =

Outputs; (iii) solution  =  world; and (iv)  BESTkanovich  favours the world(s) with

smallest proof cost.

Kanovich's implementation of his theory runs over Pascal source code to extract the

headers of each source procedure. The inputs and outputs of the procedures are studied

and each procedure header is added to a dependency network that is a and-or graph. Pre-
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conditions to executing the procedure are stored as conjunctions upstream of proposition

representing the procedure call. Possible outputs from each procedure are out-edges from

the procedure proposition.   A planner runs over this network to return the world with

minimum cost. This world is then compiled into the main procedure of a Pascal program

which calls the procedures in the original source code.  Kanovich ignores invariants

between literals and so his generation of the least-cost world executes in near-linear

time.

In a similar approach, Freeman-Benson et. al. [87] discuss code extraction from a

constraint network.
Extracting a (compiled or interpreted) plan from (our algorithm) is easy because
the plan is inherent in the directed acyclic dataflow graph P. A simple procedure
extract_plan traverses P and returns a serialised list of constraint methods.
There are two ways to extract the plan: top-down and bottom-up. Top downs
starts at the source variables (those that are determined by constraints having no
inputs) and works forwards. Bottom-up starts at the sink variables (those that are
not used as inputs by any constraints) and works backwards. ([87], p59).

Consider the similarities of their approach to Core . Their domain is represented by a

directed graph. Once such a declarative representation is available, it can be exercised in

multiple ways (bottom-up or top-down). "Plans" are a report of the valid proof trees that

can traced out across the graph. However, note that Freeman-Benson et. al. stress the

simplicity of their extract_plan procedure. This suggests that they handle the

special case of models containing only one stable state (i.e. no need for multiple-worlds

reasoning).
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To use Core  for monitoring, the generated proof trees of the preferred plan (i.e. a world

chosen by BEST) would be passed to a tracking system. As the plan executes and

feedback is received from the process being controlled by the plan, the tracking system

could mark the believed literals in the plan.  Literals from Inputs or the measurements

from the feedback would be marked  true. Pre-conditions for the true literals would be

marked required. If new feedback contradicted true or required literals,  then the plan

has failed. At this point, the tracking system has two options:

(i) If could run Core  again to get a new plan. Note that in the time since the last run

of Core , the tracking system has received more input from the process being

controlled. If this extra input is passed into the next run of Core  , then this could

serve to constrain Core  inference.

(ii) Space permitting, when the tracker is initialised, it could be passed all  the worlds

generated by the first run of Core  . Markers could be inserted simultaneously

through all worlds. As feedback rules out certain worlds (i.e. new facts come to

light that rule out certain assumptions), then the set of believed worlds shrinks.
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Note that option (i) is an JTMS approach [70] (i.e. work with a single world view and

generate another when it fails us) and option (ii) is an ATMS approach  [56] (generate all

worlds simultaneously).

A passive monitor just watches for inconsistencies between feedback and the

required/true literals. An active monitor requests information from the environment in

order to check the assumed required literals.  In the case of an active monitor using

probing to evaluate multiple plans, then that monitor is performing the same probing

process described above in the section on model-based diagnosis.
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In this section, we quickly repeat out earlier claim regarding the utility of Core  for

causal/qualitative reasoning179.

Core  evolved from experiments with adding causal intuitions to mathematical

formalism. After several years of study, our conclusion was that knowledge-based

causality was an asymmetrical optional inference that allowed (i) an expert to specify

some superset of the space of acceptable explanations and (ii) an inference engine to

explore that space with respect to a given task (i.e. the generation of a consistent

explanation of certain outputs given  certain inputs). At its lowest level, such an

exploration is exactly the abductive inference described above.

More generally, we offer this as technique for modelling qualitative reasoning. Experts

can sketch their intuitions in qualitative vague causal diagrams. Abduction can generate

from those diagrams domain theories (read worlds) that can execute via monotonic

deduction. Ambiguity in the extraction process can be tamed via partial knowledge of

the behaviour of the entity being modelled; i.e. worlds that include literals that contradict

known observations are rejected. In the case of KA from multiple experts, we can

relatively assess the proposed models of different experts. Expert1's qualitative theory is

better than Expert2 's if Expert1's theory covers more of the known behaviour [156].
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Leake characterises case-based reasoning as an abductive process where the possible

explanations are assessed via a library of prior cases [130].

Numerous papers in [182] describe natural language comprehension in terms of

abduction180.

Poole maps design and recognition into abduction:

• Design is the process of hypothesising components which would imply a design

goal [198] (i.e. a process very similar to the planning scheme discussed above).

179 The connection between causal and qualitative reasoning was discussed previously in sections 2.3.5.
180 For example, Ng & Mooney's work in Figure 7.2 in section 7.1.1.2.
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• Visual pattern recognition is a process of hypothesising scene objects which

would lead to the perceived image. Poole demonstrates that this perspective gives

the same results as other visual imagery researchers [199].

Hamscher notes that certain sub-tasks in financial reasoning (financial assessment, going

concern evaluation, auditing, and the explanation of unexpected financial results) are all

abductive tasks [100].   Hamscher's scheme for explaining unexpected financial results

relies internally on a vague causal diagram (which Hamscher calls the hypothesis space).

The equations of Figure 7.4.i could be compiled into the and-or graph of Figure 7.4.ii.

Given some observation (e.g.) Unit Cost increased, then we could explain (e.g.) Gross

Margin decrease via the proof Gross Margin decrease Production Cost increase 

Variable Cost increase Unit Cost increased (example from [100]).

GrossMargin =
  Sales - ProductionCost
Sales =
  Volume * UnitCost
VariableCost =
  Volume * UnitCost
ProductionCost =
  VariableCost + IndirectCost
IndirectCost =
  Variable Cost * 15%

++

++

Variable Cost

Indirect
Cost

Gross Margin

Production
Cost

Sales Volume

Unit
Cost++

++

++

++

++++

--

(i) (ii)
 Figure 7.4: The graph of figure (ii) can be generated from the equations
of figure (i). Example from  [100]. Note that knowledge of the relationship
between literals is used deduce when an edge is a "promote" or
"discourages" influence. For example, in the top equation, ProductionCost
lies behind a minus sign. Therefore inverse(ProductionCost,GrossMargin).

Theoretically, abduction is also a machine learning technique. Recall our definition of

abduction:

 (i) A ⊆ A' , T A  G )

(ii) T  A  false

In our work, we have restricted A to sets of literals.  Pagnucco notes that the above

definition makes no such restriction. In the case where A is the space of all first-order

formulae, then the addition of new knowledge A' to a theory T is learning [183] or (more

precisely) belief-revision [184]. Hiarata makes a similar claim. He characterises

inductive logic programming (a technique for learning first-order theories181) as an

abductive process where the search space for explanations is either in the current theory

(selecting abduction), an analogous theory (finding abduction), or a theory especially

created from a generalisation of known theories (generating abduction). More generally,

Hiarata argues that scientific theory formation is an abductive process [104].

While we do not doubt the theoretical truth of Hirarta's and Pagnucco's arguments, we

are unsure about the practical utility of characterising abduction-as-learning. We have

181 See section 2.3.6.
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discovered above that abductive search through a fixed space is a slow process182. Our

pre-experimental intuition is that an abductive search through a space that is learnt as the

search progresses would only be practical for very small models.
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This section argues for the use of Core  in non-abductive domains.
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 Domains requiring a simple modus ponens (i.e. forward-chaining) could be

implemented trivially in Core . After the deductive forward sweep,   Core  could skip

the abductive backsweep or the world sweep. Candidates for such simple inference

include all models with no invariants.
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We have discussed above the utility of Core  to KBS validation; i.e. the assessment of a

model according to external semantic criteria such as covering known behaviour. We

find that Core  is also useful for KBS verification; i.e. the internal assessment of a model

according to internal syntactic criteria such as presence of contradictions. A general

framework for KBS verification is offered by the Preece, Shinghal & Batarekh study

(PSB) [204] and was summarised previously183. Core  could detect may of the PSB

anomalies. To see this, recall some of the data structures  we used to define Core

(reproduced in Figure 7.5).

1. object = record name: string; id: integer;
2. class: class;
3. familiarity, probeCost: integer; end;
4. proposition  = record object: object; value: any;
5. test:{ ≤,<,=, ≠,>, ≥};
6. time: integer; end
7. literal = record negated: boolean; p : proposition;
8.    vertex  end;
9. literals = list of literals;
10. source = … -- some structure in the user view
11. vertex = record l : literal; parents, kids: posints;
12.    id: posint; contradicts: bitstring;
13. and, input, relevant,
14. impossible, controversial: boolean; end;
15. vertices = list of vertices;
16. edge = record id : posint; from,to: posint; kindOf: thing;
17. attempts,successes,cost: integer;
18. source: source  end;
19. edges = list of edge;
20. graph = record e : edges ; v : vertices end;

Figure 7.5: Partial display of Core  data structures.184

182 See section 6.3.
183 See section 3.3.1.
184 For more details, see section 4.3.
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Given a knowledge base comprising a set of source  statements (e.g. rules) referring to

literals , a graph = <verticies,edges > is created. Using knowledge of

defined object s (stored in some variable called, say, DataDictionary ), KBS

anomaly routines can use critique the graph. The model-compiler could detect trivial

typographical errors such as an unknown object , or an illegal value  for that

object. As  to the PSB anomalies:

• Core  would detect PSB rule redundancy if the edges  from the same source

touch v e r t i c e s  that are incompatible (defined by the

vertex.contradicts set).

• PSB deficiency has two causes (i) missing values, i.e. not all the range of an

object has been used by graph vertices; or (ii)   missing rules, i.e. source

statements that do not generate edges that connect askables to final hypotheses.

To test for case (i), we merely check that the values found in

graph.vertices.lierals.proposition.value   cover the domain of

all object s in the DataDictionary. To detect this, we would run Core  with

Inputs  = Askables, Outputs = Final hypotheses ,  Facts = Maybes = V and

check for worlds with zero coverage of Outputs.

Core  does not support anomaly detection for all the PSB anomalies. However, the

Core  data structures offer some support for their detection. For example:

• A PSB duplicate redundant rule  could be found by a bit-string comparison of the

id s of the literals  in the different source  statements. Given hardware

support for the bitstring manipulation, this would execute quickly.  Core  model-

compiler partially evaluates the first-order case into the propositional case; i.e.

under Core  the test for PSB subsumed redundant rule would have to be

implemented as a test for duplicate redundant rules.

• PSB ambivalence is invisible to Core since any such contradiction in a

knowledge base would simply generated separate worlds. We could attempt to

compute this under Core  using ATMS-style total envisionment (i.e. Askables =

Inputs = all known possible system premises, Final hypotheses =Outputs = V-

Inputs,  Facts = ) but the generated worlds will never contain consistent subsets

of the Inputs and inconsistent subsets of the Outputs since Core  insists that all

worlds are internally consistent.   However, we could report PSB ambivalence if

more than one world was created.

• PSB circularity between knowledge base literals is also invisible to Core .

However, circularities could be simply detected via transitive closure of the

adjacency matrix representing graph .
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Henri Fayol suggested in 1916 that managers plan, organise, co-ordinate and control.

This lead to a view of managers as agents systematically assessing all relevant factors to

generate some optimum plan. Sometime in the sixties, it was realised that electronic

computers could automatically and routinely generate the information required for the

Fayol model.  This lead to the era of the management information system (MIS) and the

wastage of a lot of paper. Managers found themselves overloaded with more information

than they could manage.  Mintzberg's classic empirical fly-on-the-wall tracking of

managers in the day-to-day work demonstrated that the Fayol model was normative,

rather than descriptive. For example, a study of 56 U.S. foreman found that they

averaged 583 activities in an eight-hour shift (one every 48 seconds).  Another study of

160 British middle and top managers found that they worked for half an hour or more

without interruption only once every two days [168]. This frantic pace for decision

making does not match with Fayol's model of managers as systematic agents.

The lesson of MIS was that management decision making was not inhibited by a lack of

information. Rather,  it is confused by an excess of irrelevant information [3].  Modern

decision-support systems (DSS) evolved to filter useless information to deliver relevant

information (a subset of all information) to the manager.  "Relevance" and "usefulness"

are a user-specific and problem-specific concept. For example, a knife in a kitchen

causes no distress and may not interest a non-hungry human. However, the same knife

gleaming in a dark alley way may cause a different reaction.

Our preferred definition of a decision-support system is based on Brookes who

developed it from Mintzberg's model [22]. The goal of a DSS is "comfort", i.e. a

subjective impression that all problems are known and under control. A taxonomy of

tasks that create a sense of comfort are shown in Figure 7.6.

Comfort = 1+2+3.

1. Finding problems
1.1. Detection
1.2. Diagnosis

2. Solving problems
2.1. Alternative generation
2.2. Evaluation
2.3. Judgement

3. Resolution
3.1. Monitoring

Figure 7.6. Tasks
involved in finding
"comfort" for a manager.
Adapted from [22].
Managers seek problems,
solve them, then install
some monitoring routine
to check that the fix
works.

In the case of a model exists of the domain being analysed by the DSS, Core  offers

numerous utilities that support comfort finding:

• Diagnosis and monitoring were discussed above.
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• Problem detection could be implemented via prediction or classification (where

some of the classifications are problem sub-types) or even simple forward

chaining.

• Alternative generation and evaluation is another name for world generation and

assessment. Core  is particularly suited to alternative generation and evaluation

since it manages contradictory alternatives in different worlds.

Note that these sub-routines for decision support systems were discussed above; i.e.

abduction/Core  provides a unifying framework for model-based single-user DSS. For

example, a standard DSS function is a "what-if" query is which users explore

hypothetical options. Implementing such a query system over a multiple-worlds

architecture such as Core  would  be trivial.

Boose, Bradsahw, Koszaek, and Shema (BBKS) [14] discuss DSS architectures  suitable

for groups (GDSS).  Portions of the BBKS  and the Brookes' models overlap (e.g. the

generation and ranking of alternatives). However, BBKS discuss a wide range of other

modules such as a establish relationships and generate criteria sub-systems which

model the group dynamics where the group's definition of:

• the model and its inter-relationships; and

• the  criteria for selecting the best alternative

Within the BBKS gIBIS system,  the establish relationships tool is an outliner where

users can specific arbitrary taxonomies of arbitrary types. Criteria are defined in terms

of free text entries. Other tools allow the processing of mediating representations

(intermediary representations that particular focus groups find to be locally valuable),

and a suite of tools taken from the knowledge acquisition community.

The BBKS study teaches us that while Core  offers substantial support for single-user

model-based DSS, it only supplies partial support for group DSS.  However, many of the

problem-solving methods that BBKS list as GDSS sub-routines (e.g classification,

diagnosis, planning) could be implemented as Core -variants according to the above

discussion. Further,   BBKS stress that:
The process of generating and scoring alternatives are at the heart of most
decision processes. [14]

Abduction/Core  offers a principled approach to the generation and assessment of

worlds across the indeterminate/vague models that could be generated by groups

exploring ideas. Core  provides considerable support for executing such qualitative

models in poorly-measured domains, and dividing the results into mutually exclusive

worlds.  This is no accident: Core  evolved from QMOD/JUSTIN which  were

developed as a type of GDSS for neuroendocrinological theories. Core  can act as a

judge, assessing the models offered by multiple experts to declare one as the "winner" by

some locally acceptable BEST criteria. Note that group members do not need to fully
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specify their models prior to executing them.  Using Core , executables can be generated

from half-formed notions to give experts  feedback on their ideas. We note that (i) gIBIS

appears to lack such an evaluation module for vague ideas; and suggest that (ii)

abduction/Core would be a useful addition to a GDSS architecture.
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The introduction to this report defined our goal: general implementation principles for

deep models and differential analysers. Recall that these terms were from  Silverman's

expert critiquing system (ECS) formalism [235-237] which he defines as:
…programs that first cause their user to maximise the falsifiability of their
statements and then proceed to check to see if errors exist. A good critic program
doubts and traps its user into revealing his or her errors. It then attempts to help
the user make the necessary repairs185.  [237]

Abduction/Core  offers a unified framework for portions of the ECS framework.  Deep

models generate model behaviour and a differential analysers compare the generated

behaviour with the expected behaviour.   Core  deep models are propositional systems

which can lead to desired outputs from known inputs. BEST4 (coverage of desired

outputs by a world) is a pseudonym for differential analyser. If no worlds covers all

outputs, then the model's behaviour is different to the required behaviour.

Silverman's critiquing framework describes four levels of tests: clarity, coherence,

correspondence, workability. Core  provides detailed support for two of these levels and

partial support for a third:

• KBS coherence measures internal syntactic criteria [237]. The Core -as-

verification algorithms described previously could serve as a KBS coherence

critic.

• KBS correspondence measures the equivalence of a KBS to the entity being

modelled [237]. Standard Core  running BEST4  is a KBS correspondence critic.

• A KBS has poor clarity if it is ambiguous.   Core  is a poor clarity critic since its

usual case is the processing of ambiguous/indeterminate models. However, an

external observer could declare a model to be overly-ambiguous if Core

generates too many worlds.

Workability is a measure of the inner processing of a model. Workability critics are

complex and may  be (e.g.) a machine learning program that criticises a rule-trace to

optimise the internal processing. Core  is not a workability critic.

A third component of an ECS is the dialogue generation module that discusses the result

of the differential analyser with the user [236]. In Silverman's framework, these are

special-purpose domain-specific functions. Dialogue generation is out-of-scope of our

185 ECSs are therefore much broader than the definition instantiated by ATTENDING  [166] which had no
mechanism for doubting its own internal knowledge base.



172

current research. Mahidadia is exploring dialogue generation in an inductive logic

programming framework for QCM-type models  [137, 140]. Just as Core  offers general

principles for model execution and faulting, we believe that Mahidadia's work will

provide general principles for user-guided model repair (a.k.a. dialogue generation).

Silverman's research seems to be focused on an implementation-independent analysis of

the process of "critiquing" a program. His focus seems to be on defining "critiquing" as

an add-on to existing systems. For example, his COPE system is a stand-alone product.

In order to use models generated from COPE, these models must be hand-compiled into

other languages.  We believe that while this approach is useful, a more extensible

approach would to change the structure of knowledge-bases systems such that critiquing

is built into the system. In the case where the design of the system can be altered to

integrate a testing module, we believe that the built-in approach is superior since built-in

critics could guide the knowledge acquisition and maintenance process.   However, if the

design of the system cannot be altered according to the principles we have described

above, then Silverman's add-on approach is appropriate.
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This chapter has suggested that many knowledge engineering problems can be processed

by HT4/Core . Is this just coincidence? Or is there some fundamental reason why this is

so?  To answer that question, we turn to two attempts at meta-level generalisations of

expert system inference: (i) Clancey's model construction operators [40]; and (ii)

Breuker's components of problem solving types  [21]. In summary, we will argue that

both these general descriptions of inference can be described as model extraction. We

will then argue that Core  directly implements this model extraction process.

Clancey characterises expert system inference as constructing the system-specific model

(SSM) from a general qualitative model (QM) in the KB186. Clancey stresses that the

QM is not a set of pre-enumerated solutions to known problems. Rather, the QM is a

general domain model which is "accessible and interpretable for multiple purposes" [40].

For example, Clancey would take the production rule of Figure 7.7.i and separate it out

into (i) the inference strategy it proposes; (ii) the declarative statements about the

domain it contains; (iii) and the heuristic knowledge it stores (see Figure 7.7.ii). The new

form of the knowledge would be a QM containing edges representing causal relations,

subtype relations, temporal relations, etc187.

186 In using the phrase "qualitative model", Clancey is appropriating a term used extensively by the naive physics
community. Numerous researchers explored qualitative reasoning in the domain of first-order linear
differential equations. For more on this research, see sections 2.3.3 to 2.3.5.

187 For a full list of edge types, see Figure 34, page 73 of [40].
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METARULE-1
IF  1) The infection is
           PELVIC-ABSCESS
        2) There are rules
           which mention in
           their premise
           ENTEROBACTERIACEAE

 3) There are rules
           which mention in
           their premise
           GRAM-POSITIVE-RODS
THEN: There is evidence (.4)
       that the former should
       be done before the

latter.

common_cause(enterobacteriaceae,
             pelvic_infections).

unlikely_cause("g+ rods",
               pelvic_infections).

task(testHypothesis,
  Disorder,
  doBefore([task(testHypothesis(Hyp1)),
            task(testHypothesis(Hyp2))
           ]))
 :-
 common_cause(  Disorder, Hyp1),
 unlikely_cause(Disorder, Hyp2).

(i) (ii)

Figure 7.7. Figure (i) shows hard-wired knowledge. Figure (ii) shows the
same knowledge represented in a more widely-applicable form. Domain-
specific terms (e.g. ENTEROBACTERIACEAE)  are isolated and the
inference strategy implicit in Figure 7.7.i is represented as a first-order
theory.  Example from [40]188.

Clancey's QM is a first-order theory. At runtime, portions of this theory are accessed and

the variables are bound. This ground subset of the full theory is the SSM; i.e. "the

specific model the program is constructing of the particular system it is (processing)"

[40].  This specific model is the subset of the QM that is relevant to the task at hand.

Breuker explores the relationships between problem solving techniques used in expert

systems (i.e. modelling, planning, design, assignment, prediction, assessment,

monitoring and diagnosis) [21]189. He offers an abstract description of the "components

of a solution" generated by these techniques which , he argues, are of four types:

• A case model  (equivalent to Clancey's SSM) that represents some understanding

of a problem;

• A conclusion, which is some answer to a question posed by the problem

definition;

• An argument structure, which is supporting evidence for the conclusion

generated.

• The case model is generated from some generic domain model  (equivalent to

Clancey's QM).

An argument structure is extracted from the case model. The conclusion is the portion of

an argument structure that is relevant to the user.  In the case where all the solution

components are represented as a ground propositional theory whose dependency graph

has edges E, then:

188 For another example, see Figures 8.3 to 8.5 in section 8.2.3.
189 Breuker works in the KADS paradigm discussed extensively in sections 8.2 and 8.3.
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edges(answer) ⊆  edges(argument structure) ⊆
edges(case model) ⊆  (edges(generic domain model) = E)

where edges(X) denotes the edges of the dependency graph present in X..

Note the commonality between Clancey's and Breuker's view: expert system inference is

the extraction of some subset theory from a super theory. Clancey offers a two-layered

extraction process (QM to SSM) while Breuker offers a more detailed four-layered view.

Returning now to HT4/Core , we note that this algorithm also extracts sub-models from

super-models. The extracted models are relevant to a particular task, defined as a pair of

<Inputs, Outputs>, and is guaranteed to be consistent. For example,  the QCM model

compiler would convert Figure 7.8.i into Figure 7.8.ii.  Figure 7.8.ii represents the

superset of all explanations possible within 7.8.i (i.e. it is an explicit ground version of

Clancey's QM).
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Figure 7.8. Converting between (i) the model supplied by the expert and
(ii) the and-or graph  generated by (e.g.) the QCM model-compiler. For
example, D=up & C=down A=steady.

Recall the example used to  introduce the Core  algorithm190: M = the model of Figure

7.8.i; Inputs = {C=up, H=up}; Outputs = {B=up, D=up, G=up, I=down}; and I  =

invariants = no vertex in M can be in two states simultaneously. Figure 7.9 shows  all the

different ways that each member of Outputs can be explained.
P[1] = H=up  E=down F=down  I=down
P[2] = H=up  I=down
P[3] = C=up  E=up  F=up  G=up  
P[4] = C=up  A=up  B=up  D=up
P[5] = C=up E=up  F=up  D=up
P[6] = C=up  A=up  B=up
P[7] = C=up  E=up  F=up  D=up  A=up  B=up

Figure 7.9. Possible explanations.

190 See section 4.1.
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The proofs of Figure 7.9 makes certain assumptions (i.e. uses literals that are not from

Facts = Inputs ∪ Outputs).  When we sort these assumptions into the base controversial

assumptions, we get the worlds shown in Table 7.3.

World # MinEnv Exclusions Contains Explains
1 {} E=up, E=down P[2], P[4], P[6] I=down, D=up,B=up
2 E=up E=down P[2], P[3], P[4],

P[5], P[6], P[7]
I=down,G=up,

D=up,B=up
3 E=down E=up P[1], P[2],

P[4], P[6]
I=down, D=up, B=up

Table 7.3: The worlds of Figure 7.7 relevant to a certain task = <Inputs,
Outputs>.

That is, HT4/Core  has proposed three alternative solutions, or worlds (see Figure 7.10).

Note that each solution is some subset of the set of all solutions (shown in Figure 7.8.ii).

Breuker and Clancey would call these worlds "SSMs" or "case models".

C=up

A=up B=up

D=up

H=up

I=down

Figure 7.10.i. World 1: a solution
proposed by HT4/Core . World 1 avoids
all controversy; i.e. uses no base
controversial assumptions.

C=up

A=up B=up

D=up

E=up

H=up

F=up G=up

I=down

Figure 7.10.ii. World 2: an alternative
solution proposed by HT4/Core . In this
solution, the algorithm has assumed that
C is the dominant influence on E.

C=up

A=up B=up

D=up
E=down

H=up
F=down

I=down

Figure 7.10.iii. World 3: the third
solution proposed by HT4/Core . In this
solution, the algorithm has declared that
H is the dominant influence on E.

Queries can be executed over each world to generate Breuker's argument structures or

conclusions. For example, in World 3, an argument structure for the conclusion D=up

would be:
C=up A=up B=up D=up.

HT4/Core  directly operationalises the subset extraction process that Breuker and

Clancey argue is at the core of expert systems inference. Further, HT4/Core  provides a

uniform structure for processing of many of problem solving types listed by Breuker191.

191 See the above discussions in this chapter on using HT4/Core  for planning, design, prediction,  monitoring and
diagnosis.



176

Such uniformity simplifies the construction of interfaces between the inputs and outputs

of different problem solving types. Breuker argues that such interfacing is essential since

most problem solving types are used in combination to perform some task.

HT4/Core  also simplifies an important distinction proposed by Clancey:
A broad view of how a solution is computed suggests that there are two basic
problem-solving methods used by expert systems: heuristic classification and
construction [37].

By classification, Clancey means that the inference engine can report any proof it can

find between inputs and outputs across the knowledge base. Clancey-style classification

is a single operator that quickly selects proof trees from a set of fixed alternatives. In

heuristic classification  [37], this pathway would include:

• Inference to an abstracted description of the problem at hand;

• A match of this problem to an abstracted solution;

• A inference that specialises the abstracted solution to a solution relevant to the

current problem192.

Clancey-style constructive inferences generate multiple proofs, but each must be

assessed with respect to the other proofs. For example, combinations of processes that

cancel or combine their influences must be accounted for; i.e. A  B may have different

consequences to A  B. Further, certain literals in different proofs may be mutually

exclusive. The constructed SSM must be built with care in order to take into account

these interactions. Multiple, mutually exclusive, SSMs may be possible and these must

be managed separately. Extra architecture is required to handle conflicts and

dependencies within the SSM.
The essential difference between constructive and classification are the need for
some 'data structure' to post the assemble solution and operators for proposing
and reasoning about solution fragments [37].

By solution fragments and data structures, is Clancey is referring to the additional

architecture required for assessing competing or interaction sub-solutions. Clancey is

describing the HT4/Core  process, but using different terminology. Here is Clancey's

description:
When there are multiple causal links for classifying data - multiple explanations-
inference must be controlled to avoid redundancy, namely multiple explanations
when one would have been sufficient. The aim is to produce a coherent model
that is complete (accounting for the most data) and simple (involving one fault
process) [37].

Expressed in terms of HT4/Core , Clancey is saying that he prefers worlds which are

internally consistent, have maximum cover, and use the minimum number of Inputs193.

192 For more on heuristic classification, see section 8.2.4.
193 I.E. BESTClancey = BEST2 + BEST4 (see Table 2.2, section  2.3.5.4).
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We find that Clancey-style classification is simple deduction (albeit across a model

which may contain specialisation and generalisation links) while Clancey-style

constructive inference can be accurately and usefully described as abduction:

• Accurately: The construction of an SSM from a QM that satisfies some task

(specified by known inputs and desired outputs) in the presence of invariants is

exactly the HT4/Core  algorithm described above. Both proposals can generate

multiple worlds/SSMs. Note that Core  worlds are guaranteed to satisfy

Clancey's consistency requirement. Further, just as deduction is a special case of

abduction194, Clancey-style classification is a special case of Clancey-style

construction ([37], p332).  As Clancey says "all programs construct inference

paths", but construction paths must be constructed more carefully than

classification paths.

• Usefully: The HT4/Core  proposal is more general than Clancey's since it makes

explicit certain assumptions which are only tacit in Clancey's approach. For

example, he assumes that the best world uses the fewest number of Inputs ([37], p

331). We have shown previously that this is not universally true195. Further,

Clancey divides all KBS inferencing into classification or construction . By

mapping these two processes into deduction and abduction respectively, we can

find the missing component of Clancey's framework. Abduction and deduction

are two components of a triad of possible inference procedures. The third

component is induction which is neither classification or construction. Induction

(i.e. machine learning techniques) are KBS tasks, but fall outside of Clancey's

framework.
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We have argued  Core can be used for:

• KBS validation and verification;
• Abduction and deduction;
• Consistency-based diagnosis;
• Set-coverage diagnosis;
• Frame-based reasoning196;
• Prediction;
• Explanation;
• Classification;
• Planning & Monitoring;
• Causal/ Qualitative reasoning;
• Design;

194 In the case where models contain no invariants, an abductive inference engine would generate a single world.
The same world could be discovered using a simpler forward-chaining deductive algorithm.

195 See the discussion around Figure 7.2, section 7.1.1.2.
196 See section 5.2.3.



178

• Visual pattern recognition;
• Single-user model-based decision support systems.

Further, Core would be useful in the following domains:
• Group decision support systems;
• Expert critiquing systems.

Some evidence exists that Core w ould also be useful for:
• Case-based reasoning;
• Natural language processing;
• Certain types of financial reasoning;
• Learning.

More generally, we have argued that Core directly operationalises the model extraction

process which Clancey and Breuker argue is at the core of expert system inference.

We believe our case to be strong for models of size less than the limits to testing found

in the last chapter (i.e. |V|   850; |E|/|V|  7). For models within those limits, we have

shown that the exhaustive world generation of HT4/Core is practical. Models larger

than those limits can still be process by HT4/Core . However, heuristic culling of the

search space would be required. We note that general techniques for culling the search

space require a representation similar to the and-or graph used by Core . Therefore,

Core could still be used for models with  |V|  850 and |E|/|V|  7. However, in poorly-

measured domains (and most KBS problems are in poorly measured domains197) we

caution against this since models that can't be tested should be used very cautiously or

not at all.

We noted in our introduction that our goal of generic principles for testing was

somewhat ambitious since a generic testing module implies a generic execution engine.

The above list suggests that our current generic testing module satisfies our requirement

for generic execution.

This leads to an interesting conjecture. From a pragmatic engineering viewpoint, it is

useful to replace multiple single-purpose mechanisms with one general-purpose

mechanism, particularly when (i) the services offered by the general mechanism is a

superset of the services offered by the multiple mechanisms; and (ii) the general

mechanism is simpler than the single-purpose mechanisms. Current KBS inference

engines do not support generalised test yet generalised test supports numerous inference

tasks (e.g. the above list). That is,  we could replace our inference modules with

generalised test modules.

Summary:  Our generalised test does not merely augment existing KBS architectures, it

could replace them.

197 See section 3.1.
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Rail travel at high speed is not possible, because
passengers, unable to breathe, would die of asphyxia:
Dr. Dionsys Lardner (1793-1865).
The solution to the problem changes the problem:
Peer's Law. The only good answers are those that
destroy the question: Susan Sontag. Legend: a lie that
has attained the dignity of age: H.L. Mencken. People
will accept your idea much more readily if you tell them
Benjamin Franklin said it first: Lomin's Law. People
will believe anything if you whisper it: Anonymous. If a
little knowledge is dangerous, where is the man (sic)
who has so much as to be out of danger? T.H. Huxley

Previously, we have (i) motivated and generalised the processing of testing a KBS;

(ii) described how to customise testing for different domains; (iii) demonstrated the

practicality of our approach for models at least as big as those seen in contemporary KA

practice; (iv) discussed the utility of the Core  algorithm to a range of KBS tasks. We

argued that  we could replace numerous KBs tasks with Core .

In the this chapter, we will strengthen that claim: not only could we replace current KBS

architectures, we should do so. This is a radical argument since current KA practice is to

abstract away from low-level inference routines such as Core .

This chapter is structured as follows. The radical case for testing is made in sections 8.1

and 8.3. Section 8.2 is a digression that introduces knowledge level modelling, the

dominant paradigm in contemporary knowledge acquisition. Knowledge level modelling

will be contrasted with abduction/Core  in section 8.3.
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We have argued above that testing is an essential and on-going process for KBS198. As it

is usually done, KBS testing is a labour intensive process. For example,  the MYCIN and

CASNET validation studies [258, 269] required the convening of special committees to

assess their models. Given the on-going and continual nature of testing, such specially-

convened committees are too cumbersome. We require automated support for testing.

Further, this testing process needs to be able to execute in the poorly measured domains

processed by modern KBS. In poorly-measured domains, a test engine must make

assumptions and maintain those assumptions in consistent worlds. Formally, this is

abduction and can be implemented by systems such as Core .

In the previous chapter, we have argued that the generation of sets of consistent

inferences is an inference process applicable to many domains. We have made the case

198 See sections 3.4 and 3.5.
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on pragmatic engineering grounds that it is possible to replace numerous KBS inference

architectures with an abductive architecture. Such abductive architectures have the added

advantage that they can serve as both inference engines and test engines for poorly-

measured domains and indeterminate models. Therefore, we strongly recommend the

reorganisation of KBS systems around abductive/Core principles.
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In the next section, we contrast implementation techniques for implementing knowledge-

level  (hereafter, KL) inferencing. We distinguish two types of knowledge level

modelling. KLA and KLB refer to (respectively) first and second generation knowledge

modelling tools.  KLA  is exemplified by the SOAR project [223] which instantiates

Allen Newell's vision of the knowledge level [173, 174]. The KLB paradigm is the union

of a set of researchers who argue for a similar structure using different terminology; e.g.

KADS [260], Chandrasekaran's generic tasks [32], Steels' components of expertise

[246], Clancey's model construction operators [40], and the architecture of

SPARK/BURN/FIREFIGHTER (SBF) [145].   Currently, KLB  is the dominant

paradigm in the KA community.
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Knowledge engineering in the 1970s was dominated by Feigenbaum expertise transfer

principle. Knowledge engineers "mined the jewels in the expert's head" and transferred

those "jewels" in symbolic form into a program ([78], p104). A commonly-applied

technique for facilitating the transfer process was the identification of the constructs

supposedly used within human cognition. Once identified, special-purpose interpreters

could be built that could process some sentential form of those constructs.  Figure 8.1

shows the standard architecture for expertise-transfer using such interpreters.

EXPERT
EXPERT
SYSTEM

INFERENCE ENGINE
(general problem-

solving knowledge)

KNOWLEDGE BASE
(domain knowledge)

KNOWLEDGE
ENGINEER

Figure 8.1: Standard expertise-transfer architecture; from [102] p130.

Many styles of interpreters were developed (see [102] for a survey). Several of these

were used to develop systems that demonstrated expert-level competency.  Weiss &

Kulikowski used causal networks in the CASNET system [258] to model disease

processes. Duda, Gasching, & Hart  [29, 72]  modelled geological domains using an

inference network of assertions in the PROSPECTOR system. Brachman and Levesque



181

generalised the notion of a semantic network to inference over terms defined in an

inheritance hierarchy  and global rules defined in terms of first-order predicate calculus

[16]. Newell & Simon's experiments with production-rules suggested that a library of

rewrite rules acting over a working memory had some cognitive likelihood [128, 175].

This rule-based approach had  several high-profile successes; e.g. the R1/XCON system

[9, 146, 147, 243, 255] and MYCIN [269]. A sample MYCIN rule is shown in Figure

8.2.

DOMAIN RULE-513-A
IF 1) The infection is MENINGITIS.

2) The type of infection is BACTERIAL.
3) The patient has undergone SURGERY.
4) The patient has undergone NEUROSURGERY.
5) The NEUROSURGERY-TIME was less than 2

 months  ago.
6) The patient received a VENTRICULAR-

 URETHRAL-SHUNT
THEN: There is evidence that the organism which

might be causing the infection is E.COLI(.8)
KLEBSIELLA-PNEUMOBIAE (.75).

Figure 8.2: A MYCIN
domain rule (from
[40]).

In verification studies, MYCIN, CASNET and PROSPECTOR demonstrated that they

could reproduce expert-level performance in the their test domains199, 200. Some of these

systems even survived outside of the research environment and entered routine use201.

Despite early attempts to formalise the above process  [247], expert system construction

remains a somewhat hit-and-miss affair.  By the end of the 1980s, it was recognised that

our design concepts for knowledge-based systems (KBS) were incomplete [25].
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An influential alternative design concept was Newell's knowledge level approach202.

Newell's viewed human cognition as a search for appropriate operators that convert an

agent's current state to a desired goal state.  This approach can be viewed as a

refinement of the classic AI position that search is a central problem in human

intelligence [126]. Domain-specific knowledge was used to select the operators

according the principle of rationality; i.e. the agent will select an operator to perform

next which, according to its knowledge, leads to the achievement of one of its goals.

Beneath the knowledge level is the symbol level. At the symbol level, programs consist

of data structures, algorithms, etc. However, to a knowledge-level agent, these sub-

199 Though Duda et. al.  carefully distance themselves from certain exaggerated claims regarding the success of
PROSPECTOR [73].

200 Verification of R1/XCON is harder and its utility is usually demonstrated in operational terms; e.g. its sponsor
believes in it sufficiently to use it and maintain it for the 14 years since it was first developed.  See [9] for
impressive performance measures.

201 See [74] for a partial list as of 1983 and [25] for an updated list as of 1989.
202 Newell stresses that while he popularised the idea of the knowledge level, he did not invent it. To him, the

knowledge level paper was a simple extension of two existing ideas in computer science: layered architectures
and symbol systems [174].
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cognitive symbol-level constructs are the tools used "sub-consciously" (as it were) as it

performs its knowledge-level processing [173, 174].  Wielinga et. al. contrast the

symbol/knowledge levels as follows:
One can take two different perspectives on modelling the expertise required from
a system. A first perspective- one that is often taken in AI- is to focus on the
computational techniques and the representation structures (e.g. rules, frames)
that will provide the basis of the implemented system. A second perspective
focuses on the behaviour that the system should display and on the types of
knowledge that are involved in generating such behaviour, abstracting from the
details of how the reasoning is actually realized (sic) in the implementation.
These two perspectives correspond to the distinction Newell makes between
respectively the symbol level and the knowledge level. [260]

Newell's KL proposal was consistent with other research. A reverse engineering of

existing expert systems suggested that above the level of rules, frames, forward/

backward chaining, etc., there exist repeated meta-level inference procedures [31, 32,

37].  In at least four applications, the "Digital school" found that these higher-level

procedures were productivity tools  (e.g. MOLE [117], RIME [255], SALT [142, 143],

SBF [145]). In the MOLE application, for example, it was found that exploring eight

specific questions could lead to major improvements in the knowledge base (e.g. when

considering X: "what events would rule out X?"). Customised editors were written that

directly manipulated these higher-level structures (e.g. the MOLE questions or the

operator-selector search space of RIME). These editors included specialised compilers

that could convert these higher-level constructs into executable symbol-level constructs.

The terminology of the RIME editor included Newell-style knowledge level constructs

(e.g. local goal spaces and operators that need to be evaluated/selected/applied).   Indeed,

RIME was developed initially using Newell's SOAR system [222]. However KLB

researchers (such as the Digital school and the KADS community) argued that problem-

solving behaviour that transcended a single state was also a knowledge level construct.

In particular, the KADS ESPRIT project developed a KBS methodology based on

libraries of known problem-solving techniques:

• KADS researchers argue that  parameterised versions of these meta-level

inference procedures (e.g. classify, monitor, predict) offer a structured approach

to the knowledge acquisition endeavour.

• KA can initially be the hunt for a match between known expert behaviour and

known meta-level inference procedures [260]. Once a match is found, then the

meta-level pattern offers a rich description of the high-level processing loops as

well as the data structures that the experts have to supply.
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• Apart from the inference structures, KADS also offers a methodology for the

whole life-cycle of a software project building an expert system203.

Other researchers have processed KADS-style variants on KLB. Some of these pre-date

KADS or were developed simultaneously. All assume that high-level inference

procedures are customisable knowledge and offer tools for representing that knowledge

(e.g. Clancey's model construction operators, hereafter MCO [40]; as well as [28, 33,

145, 246]).

Meanwhile Newell, Rosenbloom, and Laird (amongst others) were implementing

Newell's vision of the knowledge level in the SOAR project. SOAR combined Newell's

earlier research on (i) state-space traversal with (ii) his work on production systems and,

eventually, (iii) his knowledge-level proposal:

• The primitives of the SOAR rule-based language explicitly represent Newell's

model of human cognition as a search for appropriate operators that convert an

agent's current state to a desired goal state  [223].

• Like our abductive approach, minor manipulations of SOAR's operator selection

strategies (which are controlled by rules) is all that is required to fundamentally

change the inferencing [127].

• Initially, SOAR was not a knowledge-level modelling tool. Despite Newell's

public endorsement of KLB  approaches204, SOAR did not offer language

primitives for representing meta-state structures.

• Subsequent work added a problem-space computational model (PSCM) on top of

the basic SOAR architecture. Programming a PSCM involves the consideration

of multiple, nested problem spaces. Whenever a "don't know what to do" state is

reached in SOAR, an impasse is declared. Impasses automatically fork a new

problem-space to resolve the problem. Impasses can be recursively generated

within impasses.  The PSCM recognises that the explicit representation of these

nested impasses is a significant programming construct.  A Lisp pre-processor

converted constructs in the PSCM description language TAQL into SOAR

productions [176, 268].

• Newell argued that the PSCM was the bridge between SOAR and true

knowledge-level modelling [174, 176]. Note carefully, however, the difference

between KLB and KLA . Unlike KLB,  in PSCM-SOAR KLA , high-level

inference procedures such as classify, monitor or predict  are not explicitly

represented. The observation that a knowledge base is performing (e.g.)

203 For more on KADS, see the "related work" section of  [260] for an historical overview of KADS and a
comparison of it with other approaches.  For a gentle introduction to KADS,  see the short tutorial in [134]
followed by [260].  For a detailed overview of the technique, see [251]. For a critique of KADS, read on.

204 Newell's name appears on top of Clancey's classic KLB  heuristic classification paper [37]  in the
"recommended by" slot.
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classification is a user-interpretation of a lower-level inference (operator selection

over a state space traversal) [268].

HT4/Core  is closer to KLA  than KLB. Like PSCM-SOAR, HT4/Core offers few

organisational principles above some low-level inference (except the notion of domain-

specific data and model compilers205).  Like PSCM-SOAR, HT4/Core  does not

explicitly model (e.g.) classify, monitor or predict at the inference level. As we have

seen, these inference procedures are implemented by small pre-processors and post-

processors to the basic Core  inference206. However, HT4/Core  differs from PSCM-

SOAR in several basic respects:

• PSCM-SOAR executes over an implicit and-or graph while we prefer to execute

over an explicit and-or graph207. Efficiency is a non-trivial issue in generalised

test. Building and caching the search space prior to inferencing was one or our

techniques for taming complexity208.

• Given a vertex with N out edges (or, in SOAR-speak, a state space with N

associated operators), HT4/Core  assesses the utility of each edge using a

deferred global analysis. SOAR must make its operator assessment at the local

level. SOAR's run-time selective generation of the and-or graph has efficiency

advantages since it culls unacceptable alternatives as they are first encountered.

Our approach has the potential to be slower, but the explicit representation of all

alternatives permits allows for global assessment criteria (e.g. BEST4).

Experiments with adding abductive inference to SOAR relied on an interface to

an external abductive theorem prover. In Steier's CYPRESS-SOAR/ RAINBOW

system, SOAR production rules modelled control decisions, while the

RAINBOW abductive inference engine209 generated possible designs [248].
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As an example of a KLB analysis, recall the rule in Figure 8.2.  An MCO analysis of this

rule is that it includes three general inference procedures, plus one piece of domain-

specific knowledge. Figures 8.3 and 8.4 shrink the rule by extracting two of the

inference procedures210.

205 See chapter 5.
206 See chapter 7.
207 Recall that an explicit and-or graph does not grow at runtime while an implicit and-or graph can add new

edges and vertices during inference.
208 Note that this is only practical for finite theories. Hence HT4/Core 's current emphasis on propositional

models.
209 Steier calls abduction "antecedent derivation".
210 For another example of this process, see Figure 7.7, section 7.3.
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% domain knowledge
subtype(meningitis,
        bacterialMeningitis).
subtype(bacterialMeningitis,
        eColi).
subtype(bacterialMeningitis,
        klebsiellaPneumoniae).
differential(Hypothesis).

% inference procedure
task(exploreAndRefine, Hypothesis,
     doBefore(

[task(pursueHypothesis(Hypothesis)),
 task(pursueHypothesis(Child)]))

     :-
differential(Hypothesis),
subtype(Hypothesis,Child).

DOMAIN RULE-513-B
IF 3) The patient has

   undergone SURGERY.
4) The patient has
 undergone NEUROSURGERY.
5) The NEUROSURGERY-TIME
   was less than 2
   months  ago.
6) The patient received
   a VENTRICULAR-URETHE-
   RAL-SHUNT

THEN: There is evidence
that the organism which
might be causing the
infection is E.COLI(.8)
KLEBSIELLA-PNEUMOBIAE
(.75).

(i) (ii)
Figure 8.3: Rule-513-B = Rule-513-A with explicit and separate
representations of subtypes, names of differential hypotheses, and the
exploreAndRefine inference procedure (i.e. explore super-types before
sub-types). Adapted from [40]211.  Note that exploreAndRefine removes
the need for rule conditions 1 and 2.

% domain knowledge
subsumes(surgery, neuroSurgery).
subsumes(neuroSurgery,recentNeuroSurgery).
subsumes(recentNeuroSurgery,
         ventricularUreteralShunt).
value(recentNeuroSurgery,true) :-

value(neuroSurgery,time(Mons)),
Mons < 2.

% inference procedure
task(findOut,Finding, conclude(Cntx,
             Parent, yesTally, -1000)) :-
     context(Cntx),

subsume(Parent,Finding),
not(Cntx = Parent).

DOMAIN RULE-513-C
IF    The patient received

   a VENTRICULAR-URETHE-
   RAL-SHUNT

THEN: There is evidence
that the organism which
might be causing the
infection is E.COLI(.3)
KLEBSIELLA-PNEUMOBIAE
(.3).

(i) (ii)
Figure 8.4: Rule-513-C = Rule-513-B with explicit and separate
representation of subsumes and the findOut inference procedure (i.e. if a
desired finding is a subtype of a class of findings and that class of findings
in not present in this case, then conclude the desired findng has a negative
infinity certainty factor; i.e. is not present ). Adapted from [40]. Note that
findOut removes the need for all rule conditions except the last one.

Figure 8.5 shows the remaining inference procedure. It is a conflict resolution rule that

selects causal rules before mere circumstantial rules like 513-B .

211 Clancey expresses his knowledge bases in a LISP syntax. We use Prolog here since we have already used
Pascal and Prolog and believe that the use of yet another language in this document for abstract specifications
is undesirable.
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% domain knowledge
enablingCause(bacterialMeningitis, exposure).
circumstantialCause(bacterialMeningitis,neuroSurgery).

% inference procedure
task(testHypothesis,Hypothesis,

doBefore([task(applyRules(Rules1)),
               task(applyRules(Rules2)))

:-
     enablingCause(         Hypothesis, Finding1),

evidence(              Hypothesis, Finding1, Rules1),
circumstantialEvidence(Hypothesis, Finding2),
evidence(              Hypothesis, Finding2, Rules2).

Figure 8.5.  Explicit representation of the testHypotheiss inference
procedure (i.e. test causal rules before testing circumstantial rules).
Adapted from [40].

Some evidence suggests that encoding knowledge bases (KBs) using these inference

procedures gives the inference engine enough control knowledge to improve its

performance. Clancey reports that after repeating the above analysis for the 176 MYCIN

domain rules, 80% of them reduced down to single condition rules such as Figure 8.4.ii.

When executed, the meta-control offered by rules such as Figure 8.5 removed all

uncontrolled backward chaining [40].  This result has not been repeated elsewhere.

In MCO, Clancey argues eloquently that knowledge of inference procedures is still

knowledge and should be expressed in a customisable form. The explicit and separate

declarative representation of inference procedure knowledge allows a domain

expert/knowledge engineer to record their processing knowledge (see Figure 8.6).

EXPERT
EXPERT  SYSTEM

KNOWLEDGE BASE

KNOWLEDGE
ENGINEER

domain knowledge
inference procedure

  knowledge

INFERENCE ENGINE
(symbol-level procedures for executing the

 inference procedures over  the domain  knowledge

Figure 8.6: Clancey's proposed extension to the architecture of Figure 8.1
from MCO [40]. Inference procedure knowledge is still knowledge and
should be maintained in a customisable form within the knowledge base .
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Wielinga  et. al. argue that the inference procedures discovered from a KLB  analysis

form the basis of re-usable problem-solving library that can be applied to other domains

[260]. Within the KLB inference procedures, there often exist sub-routines used in other

procedures (e.g. select, decompose, match, evaluate, etc) [32, 40, 145, 260]. For

example, the KADS description of the heuristic classification, verification and
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correlation inference procedures are shown in Figures 8.7, 8.8, and 8.9. They share some

processing modules (with some variations); e.g. match and select.

observables

abstract variables match
solution

abstractions

solutions

specialize

Figure 8.7: Heuristic classification: the original KLB  construct, circa
1985.  From [251]. Squares denote data types and ellipses denote
processing modules. Arrows denote data flow.  In between observations
and solutions is an abstraction process that matches an abstracted
description of the problem to an abstracted description of possible
solutions. Clancey's original KL discovery was that a range of expert
systems could be described as heuristic classifiers [37] .

assertion

match

criterion

possible
observables

select variable
value

evaluate

decision class

Figure 8.8:  A KADS description of the
verification inference procedure; i.e.
testing if a system is consistent with (at
least some of) the actual values of the
observables of the system.  Match inputs
an assertion of some observation and
outputs a test criterion  which will perform
the verification. The cr i ter ion can
optionally select other p o s s i b l e
observations. Once all the required
observations are collected, the criterion is
evaluated to generate the decision class.
From [251].

Software libraries that support these processing modules can be used to decrease

development time. Marques et al compare development times with and without such a

software library (i.e. SBF): 200 days (without) to 20 days (with)  [145].

It is claimed that explanations generated from tasks are more insightful for the domain

expert and the software designer than a (e.g.) low level trace of rule firings [36, 260].

Such explanations, it is said, can be used to:

• Identify and fix knowledge anomalies  during KA.

• Offer justifications of the delivered system's conclusions for the end-user.

KL B offers  a succinct vocabulary for describing, summarising, and comparing expert

systems. For example, a KADS-level description of heuristic classification fills 10 pages

[5] while Clancey's original description is somewhat more verbose (61 pages) and not as

precise [37]. Practitioners find this retrospective second-glance at their systems useful

for developing more generalised architectures for future work [134]. Expert systems

theoreticians have used KLB to assess and clarify the essential features and differences
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of applications [228]. Lastly, knowledge engineering novices can use a KLB  analysis of

classic expert systems to quickly review successful techniques.

1st set of
case description

2nd set of
case descritption

select 1a select 2a

1st case
description

2nd case
description

decompose 1 select 2b decompose 2

1st case
parameter(s)

2nd case
parameter(s)

compare

decision class

select 1b

Figure 8.9: A KADS
description of the correlation
inference procedure; i.e.
compare two systems (e.g. an
actual case vs some reference
case) and generate a decision
class that is a report of the
comparison.
Select Xa extracts one case
from a set of cases. Select Xb
extracts one parameter of the
selected case. Selections may
be made on the basis of other
case parameters (hence the
feedback arrows shown in
gray). Decompose is an
alternative to select Xb and
teases apart some case using
(e.g.) part-of knowledge.
From [251].
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One bottleneck in KLB is the mapping between problem description and meta-level

inference patterns. In the SBF work, for example, the application domains were all pre-

selected and the mappings between a library of application types and the library of

mechanisms was hand-coded. Techniques to assist/automate this process have yet to

evolve.

One technique we have found useful for expert system development is prototyping

[157]. While (e.g.) KADS is officially a prototyping approach [260], the overheads

associated with documenting the KADS approach may introduce an organisational

inertia inhibiting the prototyping process ("you mean you want we to re-write the design

document... again?"). For example, after one KADS training course (conducted by

specially-imported consultants) for an experienced Australian knowledge engineering

group, that group concluded that the overheads of KADS made it unsuitable for projects

less than 6 months long (i.e. the majority of their applications).

KL B is an active research area and mature tools for this technique are still evolving.

Even simple documentation tools are lacking.  Prior to the publication of  [251] there

existed no central site, or even a Internet FAQ list of commonly used models.
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Any reading of the KLB   literature suggests that one requires a high level of skill to use

this approach. Allemang notes that "generic task analysis" (the Chandrasekaran school of

KL B) is difficult and requires a knowledge engineer [6].  Marques et al similarly note

that experts are enmeshed in the details of using their skills and find it difficult to

understand what they are doing in more abstract terms [145]. Aben provides lists of

authors who express discontent with imprecisions in the KADS formalism [1].

For more specific criticisms of KLB , we turn to the explanation, knowledge acquisition,

and knowledge maintenance literature.
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 Wielinga et. al.  argue that one of the advantages of KADS was its ability to explain the

inner workings of an expert system [260]. Clancey's Heuristic Classification paper [37]

is an impressive reverse engineering of numerous expert systems in terms of his heuristic

classification technique. The reader is left with a strong impression that heuristic

classification explains the inner-workings of the surveyed expert systems. However, this

is not to say that KLB  is a general explanation technique. An approach that can offer

satisfying explanations for a small and select audience (i.e. knowledge engineers) may

not generalise to a wider audience.

The problem of explanation is not solved merely by offering a trace of the system’s

traversal over a task description (e.g. a KADS interpretation model):

• Modern explanation research views explanations as a user-specific and goal-

specific construct. From a range of possible inferences, some subset is selected

that meets some understandability criteria for different users and different

goals212. That is, a model that is good for explanatory purposes contains some

degree of indeterminacy (can generate > 1 behaviours).

• Leake argues convincingly that a cache of prior explanations and an active user

model are essential components of a good explanation module [130].

User-profiles, indeterminate models, and case libraries are not issues addressed in

current KLB approaches. Therefore, in their current form, KLB is not a good generalised

explanation tool213.
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A premise in KLB is that the higher-level abstractions of the knowledge modelling

approach is a good thing. Soloway et al. comment:

212 Recall section 7.1.5.
213 Previously, we have distinguished between pure performance KBS systems (which only have to solve some

problem) and explanations systems (which have to solve a problem and explain how they do it [159].  At that
time, we believed that the higher-level abstractions of KLB were required for explanation, but were not
required for performance systems.  Since that time we have reversed our thinking. We now doubt the utility of
KL B for general-purpose explanations. Further, we now believe that a performance system based on an
abductive architecture is a device suitable for generating customisable explanations.
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While hard numbers are few and far between, the overwhelming sense of the
software engineering community is that the use of higher-order languages has
had a positive impart on maintenance. Thus, on these grounds alone, it is quite
reasonable to predict that XCON-in-RIME , written in RIME, a higher-level
language, should be significantly easier to maintain that XCON, written in a
lower-level language ([243], p827).

We call this assumption that abstraction is a good thing the utility-of-abstraction

assumption.

We note that if the utility-of-abstraction assumption was correct, then we would should

see some superior performance of higher abstraction tools (KLB ) over lower-level

abstraction tools (e.g. the KLA tool SOAR) when they are used for the same purpose. In

terms of the current knowledge acquisition literature,  this has not been the case.

Initially proposed in 1990, the Sisyphus214 project aimed at creating a library of

repeatable knowledge engineering tasks. These tasks were to serve as benchmarks to

compare different KA approaches. Sisyphus-2 was a medium-sized task (elevator

configuration) and a prior to solution to the Sisyphus-2 problem was known in the

literature from 1986 (SALT [142, 143]).  This prior solution was used to generate a

precise specification  [267]  which was the starting point for the Sisyphus-2 groups.  The

problem was attempted by six KLB techniques (DESIRE [19], VITAL [170], Karl [193],

Protege-II [224], CommonKADS [227]), one KLA technique (PSCM-SOAR [266]) and

one hybrid first/second generation approach (DIDS [226]).

 At the  Sisyphus-2 workshop, we collected development times for the different

approaches (either from the developers or from the publications). Two conclusions were

reached:

1) Data collection techniques for Sisyphus-2 was poorly managed. Most  Sisyphus-2

were less-than-rigorous in documenting their development times (exceptions:  the

DIDS & PSCM-SOAR groups).  We have made our case to the Sisyphus-2

community that data collection should be more rigorous in future.

2) Point #1 notwithstanding, no evidence could be found of productivity benefits of

KL B over KLA  in the Sisyphus-2 results. None of the times we collected

suggested that any the groups out-performed the original SALT solution. That is,

despite years of intensive research since SALT (1986), it is not clear that the KLB

approach offers any additional leverage. Indeed the "old-fashioned" KLA

solution (developed using SOAR) was developed in times comparable to SALT

and faster than many of the other approaches215.

Opponents of point #2 could argue that this sample size was too small and too

inaccurately measured to yield meaningful results. Further, they could argue that the

214 Sisyphus was doomed for eternity to roll the same rock up the same hill again and again and again...
215 We do not include the times here since the numbers would require extensive annotation to be comprehensible.
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Soloway quote (above) stressed the utility of abstraction for the purposes of

maintenance, and not just development work such as Sisyphus-2.

In reply, we would concede the sample size problem but would add that we can't find

alternative evidence justifying the current enthusiasm in KLB.  We list below a summary

of the achievements of knowledge-level modelling. Note that this is not an overly-

impressive list216.

• Clancey's heuristic classification offered a unified retrospective view on

numerous, seemingly different, expert systems.  Similar (but smaller) studies by

Linster & Musen [134], Akkermans et. al. [5] suggest that KLB can

retrospectively clarify design issues. However, the more important case that KLB

clarifies initial  designs is yet to be proven.

• Clancey's MCO analysis of MYCIN removed all search from the domain rules.

To our knowledge, this is the only published example of this effect.

• The Digital school of knowledge engineering reports productivity gains from

second-generation knowledge modelling. The SBF results are particularly

impressive (over 90% reduction in development time). However, recall from the

above discussion the hard-wired nature of the links between the SBF problem

space and the SBF solution space. Significantly, the SBF group did not offer

solutions to  Sisyphus-1 or Sisyphus-2. This is surprising since, given the

development times reported in the SBF experiments, we would have thought that

they could have built a Sisyphus-2 solution in a less than a week. Perhaps, the

SBF technique is not a general principle.
� � � � � � � � ' " % (  ) * + ) 1 ! $ " # ) " ! " - )

As to the issue of maintenance, recall that the utility-of-abstraction assumption was

based on little empirical evidence (in Solloway's words: "hard numbers are few and far

between..."). We know of only two data points:

• The RIME KLB editor is used to maintain XCON, a 5000+ rule expert system217,

of which approximately 50%  changes each year [243]. The system is successful

enough for its sponsors to continue the project for several years. However,

beyond that qualitative statement, little empirical evidence exists for the utility of

RIME (but see  [243] for some informal evaluations).

• PIERS was  built using Compton's ripple-down-rules approach RDR218.  PIERS's

expertise covers  20% of the biochemical tests performed at the hospital.  PIERS

216 This list was presented at the Banff '94 AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop. Participants were asked to augment the list with any missing results. Over the week-long
period of the workshop, no additions were offered.

217 The precise size changes as the products it services change.
218 See section 2.3.7.
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processes 500 cases per day at 95% accuracy, contains 2037 rules, and is one of

the largest expert systems in routine use in the world today.  PIERS can be

described as an almost zero-level abstraction program. After a simple pre-

processor turns numbers such as X=3.37 into statements of the form X is low, the

system uses no further abstractions. Despite this lack of an abstraction

mechanism, development was simple. Minimal preliminary analysis was

required. After the database connections were made (using standard software

engineering techniques), experts just considered the cases presented on a

particular day and told PIERS what to say for each such case. Maintenance time

is constant (2-6 new rules per day) and very simple (a total of a few minutes each

day).

The PIERS conclusion is that, given certain environment support (i.e. an RDR structured

patching environment), extensive preliminary analysis and high-level abstractions are an

optional part of the software development life-cycle.  After some initial minimal

analysis, the system goes live and is patched in the context of its errors. Global re-

organisations are forbidden. Like Soloway, our pre-experimental intuition was that such

global reorganisations and high-level abstractions were an essential precondition for

good software.  This did not prove to be the case.

Summary:  The higher-level abstractions offered by KLB are not necessarily useful for

knowledge maintenance. The utility-of-abstraction assumption has yet to be proven (and

PIERS represents one major counter-example).
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We argue that a abductive/Core -based architecture is better than the KLB approach. Not

only can Core  supply the required inferences (see the list in Figure 8.10), but it can also

implement generalised test.

Knowledge level inference procedures:
1.  Causal/ qualitative reasoning;
2.  Classification;
3.  Design;
4.  Consistency-based diagnosis;
5.  Set-coverage diagnosis;
6.  Explanation;
7.  Monitoring;
8.  Planning;
9.  Prediction;
10. Validation;
11. Visual pattern recognition.

Symbol level inference procedures:
1. Abduction;
2. Deduction;
3. Frame-based reasoning;
4. Verification.

Composite:
1. Single-user model-based DSS.

Figure 8.10: Chapter seven made a strong
case that C o r e  can support eleven
knowledge-level inference procedures, four
symbol-level inference procedures, and one
composite procedure. A weaker case was
also made that  Core  is useful for  group
decision support systems; expert critiquing
systems; case-based reasoning; natural
language processing; certain types of
financial reasoning; and learning. Further,
a general theoretical case was made that
Core  directly operationalises the model
extraction process which is at the core of
all expert systems inference.
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Test is an essential part of KBS development219. Standard KLB does not model the and-

or graph of dependencies internal to the inference procedure sub-routines.  The internals

of these sub-routines are symbol-level constructs and hence out-of-bounds for KLB.

KL B tools like KADS stress their implementation independent nature. No restriction is

placed on the implementation tools. Hence, there is no guarantee that the implementation

tool can generate the and-or graphs required for Core . Therefore:

• KL B is not a candidate for generalised test.

• Core  should replace the inference modules of KLB since it can deliver inference

as well as validation.

Further, we find that our abduction-based taxonomies of inference procedures are

simpler than those offered by  KLB community. Figure 8.11 shows inference procedures

from two different KADS researchers.

Transformation
…

Synthesis
Design
…

Analysis
Identification

Diagnosis
Systematic diagnosis
Fault-model diagnosis

Heuristic classification
Cover & differentiate

Monitoring
…

Prediction

Modification
…

Synthesis
Design
Planning
…

Analysis
Identification

Diagnosis
Single Model Diagnosis

Systematic Diagnosis
Localisation
Causal Tracing

Multiple Model Diagnosis
Mixed Mode Diagnosis

Verification
Correlation

Assessment
Monitoring
Classification

Simple Class.
Heuristic Class.
…

Prediction
…

(i) KADS: 1992 [260] (ii) KADS: 1993 [251]

Figure 8.11: Partial taxonomies of KLB inference procedures.  The term
transformation (in Figure (i)) is analogous to modification (in  Figure (ii)).

We approve of some of the clusterings in the hierarchy of Figure 8.11. For example,  the

authors of Figure 8.11.ii argue that localisation and causal tracing are basically the same

process (systematic diagnosis, see Figure 8.12), except the former using part-of

knowledge while the  latter uses causal knowledge. In terms of our framework, both

would execute over the same and-or graph but the user's interpretation of the edges

differs. However,  we doubt (e.g.) the separation of diagnosis from monitoring (or

worse, the large separation of  design from prediction) since we have seen above that

they are intimately connected.

219 See section 8.1.
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To be fair, the authors of Figure 8.11 do discuss the connection between the various

inference procedures. For  example, the authors of Figure 8.11.ii note that (i) heuristic

classification could be used for diagnosis; or (ii) that scheduling, planning, and

configuration are actually the same problem, divided on two dimensions ("goal states

known or not" and ""temporal factors considered or not"220).  Also, the authors of Figure

8.11.i acknowledge certain similarities between the inference procedures. For example,

Figure 8.14 identifies a common sub-graph of the inference procedures systematic

diagnosis (Figure 8.12) and monitoring (Figure 8.13).

complaint

select

system model

decompose

hypothesis

compare

difference

specifyobservable

select

finding norn

Figure 8.12: KADS inference
procedure for systematic
diagnosis. Assumes   single
fault diagnosis. From  [260].
Given a certain complaint,
the system model is
decomposed  i n t o
hypothetical candidate faulty
components. A norm value
for each candidate is
collected from the system
model. An observation for
that candidate is requested
from the observables (stored
internally as a finding).  The
candidate hypothesis is
declared to be the diagnosis
based on the comparison
between the norm value and
the finding.

select

specify

compare

classify

system
model

select

parameter

norm finding

observable

difference

discrepacny
class

historical
data

Figure 8.13: KADS inference
procedure for monitoring.
From  [260]. A parameter is
selected from a system model.
It's expected normal value is
generated from the model and
collected from the observables
(stored as a f inding). The
current state of the
monitoring system is reported
as a discrepancy class after
comparing the finding with
the expected normal value.

220 See Figure 12.3 of [251].
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parameter

compare

difference

specifyobservable

select

finding norn

Figure 8.14: Wielinga et. al.
[260] note that this sub-graph
is common to both the
monitoring and diagnosis
inference models of Figures
8.13 and 8.12 respectively.

Having noted some low-level similarities between the distinctions that they have

proposed, KLB  researchers  do not take the next step and simplify their distinctions

according to these observed similarities.  The study of such similarities could identify

some core mechanism that is central to several knowledge level tasks. Our case is that

abduction/Core  is such a central task and that reorganising inference procedures on

abductive grounds simplifies design and implementation of KL processing:

• When we compare the differences between sub-hierarchies between 8.10 and

8.11, we see that our sub-hierarchies are much smaller variants of their roots than

in conventional knowledge-level modelling. For example, at the symbol level, the

difference between set-covering-based diagnosis and consistency-based diagnosis

is very small221.  In contrast, sibling inference models in conventional

knowledge-level modelling may have totally different inference models (e.g.

KADS has totally different inference models for correlation222 and verification
223  even though they are both sub-types of identification).

• Note that Figure 8.10 is broader and flatter than the taxonomies of Figure 8.11;

i.e. a hierarchy of inference models based on abduction makes fewer distinctions

than conventional  knowledge-level modelling.

Our general point here is that KLB may have confused the modelling process, rather than

clarifying it. In this regard, the analysis of Zdrahal & Motta of the Propose & Revise

inference procedure to be particularly interesting.  Having developed a KLB  solution to

the Sisyphus-2 VT problem, the VITAL group then went on to analyse the symbol-level

processing required [270].  We find that this symbol-level description of Propose &

Revise to be far more useful in building working systems than the abstract KLB

description they originally offered for their system.

Further, when we review the KLB  inference procedures that we are familiar with, it is

not clear that these inference procedures reflect current research in those areas:

221 See Table 7.2, section  7.1.3.
222 See Figure 8.9, section 8.2.4.
223 See Figure 8.8, section 8.2.4.
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• Diagnosis :   The pioneering work of Reiter  [217] and the rigour of analysts such

as Poole  [197] and Console et. al.  [51] have resulted in a common terminology

and a well-defined set of research issues. The KADS diagnosis inference

procedure224 seems isolated from that work and only handles the simple case of

strict hierarchical decomposition of components and a single fault. An informal

KADS seminar convened at DX ‘93 [103] concluded that the KADS

interpretation models for diagnosis were premature generalisations of a

developing field.

• Verification : KADS "verification" is really validation since it uses data collected

from the domain to perform test suite assessment.  All the current work in KBS

validation requires  meta-knowledge of the dependencies between, at least, KB

rules and, at most, KB literals. TMS architectures are used to build consistent

subsets of the literals/rules . Validation then becomes a hunt for certain literals in

the base dependants or the rule conclusions within those subsets [274].  KBS

verification research uses the same dependency networks (but ignores the TMS

worlds computation) and looks for logical inconsistencies in that network [204].

A generous reading of the KADS verification inference procedure225 could say

that at some level of abstraction, the KADS verification procedure captures this

process  (e.g. the criterion generation process uses TMS knowledge and BEST

assessment knowledge within match). However, based on our work with

HT4/Core ,  we would argue that the details missed by the KADS definition of

verification are non-trivial. We find our own KBS validation framework (Core )

more insightful and pragmatically more useful than the KADS model. For

example, the need for managing assumptions in different worlds is a major

addition to an inference architecture and is missing from the KADS definition.

Lastly, with the exception of the SBF experiment [145] (a result that has yet to be

repeated or successfully generalised) there is little empirical evidence for the re-

useability of inference procedures.  Quite the opposite, in fact. Our reading of the KLB

literature is that inference pattern re-use is rare:

• Buchanan & Smith's survey article ignores the 8-way classification of problem

solving types proposed in the early 1980s (e.g. interpretation, prediction,

diagnosis, design, planning, monitoring, debugging, repair, instruction, control

[102]) and remarks that:
…there is no clear, unambiguous taxonomy of problem types that is independent
of the methods used to solve problems.  ([25], p154)

224 See Figure 8.12, section 8.3.2.
225 See Figure 8.8, section 8.2.4.
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• The KADS-style inference procedures proposed by  Bredeweg [20] for prediction

via qualitative reasoning is very different to the qualitative prediction inference

procedure proposed by Tansley & Hayball [251].

• Between the various camps of task researchers, there is little agreement on the

details of the sub-routines of the inference procedures. Contrast  the list of

repeated processing modules from  MCO [40], KADS [260] and SBF [145].

While there is some overlap, the lists are different.
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Numerous systems have been built using KADS [260]. However, other knowledge

engineering approaches have published examples of their utility  (e.g. MYCIN [269],

CASNET  [258], PIERS [206], PIGE  [157], QMOD [79, 80, 153]). R1/XCON system

[9], and PROSPECTOR [72]). The crucial case for KADS in particular and KLB in

general is not that KLB can deliver applications. Rather, it should be that KLB can

deliver applications better than the alternatives. With regard to KLB , this case has not

been made.

For example, the general productivity benefits gained from re-using libraries of known

inference procedures is yet to be demonstrated. While their exists some impressive

experimental evidence on the utility of KLB (e.g. Clancey removing search from

MYCIN and the SBF experimental results), these results are too specific and isolated to

form the basis of a general conclusion.

KADS is not the only software methodology that claims re-usable components without

being able to demonstrate it. The object-oriented (OO) community also claims that

objects are re-usable, with little or no experimental evidence to support that claim226.

The OO community finds that their "re-usable" class libraries are ignored, or extensively

modified when they are re-used. A similar process is observable with the KADS

inference procedure libraries:

• Different KLB schools have different lists of inference procedures (e.g.

comparing SBF with KADS)

• In any one school, the list changes; e.g. (i) the different qualitative reasoning

models proposed by Bredeweg [20] and Tansley & Hayball [251]; or (ii) new

approaches are introduced such as [21].

226 Claims that OO provides a large level of re-use are poorly documented and not conclusive [162].  For
example,  Stark reports  80% verbatim code re-use with "OO" for a range of NASA projects. On careful
reading, it is discovered that Stark's "OO" re-use was seen in Fortran applications that ignored OO during
analysis and design. However, mid-way through  the coding phase, Stark's colleagues re-organised their text
files into conceptual groups, each surrounded by a uniform interface and database access routines [245]. This
style of "OO" programming does not satisfy Meyer's definition of OO [165]. Hence, we reject Stark's claim.
We have argued elsewhere that OO researchers should collect their data in a more scientific manner; i.e. in a
way that could potentially falsify their hypotheses [163].
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• Often when a domain is analysed using tasks, a new inference procedure is

required  [134, 254].

One reason that the KADS inference procedures have not stabilised is that they may

represent premature generalisation of a developing field (recall  the problems we found

above with the "verification" and diagnosis inference procedures).

We have argued against claims that KLB is a useful explanation tool. A general purpose

explanation tool contains:

• a model that can generate multiple proofs for any given behaviour;

• a profile of the user's knowledge;

• a case library of previous solutions;

• an abductive inference engine that selects and filters the multiple proofs

according to the contents of the user model.

KL B methodologies such as KADS make no mention of indeterminate models, user-

profiles, or case libraries. Hence, in their current form, they are unsuitable for general

explanation.

In proposing a symbol-level inference procedure (Core ) as the basis of KBS, we are

challenging the utility-of-abstraction assumption. KLB  makes the utility-of-abstraction

assumption and abstracts to a very high level. Tests of the utility of the abstractions

provided by  KLB have been, to date, inconclusive (e.g. the Sisyphus-2 experiments).

Further, we know of almost zero-level abstraction tools that have out-performed systems

based on extensive abstraction (e.g. PIERS [206] vs ABEL [187]).  We suspect that KLB

is excessively abstracted. If we look at the details of an inference procedure, we may see

similarities that allow us to simplify and unify seemingly different processes. The KADS

community recognises that certain similarities exist between different inference

procedures, but do not explore these low-level similarities (exception: [270]).We believe

that if those similarities are rigorously explored, then seemingly different inference

procedures can be unified and simplified. The HT4/Core   process is a candidate for

unifying inference procedures.  HT4/Core  provides a single inference procedure

(exhaustive abduction with customisable inference assessment operators) which

implements a wide-range of KBS tasks227.

Not only can HT4/Core  implement the inference associated with these tasks, it can also

serve as a test engine. We have argued previously that testing is an essential module in

the modern "knowledge-acquisition-as-modelling" perspective. Test requires

dependency and invariant knowledge of all literals in all parts of the knowledge base.

KADS makes no commitment to the internal processing of the sub-routines within its

227 See Figure 8.10 in section 8.3.2.
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inference procedures. Such sub-routines (e.g. classify, select, etc) are black boxes.

Hence, we doubt the testability of KADS systems.

Note that our criticisms of the KL approach are focused on KLB, not KLA; i.e. PSCM-

SOAR. Like PSCM-SOAR, we reject the KLB  assumption that modelling high-level

inference procedures are the fundamental source of power for KBS systems:

•  An assumption at the heart of KLB is that once the problem solving framework

has been chosen (i.e. the appropriate inference procedure has been selected), then

the rest of KA is a simple matter of filling in the details required for that

framework. This assumption is not supported by the available empirical evidence.

Further, counter-examples exist that challenge this assumption; i.e. the successes

of PIERS and the PSCM-SOAR Sisyphus-2 experiment.

• Our alternative proposal is to use testing as the basis of KA. We are not the first

to propose this. Boehm's spiral model [12], Jacobson's use cases [115], and

Wirfs-Brock's CRC cards [262] are all attempts to structure iterative software

development based around a testing/prototyping process. Also, other KA

researchers have discussed techniques for the iterative testing and revision of

ideas; e.g. Silverman's expert critiquing systems228; Preece et al's rule-base

verification tools229; Zlatereva's test case generators230; Boose et al's group

decision support systems231; and Compton's ripple-down-rules232,233. HT4/Core

is in the same spirit as these KA researchers. However, we have developed a

detailed computational  model of testing which, we argue, is more general than

these above systems.

We believe that testing is a more powerful KA technique than using abstract inference

procedures. Fundamentally, we do not believe that the different inference procedures

described by (e.g.) KADS are actually different.  Rather, they seem to be blurred

reflections of a single inference procedure (abduction). Underlying the intricacies of

existing KLB methodologies is a minimal set of KR techniques that are the essential

components of artificial expert competency.  We ask proponents of KLB if they have

experimented with simpler alternatives? We note that designs that seem naive at first

228 See section 7.2.4.
229 See section 3.3.1.
230 See section 3.3.2.
231 See section 7.2.3.
232 See sections 2.3.7 & 8.3.1.3.
233 Note two exclusions from this list: repertory grids and KADS.  Repertory grids are (described in section 2.3.8)

are excluded since they only loosely connect concepts (e.g. see Figure 2.10 in section 2.3.8). KADS is
excluded since it is not clear to use the role of prototyping in this approach (see our remarks in section 8.3.1.
regarding difficulties with prototyping in KADS).
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glance may in fact produce satisfactory competency with comparatively less design

effort234.

Even when a KB is developed using these abstract inference procedures, it must still be

tested; i.e. KLB  may be best viewed as a pre-processor to our general abductive-based

technique.  We view knowledge as a dynamic structure that is created in the context of

its need [17, 39, 47]. Inference procedure knowledge is still knowledge, and therefore a

context-dependant dynamic construct that may not be relevant outside of the domain in

which it was primarily evolved. In arguing that inference procedures can be reused

outside of the context in which they were developed, KLB proponents are falling into the

same trap as the expertise transfer techniques it was evolved to avoid.

An opponent to our position could argue that HT4/Core  uses KL-style modelling, but

under a different name.  Recall that experts do not interact directly with the and-or

graphs executed by  HT4/Core . Like Boose et. al. [14], we acknowledge the importance

of mediating representations that allow an expert to specify their reasoning in some form

other than the runtime representation.  In our framework, experts/ knowledge engineers

use a domain-specific macro language that the model compiler expands into an and-or

graph. Proponents of KLB could argue that these macro languages are really knowledge

level constructs. We would disagree. While our macro languages do not preclude the use

of KLA or KLB constructs, it is not necessarily true that they include such constructs.

We impose no structure on the macro languages, excepting that they must be convertible

into and-or graphs. We do not demand that these languages describe goals, states,

operators, or abstract inference procedures. Macro languages that lack such constructs

(e.g. QCM235) are not KLA or KLB.

We have been very critical of the KLB approach in general and KADS in particular. In

order to place these criticisms in perspective, we note that:

• One of the reasons that we can critique KADS so thoroughly is that the KADS

community has documented its work with great care. Wielinga et. al. note that, as

of 1992, has been used in some 40-50 KBS projects [260], 17 of which are

described in published papers. This is an impressive list. Other software

methodologies (e.g. the dominant object-oriented methodologies of [13, 115, 225,

262]) do not report themselves so thoroughly.

• Apart from the area of documentation, the problems we see with  KADS are the

same problems we see with  most of contemporary software engineering. In our

experience, most methodologies are normative prescriptions  of how their

authors think software should be developed rather than descriptions of

234 See section 2.3.7.4.
235 See section 5.4.
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empirically proven useful practice [163].  While early versions of the KLB

methodologies were based on a careful reverse engineering of successful

applications [37], we find that  subsequent work tends more to invention rather

than  a generalisation of prior practice236,237.  As a symptom of this, we note that

there is insufficient evaluation of KLB approaches238.

236 For example, many of the KLB  models listed in [251] were created especially for the book by the authors from
their own undocumented sources (see paragraph 4, page 260 of [251] ).

237 Exception: Clancey  is always careful to develop his KLB with respect to previously developed systems [40].

238 See our remarks regarding the data collection for the Sisyphus-2 experiment in section 8.3.1.2.
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We don't like their sound. Groups of guitars are on the
way out: Decca Recording Company when turning
down the Beatles, 1962.
I have fought a good fight,  I have finished my course,  I
have kept the faith:  2 Timothy iv. 7. A poem is never
completed, only  abandoned: Verlaine. What is
observed is not nature itself, but nature exposed to our
method of questioning… (Concepts) initially formed by
abstraction from  particular situations or experiential
complexes acquire a life of their own: Wiener
Heisenberg. The trouble isn't what people don't know;
it's what they do know that isn't so: Will Rogers. It is no
longer my moral duty as a human being to  achieve an
integrated and unitary set of explanations for my
thoughts and feelings: Browyn Davies.

Modern KA views KBS construction as a modelling activity. Experienced modellers

caution us that models are inaccurate surrogates of reality. The inaccuracies introduced

into models in poorly measured domains may be non-trivial. Most KBS domains are

poorly measured. Potentially inaccurate models containing possibly non-trivial errors

must be tested, lest they generate output that is inappropriate for certain circumstances.

Such testing should not be based on internal syntactic assessment since we know of

examples of working systems that contain internal syntactic anomalies. Our preferred

test is external test suite assessment. Given a model to be tested and a library of known

inputs and outputs, test suite assessment checks that the inputs can lead to the outputs. In

the case of testing in poorly-measured domains, some assumptions may have to be made.

In the case of testing indeterminate or non-monotonic models, these assumptions may be

mutually exclusive and should be managed in independent and internally consistent

assumption sets.

Testing can only demonstrate the presence of bugs, never their absence.  A model that

has "passed" a test may still produce inappropriate output in the future.  Hence, testing

must be repeated whenever new data relating to the domain becomes available.

Pragmatically, this implies that testing is an on-going process right though out the

knowledge acquisition and maintenance process.

Experiments with generalising qualitative hypothesis testing have lead to the

development of a generalised architecture for automatic external test suite assessment of

models. Formally, that architecture is abductive. Hence, generalised test-as-abduction

can not only validate models, but also execute KBS for other abductive domains; e.g.:

• Verification;
• Deduction;
• Consistency-based diagnosis;
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• Set-coverage diagnosis;
• Frame-based reasoning;
• Prediction;
• Explanation;
• Classification;
• Planning & Monitoring;
• Causal/ Qualitative reasoning;
• Design;
• Visual pattern recognition;
• Single-user model-based decision support systems.

Further, generalised-test-as-abduction would be useful in the following domains:
• Group decision support systems;
• Expert critiquing systems.

Some evidence exists that generalised-test-as-abduction would also be useful for:
• Case-based reasoning;
• Natural language processing;
• Certain types of financial reasoning;
• Learning.

More generally, we have argued that Core directly operationalises the model extraction

process which Clancey and Breuker argue is at the core of expert system inference.

When compared with standard KBS frameworks (e.g. KLB) we have found that

generalised test-as-abduction offers a simpler, more unified core for expert systems. We

have proposed generalised test-as-abduction as an alternative to KLB since it can support

(i) many of the inference procedures defined for  KLB ; (ii) the on-going testing required

for a KBS.

Testing imposes certain constraints on the KBS process:

• Assumption management requires dependency  knowledge. Models must support

an and-or graph of edges E and connecting the literals in its vertices V . This low-

level view is not manageable by humans. Hence, we have defined model and data

compilers that input higher-level constructs and convert them down into <E,V> .

• After a certain level of internal connectivity (B= |E|/|V|), indeterminate models

can explain anything. Such models are not amenable to generalised test since

they will incorrectly infer that all behaviours are possible. Hence, we believe that

testing implies  a limit to model complexity.  Experimentally, we have seen that

this limit in the neuroendocrinological domain is B = 7.

• Testing indeterminate models and maintaining separate assumption sets is a

fundamentally  slow process. Experimentally, we have seen that our current

implementation displays an apparently non-cubic behaviour. Theoretically, we

have reasons to believe that the process is exponential on model size (N=|V|).

Hence, we believe that testing implies a limit to model size. Our current

implementation has a limit of N = 850.
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Based on the size and connectivity of models constructed by contemporary KE practice,

we believe that we are already teetering on the edge of testability.  Our results regarding

the limits to testing are taken from the easy case where (i) the search space is explicit

and pre-computed; (ii) I  has an arity of two (i.e. given one literal, we can

deterministically determine which other literals are inconsistent); and (iii) B does not

include time-series data. Logically, such an explicit and-or graph is a finite propositional

theory. To extend our results to full first-order theories/ implicit graphs/ invariants of

arbitrary arity/ testing time series data, simply increase the runtimes.

Note that the discovery of  a O ( N3) abductive inference procedure for cyclic

propositional theories in poorly-measured domains would remove this limit to testing.

Given the fundamentally slow nature of our inference, we do not expect such a discovery

in the near future. Nevertheless, we would encourage active research on this issue. We

have argued for abduction as a unifying design principle for KBS. Research on this

inference procedure would therefore benefit the general KBS process.

The standard reply to our limits to test argument is something like "We'll just divide our

system into little sections". If the sections are truly separate, then this strategy will tame

the complexity of testing. However, if any of the sections share a literal (i.e. refer to the

same concept) then these "separate" sections are part of the same graph; i.e. they are not

truly separate.

The implications of these limits-to-testing results are:

• We should not aim for large models. Rather, our KBS applications  should

comprise multiple small, totally independent sub-sections. We should develop

systems in a breadth-first rather than a depth-first manner. Rather than exploring

the inner complexities of some particular concept, we should build systems based

on large numbers of separate concepts.

• If we do build models bigger than our test-limits, then we should plan what to do

when these models behave inappropriately.   While the usual case may be that

model-based automation can remove the need for scare and expensive workers,

the expected case should be that the system will fail and must be (temporarily)

replaced with a manual system run by skilled staff. Note that organisations will

have to budget for the costs incurred during the failure period. If the failure costs

are prohibitively high (e.g. a computer inappropriately ordering a nuclear missile

attack), then the automatic system should not be built.

There is one case where we concede that models bigger than our test-limits can be built.

Models that are never executed will never produce inappropriate output. Such models do

not need testing. The Boeing school of knowledge acquisition (e.g. [14, 17]) build

models as intermediaries in the group decision support process. Such models may

facilitate the development of an idea or assist in communicating ideas within groups.
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Once this task is achieved, then the model can be discarded. We view this as a special

case. The usual case is that models are built to be executed. Models that will be executed

must be tested.

Note that in the case where we build models larger than our test limits, then we can still

use Core  to perform inference over those models. The internal data structures of Core

are the same as the general state-space approached used by the search community to

heuristically optimise search.  However, in poorly-measured domains (and most KBS

problems are in poorly measured domains239) we caution against this since models that

can't be tested should be used very cautiously or not at all.

The original QMOD/JUSTIN goal was an interactive environment that let multiple

experts around the world rapidly specify and assess their models, and those of their

fellows. We now believe that goal to be unobtainable:

• HT4/Core  used a TMS architecture to avoid the chronological backtracking of

JUSTIN. In doing so, we speed up generalised test by two orders of magnitude.

However, we do not expect much larger increases in the runtime speed.

Generalised test is abduction and this is NP-hard. The creation of an international

QMOD-knowledge base is fundamentally impossible.

• On the positive side, however, it seems that while we cannot build large

consensus knowledge bases, we have found that generalised test prefers large

amounts of data. Hence, we still could aim for the international database of

experimental results.

We find that we have at least three possible research directions:

• We have made a theoretical case that HT4/Core  can be used as the kernel of a

variety of KBS tasks.  This claim should be explored. Core  should be used to

build systems in the domains listed above.

• We believe that configurable BEST operators can declaratively specify much of

the control knowledge for processing and-or graphs. We believe that combining

meta-knowledge of BEST operators with the RDR approach is a starting point for

the creation of ripple-down-modelling (RDM) environment. Standard RDR only

allows the expert to patch declaractive knowledge. RDM would also permit the

patching of control knowledge (expressed as sets of BEST operators). Ideally, the

patching would still allow all old successful inferences to repeat, but corrects

some flaw with the current inference. The goal of  such an environment would be

the  creation of models that exhibit satisfying behaviour for non-trivial domains

using a combination of no prior analysis and structured patching. If such a goal

239 See section 3.1.
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could be reached, then not only would we have replaced KBS inferencing and

validation with generalised test, but KBS analysis as well.

• The experimental studies with the HT4/Core  algorithm could continue. Results

like the fanout limit of 7  were very surprising. This result was only found after

executing numerous models. Perhaps further experiments could yield further

exciting discoveries.

This report began with a discussion of our philosophy of knowledge. It is appropriate

that it ends in the same way:

• Our belief is that if implementation techniques for structured testing

environments are widely known, then their use will lead us  to a more realistic

view of human knowledge. Knowledge will become an active

adventure/exploration that never stops. Those with the wit to carry on the fight

against confusion will earn the  rewards of the modern intellectual hero; i.e. the

honour of  bearing new ideas to their knowledge-hungry fellows.

• We do not share the pessimism of some researchers who lament the end of the

age of certainty240. If we reject a Platonic view of the universe and its somewhat

spurious belief in an absolute "truth", we need not plunge into confusion. Our

implementation experience has been that structured testing environments such as

RDR and generalised-test-as-abduction are highly ordered entities. Recall our

comparative analysis of abductive inference models versus knowledge level

inference modules. We argued that abductive inference modules can unify and

clarify  knowledge level inference models.  That is, (i) non-Platonic architectures

are still amenable to rigorous analysis; so (ii) the opposite to Platonic certainty

need not be chaos.

240 For example, Agnew et. al. forcibly argue for the non-absolute nature of human knowledge. However,
between the lines, we read that they do not like their general conclusion, but reluctantly acknowledge its
inevitability [4].
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And for the tourist who really wants to get away from it
all - safaris in Vietnam: Newsweek, late 1960s.
Imagine that the computational limits of generalised
testing were somehow magically lifted. International
knowledge bases could then be built, and constantly
reviewed. Knowledge is power. Could we resist the
temptation to abuse such a resources?

Last Monday I got rich. It happened like this...

Every Monday, "OldManEmu" meets in my office (cause I've got the best graphics

terminal).  Officially, we're the "TestNet OZ-A hypothesis testing team" but since

everyone else was naming their groups "Socrates" and "Plato" we changed our name to

something all-wise and local.

A fly on the wall would have noticed that we were all a little distracted. As we argued

(yet again) about our local policy for billing outside searches, we'd occasionally peek a

glance at my screen. Nothing big was happening on TestNet so the screen was just

doodling away to itself with a screen saver. There's always something happening: some

low priority, long half-life query kicking round from site to site looking for an insight

that might make it useful. We call them ghosts. Once I set off a ghost to do the

following:
for every thing that can be proved,
try and disprove it,
and explain the reasoning that lead  to the refutation

I'd forgotten all about it till a few years back when it arrived home. The poor thing had

been kicked off every site in the world since it used too much CPU and memory. Finally,

after an exhaustive search of the globe, it came back to me and said that false was false

by definition. Roughly speaking, I had asked it  "why not?" and it had replied "just

because." Such is the miracle of modern hypothesis testing. I shudder to think of the

query-debt my little joke built up.

Anyway, my screen was programmed to run the screen save until some non-trivial spike

in the network traffic happened  (say, more than 2 gig per minute). And we were

expecting a big spike, real soon now. Meanwhile, we got on with the paper work. We've

got expert systems managing our queries, that but still, some human has to make the

policy decisions based on some very-illogical political reasons.

John was arguing for a you-scratch-me and I'll-scratch-you policy. "Lets log the queries

that extend our hypothesis space and favour transactions with sites that score high on

that log.", he argued.
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I wasn't too sure. "How does that sit with local control?", I asked. Local control is the

official non-organising principal of TestNet. It takes a lot of resources to set up a

TestNet node like us.  The way hypothesis testing works, no one can remove an old

hypothesis. Knowledge has to be write once/ delete never otherwise you can't test old

premises. So, our basement floor is chock full of all our disc drives that store all the

versions of our knowledge bases. No one wants to hand over those resources to some

central body (remember, knowledge is power) so all the nodes in TestNet have guardians

that control the in-coming searches. Once a query arrives, its up to the local site to

control the inferencing associated with that query.

"Guardian could monitor our out-goings as well", argued John, "and he'd maintain the

logs. We'd preferentially discount queries from sites that give us more CPU-share and

better results when our queries hit their sites."

 "And the network overheads associated with the monitoring?" asked Paula. John

shrugged. "Compared to actually running the queries? Trivial."

 I was surprised. John's shrug is usually louder and ruder. Especially with Paula. Don't
know why they ever got married. Now that would be a good hypothesis to test: "John

and Paula really love each other". Should chew up a few CPU cycles. Don't laugh. Ever

since we cracked natural language parsing,  we can process free-form queries like that. I

mused on how it would be processed. First, TestNet would be explored for partially

confirming evidence and I guess the marriage certificate would be found. Once some

tentative evidence had been found for the proposition, then a larger search could be

justified. Canberra's computers would be accessed for income tax and health records.

The query would be processed by refutation. "Innocent till proven guilty" is the general

hypothesis testing principal. Any statement can be added to the hypothesis space and

remains unchanged until it generate contradictions or can be explicitly proven false.

Unless some record could be found of marital discord (police records of bashing,

spending sprees that could not be covered by their budgets, etc), TestNet would conclude

that John and Paula really did love each other.

Not that a human would notice of course. The way they fight.

I remember the dull old days when hypothesis testing was confined to published papers.

We used to have a floor of galley slaves that read the papers from all the journals,

extracted an abstracted description, entered an  executable version of that description in

our hypothesis space, and then looked for any experimental evidence that referred to

those hypotheses. Then, one fine day in 2003, someone added a natural language writer

to their hypothesis tester and it wrote a paper outlining  the discrepancies in what it had

just been looking at, as well as some proposed fixes to the faulty model. The next step

was obvious. Us humans stopped reading and writing the papers. Instead, we monitored
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changes in the hypotheses spaces around the world. Pretty soon all the hypothesis testing

sites had a permanent background process running that reviewed the additions to the

other sites. Rapidly changing hypotheses collected more attention as we performed our

vulture act around new ideas. Sure, we still published. But we published active

knowledge bases and hooked them into TestNet.  I heard that Addison-Wesley once tried

to sue TestNet. No one took much notice. Just the last kick of the paper dinosaur.

"But how do we know that the other sites are favouring us the same way?", asked Paula.

John went on to explain his ideas of "test queries", simple little assertions that any

mainframe could answer in isolation. "We just shoot off a couple and measure the

response time. The quicker the response, the more favoured we are." he explained.

 "It shouldn't just be a time thing", she said. "Some sites spend longer because their

hypothesis space is richer. I'd rather a query was explored thoroughly and not in some

rapid-fire superficial way that missed an answer."

John disagreed but I only half-listened to them. I mused about what hypothesis testing

had done to the scientific process (while keeping half an eye on my screen.  Which still

doodled to itself). I read in the history books that it used to take up to two years for a

paper to go from be written to being published. The same cycle now takes about two

minutes. What was that as a speed-up?  60 minutes an hour, 24 hours in a day, 365 days

in a year, two years, divided by two minutes... I reached for the calculator to work that

out when BING!, my screen lit up like a Christmas tree.

Paula and John instantly forgot their argument (it occurred to me later they were just

amusing themselves while we were waiting). We all scrambled for the screen. Paula

glanced at the new display of the TestNet traffic and bellowed out a gutsy laugh. "Its

back on the air!", she cried. "Just when I said it would."

"China-B?" I asked. Paula's hands flew over the controls. The map of the world on

screen spun a round and we fly into the Chinese mainland. The screen showed network

traffic as vertical height. Over Beijing, a spike was forming.

China-B. It had to be. Two weeks ago, the Beijing TestNet site had announced a

temporary withdrawal from the net. Sites did that from time to time to process the back-

log of new hypothesis that couldn't be sorted out while the rest of the net demanded CPU

time. The genetic algorithms crew call this "computer punctuated evolution". Which is a

fancy way of saying its better to work on a new idea in a quiet room rather than in the

middle of a crowd. Crowds tend to shout things down. Ideas grown in (temporary)

isolation can  develop the power required to survive back in the fray.

But China-B was special. Some of the intuitive jumps being made from that site were

getting a little outrageous. Every site made a few little leaps, every now and again. We

run our learning programs against our hypothesis space and sometimes discovered some



210

new descriptors or abstracters. Usually the new ideas were only a small distance from

the old hypothesis.  But not at China-B. Some of its new ideas were really over the top.

That one about whales talking to the dolphins convinced TestNet that some program had

a diode loose over there in Beijing. Soon, net traffic to that site dropped. China-B then

announced a two-week holiday.  I thought that was a little odd. If a learning program

goes screwy, I just  amputate it without leaving the net. If China-B was withdrawing,

then I felt that  some new learning algorithm was being debugged and China-B wanted

some peace and quiet to do some tests. So I checked the idea. I posted the hypothesis to

the net and it generated no contradictions.

(Most people don't appreciate that TestNet never proves its' hypothesis- it merely reports

failures to disprove. Experiments last century came to the  reluctant conclusion that a

closed-world assumption means you have to load all your common sense knowledge into

the closed world. TestNet is more pragmatic. We just load in whatever knowledge

source is a available and always check it when new data arrives. But the public doesn't
understand. There was a famous interview on a day-time chat show where some business

analyst was moaning about the way TestNet dribbles out conclusions to the rest of the

world.

"You guys sit on information that could be of enormous national importance and keep us

in the dark", he complained.

"Course we do" said the controller from TestNet Chicago. "Every time we let something

out, the markets go crazy. Its scary to think that you guys trust TestNet's ideas so

completely."

"And why not? TestNet is the most checked information source on the planet."

Chicago got really upset at this. She leant over the analyst and shouted at him, veins

bulging on her neck: "Just because we can't refute something, doesn't mean its true!")

Anyway, when a new version of a learning program logs back on to the net, things

usually go wild for a while till the rest of the world sorts out if it is genius or really just

plain crazy. We watched the net traffic around China-B scream like a new born baby

"Its growing unusually fast." commented Paula.

I agreed. "Pull back a little. Lets get the big picture."

Paula flew us backwards from Beijing. We hovered some 30 clicks out of town and

watched it grow. And grow. And grow.

"Ever seen anything grow that fast before?" John asked me. I shook my head and

grabbed the second terminal. "Lets just get an average vector on the data transfer."

The phone rang. John took it. The face of the technical from the basement flashed up on

the screen. "Hey," he asked," what's going on? We're on fire down here."



211

"Show us what you mean." asked John, glancing at me. I'd got my vector and a little

alarm bell was ringing in my mind. The technical grabbed the handset and panned it over

the disc drives. On the side of the drives are little lights that indicate the network traffic.

Normally, write-once knowledge bases have a large redundancy rate. The rule-of-thumb

was that the knowledge base at any TestNet site was only every 1% queried in any one

day. That meant that most of our drives spun quietly to themselves without being

queried. But now, all the access lights buzzed like angry red bees.

"Its China-B", I explained. "The vector?" asked Paula. I nodded.

"Why?" said John. "What's so special about our site?"

"Nothing."

"???"

"It 's chewing up everyone's CPU. Paula, pull back and show us the Pacific picture."

Paula hesitated. "This is a hard movie to turn off", she commented. John and me turned

back to the view over Beijing.  China-B's spike now was towering over the city and

reaching orbital heights. The spike's colours indicated the useful query rate. Queries

resulted in hypothesis refinements were coloured gold.  Queries that were timed-out

before they terminated were coloured blood-red. Useless queries were black. Active

queries were green.  The shape of the spike is also coded. Width is the  data transfer rate

and height the derivative of the transfer rate. Brightness measures the average age of the

queries: fresh queries are really bright while old ones are kind of dim. China-B's spike

was a slender green shoot rearing up over the city, shooting skywards, and glowing with

a neon brightness. Little gold flashes sparkled up and down the spike. I'd never seen

anything so big.

"Never mind that now. You can watch the replays tomorrow." John said . "Take us up."

Paula snarled at John, then threw him the keyboard. "You fly."

John made a neat catch and pulled us out of Beijing.  On the screen we flew upwards till

the horizon was a circle beneath us. The whole Pacific region was on display.

"Cutting in access filter... now" said John, then gasped. The whole Pacific region lit in

green cobwebs. Radiating out from China-B was more net traffic that we'd ever seen.

Every node in TestNet was being flooded with queries like the ones at work downstairs.

"Now do you see?" I said. "There's nothing special about our sight. China-B is re-testing

every hypothesis. Also, it seems its been hooked into a truly huge network over there.

Response time over at Beijing is currently averaging 11.3 seconds."

Paula looked startled. "But that's a tenth of ours and they're handling all that traffic."

"I know", I said, "but for some reason Beijing wants the world to use China-B. They've

given it massive resources."
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"Now why do they want to do that?" mused John. "Why be so nice to the rest of the

world? Bit suspicious, don't you think?"

"You 're not suggesting that China-B is trying to LIE to the net?" asked Paula

sarcastically. I winced at her tone but agreed with the sentiment. Once upon a time, a lot

of people were worried that TestNet would be used to spread disinformation. My PhD

thesis was a hush-hush DoD project to try and lie to the net. Didn't work. Every lie I

produced generated so many inconsistencies that traffic to my node dropped off to zero.

My general conclusion was that the effort required to generate a good lie was equal to

the effort required to enter all the knowledge into the net. Nowadays, no one worries

about lies. But still, China-B was acting very strange.

My computer went PING! and a little dialogue box popped up.

"Priority query returning." said John, reading the screen. "You got any ghosts running?"

I shook my head. "What's it say?"

John read the fine print. "It's a funny one: False is false by definition."

Two surprises in one day. "You're kidding. That ghost terminated years ago."

"Well its back on the screen now."

Then Paula made the statement that made me very rich (yes, yes, I paid her a cut).

"Now why would China-B have reset it's knowledge base?"

We asked her what she was talking about. No one reset KBs. TestNet has to be a write-

once system. Etc.    She waved all our remarks aside. "John, give us a read-out on the

CPU and  elapsed time on Tim's ghost."

"Four years in CPU, twenty years elapsed."

Paula leant over to me. "When were you an undergrad? 2010?  Thirty  years ago? That

ghost has lost ten years of its elapsed life. China-B has reset."

"I see what you mean." I said. If a TestNet site reset its hypothesis space to some point in

the past, then when it came back on to the net it would have some catching up to do.

However, the catch-up would be relatively fast. Many of the hot topics current at the

reset point would be resolved during the "lost" time. The catch-up would really be just a

run around of the other TestNet sites asking them for the answers. It would generate a

query pattern much like the one we were seeing here. China-B was now getting all the

solutions to last decade's problems: the aids vaccine, the hyper-space drive, and which

religion was true.

There was a catch, however. Simply throwing away a decades thinking would be like

amputating with a chain saw. Messy. We'd notice the wound. China-B would have to set

off a whole suite of demons to patch the wound. "And that would take weeks", I said.
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Paula nodded. "China-B's been down for weeks. I bet you they spent that time resetting

and vacuuming their KB. Your little query was so low priority and so unpopular that

their consistency demons just missed it."  She pushed John away from the terminal.

"Lets do a little hunting. Can we come off the net for a while? I may need the CPU."

There's no such thing as "spare CPU" in a TestNet node. Every time we upgrade the

machines, some smart-arsed postgrad comes up with a better learning program that

chews up more processor time. Also, each upgrade makes us more attractive to queries

from other sites. And the number of TestNet users increases exponentially each year.

Paula had a hypothesis to check and she wanted to get all our OS queries off our

machines. I didn't know what she was up to but she's pulled a few rabbits out of the hat

before. I grabbed the phone and called down to the Technical. Told him we were coming

off the net.

John leant over and said "What do you need?"  I have a theory about those two (which

I'll never put onto the net). They only stayed married because they can navigate TestNet

better than any other pair I know. I sat back to enjoy the show. This could be good.

Paula explained. "I'm looking for a China-related hypothesis that is true now and wasn't
true before China-B came up."

John nodded. "Something that could be disproved in a month or two, and China-B would

still benefit."

"Check" she said. "Generation-one should relate to current motivations of China-B.

What's their current problem space?"

Paula and John bent to work. I began to get the idea. They thought  China-B was trying

to flood TestNet with some mis-information. But to do it, they had to bury it in a

mountain of "new" conclusions. By the time we sorted it all out and found the

inconsistency, it would be too late. But too late for what?

The generation-one queries were spreading out over our site. Hypothesis testing is

mostly spent trying to come up with an appropriate language for describing the queries.

A query language is designed, used, and the usage monitored. A few test queries are

posted and these suggest promising lines of inquiry. Or they don't. In which case the

language is modified (maybe by a human and maybe by a learner).

John and Paula had posted some queries and were watching the results.  A background

demon popped up and reported the estimated cost of the extra resources now cut into

China-B.

John whistled. "This is big. Major league government expense."

Paula snapped her fingers. "Government! Modify generation one. Change motivation

search from China-B to Chinese government."
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"Gotcha" said John and set to work to modify the descriptors in the generation-one

language. The new query was posted and the results were much shorter this time. This

encouraged them to work on and devise a generation-two language especially for small-

scale temporal events.

I went for coffee. Ten minutes later, I brought back two cups for them and placed then

by the terminal. They drank the coffee, but I don't think they even noticed. I watched as

these two maestros reduced the search space. Another demon woke up and suggested

that agricultural goods could be a useful descriptor in the queries. John quickly whipped

up generation-four of the query language. (Generation-three had come and gone while I

was at coffee. Some dead-end to do with weather variations).

Then, Paula nodded. "Enough private thinking. Lets get back on the net." I rang the

technical and got us re-installed. We got a glimpse then of the havoc China-B as causing.

We did a quick spin around the planet and green tendrils showed everywhere. Suddenly,

over the horizon, a huge spoke came  flying towards us. John grabbed the joystick and

banked us right. The China-B spike (now a huge thick tree jutting out over much of

northern China) swiped by us. For a moment, our screen was full of gold stars.

"That makes me giddy." I said.

"Hey, look" said John, "Tokyo is down."   On the screen, the TestNet picture of Tokyo

was a white gap.

"Now why would they be off the net?" I asked.

 "Same reason as us?" wondered Paula.

"Lets give them a call." I suggested. I got their telephone number and contacted the

Tokyo controller.

 "Hail Emu!" she said. "How do you like the show?"

"Pretty lights." said John.

"Pretty suspicious if you ask me," said Tokyo. "We saw you going on vacation. Good to

see you back. Any ideas?"

"You show us yours and we'll show you ours." said Paula. "Got a land-line?"

Tokyo and Paula arranged a language swap. They were slightly ahead of us. Their

generation-five and our generation-four descriptors combined and we ran the new query.

No luck. We both cut out of the net to give our learners a chance to chew on the

generation-six language. Soon our screen was full of nouns and verbs all to do with

crops.

"What is all this?" asked Paula.
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"Looks like learner wants us to check out the farms." said John. "Lets give it a shot..."

Generation-eight was all based around farming crops. We wrote some  queries and set

them off in. Five minutes later...

"Wheat" said Paula.

"What?" I asked.

"Wheat." she explained. "China-B has reversed the sign on an equation that relates to the

nitrogen uptake of a new wheat fertiliser used in the southern provinces. That's the lie."

"Sure?"

"Damn positive." she said. "And its an obscure a reference as you will ever find."

"OK." I said. "John, get some models going. Predictions of crop yields for wheat with

that sign negated... Oh, already done?"

"You betcha", he said pointing to the screen. "Someone's made a BIG mistake. Yield

down 30%. Real famine stuff. China-B wanted to hide it for a month while it bought up

big on the world market."

"And in the meantime, they're telling us that they have an over-production so the prices

drop. " I said. "Then, in a month's time when the lie surfaces, they've bought their wheat

at a depressed price.  Clever."

"So what do we do?" asked Paula.

"What do you mean?" asked John.

“We can't just tell everyone." said Paula.

"Why not?"

"Because China needs it's wheat. If the prices go up..."

And so the next John/Paula war started. Paula wanted to squash the finding.  John said

that it couldn't be done; that Tokyo had our generation four language and learners just as

good as us and that they'll work it out any minute now.

Me? I kept silent but I agreed with John. You can't lie to TestNet. Its too big. Just

maintaining truth was hard enough, let alone a good lie.  Sure, we had a head start from

my old ghost but other sites would catch on soon enough. In fact, over John and Paula's
shoulders, I could see more and more white gaps on the screen. All over the globe, sites

were going off the net (no prizes for guessing what they were working on). China will

just have to negotiate a wheat deal. And check its fertilisers better next time.

I rose to go. Paula stopped me.  "Where are you going?" she demanded.

"Well..." I said reluctantly, "you guys are making such a racket and I need to make a

phone call."

To my stock broker. Like I said, Monday was the day I got rich. Buying wheat.
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X-rays will prove to be a hoax: Lord Kelvin.
Many shall run to and fro, and knowledge shall be
increased: Daniel 12:4. Those who do not remember
the past are condemned to repeat it:  Santayana.
Knowledge cannot start from nothing- from a tabula
rasa- nor yet from observation. The advance of
knowledge consists, mainly, in the modification of
earlier knowledge: Karl Popper. If you want new ideas,
read old books: Ivan Pavlov.
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