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 A single inference procedure (abduction) can operationalise a wide variety of
 knowledge-level modelling problem solving methods ;  i . e .  prediction ,  classification ,
 explanation ,  tutoring ,  qualitative reasoning ,  planning ,  monitoring ,  set-covering
 diagnosis ,  consistency-based diagnosis ,  validation ,  and verification .  This abductive
 approach of fers a uniform view of dif ferent problem solving methods in the style
 proposed by Clancey and Breuker .  Also ,  this adbuctive approach is easily extensible
 to validation ;  i . e .  using this technique we can implement both inference tools and
 testing tools .  Further ,  abduction can execute in vague and conflicting domains
 (which we believe occur very frequently) .  We therefore propose abduction as a
 framework for knowledge-level modelling .  ÷  1996  Academic  Press  Limited

 1 .  Introduction

 In the 1970s and early 1980s ,  several high-profile expert system successes were
 documented :  e . g .  MYCIN (Yu  et al . ,  1979) ,  CASNET (Weiss ,  Kulikowski &
 Amarel ,  1978) ,  PROSPECTOR (Campbell ,  Hoilister ,  Duda & Hart ,  1982 ;  Duda ,
 Hart & Reboh ,  1985) and XCON (Bachant & McDermott ,  1984) .  However ,  despite
 careful attempts to generalize this work (e . g .  Stefik  et al . ,  1982) ,  expert systems
 construction remains a somewhat hit-and-miss process .  By the end of the 1980s ,  it
 was recognized that our design concepts for knowledge-based systems were
 incomplete (Buchanan & Smith ,  1989) .

 A new expert system design approach (which has come to dominate the
 knowledge acquisition field) is the search for reusable abstract domain-independent
 problem-solving strategies .  We call this approach  KL B   since it is a variant of
 Newell’s  knowledge le !  el  (KL) modelling approach (Newell ,  1982 ,  1993 ;  Newell ,
 Yost ,  Laird ,  Rosenbloom & Altmann ,  1991 ;  Menzies ,  1995) .  The fundamental
 premise of  KL B   is that a knowledge base should be divided into domain-specific
 facts and domain-independent abstract problem solving inference procedures [e . g .
 Clancey’s (1992) model construction operators ,  Steels’ (1990) components of
 expertise ,  Chandrasekaran’s task analysis ,  SPARK / BURN / FIREFIGHTER
 (Marques ,  Dallemagne ,  Kliner ,  McDermott & Tung ,  1992) and KADS (Wielinga ,
 Schreiber & Breuker ,  1992)] .   KL A   refers to Newell’s research on the knowledge
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 level (Newell ,  1982 ,  1993 ;  Newell  et al . ,  1991) and the SOAR project (Yost &
 Newell ,  1989 ;  Rosenbloom ,  Laird & Newell ,  1993) .   KL A   does not explicitly model
 problem-solving procedures .  The observation that a  KL A   system such as SOAR is
 performing classification is a user-interpretation of the following .

 (1)  The application of domain-specific knowledge controlling  .  .  .
 (2)  .  .  .  a single inference procedure (operator selection over a problem space

 traversal) (Yost & Newell ,  1989) .

 This paper argues for a variant on the  KL A   approach .  Like  KL A  ,  we will use a
 single inference procedure (abduction) .  However ,  we take a graph-theoretic
 approach rather than the production-system approach used by SOAR (see Section
 6 . 2 .  for a comparision of our approach and SOAR) .  We find that a wide-variety of
 problem solving strategies are merely dif ferent types of calls to the same abduction
 procedure .  Such uniformity simplifies the construction of interfaces between the
 inputs and outputs of dif ferent problem solving types .  Breuker argues that such
 interfacing is essential since most problem solving types are used in combination to
 perform some task (Breuker ,  1994) .

 Far from being a radical proposal ,  we find that our abductive process directly
 operationalizes the  theory subset extraction  process that Breuker (1994) and Clancey
 (1985 ,  1992) argue is at the core of expert systems .  Clancey of fers a two-layered
 extraction process (qualitative model to situation-specific model) while Breuker
 of fers a four-layered view (generic domain model to case model to conclusion to
 argument structure) .  We take theory subset extraction to be a literal description of
 the internals of expert systems inference .  Our research goal is the description of the
 minimal architecture necessary to perform this process .

 This paper is organized as follows .  A summary of the terms introduced in this
 article is given in Figure 1 .  Section 2 describes the  theory subset extraction  described
 by Clancey and Breuker .  Section 3 describes our  abducti !  e  framework .  Section 4
 discusses the use of abduction for a variety of  KL B   tasks ;  i . e .  prediction ,
 classification ,  explanation ,  tutoring ,  qualitative reasoning ,  planning ,  monitoring ,
 set-covering diagnosis ,  consistency-based diagnosis ,  validation ,  and verification .
 Section 5 discusses the practicality of our proposal .  Section 6 discusses some related
 work and issues .

 Note that this work is part of our  abducti !  e reasoning project .  We believe that
 abduction provides a comprehensive picture of declarative knowledge-based systems
 (KBS) inference .  Apart from the problem solving methods discussed here ,  we also
 believe that abduction is a useful framework for intelligent decision support systems
 (Menzies ,  1995 a ) ,  diagrammatic reasoning (Menzies & Compton ,  1994) ,  single-user
 knowledge acquisition ,  and multiple-expert knowledge acquisition (Menzies ,  1995 c ) .
 Further ,  abduction could model certain interesting features of human cognition
 (Menzies ,  1995 d ) .  Others argue elsewhere that abduction is also a framework for
 natural-language processing (Ng & Mooney) ,  design (Poole ,  1990 a ) ,  visual pattern
 recognition (Poole ,  1990 b ) ,  analogical reasoning (Falkenhainer ,  1990) ,  financial
 reasoning (Hamscher ,  1990) ,  machine learning (Hirata ,  1994) and case-based
 reasoning (Leake ,  1993) .
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 " X  " ,  X  !  Y  Size of the set  X ,  the intersection of the sets  X  and  Y

 S  A statement provided by an expert .
 T  A theory comprising a set of statements ;  e . g .  Figures 2 and 9 .

 D  A dependency graph showing connections between literals in  T  ;  e . g .
 Figures 3 and 10 .

 # V  ,  E $  Vertices and edges in  D .  Vertices are either and-vertices  V  and   or
 or-vertices  V  o r .

 I  An invariants predicate reporting pairs of incompatible vertices in
 D .

 NOGOODS  Sets of incompatible vertices ;  generated using  I .

 model compiler  A translator from  T  to  D .
 F  The fanout of  D ;  i . e .  average number of edges from a vertex .

 F  #
 " E "
 " V  "

 .

 OUT  The subset of  V  we are trying to explain .
 IN  The subset of  V  which are acceptable starting-points of an

 explantion .
 FACTS  Vertices we cannot doubt .

 DEFAULTS  IN  vertices that are not  FACTS .

 P  Proof trees connecting  OUT  to  IN .  Each proof  P i   using vertices
 V  used

 i  ,  and avoids the vertices  V  forbid
 i  .

 A  Assumptions made by  P ;  i . e .   P  used
 i  $  FACTS .

 A C  Assumptions which  I  tells us are contradictory .
 A B  The most upstream controversial assumptions .

 ENV  Maximal (with respect to size) consistent (defined using  I ) subsets
 of  A B .

 W i  A world :  the set of proofs that are consistent with  ENV i ;  e . g .
 Figures 4 and 5 .

 co !  er , causes  Outputs and inputs in a world .   co !  er  #  " OUT  !  W i " ;   causes  #  " IN  !
 W i " .

 BEST  Competing worlds are judged by the  BEST  assessment operator .

 TASK  The goal of an inference procedure :   TASK  #  # BEST  ,  IN ,  OUT  $ .

 F IGURE  1 .  Summary of terms .

 2 .  Clancey & Breuker

 In this section ,  we argue that the common theme between Clancey’s and Breuker’s
 view of expert systems inference is the extraction of sub-theory from a super-theory .

 2 . 1 .  MODEL CONSTRUCTION OPERATORS

 Clancey characterizes expert system inference as model construction operators that
 create a  situation - specific model  (SSM) from a general  qualitati !  e model  (QM) in the
 knowledge base (KB) .  Clancey’s QM is like a first-order theory whose relations
 model causality ,  sub-types ,  and temporal relations .  At runtime ,  portions of this
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 theory are accessed and the variables are bound .  This ground subset of the full
 theory is the SSM ;  i . e .  ‘‘the specific model the program is constructing of the
 particular system it is (processing)’’ (Clancey ,  1992) .  This specific model is the subset
 of the QM that is relevant to the task at hand .

 Clancey argues that there are two basic problem-solving methods used by expert
 systems :   heuristic classification  and  heuristic construction  (Clancey ,  1992) .  By
 heuristic classification ,  Clancey means that the inference engine merely  selects  a
 pre-existing inference path .  In heuristic classification ,  this pathway would include the
 following .

 $  Inference to an abstracted description of the problem at hand .
 $  A partial match of this problem to an abstracted solution .
 $  An inference that specialises the abstracted solution to a solution relevant to

 the current problem .

 By heuristic construction ,  Clancey means that the inference engine  constructs  its
 conclusions from partial inferences supplied in the knowledge base .  Construction is
 much harder than mere selection .  Literals in dif ferent partial proofs may be
 mutually exclusive ;  i . e .  while we can believe  A  ∨  B ,  it may not be true that we can
 believe  A  ∧  B .  The constructed SSM must be built with care in order to take into
 account these  cancelation interactions .  Multiple ,  mutually exclusive ,  SSMs may be
 possible and these must be mamaged separately .  Extra architecture is required to
 handle conflicts and dependencies within the SSM .

 2 . 2 .  COMPONENTS OF SOLUTIONS

 Breuker explores the relationships between problem solving techniques used in
 expert systems (i . e .  modelling ,  planning ,  design ,  assignment ,  prediction ,  assessment ,
 monitoring and diagnosis) (Breuker ,  1994) .  He of fers an abstract description of the
 ‘‘components of a solution’’ generated by these techniques which ,  he argues ,  are of
 four types .

 $  A  case model  (equivalent to Clancey’s SSM) that represents some understand-
 ing of a problem .

 $  A  conclusion ,  which is some answer to a question posed by the problem
 definition .

 $  An  argument structure ,  which is supporting evidence for the conclusion
 generated .

 $  The case model which is generated from some  generic domain model
 (equivalent to Clancey’s QM) .

 An argument structure is extracted from the case model .  The conclusion is the
 portion of an argument structure that is relevant to the user .  In the case where all
 the solution components are represented as a ground propositional theory whose
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 F IGURE  2 .  An indeterminate qualitative theory .

 dependency graph has edges  E ,  then :

 edges ( answer )  ‘
 edges ( argument  structure )  ‘

 edges ( case  model )  ‘
 ( edges ( generic  domain  model )  #  E )

 where  edges ( X  ) denotes the edges of the dependency graph present in  X .

 2 . 3 .  THEORY SUBSET EXTRACTION :  AN EXAMPLE

 We now describe theory subset extraction in detail using a theory of vertices  V  and
 edges  E .  This example will informally introduce many of the concepts we will return
 to later .  In summary ,  we will search our theory for a subset of its edges that are
 relevant to some problem .  The found subset must be internally consistent (i . e .  we
 have to check for cancelation ef fects between mutually exclusive assumptions) .

 Consider the qualitative theory (Iwasaki ,  1989) of Figure 2 .
 In that figure :

 $  all vertices can take one of three values :   UP , DOWN ,  or  STEADY ;
 $  X  ÅÅ 5

 ""
 Y  denotes that  Y  being  UP  or  DOWN  could be explained by  X  being

 UP  or  DOWN  respectively ;
 $  X  ÅÅ 5

 $$
 Y  denotes that  Y  being  UP  or  DOWN  could be explained by  X  being

 DOWN  or  UP  respectively .

 Let us make some qualitative reasoning assumptions about Figure 2 :

 $  the conjunction of an  UP  and a  DOWN  can explain a  STEADY ;
 $  no change can be explained in terms of a  STEADY  (i . e .  a  STEADY  vertex has

 no children) .

 With these assumptions ,  we can expand Figure 2 in to Figure 3 .  That figure
 contains one vertex for each possible state of the vertices of Figure 2 .  It also
 contains  and  vertices that models combinations of influences (for example ,   aUp  and
 bUp  leads to  cSteady ) .

 Figure 3 represents the superset of all explanations possible from Figure 2 ;  i . e .  it is
 an explicit ground version of Clancey’s QM and Breuker’s generic domain model .
 Given some inputs (denoted  IN ) and some desired goals (denoted  OUT  ) ,  then we
 can use Figure 3 to generate a set of explanatory proofs (denoted  P ) .  For example ,
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 F IGURE  3 .  The edges  E  tacit in Figure 2 .

 if
 IN # % aUp ,  bUP &
 OUT # % dUp ,  eUp ,  fDown &

 then all the proofs which can link members of  IN  to members of  OUT  across Figure
 3 are :
 p(1) # aUp  5  xUp  5  yUp  5 dUp
 p(2) # aUp  5  cUp  5  gUp  5 dUp
 p(3) # aUp  5  cUp  5  gUp  5 eUp
 p(4) # bUp  5  cDown  5  gDown  5 fDown
 p(5) # bUp  5  fDown

 Some of these proofs are contradictory since that make conflicting  assumptions .
 An assumption is a literal that is not one of the known  FACTS  (typically ,
 FACTS  #  IN  "  OUT  ) .  Our assumptions are  % xUp ,  yUp ,  cUp ,  gUp ,  cDown ,
 gDown & .   If we assume that an entity can’t be in two dif ferent states at the same time ,
 then the following assumptions are conflicting and controversial :   % cUp ,  gUp ,
 cDown ,  gDown & .   Note that ,  in Figure 2 ,   g  is fully determined by  c .  Therefore ,  in
 terms of sorting out the various possibilities ,  the key controversial assumptions are
 % cUp ,  gUp &   and  % cDown ,  gDown & .

 Depending on which controversial assumptions we adopt ,  we can believe dif ferent
 things .  In this example ,  we have two possibilities :  one for  % cUp ,  dUp &   and one for
 % cDown ,  dDown & .   The proofs that are consistent with  % cUp ,  dUp &   are  % P 1 ,  P 2 ,  P 3 ,  P 5 &
 and the proofs that are consistent with  % cDown ,  dDown &   are  % P 1 ,  P 4 ,  P 5 & .  The union of
 the proofs that we can believe at the same time are the Clancey SSM or the
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xUp yUp
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eUp

gUpcUp
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bUp fDown

 F IGURE  4 .  Case model  4 1 :  the union of proofs that are consistent with  % cUp ,  gUp & .

 Breuker case model (we will call them  worlds  below) .  There are two such case
 models ,  shown in Figure 4 and Figure 5 .

 Queries can be executed over each case model to generate Breuker’s argument
 structures or conclusions .  For example ,  in case model 4 1 (Figure 4) ,  an argument
 structure for the conclusion  dUp  could be  aUp  5  xUp  5  yUp  5 dUp .

 3 .  Abduction

 We believe that abduction is a powerful framework for describing the above theory
 subset extraction process .  In this section ,  we repeat the above example in terms of
 HT4 (Menzies ,  1995 c ) ,  our preferred abductive framework .  In the next section ,  we
 will argue that many  KL B   tasks are just dif ferent ways of calling HT4 .

 3 . 1 .  DEFINITIONS

 Informally ,  abduction is typically defined as inference to the best explanation (e . g .
 Rourke ,  1990) .  Given  %  ,  &  ,  and the rule  R 1  :  %  !  &  ,  then  deduction  is using the rule
 and its preconditions to make a conclusion ( %  ∧  R 1  é  &  ) ;   induction  is learning  R 1
 after seeing numerous examples of  &   and  %  ;  and  abduction  is using the postcondi-
 tion and the rule to assume that the precondition could explain the postcondition
 ( &  ∧  R 1  é  %  )   (Levesque ,  1989) .  Abduction is not a certain inference and its results
 must be checked by an inference assessment operator [which we call  BEST  and
 Bylander ,  Allemang ,  Tanner & Josephson (1991) call the plausbility operator  pl ] .

 3 . 2 .  HT4 AND ABDUCTION

 More formally ,  abduction is the search for assumptions  A  which ,  when combined
 with some theory  T  achieves some set of goals  OUT  without causing some
 contradiction (Eshghi ,  1993) .  That is :

 EQ 1 :  V  "  A  !  OUT
 EQ 2 :  T  "  A  Ö !  "

xUp yUp
dUp

aUp

cDown gDown

bDown fDown

 F IGURE  5 .  Case model  4 2 :  the union of proofs that are consistent with  % cDown ,  gDown & .
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 While abduction can be used to generate explanation engines (see Section 4 . 3) ,  we
 believe that  EQ 1  and  EQ 2  are more than just a description of ‘‘inference to the best
 explanation’’ .   EQ 1  and  EQ 2  can be summarized as follows :  make what inferences
 you can that are relevant to some goal ,  without causing any contradictions .  Note
 that the proof trees used to solve  EQ 1  and  EQ 2  are the case models / SSMs / worlds
 we seek to compute .

 To execute HT4 ,  the user must supply a theory  T  (e . g .   T 1  #  Figure 2) comprising a
 set of uniquely labelled statements  S x .  For example ,  from Figure 2 ,  we could say
 that :

 s[1] # plus – plus(a , c) .
 s[2] # minus – minus(b , c) .
 etc .

 An  S i   statement is like a macro that expands into the super-set of explanations
 acceptable to the author of  S i  .  This super-set is the search space for the proof
 generation .  We represent this search space as a dependency graph  D .   D  is directed
 and possibly cyclic .  Figure 3 shows  D 1 ,  the dependency graph generated from  T 1 .   D
 is an and-or graph comprising  ## V  a n d ,  V  o r $ ,  E ,   I $ ;  i . e .  a set of directed edges  E
 connecting vertices  V  containing invariants  I .   I  is defined in the negative ;  i . e .   — l I
 means that no invariant violation has occurred .  Each edge  E x   and vertex  V y   is
 labelled with the  Z z   that generated it .  Figure 3 contains sample and-vertices and
 or-vertices .  For example :

 $  xUp  is an or-vertex which we can believe if we also believe  dUp  or  aUp .
 $  &OO3  is an and-vertex which we can believe if we also believe  gUp  and  bUp  (but

 see Section 4 . 2 for alternative ways of handling and-vertices) .

 Not shown in Figure 3 are the invariants  I .  For a qualitative domain ,  where
 entities can have one of a finite number of mutually exclusive values ,  the invariants
 are merely all pairs of mutually exclusive assignments ;  e . g . :

 %i(X ,  Y) :  X and Y cannot be believed together
 i(aUp ,  aSteady) .  i(aSteady ,  aUp) .
 i(aUp ,  aDown) .  i(aDown ,  aUp) .
 i(bUp ,  bSteady) .  i(bSteady ,  bUp) .
 i(bUp ,  bDown) .  i(bDown ,  bUp) .
 etc .

 3 . 3 .  THE MODEL COMPILER

 When converting  T i   to  D i  ,  a  model compiler  is required to capture any special
 domain semantics .  For example ,  in a qualitative reasoning domain ,  we can reach a
 STEADY  via a conjunction of two competing upstream influences (e . g .   &003 ) .  In
 practice ,  these model compilers are very small .  Our qualitative domain compiler is
 less than 100 lines of Smalltalk .

 HT4-style inference is feasible for representations that support such a translator
 between  T  and  D .  Recall that  D  is an explicit and-or graph of literals (positive or
 negative propositions) that represents the superset of explanations acceptable to the
 author of  T  .  Such and-or graphs can be extracted from many representations
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 including propositional expert systems and certain types of equational systems
 (Iwasaki & Simon ,  1986 ;  Iwasaki ,  1988) .  HT4 could also be used for first-order
 theories ,  but only where that theory can be partially evaluated to an equivalent
 ground (i . e .  no variables) theory .

 Once such a model-compiler is available ,  then the practical limit to HT4 is the size
 of  D .  These limits are explored further in Section 5 .

 3 . 4 .  PROOFS OF  OUT  PUTS

 HT4 extracts subsets of  E  which are relevant to some user-supplied  TASK .  Each
 TASK x   is a triple  # IN ,  OUT ,  BEST  $ . Each task comprises some  OUT  puts to be
 reached ,  given some  IN put ( OUT  ‘  V  and  IN  ‘  V  ) .   IN  can either be a member of
 the known  FACTS  or a  DEFAULT  belief which we can assume if it proves
 convenient to do so .  Typically ,   FACTS  #  IN  "  OUT . If there is more than one way
 to achie !  e the  TASK ,  then the  BEST  operator selects the preferred way(s) .

 To reach a particular output  OUT z  !  OUT  ,  we must find a proof tree  P x   using
 vertices  P used

 x    whose single leaf is  OUT z   and whose roots are from  IN  (denoted
 P roots

 x  ‘  IN ) .  All immediate parent vertices of all and-vertices in a proof must also
 appear in that proof .  One parent of all or-vertices in a proof must also appear in that
 proof  unless  V  or

 y  !  IN  (i . e .  is an acceptable root of a proof) .  No subset of  P used
 x    may

 contradict the  FACTS ;  e . g .  for invariants of arity 2 :

 — l ( V y  !  P  used
 x  ∧  V z  !  FACTS  ∧  I ( V y  ,  V z ))

 3 . 5 .  ASSUMPTION SETS

 The union of the vertices used in all proofs that are not from the  FACTS  is the HT4
 assumption set  A ;  i . e .

 A  # ' !
 V y

 % V y  !  P  used
 x  & (  $  FACTS

 Recall from the above that the proofs in our example made the assumptions :

 a # % xUp ,  yUp ,  cUp ,  gUp ,  cDown ,  gDown &

 The union of the subsets of  A  which violate  I  are the  contro !  ersial assumptions
 A C :

 A C  #  !
 V x

 % V x  !  A  ∧  V y  !  A  ∧  I ( V x  ,  V y ) &

 The controversial assumptions of our example were :

 ac # % cUp ,  gUp ,  cDown ,  gDown &

 The  base contro !  ersial assumptions  ( A B ) are the controversial assumptions which
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 have no controversial assumptions in their ancestors (i . e .  are not downstream of any
 other controversial assumptions) .  The base controversial assumptions of our
 example are :

 ab # % cUp ,  cDown &

 3 . 6 .  WORLD GENERATION

 Maximal consistent subsets of  P  (i . e .  maximal with respect to size ,  consistent with
 respect to  I ) are grouped together into what we call worlds  W  ( W i  ‘  E ) (recall that
 world  )  case model  )  SSM) .  Each world  W i   contains a consistent set of beliefs that
 are relevant to the  TASK .  The union of the vertices used in the proofs of  W i   is
 denoted  W  used

 i  .
 In terms of separating the proofs into worlds ,   A B   are the crucial assumptions .  We

 call the maximal consistent subsets of  A B   the  en !  ironments  ENV  ( ENV i  ‘  A B  ‘
 A C  ‘  A  ‘  V  ) .  The environments of our example are :

 env(1) # % cUp &
 env(2) # % cDown &

 The union of the proofs that do not contradict  ENV i   is the world  W i  .  One world is
 defined for each environment ;  i . e .   " W  "  #  " ENV  " .  In order to check for non-
 contradiction ,  we use  I  to find the vertices that are forbidden by each proof :

 P  forbids
 j  #  !

 V i

 % V k  !  P  used
 j  ∧  I ( V k  ,  V l ) &

 For example ,   P  forbids
 5  #  % bDown ,  bSteady ,  fUp ,  fSteady & .

 A proof  P j   belongs in world  W i   if its forbids set does not intersect with  ENV i ;  i . e . :

 W i  #  !
 P j
 * P  forbids

 j  !  ENV i  #  C +
 Note that each proof can exist in multiple worlds .  The worlds of our example are :

 w(1) # % p(1) ,  p(2) ,  p(3) ,  p(5) &
 w(2) # % p(1) ,  p(4) ,  p(5) &

 W 1  is shown in Figure 4 and  W 2  is shown in Figure 5 .

 3 . 7 .  ASSESSING WORLDS

 For any world  W i  ,  W  causes
 i    are the members of  IN  found in  W i   ( W  causes

 i  #  W  used
 i  !

 IN ) .  The achievable or  co !  ered  goals  OUT  in  W i   are the members of  OUT  found in
 that world ( W  co !  ered

 i  #  W  used
 i  !  OUT  ) .  Continuing our example :

 causes(w(1)) # % aUp ,  bUp &
 causes(w(2)) # % aUp ,  bUp &
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 covered(w(1)) # % dUp ,  eUp ,  fDown &
 covered(w(2)) # % dUp ,  fDown &

 Note that ,  in our example ,  we have generated more than one world and we must
 now decide which world(s) we prefer .  This is done using the  BEST  criteria .  Clancey
 (1985) has a clear opinion on what is the  BEST  world as follows .

 ‘‘When there are multiple causal links for classifying data—multiple explanations—
 inference must be controlled to avoid redundancy ,  namely multiple explanations when
 one would have been suf ficient .  The aim is to produce a  coherent  model that is  complete
 (accounting for the most data) and  simple  (involving one fault process)’’ (p  331) .

 Expressed in terms of HT4 ,  Clancey’s preferred  BEST  is to favour worlds that
 maximizes the  co !  ered  while minimizing the  causes  (ideally ,  to a single cause) .
 Numerous other  BEST  s can be found in the literature ;  e . g .  the  BEST  worlds are the
 one which contain the following .

 (1)  The most specific proofs (i . e .  largest size) (Forgy ,  1982) .
 (2)  The fewest  causes  (Reggia ,  Nau & Wang ,  1983) .
 (3)  The largest  co !  ered  (Menzies & Gambetta ,  1994 ;  Menzies & Compton ,  1995) .
 (4)  The largest number of specific concepts (Poole ,  1985) .
 (5)  The largest subset of  E  (Ng & Mooney ,  1990) .
 (6)  The largest number of edges that model processes which are familiar to the

 user (Paris ,  1989) .
 (7)  The largest number of edges that have been used in prior acceptable solutions

 (Leake ,  1993) .

 Our view is that  BEST  is domain specific ;  i . e .  we believe that their is no best  BEST  .

 3 . 8 .  HT4 IS ABDUCTION

 Given certain renamings ,  HT4 satisfies the definition of abduction given in Section
 3 . 2 (see  EQ 1  , EQ 2 ) .  HT4-style abduction is the search for (i) a subset of  E  called  W i  ,
 (ii) a subset of  IN  called  W  causes

 i  ,  (iii) a subset of  OUT  called  W  co !  ered
 i  ,  and (iv) a

 subset of  V  called  ENV i   such that :

 EQ 1 . 1 :  W i  ∧  W  causes
 i  ∧  ENV i  !  W  co !  ered

 i

 EQ 2 . 1 :  W i  ∧  W  causes
 i  ∧  ENV i  ∧  W  co !  ered

 i  ∧  — l I

 The assumptions made by HT4 are the useful inputs ( W  causes
 i  ) ,  some assumptions

 about intermediaries between the useful inputs and the covered outputs ( ENV i ) ,  and
 the edges  rele !  ant  to a particular  TASK  ( W used

 i  ) .  In the case where multiple worlds
 can be generated ,  the  BEST  operator decides which world(s) to show to the user .
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 4 .  Applications of abduction

 This section argues that a wide variety of  KL B   tasks can be mapped into the above
 abductive framework .

 4 . 1 .  PREDICTION

 Prediction  is the process of seeing what will follow from some events  IN .  This can be
 implemented in HT4 by making  OUT  ‘  V  $  IN  ;  i . e .  find all the non-input vertices
 we can reach from the inputs .  This is a non-naive implementation of prediction since
 mutually exclusive predictions (the  co !  ered  elements of  OUT  ) will be found in
 dif ferent worlds .  Note that in the special case where :

 $  IN  are all root vertices in  D ;
 $  FACTS  #  C ;
 $  OUT  #  V  $  IN  ;

 then our abductive system will compute ATMS-style  total en !  isionments ;  i . e .  all
 possible consistent worlds that are extractable from the theory (for more on the
 ATMS ,  see Section 6 . 4) .  A more ef ficient case is that  IN  is smaller than all the roots
 of the graph and some  interesting subset  of the vertices have been identified as
 possible reportable outputs (i . e .   OUT  ’  V  $  IN ) .

 4 . 2 .  CLASSIFICATION

 Classification  is just a special case of prediction with the  interesting subset  set to the
 vertices representing the possible classifications .  Consider a theory  T  containing
 conjunctions of attributes that list the properties of some class .  When converted to
 D ,  the classes and attributes become dif ferent vertices of  D .  Inference edges are
 added from the attributes to the proposition that some class is true (the  modus
 ponens  link) .  Further ,  we link the negation of the class with the negation of the
 conditions (the  modus tollens  link) .  For example ,  the rules in Figure 6 are the theory
 T 2 .  When executing this theory ,   OUT  are the classes  % wash ,  watchTV & .  Note that we
 can use the modus tollens links to prove not(watchTV) if we can prove not
 (weather # raining)   or  not(football  #  on) .

 if  day # tuesday  and  weather # fine  and
 wind # high

 then  wash

 if  weather # raining  and  football # on
 then  watchTV

 F IGURE  6 .  T 2 :  Tuesday can be washing day .
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day = tuesday
weather = fine

wind = high

weather=raining
football=on

not(day = tuesday)
not(weather = fine)

not(wind = high)

&009=partial wash

&010=partial watchTV

modus ponens links

modus tollens links

not(weather=raining)
not(football=on)

not(wash)

not(watchTV)

 F IGURE  7 .  D 2  generated from  T 2 .

 D 2  is generated by a model-compiler for propositional systems (see Figure 7 ,  note
 the modus tollens links) .  The invariants for  D 2  are shown in Figure 8 .   D 2  contains
 partial - match and - !  ertices  (&990 # partial  and  &010 # partial) .  HT4 can inter-
 pret partial-match vertices in one of two ways .

 $  Total - match  :  partial-match vertices can be used as a true and-vertex ;  i . e .  we can
 only reach  wash  if we can also reach all of  % day # tuesday ,  weather # fine ,
 wind # high & .

 $  True partial - match  :  in the partial-match case ,  HT4 would treat (e . g .   &009 #
 partial ) as an or-vertex during world generation .  However ,  when applying
 BEST PARTIAL - MATCH ,  we could elect to favour the worlds that contain post-
 conditions with the most number of pre-conditions .  For example ,  if  FACTS  was
 % day # tuesday ,  football # on &   and we had no information about the  weather
 or the  wind ,  then a  BEST  operator could still make a case that  watchTV  was
 more likely than  wash  since 50% of the ancestors of  watchTV  are known
 compared with 33% of the ancestors for  wash .

 The model compiler for theories containing generalization links (e . g .   T 3  shown in

 %  A  proposition  and  its  negation  are
 %  inconsistent
 i(not(X)  , X) .

 %  X  cannot  be  in  two  dif ferent  states
 i(X # State1 , X # State2)  : – not(State1 # State2) .

 %  Can’t  wash  and  watch  TV  at  the  same  time .
 i(wash , watchTV) .

 F IGURE  8 .  Invariants  I  for  D 2 .
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 frame(bird ,  [ diet  # worms ,
 big-limbs # 2 ,
 motion  # flies ,
 home  # nest]) .

 %  An  emu  is  a  bird  that  does  not  fly  and
 %  lives  in  australia
 frame(emu ,  [isa  # bird ,

 habitat  # australia ,
 motion  # walks]) .

 F IGURE  9 .  T 3 :  things that fly and walk .

diet = worms

big-limbs = 2

motion = flies

home = nest

motion = walks
habitat = australia

&012 = partial

&013 = partial

&011 = partial

bird

emu

 F IGURE  10 .  D 3  (modus ponens links only) .

 Figure 9) must add extra links .  Given a super-class ,  we can infer  down  to some
 sub-class if we can demonstrate that the extra-properties required for the sub-class
 are also believable .  The vertex  &013 # partial  in Figure 10 is such a specialization
 link (for the sake of simplicity ,  we do not show the modus tollens links in Figure 10) .

 T 3  contains an interesting semantic issue .   Emu s override the  motion  slot inherited
 from  bird s .  Ignoring ,  temporarily ,  this issue ,  we can see from  D 3 ,  we can infer from
 bird  to  emu  if that animal lives in Australia .  The classifications returned by HT4
 could be further customized by using  BEST SPECIFIC   that favours the worlds that
 include the most-specific classes (Poole ,  1985) (e . g .   emu  is better than  bird ) .

 Returning now to the  motion  issue ,  we note that cancellations in inheritance
 networks is a dif ficult problem .  Brachman (1985) argues that we should not use
 these since such overrides complicate the semantics of the network (e . g .  Figure 11) .
 In the general case ,  the processing of overrides in inheritance networks requires
 some form of multiple-worlds reasoning (Etherington & Reiter ,  1983) such as

 frame(generic – bird ,  [ diet  # worms ,
 big-limbs # 2
 home  # next]) .

 frame(bird ,  [isa  # generic – bird ,
 motion  # flies]) .

 frame(emu ,  [isa  # generic – bird ,
 habitat # australia ,
 motion  # walks]) .

 F IGURE  11 .  T 3 . 1 :  a Brachman-style version of  T 3 .
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 default logic (Reiter ,  1980) .  Default logic and abduction share a computational core
 (Selman & Levesque ,  1990) .  Using HT4 ,  we can process  T 3 .  In the case where
 motion  is an assumption and both  motion # walks  and  motion # flies  appear in
 proofs ,  then  emu  and  bird  will appear in separate worlds .   BEST  can then be
 customized to select the world(s) that are most acceptable to the user (e . g .
 BEST SPECIFIC ) .

 4 . 3 .  EXPLANATION

 Wick and Thompson (1992) report that the current view of  explanation  is more
 elaborate than merely ‘‘print the rules that fired’’ or the ‘‘how’’ and ‘‘why’’ queries
 of MYCIN .  Explanation is now viewed as an inference procedure in its own right
 rather than a pretty-print of some filtered trace of the proof tree .  In the current
 view ,  explanations should be customized to the user and the task at hand .  For
 example ,  Paris (1989) described an explanation algorithm that switches from
 process-based explanations to parts-based explanations whenever the explanation
 procedure enters a region which the user is familiar with .

 This current view of explanation can be modelled as abduction (an insight we first
 gained from Leake ,  1993) .  Given a user profile listing the vertices familiar to the
 user and the edges representing processes that the user is aware of ,  then
 BEST EXPLANATION   favours the worlds with the largest intersection to this user
 profile .  For example ,  suppose the link  g  ÅÅ 5

 ""
 e  in Figure 2 represented a process

 that some user did not understand .  Their user profile would therefore not contain
 the edge  gUp  5  eUp .  Applying  BEST EXPLANATION ,  we would reject  W 1  (see Figure 4)
 and report  W 2  (see Figure 5) .

 4 . 4 .  TUTORING

 Suppose we can assess that the  BEST  explainable world was somehow sub-optimum ;
 e . g .  there exists worlds which explain far more  OUT  puts than those explained by
 the worlds found be  BEST EXPLANATION .  We could then set a tutoring goal ;  i . e .
 educate our user about the edges which they currently can not accept as
 explanations .

 Continuing the example in the previous section ,  an abductive tutoring system
 would note that the user’s lack of knowledge about  g  ÅÅ 5

 ""
 e  was compromising their

 ability to reason ef fectively .  Hence ,  it would could present to the user  IN put-
 OUT  put pairs which exercised that edge .  The tutoring session would be termed a

 success when the user starting accepting explanations based on  g  ÅÅ 5
 ""

 e .

 4 . 5 .  QUALITATIVE REASONING

 HT4 was originally developed as a  qualitati !  e reasoning  algorithm for neuroendoc-
 rinology (Feldman ,  Compton & Smythe ,  1989 a ,b ;  Menzies ,  Compton Feldman &
 Toft ,  1992) .  Qualitative reasoning is the study of systems whose numeric values are
 replaced by one of three qualitative states :   UP , DOWN  or  STEADY  (Iwasaki ,
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 1989) .  A fundamental property of such systems is their indeterminacy .  In the case of
 competing qualitative influences ,  three possible results are  UP , DOWN  or
 STEADY .  These alternatives and their consequences must be considered separately .

 Abduction can maintain these alternatives in separate worlds .  The processing of
 T 1  (described above) shows how we process qualitative theories abductively .  For
 more details ,  see Menzies (1995 c ) .

 4 . 6 .  PLANNING

 Planning  is the search for a set of operators that convert some current state into a
 goal state .  We can represent planning in our abductive approach as follows .

 $  Represent operators as rules that convert some state to some other state .
 $  Augment each operator rule with :

 (i)  a unique label  S 1 ,   S 2 ,  etc .  When  D  is generated ,  each edge will now include
 the name(s) of the operator(s) that generated it ;

 (ii)  a cost figure representing the ef fort required to apply this operator rule .
 $  Set  IN  to the current state ,   OUT  to the goal state ,  and  FACTS  #  IN  "  OUT  .
 $  Set  BEST PLANNING   to favour the world(s) with the least cost (the cost of a world

 is the maximum cost of the proofs in that world) .
 $  Run HT4 .  Collect and cache the generated worlds .
 $  For each  BEST  world ,  collect all the names of the operators used in the edges

 of that world .  These operators will be in a tree structure that reflects the
 structure of the  BEST  worlds .  Report these trees as the output plans .

 4 . 7 .  MONITORING

 Monitoring  is the process of checking that the current plan(s) are still possible .  The
 worlds generated by the above planner will contain some assumptions .  As new
 information comes to light ,  some of these assumptions will prove to be invalid .
 Delete those worlds from the set of possible plans .  The remaining plans represent
 the space of possible ways to achieve the desired goals in the current situation .  If all
 plans are rejected ,  then run HT4 again with all the available data .

 4 . 8 .  DIAGNOSIS & PROBING

 Parsimonious  set - co !  ering diagnosis  (Reggia ,  Nau & Wang ,  1983) uses a  BEST  that
 favors worlds that explain the most things ,  with the smallest number of diseases (i . e .
 maximize  W x  !  OUT  and minimize  W x  !  IN ) .  Set-covering diagnosis is best for fault
 models and causal reasoning (Konoligue ,  1992) .

 The opposite of set-covering diagnosis is  consistency - based diagnosis  (Genesereth ,
 1984 ;  DeKleer & Williams ,  1987 ;  Reiter ,  1987 ;  Pople ,  1989) where all worlds
 consistent with the current observations are generated . †  Computationally ,  this is

 †  For a clear comparison of set-covering diagnosis as abduction and consistency-based-diagnosis as
 abduction see Console and Torasso (1991) .
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 equivalent to the  prediction  process described above ,  with small variants .  For
 example ,  in Reiter’s variant on consistency-based diagnosis (Reiter ,  1987) ,  all
 predicates relating to the behaviour of a theory component  V x   assume a test that  V x
 in not acting  AB normally ;  i . e .   — l AB ( V x ) .  BEST REITER   is to favour the worlds that
 contain the least number of  AB  assumptions .

 A related task to diagnosis is  probing .  When exploring dif ferent diagnosis ,  an
 intelligent selection of tests (probes) can maximize the information gain while
 reducing the testing cost (DeKleer & Williams ,  1987) .  In HT4 ,  we would know to
 favour probes of  A B   over probes of  A C   over probes of non-controversial
 assumptions .

 4 . 9 .  VALIDATION

 KBS  !  alidation  tests a theory’s validity against external semantic criteria .  Given a
 library of known behaviours (i . e .  a set of pairs  # IN ,  OUT  $ ) ,  abductive validation
 uses a  BEST  that favours the worlds with largest number of covered outputs (i . e .
 maximize  IN  !  W x ) (Menzies 1996) .

 Note that this definition of  !  alidation  corresponds to answering the following
 question :  ‘‘can a theory of  X  explain known behaviour of  X  ?’’ .  We have argued
 elsewhere that this is the definitive test for a theory (Menzies & Compton ,  1995) .
 Note that this is a non-naive implementation of KBS validation since it handles
 certain interesting cases .  In the situation where no current theory explains all known
 behaviour ,  competing theories can still be assessed by the extent to which they cover
 known behaviour .  Theory  X  is definitely better than theory  Y  if theory  X  explains
 far more behaviour than theory  Y .

 As an example of validation-as-abduction ,  recall that  W 1  (see Figure 4) was
 generated from  T 1  when  IN  #  % aUp ,  bUp &   and  OUT  #  % dUp ,  eUp ,  fDown & .  Note that
 W  co !  ered

 1   is all of  OUT .  T 1  is hence not invalidated since there exists a set of
 assumptions under which the known behaviour can be explained .

 HT4 was originally built for validation purposes (HT is short for ‘‘hypothesis
 tester’’) .  The historical precursor to HT4 was Feldman  et al . ’s (1989 a ,  b )
 QMOD / JUSTIN system (which we call HT1) .  Feldman  et al .  applied their
 QMOD / JUSTIN algorithm to a qualitative model of a summary paper by Smythe
 (1989) on glucose regulation .  They found that 109 of the 343 (32%) data points
 published to support the Smythe theory could not be explained with respect to that
 theory .  Further ,  when they showed these findings to the researchers who contributed
 to the Smythe theory ,  they found that the errors detected by QMOD / JUSTIN had
 not been seen before .  That is ,  the faults detected by QMOD / JUSTIN were invisible
 to existing model review techniques in neuroendocrinology (all the analysed models
 and data were taken from international refereed journals) .  Our own subsequent
 study using HT4 corrected some features of the Feldman  et al .  study to increase the
 inexplicable percentage from 32% to 45% .   D SMYTHE   contained 294 and-vertices ,  260
 or-vertices and had an average fanout of 2 . 25 (the fanout  F  of a graph equals
 " E "
 " V  "

 as  is  the  average  number  of  edges  leaving  a  vertex) .

 Another smaller study (Menzies ,  Mahidadia & Compton ,  1992) found faults in
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 another published scientific theory (Smythe ,  1987) .  Apart from the insights into
 neuroendocrinological models ,  the above results are interesting for two reasons .

 (1)  32 – 45% inexplicable data seems surprisingly high for models that have run
 the gauntlet of international peer review .  We will later find that the
 computational complexity of the validation-as-abduction inference process is
 high .  It is therefore no surprise that human beings ,  with their limited
 short-term memory ,  do not completely test their models .

 (2)  Significantly ,  this study faulted a model using the data published to support
 that model .  Clearly ,  human researchers do not rigorously explore all the
 consequences of their observations (perhaps since the process is so computa-
 tional complex) .  Automatic tools such as HT4 can be a useful intelligent
 assistant for checking hypothetical ideas .

 An interesting variant on our external semantic testing approach are the
 automatic test suite generation procedures of fered by the dependency-network
 approaches of Ginsberg (1987 ,  1990) and Zlatereva (1992 ,  1993) .  The dependencies
 between rules / conclusions are computed and divided into mutually consistent
 subsets .  The root dependencies of these subsets represent the space of all reasonable
 tests .  If these root dependencies are not represented as inputs within a test suite ,
 then the best suite is incomplete .  Test cases can then be automatically proposed to
 fill any gaps .

 The advantage of this technique is that it can be guaranteed that test cases can be
 generated to exercise all branches of a knowledge base .  The disadvantage of this
 technique is that ,  for each proposed new input ,  an expert must still decide what
 constitutes a valid output .  This decision requires knowledge external to the model ,
 least we introduce a circularity in the test procedure (i . e .  we test the structure of  T i
 using test cases derived from the structure of  T i ) .  Further ,  auto-test-generation
 focuses on incorrect features in the current model .  We prefer to use test cases from
 a totally external source since such test cases can highlight what is absent from the
 current model .  For these reasons ,  we caution against automatic test suite generation .
 Nevertheless ,  if it is required ,  HT4 can compute these test suited .  Once a  total
 en !  isionment  is executed (recall Section 4 . 1) ,  the required test suites are the roots
 and base controversial assumptions of the generated worlds .

 4 . 10 .  VERIFICATION

 KBS  !  erification  tests a theory’s validity since internal syntactic criteria (Preece ,
 1992 a ) .  HT4 could be used for numerous KBS verification tests .  For example :

 $  Circularities  would be detected by computing the transitive closure of the
 and-or graph .  If a vertex can be found in its own transitive closure ,  then it is in
 a loop .

 $  Ambi !  alence  (a . k . a .  inconsistency) could be reported if more than one world
 can be generated .

 $  Un - usable rules  could be detected if the edges from the same  S x   statement in the
 knowledge base touch vertices that are incompatible (defined by  I ) .
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 We prefer external semantic criteria (e . g .  the above validation technique) to
 internal syntactic criteria since we know of fielded expert systems that contain
 syntactic anomalies ,  yet still perform adequately (Preece ,  1992 b ) .

 5 .  Practicality

 5 . 1 .  COMPLEXITY

 The core computational problem of HT4 is the search for the assumptions  ENV i
 which define each world  W i  .  Earlier versions of HT4 (Feldman  et al . ,  1989 a ,  b ;
 Menzies  et al . ,  1992) computed the  BEST  worlds  W  via a basic depth-first search
 chronological backtracking algorithm (DFS) with no memoing .  Mackworth (1977)
 and DeKleer (1986 a ) warn that DFS can learn features of a search space ,
 then forget it on backtracking .  Hence ,  it may be doomed to waste time re-learning
 those features later on .  One alternative to chronological backtracking is an algo-
 rithm that caches what it learns about the search space as it executes .  HT4
 runs in four ‘‘sweeps’’ which learn and cache features of the search space as it
 executes :  the  facts sweep ,  the  forwards sweep ,  the  backwards sweep ,  and the  worlds
 sweep .

 5 . 1 . 1 .  Facts sweep
 In the case where  # V ,  E $   is pre-enumerated and cached and  I  has an arity of 2 ,  a
 hash table  NOGOOD  can be built in  O ( " V  " 2 ) time that maps every vertex to the set
 of vertices that it is incompatible with .  Once  NOGOOD  is known ,  the facts sweep
 can cull all  V x   that are inconsistent with the  FACTS  in time  O ( " V  " ) .  Note a
 simplifying assumption made by HT4 is that  NOGOOD s are only defined for  V  o r

 vertices (i . e .  the  NOGOOD  sets for  V  a n d   are empty) .

 5 . 1 . 2 .  Forwards sweep
 The controversial assumptions  A C   are computed as a side-ef fect of forward chaining
 from  IN  (ignoring  I ) to find  IN * ,  the vertices reachable from  IN .  In the worst case ,
 finding  IN * is transitive closure (i . e .   O ( " V  " 3 ) .  Once  IN * is known ,   A C   can be found
 in time  O ( " V  " ) .

 5 . 1 . 3 .  Backwards sweep
 The base controversial assumptions  A B   are computed as a side-ef fect of growing
 proofs back from  OUT  across  IN * .  Each proof  P y   contains it’s  forbids  set (the
 vertices that ,  with  P  used

 y  ,  would violate  I ) ,  and the upper-most  A C   (called the proof
 guess )   found during proof generation .  The backwards sweep handles  V  o r   vertices
 dif ferently to  V a n d   vertices as follows .

 $  A candidate  V  or
 x    for inclusion in  P  used

 y    must satisfy  V  or
 x  "  P  used

 y    (loop detection)
 and  V  or

 x  "  P  forbids
 y    (consistency check) .  If the candidate vertex is added to the

 proof ,  the vertices that are  NOGOOD  with  V  or
 x    are added to  P  forbids

 y  .
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 $  After checking for looping ,  a candidate  V  and
 x    (which is not a partial-and vertex)

 that seeks inclusion in  P  used
 y    must check all combinations of all proofs which can

 be generated from its parents .  The cross-product  θ   of the proofs from the  V  and
 x

 parent vertices is calculated (which implies a recursive call to the backwards
 sweep for each parent ,  then collecting the results in a temporary) .  The proofs in
 θ i   plus  P  used

 y    are  combined  to form the single proof  θ i ' .  Proof combination
 generates a new proof whose  used , forbids  and  guesses  sets are the union of
 these sets from the combining proofs .  A combined proof is said to be  !  alid  if
 the  used  set does not intersect with the  forbids  set .  Each valid  θ i '  represents one
 use of  V  and

 x    to connect an  OUT  vertex to the  IN  set .
 $  Partial-and vertices are treated as or-vertices by the backwards sweep .

 After all the proofs are generated ,  the union of all the proof  guess  sets in  A B .  If
 the average size of a proof is  N  and the average fanout of the graph is  F  ,  then worse
 case backwards sweep is  O ( N F ) .

 5 . 1 . 4 .  Worlds sweep
 HT4 assumes that its  V  o r   are generated from attributes with a finite number of
 mutually exclusive discrete states (e . g .   % day  #  mon ,  day  #  tues ,  .  .  . & ) .  With this
 assumption ,  the generation of  ENV i   is just the cross product of all the used states of
 all the attributes found in  A B .  The worlds sweep is simply two nested loops over
 each  ENV i   and each  P j   (i . e .   O ( " ENV  "  #  " P " )) .

 Somewhere within the above process ,  the  BEST  criteria must be applied to cull
 unwanted worlds .  HT4 applies  BEST  after world generation .  There is no reason why
 certain  BEST  s could not be applied earlier ;  e . g .  during proof generation .  For
 example ,  if it is known that  BEST  will favour the worlds with smallest path sizes
 between inputs and goals ,  then a beam-search style  BEST  operator could cull
 excessively long proofs within the generation process .

 More generally ,  we characterize  BEST  s into the information they require before
 they can run as follows .

 $  Vertex - le !  el  assessment operators can execute at the local-propagation level ;
 e . g .  use the edges with the highest probability .

 $  Proof  - le !  el  assessment operators can execute when some proofs or partial
 proofs are known ;  e . g .  beam search .

 $  Worlds - le !  el  assessment operators can execute when the worlds are known ;  e . g .
 the validation algorithm described in Section 4 . 9 .

 While the complexity of  BEST  is operator specific ,  we can make some general
 statements about the computational cost of  BEST  .   Vertex  or  proof  - le !  el  assessment
 reduce the  O ( N F ) complexity of the backwards sweep (since not all paths are
 explored) .   Worlds - le !  el  assessment is a search through the entire space that could be
 relevant to a certain task .  Hence ,  for fast runtimes ,  do not use worlds-level
 assessment .  However ,  for some tasks (e . g .  the validation task) worlds-level
 assessment is unavoidable .



 APPLICATIONS OF ABDUCTION :  KNOWLEDGE-LEVEL MODELLING  325

1500

1200

 900

  600

  300

      0
0 200 400 600 800 1000

Size (|v|)

Ru
nt

im
e 

(s
)

+

+

++++++++++

 F IGURE  12 .  Average runtimes .

 5 . 2 .  EXPERIMENTS

 Abduction has a reputation of being impractically slow (Eshghi ,  1993) .  Selman &
 Levesque (1990) show that even when only one abductive explanation is required
 and  D  is restricted to be acyclic ,  then abduction is NP-hard .  Bylander  et al .  (1991)
 make a similar pessimistic conclusion .

 In practice these theoretical restrictions may not limit application development .
 Ng & Mooney (1990) report reasonable runtimes for their abductive system using a
 beam-search proof-level assessment operator .  Figure 12 shows the average runtime
 for executing HT4 using a worlds-level assessment operator over 94 and-or graphs
 and 1991  # IN ,  OUT  $   pairs (Menzies & Compton ,  1995) .  For that study ,  a ‘‘give up’’
 time of 840  s was built into the test engine .  HT4 did not terminate for  " V  "  (  850 in
 under that ‘‘give up’’ time (shown in Figure 12 as a vertical line) .

 In practice ,  how restrictive is a limit of 850 vertices? Details of the nature of
 real-world expert systems are hard to find in the literature .  The only reliable data we
 could find is shown in Figure 13 which shows the size of the dependency graph
 between literals in fielded propositional expert systems (Preece & Shinghal ,  1992) .
 Figure 13 suggests that a practical inference engine must work at least for the range

 55  (  " V  "  (  510  and  2  (
 " E "
 " V  "

 (  7 .

 Note that the Figure 12 results were obtained from a less-than-optimum platform :
 Smalltalk / V on a PowerBook170 (a port to ‘‘C’’ on a Sparc station is currently in
 progress) .  However ,  the current results on a relatively slow platform show that even
 when we run HT4 sub-optimally (i . e .  using worlds-level assessment) ,  it is practical
 for the theory sizes we see in practice .

 Application  " V  "
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 F IGURE  13 .  Figures from fielded expert systems .
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 Figure 14 studies the practicality of HT4 for models of varying fanout (Menzies ,
 1995 c ) .  In this study ,  model size was kept constant while the fanout was increased .
 Six models were used of sizes  " V  "  #  % 449 ,  480 ,  487 ,  494 ,  511 ,  535 & .  At low
 fanouts ,  many behaviours were inexplicable .  However ,  after a fanout of 4 . 4 ,  most
 behaviours were explicable .  Further ,  after a fanout of 6 . 8 ,  nearly all the behaviours
 were explicable .

 We make two conclusions from Figure 14 as follows .

 (1)  HT4 is practical for nearly the range of fanouts seen in fielded expert systems .
 (2)  However ,  after a certain level of inter-connectivity ,  a theory is able to

 reproduce any input / output pairs .  At inference procedure that condones any
 behaviour at all from a theory is not a useful inference procedure .  After the
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 Pendrith limit  (the point where %  OUT  co !  ered  approaches 100%) then
 worlds-level abductive assessment becomes useless .

 We do not view the Pendrith limit as a drawback of our particular abductive
 approach .  Rather ,  we interpret this result as a general statement of limits to expert
 systems inference .  The advantage of our abductive framework is that it provides for
 a simple computational view of KBS inference .  The computational limits to
 abduction are really the computational limits to expert systems inference (Menzies
 & Compton ,  1995) .  Figure 14 is telling us that we lose the ability to reason
 meaningfully about  any  knowledge base for tasks requiring worlds-level assessment

 (e . g .  validation) if it is highly connected  ' i . e .  
 " E "
 " V  "

 *  7 ( .  This point is explored further

 in Menzies and Compton (1995) .

 6 .  Discussion

 6 . 1 .  ABDUCTION AND  ! " B

 HT4 is more general than Clancey’s approach since it makes explicit certain
 assumptions which are only tacit in Clancey’s approach .  For example ,  Clancey
 (1985) assumes that the best world uses the fewest number of  IN s  [10 , p .  331] . We
 ha !  e shown abo !  e that this is not uni !  ersally true  ( recall the dif ferent  BEST  s listed
 above in Sections 3 and 4) .  Further ,  HT4 is a single approach for implementing  both
 heuristic classification and construction .  HT4 supports all the inference primitives
 required for heuristic classification ;  i . e .  partial match ,  and the ascent and descent of
 classification hierarchies .  To execute heuristic classification-as-abduction ,  just exec-
 ute HT4 with no invariants .  Any proofs found between  IN  and  OUT  can be reported
 to the user . HT  4  also supports the inference primiti !  e required for heuristic
 construction :  assessment of competing inferences . The construction of an SSM from a
 QM that satisfies some task  ( specified by  # IN ,  OUT  $ ) in the presence of invariants is
 exactly the HT4 algorithm described above .  Both proposals can generate multiple
 worlds / SSMs .  Note that HT4 worlds are guaranteed to satisfy Clancey’s  coherence
 requirement .

 As to Breuker’s proposal ,  his components of solutions sounds to us like three
 recursive calls to a single inference procedure .  Recall his argument :  all expert system
 tasks contain the same four components of solutions :  an  argument structure  which is
 extracted from a  conclusion  which is in turn extracted from a  case model  which is in
 turn extracted from a  generic domain model .  Note that ,  in all cases ,  each
 sub-component is generated by extracting a relevant subset of some background
 theory to generate a new theory (i . e .  abduction) .  Returning now to HT4 ,  we note
 that this algorithm also extracts sub-models from super-models .  The extracted
 models are relevant to a particular task ;  i . e .   # IN ,  OUT  $ .

 We note that other researchers have recognized some similarities between
 dif ferent  KL B   tasks .  Breuker is a researcher in the  KL B   community .  Also ,  Wielinga
 et al .  (1992) note that their description of  systematic diagnosis  and  monitoring  share
 common features .  Finally ,  Tansley & Hayball (1993) note the following .

 $  Localization  and  causal tracing  are basically the same process (which they call
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 systematic diagnosis ) ,  except the former uses  part - of  knowledge while the latter
 uses  causal  knowledge .  In terms of our framework ,  both would execute over the
 same and-or graph ,  but the user’s interpretation of the edges would dif fer .

 $  Heuristic classification could be used for both classification  and  diagnosis since
 (says Tansley & Hayball ,  1993) diagnosis is the backwards process to
 classification .

 $  Scheduling , planning  and  configuration  are actually the same problem ,  divided
 on two dimensions (‘‘goal states known or not’’ and ‘‘temporal factors
 considered or not’’) .

 However ,  with the exception of Breuker and Clancey ,  the  KL B   community does
 not actively explore these similarities .

 6 . 2 .  ABDUCTION AND  KL A   (SOAR)

 Our approach has some similarities to the  KL A   SOAR project (Newell ,  1982 ,  1993 ;
 Yost & Newell ,  1989 ;  Newell  et al . ,  1991 ;  Rosenbloom  et al . ,  1993) .  We view the
 state space traversal of SOAR as a directed and-or graph which can be extended at
 runtime .  While an HT4  D  vertex contais a single literal ,  the vertices of the SOAR
 state space contain conjunctions of literals .

 We prefer our HT4 approach over SOAR for three reasons .

 (1)  HT4 knowledge bases can be validated without additional architecture .  In
 other expert systems approaches (e . g .  SOAR) ,  validation requires additional
 architecture .

 (2)  HT4 is a less complicated architecture than SOAR .  SOAR is built on top of
 an intricate forward-chaining rule-based system .  HT4 uses a simpler graph-
 theoretic approach .

 (3)  HT4 models abduction better than SOAR .  Experiments with adding abduc-
 tive inference to SOAR relied on an interface to an external abductive
 theorem prover .  In Steier’s (1993) CYPRESS-SOAR / RAINBOW system ,
 SOAR production rules modelled control decisions ,  while the RANBOW
 abductive inference engine generated possible designs .  Given a vertex with N
 out edges (or ,  in SOAR-speak ,  a state space with N associated operators) ,
 HT4 assesses the utility of each edge using (potentially) a deferred global
 analysis .  SOAR must make its operator assessment at the local level .  SOAR’s
 run-time selective generation of the and-or graph has ef ficiency advantages
 since it culls unacceptable alternatives as they are first encountered .  Our
 approach has the potential to be slower ,  but the explicit representation of all
 alternatives permits allows for global assessment criteria (e . g .  our validation
 procedure described above) .

 6 . 3 .  OTHER ABDUCTIVE RESEARCH

 Descriptions of abduction date back to the ‘‘fourth-figure’’ of Aristotle (Wang ,
 1993) .  In the modern era ,  abduction was described by Charles Sanders Pierce in the
 last century as follows .

 ‘‘The surprising fact C is observed .  But if A were true ,  C would be a matter of course .
 Hence ,  there is reason to suspect that A is true’’ (O’Rourke ,  1990 :  introduction) .
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 Pople noted the connection between diagnosis and abduction in 1973 .  Pople’s
 (1973) diagnosis inference process explores a first-order theory looking for hypoth-
 eses which ,  if assumed ,  could explain known symptoms .  The connection between
 diagnosis and abduction was confirmed later by Reggia (1985) and other researchers
 since ,  particularly in the field of model-based diagnosis (MBD) .  For example ,  our
 distinction between consistency-based diagnosis and set-covering diagnosis in
 Section 4 . 8 came from the MBD literature (Console & Torasso ,  1991) .

 By the late 1980s ,  many researchers had recongized the applicability of abduction
 to a wide-range of domains .  The 1990 AAAI Spring Symposium on Automated
 Abduction (O’Rourke ,  1985) lists the following domains as applications of abduc-
 tion :  natural language processing ,  learning ,  financial reasoning ,  analogical reasoning ,
 causal reasoning ,  probabilistic and qualitative reasoning ,  just to name a few .  Several
 basic AI algorithms proved to be fundamentally abductive in nature (Levesque ,
 1989 ;  Bylander  et al . ,  1991 ;  Console & Torasso ,  1991) .  For example :

 $  The ATMS (discussed in Section 6 . 4) is an incremental abductive inference
 engine .  When a problem solver makes a new conclusion ,  this conclusion and the
 reasons for believing that conclusion are passed to the ATMS .  The ATMS
 updates its network of dependencies and sorts out the current conclusions into
 maximally consistent subsets (which HT4 would call worlds) .  HT4 borrows the
 term  minimal en !  ironments  from the ATMS research (but shortens it to  ENV  ) .

 $  Bayesian reasoning can be viewed as abduction ,  but in a numeric paradigm .  For
 an example of Bayesian abduction ,  see Poole (1993) .  This numeric Bayesian
 abductive paradigm may not explictedly represent the multiple-world assump-
 tion space of non-numeric abductive techniques such as the ATMS and HT4 .
 We have argued here that the direct manipulation of that assumption space is a
 useful technique for a wide variety of KBS tasks .

 Logic-based frameworks for abduction such as Pople’s are common in the
 literature (e . g .  Pople ,  1973 ;  Cox & Pietrzykowski ,  1986 ;  Poole ,  1990 b ,  c ;  Kabas &
 Mancrella ,  1990 ;  Console ,  Dupre & Torasso ,  1991 ;  Eshghi ,  1993) .  Our preferred
 framework uses a graph-theoretic approach ;  i . e .  inference is the selection of some
 subset of edges from the network of possible proof trees .  We find that underneath
 ef ficient theorem provers is some sort of graph representation .  Hence ,  we have
 elected to work directly at the graph-level .  The logical school is more concerned
 with understanding the complex semantics of abdunction rather than in the
 construction of practical systems (counter examples :  Poole ,  1990 c ;  Eshghi ,  1993) .
 Pople himself moved away from a pure logic-based approach in this later work [65]
 as has other ‘‘logical-school’’ researchers (e . g .  Poole ,  1993) .

 This ‘‘logical-school’’ typically adopts minimality as the sole criteria for assessing
 worlds (counter-example :  Poole ,  1985) .  For example ,  Console and Torasso (1991)
 explicitly argue for minimality for alterntive assessment .  Our view is that minimality
 is pragmatically useful for reducing the time for the inference .  Hence ,  HT4
 calculates a minimal critical assumption set  A B .  However ,  we have argued in this
 article that not all  BEST  explanations are minimal .  Rather ,  a comprehensive
 knowledge-level modelling framework can be developed assuming customizable
 world assessment .

 Abduction is an interesting framework in which to explore non-standard logics
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 (Poole ,  1990 c ;  Wang ,  1993 ;  Menzies ,  1995 d ) .  Many of the criticisms against AI (e . g .
 Birnbaum ,  1991) are really criticisms of standard deductive logics where the
 conclusions reached are context independent .  We view abduction as a more
 plausible model of human reasoning since the conclusions made are context-
 dependent on the  TASK  at hand .

 Various researchers note that abductive definitions of ‘‘explanation’’ are philo-
 sophically problematic .  Charniak & Shimony (1994) comment that ,  pragmatically ,  a
 logical framework for ‘‘explanation’’ is a useful definition since :

 ‘‘ .  .  .  it ties something we know little about (explanation) to something we as a community
 know quite a bit about (theorem proving)’’ .

 However ,  abductive explanation blurs causal implication and logical implication .
 Charniak & McDermott (1987) and Poole (1989) caution against mixing up these
 operators in a single knowledge base .  Many researchers acknowledge this as a
 research area ,  but then quickly change the topic (e . g .  Charniak & McDermott ,  1987 :
 p .  454 ;  Levesque ,  1989 :  p .  663 ;  Bylander  et al . ,  1991 ;  Console  et al . ,  1991) .

 6 . 4 .  DEFAULT LOGIC AND THE ATMS

 Our base controversial assumptions and worlds are akin to ATMS labels (DeKleer ,
 1986 a , b , c ;  Forbus & DeKleer ,  1993) and default logic extensions respectively
 (Reiter ,  1980) .  However ,  we dif fer from ATMS / default logic in two ways as follows .

 (1)  HT4 worlds only contain  rele !  ant  literals ;  i . e .  only those literals that exist on
 pathways between inputs and outputs .  This means that ,  unlike default logic
 extensions ,  not all consequences of a literal that are consistent with that world
 are in that world .  For example ,  if the  OUT  set of our example did not include
 eUp ,  then  eUp  would not have appeared in the  W 1  or  W 2  of Figures 4 and 5 .

 (2)  A default logic extension must contain the initial set of facts .  An HT4 world
 contains only some subset of the initial  FACTS  in  IN .  HT4 is the search for
 some subset of the given theory ,  which can use some subset of the  IN puts to
 explain some subset of desired  OUT  outs .

 Note that HT4 is dif ferent to the ATMS in another way .  HT4 does not separate a
 problem solver into an inference engine and an assumption-based truth maintenance
 system .  Such a split may be pragmatically useful for procedural inference engines .
 However ,  if we try to specify the inner-workings of a procedural reasoning system ,
 we find that we can model it declaratively by abduction plus  BEST  (recall the
 discussion in Section 5 . 1 . 4 on how to use  BEST  as a procedure to control search
 space traversal) .

 6 . 5 .  VAGUE DOMAINS

 One interesting property of abduction is that it can perform all the above reasoning
 tasks in  !  ague domains  which we have previously characterized (Menzies &
 Compton ,  1995) as domains that are as follows .

 $  Poorly measured :  i . e .  known data from that domain is insuf ficient to confirm or
 deny that some inferred state is valid .  Inference in poorly measured domains
 means making guesses or assumptions .  Mutually exclusive assumptions must be
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 managed in separate worlds .  HT4 implements this multiple-world reasoning
 directly .

 $  Hypothetical :  i . e .  the domain lacks an authoritative oracle that can declare
 knowledge to be ‘‘right’’ or ‘‘wrong’’ .  Note that in a well-measured domain ,  the
 authoritative oracle could be a database of measurements .  Since vague domains
 lack an authoritative oracle ,  theories about them may be widely inaccurate .
 Modelling in vague domains therefore requires a validation engine .  HT4
 supplies such a validation engine .

 $  Indeterminate :  i . e .  inferencing over a knowledge base could generate numerous ,
 mutually exclusive ,  outcomes .  For example ,  recall Figure 2 .  In the case of both
 A  and  B  going  UP ,  then we have two competing influences on  C  and it is
 indeterminate whether  C  goes  UP , DOWN ,  or remains  STEADY .  Since the
 results that can be inferred from the theory are uncertain ,  it is indeterminate .
 The indeterminacy of the possible inferences requires some non-monotonic
 reasoning module .  HT4 models non-monotonic reasoning using multiple worlds .

 In a review of the KBS domains we have studied in detail since 1985 ,  we found
 that all were vague domains (Menzies & Compton ,  1995) .  These domains were
 process control ,  farm management ,  economic modelling ,  biochemical interpretation ,
 consumer lending ,  and model-based diagnosis .  Based on this review ,  we believe that
 tools that can execute in vague domains are widely applicable .

 Easterbrook (1991) makes a similar ,  but more general ,  point .  He finds that most
 software problems have  conflicts  since they usually contain the following

 $  A thin spread of application domain knowledge (i . e .  no definitive oracle) .
 $  Fluctuating and conflicting requirements ;  e . g .  user groups with conflicting

 needs ;  confiicts between stated constraints ;  conflicts between perceived needs ;
 conflicts between evaluations of priorities .

 $  Breakdowns in communication and coordination .
 $  Areas in which there are dif ferent ways of looking at things .

 Easterbrook (1991) believes that it is artificial to remove these conflicts in software
 models .

 ‘‘This insistence that that expertise must be consistent and rational imposes restrictions of
 the knowledge acquired .  The knowledge acquisition process becomes not so much the
 modeling of the expert’s behaviour ,  but the synthesis of a domain model which need not
 resemble any mental model used by the expert’’ (p .  264) .

 Easterbrook argues that software should explicitly model these conflicts since it is
 exactly this confiicts that will be required to understand opposing positions .  We
 agree .  Tools such as HT4 which can explicitly represent confiicts are widely
 applicable .

 7 .  Conclusion

 The core shared insight of Clancey and Breuker’s work is that theory subset
 extraction is the central task of KBS inference .  Our goal was the description of a
 minimal architecture necessary to perform this process .  Our proposed architecture is
 the HT4 abductive inference algorithm .  In this approach ,  expert knowledge is
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 represented in the topology of  #   and the  BEST  operators .  We have shown above
 how HT4 can be used for KBS verification and validation .  If we implement expert
 systems as abduction ,  then we can execute  and  evaluate our knowledge bases .
 Further ,  HT4 can execute in vague and conflicting domains (which we believe occur
 very frequently) .  We have found that numerous ,  seemingly dif ferent ,   KL B   tasks can
 be mapped into this single inference procedure .  Therefore we believe that abduction
 in general (and HT4 in particular) is a useful framework for knowledge-level
 modelling .
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