1

Informal vague causal diagrams such as Figure 1 are a common technique for
illustrating and sharing intuitions about a domain. Normally, such diagrams
are viewed as precursors to other modeling techniques. That is, the standard

Vague Models and
Their Implications for the KBS Design Cycle

Tim Menazies
Dept. of Software Development, Monash University,
Melbourne, Australia
timm@insect.sd.monash.edu.au

Simon Goss
Air Operations Division, Aeronautical & Maritime
Research Laboratory, Melbourne, Australia.
simon.goss@dsto.defence.gov.au*

September 22, 1996

Abstract

Standard software engineering methodologies are typically prescrip-
tions on how to develop some inétial system. Here we formalise the process
of using an existing, possibly poorly understood, system. Informal vague
causal diagrams are a common technique for illustrating and sharing in-
tuitions about such poorly understood systems. Normally, such diagrams
are viewed as precursors to other modeling techniques. Here, we take an-
other approach and explore what we can do with these vague diagrams
without requiring precise analysis. Vague models can contain inaccuracies
and must be tested. In vague domains, if we can’t test it then we shouldn’t
model it. That is, the computational properties of the test engine con-
strains the modeling process

Introduction

approach is to continue the analysis process till the vagueness goes away.

Here, we take another approach and explore what we can do with these vague
diagrams without requiring precise analysis. Our approach is useful for both the
acquisition and maintenance of knowledge. Standard software engineering meth-
odologies are typically prescriptions on how to develop some initial system. Here
we formalise the process of handling an existing, possibly poorly understood, sys-
tem. Our goal is the structuring and the optimisation of the resources available

*Proceedings of the Pacific Knowledge Acquisition Workshop, Sydney, Australia, 1996.

Available from http:// www.cse.unsw.edu.au/ ~timm/pub/ docs/papersonly.html

foriegn "= Current Foreign

demand Account Exchange Rate
Balance - Unemployment +/
investor M — Share
foriegn - confidence Index
saes x / ++
++
++
oNp ~ / oW
\ supply [Domestic &k company ages foriegn
of goods profits \/ investment
++
++ .
domestic
investment .
Inflation
Mon Bl _r § nieres
&Y ———= demand Rates

Supply

Figure 1: An economic vague causal diagram; from [5].

during the maintenance phase. In the usual case, software maintenance is the
process of understanding someone else’s idiosyncratic code which may or may
not be documented. An extreme software maintenance problem occurs when
handling legacy systems where the maintainer may not even have access to the
source code.

Vague models must be processed differently to standard software systems.
The standard software design activity cycle shown in Figure 2 [11]. Logical
design comprises a brainstorming elicitation stage followed by a representa-
tion stage that systematises the concepts found during elicitation. To make the
representations exhibit behaviour, they must be transformed into a lower-level
representation which can be operationalised. During this transformation stage,
implementation-dependent details will contort the representation. Once opera-
tionalised, these concepts can be executed and tested. Testing can be divided
into verification (i.e. was the system built right?) and validation (i.e. was the
right system built?). Feedback from the testing process can improve the physical
and logical designs.

In modeling of vague domains (see §2.1), systems development spends more
time in testing and correction than initial logical design. Hence, development
should move through the logical design stage as quickly as possible since most
of the specification will be found in the testing stage. Vague modeling cannot
produce correct models. Rather, it can only produce models that contain portions
that are useful for known purposes.

Our preferred test engine is the HT'4 abductive validation engine (summar-
ised in §2.2). Previously, we have discussed HT4 and its applications to KBS
inference and verification [17,18]. This article maps these low-level discussions
into the high-level processes referred to in Figure 2. At its core, HT4 maps
a theory down into a directed graph expressing the connections and invariants

logical design testing

elicitation) validation
improvements ,
\L / /‘\
/
- - — /
7
representation ’ verification

[transformation

physical design

Figure 2: The design activity cycle; adapted from [11]

between entities in the theory. This low-level data structure, we will argue, is a
unifying framework for operationalising most of the vague modeling process.

Figure 3 shows our proposed design activity cycle for vague domains. Elicit-
ation (§3.1) lets us articulate and represent (§3.2) our theory; a library of desired
behaviour (called the observations); and a success criteria for judging between
competing inferences. In the transformation stage (§3.3), we:

e Build a model compiler to convert the theory into a directed graph showing
dependencies between entities in the theory (§3.3.1). This dependency
graph can be passed to a graph-theoretic verification engine (§3.4).

e Build a data compiler to map our library of desired behaviours into a set

of pairs: <ZN,0UT > (§3.3.2).
e Implement the success criteria as the BEST assessment operator (§3.2.3).

At execution time, each < ZN,OUT > pair is processed. Portions of the
dependency graph are extracted that connect members of OUT back to members
of ZN . Recall that we are executing vague models. Vague models are necessarily
incomplete; 1.e. they are under-specified. When executing such under-specified
models, guesses have to be made and mutually exclusive guesses must be man-
aged separately. The extracted portions of the dependency graph must be di-
vided into internally consistent worlds. The generation and assessment of the
these worlds is a framework for many expert system inference tasks, including
validation. Good theories can generate worlds that contain most of OUT; i.e.
they can explain a majority of the known behaviour.

Vague models contain inaccuracies. Therefore, vague modeling is only pos-
sible when the theory can be tested. That is, the computational properties of
the validation engine constrain the modeling process; i.e. if we can’t test it then
we shouldn’t model it. We will note below where the limits of the test device
constrain the design process.

s N
Elicitation dependency graph —
model Verification
l/ compiler
W pairsof <IN,OUT> ——= an<IN,OUT>
theory compiler \L
observations
sucess criteria —pEg7 BEST assessment — = execution
operator
Representation
Transformation conflicting
assumptions

Validation ; generation of consistent /
sets of conclusions (worlds)

Figure 3: Vague Modeling: the Details

2 Background

In order to explicate our argument, we begin with some background material
about example vague domains (§2.1) and abduction (§2.2).

2.1 Example Vague Domains

Elsewhere [15], we have characterised vague domains as: (i) poorly measured,
i.e. known data from that domain is insufficient to confirm or deny that some
inferred state is valid; (ii) hypothetical, i.e. the domain lacks an authoritative
oracle (e.g. a person or a large library of known behaviour) that can declare
knowledge to be “right” or “wrong”; (iii) Indeterminate, i.e. inferencing over a
knowledge base could generate numerous, mutually exclusive, outcomes.

The approached proposed here was developed by the first author for a neur-
oendocrinological domain (§2.1.1) which we would describe as the analysis of
perturbations of an equilibrium system!. Our current goal is to test the gen-
erality of that previous work approach in the domain of black-box comprehen-
sion (§2.1.2). We would describe the air traffic control simulators found in this
second, black-box comprehension domain as spatio-temporal reasoning over non-
equilibrium systems. Note that our work in this second black-box comprehension
domain 1is still in its preliminary stages.

2.1.1 Neuroendocrinology

Neuroendocrinology 1s the study of the interaction of glands and nerves. Ob-
taining values for certain chemicals within the body is not as simple as, say,

THT4 is an extension and a generalisation of the Feldman & Compton HT1-QMOD
system for hypothesis testing in neuroendocrinology [8,9]. HT1-QMOD was a prototype
system that was specific for neuroendocrinology which could not explain steady values or
multiple causes.

attaching a volt meter to an electric circuit:

e In one extreme case, 300,000 sheeps brains had to be filtered to extract
1.0 milligrams of purified thyroptin-releasing hormone [12].

e In the usual case, delicate measurements have to be made by skilled staff
using expensive equipment. Some of the values measured are in the pico-

MOLE range (10~2M).

Measurement in this domain can therefore be an expensive process and not
all entities are fully measured. For example, in studies [8, 17] of a sketch of a
model of glucose regulation [23], data was collected from six journal articles.
This sketch was represented as a compartmental model 2. In all, none of the
flow constants were known and only 39% of the compartments were measured
and not all at the same time interval.

2.1.2 Black-Box Comprehension

Operations Research makes extensive use of large complex simulation models.
These can be the result of many person-years of development and incorporate
modules obtained from external sources. It is common that such a system may
be obtained from a third party. Typically, some group called THAM; derives
some model M representing their initial understanding of a problem (e.g. mod-
eling the performance of a missile system). This model is operationalised in some
third generation language to become M. Perhaps an attempt is made to doc-
ument My in a manual M3 which may be incomplete. My and M3 are then
shipped to another site where a second team (T'EAMs) tries to understand them.
Conceptually, TFEAM; builds My, a model representing the local understanding
of M5 and the incomplete M3j.

TEAM-1
initial understanding:
operaIlorﬁIlsed: manual:
2 Mg

local understanding

“[2%2

TEAM-2

Figure 4: Commissioning Remote Models

2 Compartmental models utilise the principal of conservation of mass and assume that the
sum of flows of substance in and out of a compartment must equal zero. Flows are typically
modeled using a time-dependent exponential function since the rate of flow is often proportional
to the amount of stuff in the compartment [14].

The effort required to use My with confidence can be non-trivial, especially
when object code 1s supplied without source code or access to the author. Cur-
rent practice is for My to be documented in an incomplete manner (e.g. some
procedural manual advising parametric sensitivity and constants relating to the
local physical and operational environment). Ms can be regarded as a black-box
model that TEAM> must convert (with some support from Mas) into a gray-
boxr model M4. Once validated, M4 would be used for planning, prediction,
and optimisation studies. However, first it is essential that we can validate the
vague model My since local conditions may invalidate Ms. For example, the
Australian Defence Forces use aircraft in configurations that are different to
how they are used overseas. Certain parameters representing important domain
knowledge are stored in compiled numerical matrices and are inaccessible to
TEAM,;. For example, these parameters may (i) be based on experimental data
from tests in other climates or (ii) contain certain tacit assumptions about air-
craft operation. Prior to relying on My, TEAMs would like to validate this
model under local conditions.

2.2 HT4: An Abductive Inference Engine

Elsewhere [18], we have given a precise overview of abduction. Here, we offer an
approximate characterisation of abduction as the search for consistent subsets of
some background theory that are relevant for achieving some goal. If multiple
subsets can be extracted, then a preference operator (which we call BEST and
Bylander et. al. [2] call the plausibility operator pl) must be applied to select the
preferred subset(s). Abduction is different to deduction. In deductive inference,
all consequences of known literals must be found by the inference procedure. In
abduction, the inference engine can ignore parts of the background theory if they
are not relevant for the current goal.

Abduction is a very general process. Abductive frameworks for various KBS
tasks have been defined by numerous researchers; e.g. frame-based reason-
ing [20], Bayesian reasoning [2], diagnosis [6], explanation [13], and default
reasoning [21]. We have also argued that abduction is also useful for planning,
monitoring, verification, prediction, classification, qualitative reasoning [18], and
validation [17]. The reason for this generality is that the processing of subset
ezxtraction is a synonym of known general frameworks for expert systems; i.e.
Breuker’s [1] components of solutions and Clancey’s [4] situation-specific mod-
els [18]. For example, the formal difference between heuristic classification and
heuristic construction [3] is the extraction of one subset or multiple conflicting
subsets, respectively.

2.2.1 An Example

In order to present a detailed example of abduction, we will run an example
through our HT4 abductive inference engine [18]. A portion of Figure 1 is shown
in Figure 5. The edge symbols of Figure 5 are explained in Figure 6.

In the case where ZN'={foriegnSalesUp, domesticSalesDown}and OUT =
{investorConfidenceUp, inflationDown, wagesDown}, we can generate the

following proofs P for OUT:

o Pi= foriegnSalesUp — companyProfitsUp — investorConfidencelUp;

investor

fori egn confidence
+
Domestic ++ company — = wages
Sales profits \/
++

++

Inflation *

Figure 5: A portion of Figure 1.

Type Statement Notation | Can be used to
represent.. .
direct The more X the more Y and X +—;‘ Y mathematical
the less X the less Y proportionality
inverse | The more X the less Y and X > Y mathematical inverse
the less X the more Y proportionality

Figure 6: Edge symbols of Figure 1 and Figure 5.

e P3= domesticSalesDown — inflationDown;
e P3= domesticSalesDown — companyProfitDown — wagesDown;
e P,= domesticSalesDown — inflationDown — wagesDown.

These proofs may contain assumptions, i.e. literals that are not known FACTS.
Continuing the example of Figure 5, if FACTS=ZN U OUT, then {companyProfitsUp,
companyProfitsDown} are assumptions. If we can’t believe that a variable can
go up and down simultaneously, then we can declare these assumptions to be
conflicting (denoted A.). Hence the key conflicting assumptions are the contro-
versial assumptions which are not dependent on other controversial assumptions.
In our example, these base controversial assumptions (denoted Ap) are all of our
controversial assumptions. We can used Ap to find consistent belief sets called
worlds W. A proof P; is in W; if that proof does not conflict with the environ-
ment SNVJ- (an environment is a maximal consistent subset of Ap). Tn our ex-
ample, EAN'Vi={companyProfitsUp}, ENVy={companyProfitsDown}. Hence,
Wi ={P1, Pa, Pa} and Wo={P3, P3 P4} (see Figure 7)3.

Which is the BEST world? We have argued elsewhere [18] that, depending
on the choice of BEST operators, a variety of KBS tasks can be emulated. BEST
operators can be defined for one of three levels: vertex, proof, and world. When
extending a proof from a particular node, a vertez-level BEST could elect to
use edges with the highest numerical rating. This could be used to emulate a

3The connection of HT4 to DeKleer's ATMS system [7] is explored elsewhere [18]

investor
confidence $

$ foriegn
sales \ /+
$ Domestic company wages $

Sales profits

++

World 1 Inflation $

++
$ Domestic % company — - wages $

Sales profits

++

World 2 Inflation $

Figure 7: Worlds from Figure 5.

MY CIN-style certainty factor traversal. A proof-level BEST could execute when
some proofs or partial proofs are known; e.g. beam search during planning. A
worlds-level BEST could execute when the worlds are known. Minimal-fault
diagnosis is a world-level BEST assessment operator that returns world(s) which
maximise the number of QU7 puts obtained while minimising the number of
INputs to those world. BEST pxpranarron returns the worlds(s) with the
greatest overlap with known user profiles; i.e. return the worlds a particular
user is liable to understand. Our preferred validation approach is a worlds-level
BEST that returns the worlds that offer explanations for the most number of
OUTputs. This BEST v arrparron would therefore favour Wy (which explains
3 members of OUT) over Wy (which only explains 2 members of OUT).

2.2.2 Computational Limits of Testing

The computational limits of the test engine constrains what can be represen-
ted in vague modeling. Elsewhere, we have explored the practicality of HT4
for medium to large theories [17]. In our mutation study, 257 theories were
artificially generated by adding random vertices and edges to the and-or graph
from a theory called Smythe 894, These were run using 5970 experimental com-
parisons. In the changing N mutation study, the fanout was kept constant and
the size of the model was increased. Model size N was measured by the num-
ber of vertices V in the ground graph. For example, foriegnSales contributes
three vertices to the ground graph: {foriegnSalesUp, foriegnSalesSteady,

4The Smythe '89 theory is discussed further in §3.5

foriegnSalesDown}. For that study, a “give up” time of 840 seconds was built
into HT'4. HT4 did not terminate for |V| > 840 in under that “give up”time. We
conclude that the “knee” in the exponential runtime curve kicks-in at around 800
literals. These result came from a Smalltalk V implementation on a Macintosh
Powerbook 170. A port to “C” on a Sparc Station is underway.

The changing fanout mutation study examined the practicality of HT4 for
models of varying fanout (fanout is the number of edges £ that touch each vertex

V; i.e.%). In that study, the Smythe ’89 theory size was kept constant, but edges

)
were added at random to produce new graphs of larger fanouts. Six models
were used of sizes |V| = {449,480,487,494,511,535}. At low fanouts, many
behaviours were inexplicable. However, after a fanout of 4.4, most behaviours
were explicable. Further, after a fanout of 6.8, nearly all the behaviours were
explicable [17].

Application | V| | [E|/V|
displan 55 2

mmu 65 7
tape 80 4
neuron 155 4
DMS-1 510 6

Figure 8: Parameters from fielded expert systems. From [19].

In practice, how restrictive is a limit of 850 vertices and % < 6.87 The only

reliable data we could find on fielded expert systems is shown in Figure 8 [19].
Figure 8 suggests that a practical inference engine must work at least for the

range 55 > |V| > 510 and 2 > % > 7. We therefore conclude that vague
modeling is practical for the size of expert systems seen in current practice and
for nearly the range of fanouts seen in fielded expert systems. However, after a
certain level of inter-connectivity, a theory is able to reproduce any input/output
pairs. An inference procedure that condones any behaviour at all from a the-
ory is not a useful inference procedure. After the point where % OQUT covered

approaches 100%), vague modeling becomes impractical.

3 The Design Activity Cycle of Vague Modeling

Above, we have defined vague domains and the abductive framework that is the
backbone of the process. We have explored the computational limits of valida-
tion in that framework. We can show where the testing process constrains the
various stages of the design process; i.e. elicitation (§3.1), representation (§3.2),
transformation (§3.3), verification (§3.4), and validation (§3.5).

3.1 Elicitation

The elicitation stage is an exploration of the domain. The goal of this stage is to
make a first pass at discovering (i) list of terms for “things” in this domain; (ii)

a rough idea of how these “things” influence each other; (iii) what “things” are
incompatible (the invariants); (iv) a set of scenarios recording what behaviour
your models should be able to reproduce.

In the elicitation, domain experts are encouraged to sketch out vague causal
diagrams like Figure 1. Note that these models will be under-specified and
can generate conflicts. At this stage, experts should not try and resolve these
conflicts. Rather, their goal is to generate the set of all possible explanations
that are acceptable to them. The process of extracting relevant and consistent
subsets will be handled later.

Once drawn, the next stage in vague modeling is to walk through the dia-
grams with scenarios; i.e. examples of how things impact the system. These
scenarios will later become our ZA puts and our OU 7 puts.

Tacit in the vague diagrams is tnvariant knowledge. For example, having said
that inflation can go up or down is the statement that we can’t believe that
inflation can go up and down simultaneously. More generally, these diagrams
can include invariants between any pairs of states. Invariants can be absolute or
gradual:

e Absolute invariants are statements like rain and suntan are mutually

exclusive (denoted rain=up & suntan=up.

o Gradual invariants are statements like the more rain the less suntan.
These are modeled using our standard edge types; e.g. rain — suntan.

When working with sensor data, it may be useful to introduce summary nodes
that generalise certain data. For example, prolongedExposure to sunlight and

sunLamps might both connect to tanned; e.g. prolongedExposure tanned

and sunLamps tl; tanned.
Vague causal diagrams can be generated from many pre-existing sources such
as:

e Existing business rules; i.e. preconditions lead to postconditions.

e Equations; i.e. using A 4 B to model proportionality and A = D to model
inverse proportionality.

e Object-oriented models; i.e. instance attributes imply that instance’s class,
sub-classes imply super-classes and super-classes plus certain added fea-
tures imply a sub-class. Note that in standard OO, sibling classes are
mutually exclusive (see Figure 9).

Domains typically have pre-existing special constructs which may be use-
ful in elicitation of the vague causal diagrams. For example, neuroendocrino-
logy using compartmental models. In compartmental models, compartments
are connected by “pipes” and each pipe has a flow control box. These flow
rate through these flow controllers can be changed by other compartments; e.g.
glucose (a compartment) can increase the glucagonProduction (a flow con-

troller on a pipe going into glucagon); i.e. glucose s glucagonProduction

and glucagonProduction *% glucagon.

IegFZ

cI ass=hird
flies=true 9 and099 \
i and098
flies=false ™ dasstemu cl as;sparrow

Figure 9: About birds.

3.1.1 Restrictions on Elicitation

Details of the test engine constrain the elicitation stage. In particular, we must
restrict the size of vague models. In practice, this means avoiding low-level detail
and removing time.

Avoiding low-level detail: Vague modeling is not a technique for recording of
low-level detail since the HT4 inference engine has problems handling very big
models (recall §2.2.2). Hence, if models get too big, we need to move up a level
of abstraction. For example, collapse sales to china and sales to canada
to one “thing”: foriegnSales. In the neuroendocrinological domain, we adop-
ted the usual qualitative modeling trick of replacing continuous variables with
up, down, Steady;i.e. one of three states representing the sign of the change
in those variables. Note that this introduces some indeterminacy into the model.
Recall that in Figure 1, if foriegnSales and domesticSales go up and down
respectively, then we have contradictory possible values for companyProfits (up
OR down). In vague modeling, we defer the resolution of these conflicts till the
testing phase. In the meantime, recall that if HT4 generates multiple worlds
for companyProfitsUp or companyProfitsDown, then these contradictory as-
sumptions will be stored in multiple worlds.

Remouving time:

e We could naively model looping in simulations by repeating each node in
a theory for every time tick in the simulation. That is, the graph would
contain a node a;—1, a;=s, a;=3, -... Given T time ticks, the practical
limit to model size is the limits noted in §2.2.2, divided by T'. That is, the
longer the simulation, the smaller the model we can test.

e A non-naive alternative is to repeat each loop only for measured time ticks.
We are exploring this option, but this is only preliminary work-in-progress.

In practice, for the current work, we plan to build our models without time.
In the neuroendocrinological domain, time is removed by only using scenarios
without time series data. This restriction still provides us with many data points.
Much of the experimentation in neuroendocrinology is performed on separate
groups of rats. Conclusions are made by comparing measurements in some
control group to measurements in some treated group. In such scenarios, there
is no sense of time flowing from the control group to the treated group.

In the black-box comprehension domain, time is harder to remove. Many
of the systems in the target domain are large FORTRAN or C++ simulations
which explicitly model time-series events. Qur current approach in this domain
is to develop an elicitation framework aimed at declarative representation. Time
and position are often inter-changeable indexes in the navigation strategies of
mariners and pilots. Traditional AT planning (e.g. STRIPS) avoids explicit
representation of time by creating ordered lists representing priorities in sched-
ules. We conjecture that pilot knowledge expressed in the this prioritised list
framework, need not mention time. Rather, our rules will be reactions to some
immediate situation rather than a reflection of some between-situations plan.

3.2 Representation

The representation stage fills in the details sketched in the elicitation stage.
The goal of this stage is creation of (i) a theory (§3.2.1); (ii) some observations
containing the scenarios that the theory should be able to reproduce (§3.2.2);
and the success criteria (§3.2.3).

3.2.1 Representing a Theory

Smythe "87 [22] is a theory proposing connections between serum adrenocortico-
tropin (acth), serum corticosterone (cortico), and neuro-noradrenergic activ-
ity (nna). Nna was measured as the ratio of noradrenaline to its post-cursor,
3,4-dihydroxphenyl-ethethyleneglycol. This theory is shown as the vague causal
diagram of Figure 10. The temp vertex was introduced to model the user’s
statement that dex has the same effect as cortico.

A. Causal diagram B. Theory

name = “16. Smythe 87".
objects(e) = [coldSwim,dex].
objects(m) = [nna, acth, cortico,temp].
ma < * coldSwim
++\l/ :: coldSwim ++ nna. nna ++ acth.
temp acth ++ cortico. cortico ++ temp.
++\l/ / 1\ temp -- acth. temp -- nna.
cortico dex dex ++ temp.

Figure 10: The Smythe ’87 theory

The Smythe ’87 theory is shown in Figure 10 in HT4 syntax. This theory
starts with a name = “a string’ statement and is followed by two object
statements. The object statements describe the events and the measures of
the diagram. Events (denoted objects(e)) are like booleans while measures
(denoted objects(m)) are for continuous variables. The body, which follows
the head, contains the influence statements. The influence statements are pairs
of measures connected by one of the topoi symbols (see Figure 6).

3.2.2 Observations

The Smythe '87 paper contains values comparing these values in various experi-
ments: (i) controli.e. no treatments; (ii) dex i.e. an injection of dexamethasone

at 100 TZ—’gg; (iii) coldSwimi.e. a two minute swim in a bath of ice cold water; and
(iv) coldSwim, dex i.e. both a coldSwim and an injection of dex. A sample of
experimental results from Smythe 87 is shown as the observations of Figure 11
(in HT4 syntax). The experiments are shown in the columns and the measures
taken in the different experiments are shown in the rows.

observations = [1, [dex], [coldSwim], [dex,coldSwim]]
[nna - [0.122, 0.105, 0.210, 0.246 1,
cortico - [129 R 11.3 1232.0 , 32.8 1,
acth - [89 R 0.0 , 240.0 , 0.0 17.

Figure 11: The observations for the Smythe 87 model of Figure 10.

Our scenarios are comparisons between two experiments. When we com-
pare (e.g.) [coldSwim] to [dex, coldSwim], we say that the input (ZN) to
scenario was change(coldSwim)=arrived, change(dex)=arrived and the out-
put (OUT) of the scenario was that acth=down, cortico=down, nna=up. The
scenario that our theory has to try and reproduce is change(coldSwim)=arrived
and change(dex)=arrived leads to nna=up; that is cold swims and injections
of steroids increases stress levels in a rat.

3.2.3 The Success Criteria

The success criteria will be mapped into the HT4 BEST operator. We use the
success criteria to select preferred inferences. Success criteria extract summaries
of the inferences, and then cull some inferences based on those summaries. The
exact BEST operator is domain dependent. For neuroendocrinology, we have
used a BEST operator that returns the world(s) that cover the most OU T puts.
Note that this answers the following question: “can a theory of X reproduce
known behaviour of X?”. Elsewhere (§3.5) we describe experiments were this was
applied as a validation criteria which successful found faults in published mod-
els of neuroendocrinology. For other domains, (e.g. machine learning) we may
chose to (i) return the smaller worlds; (ii) the world(s) that make the fewest as-
sumptions; that (iii) use the least controversial assumptions; (iv) the “cheapest”
worlds (assuming that each edge is associated with some notion of the cost of
its inclusion); (v) etc.

3.2.4 Restrictions on Representation

The details of what can be represented are restricted by what can be handled
at the transformation stage.

3.3 Physical Design: Transformation

The physical design is the bridge between the logical design and an executable
version which we can test. Specifically, the goals of the transformation stage is
to be able to:

e Execute the theory. This implies the use of a model compiler (see §3.3.1)
which can generate the ground dependency graph from the theory.

o Convert the observations into sets of ZAput-OU T put pairs. Each pair of
<IN ,OUT > is then passed to the output of the data compiler (see §3.3.2)
for execution.

e Implement the success criteria to resolve any conflicts found during the
execution. When implemented, the success criteria is called the BEST
assessment operator. BEST operators have to be coded in the HT4 imple-
mentation language (Prolog).

3.3.1 The Model Compiler

Two styles of model-compilers are planned for the black-box comprehension
domain. The first style is a generic partial-evaluator of rules with variables into
the network of connections between literals in the rule. This partial-evaluator
will need knowledge of the range of each field of each fact that can be asserted.
The second style will be an attempt to “shoe-horn” the rule representation into
the representation used in the neuroendocrinological domain. A hand inspection
of the rules will be used to draw vague causal diagrams which will be mapped
into the neuroendocrinological theory.

With the neuroendocrinological model compiler, if a vertex can be in one of
N states, then one vertex is added for each such state. If an edge condones con-
nections between two states of adjacent vertices, then an edge is added between
those states. For example, power ++ lights is expanded into Figure 12.

power=up lights=up

power=down —— = lightssdown

Figure 12: Light is directly proportional to power.

All the vertices of Figure 12 are or vertices; i.e. belief in these vertices
requires a belief in only one of its parents. The model compiler can add the
disabling effects of rats via and vertices; i.e. vertices which we can only believe if
we believe all their parents. For example, if we know that the rats in the basement
disable the connection between the power and the lights (when they bump the
cable), then we say if not rats then power ++ lights which expands into
Figure 13.

At this point, the neuroendocrinological model compiler gets intricate. A
conjunction of competing upstream influences can combine to explain a steady
vertex. Also, changes to an object’s value downstream of an abler link can be
explained in terms of changes to the abler. Returning to our rats, in the case of
power not rising (but on) and the rats being present, the lights are dark. Now
consider the same situation, but the rats suddenly disappearing. The lights going
up can now be explained in terms of a change in the rat population. If we take
these into account, we get Figure 14. In Figure 14 we include for the first time
the incompatible vertices (see the double-headed arrows marked with a cross).

For more details on the neuroendocrinology model compiler, see [16].

rats=absent

\

power=up \ and033 lights=up

power=down — = and034 — = lights=down

Figure 13: The lights/power relationship works when rats are absent.

rats=absent change(rats)=arrived
power=up and033 lights=up
and035
and036 lights=steady

power=down —= and034 lights=down

change(rats)=left

Figure 14: The final rats model.

3.3.2 The Data Compiler

The data compiler converts tables like Figure 11 into ZN and QOUT sets of
vertices in the dependency graph. For example, in the scenario [] to [dex]
in Figure 11, INi= dex=arrived, coldSwim=absent and QUT 5= nna=up,
cortico=down, acth=down.

There are five other scenarios: <ZAN;,OUT ;> pairs: [] to [coldSwim],
[] to [dex,coldSwim], [dex] to [coldSwim], [dex] to [dex,coldSwim], and
[coldSwim] to [dex,coldSwim]. Therefore, we can run six scenarios through
the Smythe '87 model of Figure 10.

Smythe 87 is a symmetrical model. In symmetrical models, a comparison
from experiment; to experiment; is the same as experiment; to experiment;;
i.e. after studying [dex] to [coldSwim], we do not need to study [coldSwim] to
[dex]. Non-symmetrical domains are those that include asymmetric influences.
Direct and inverse are symmetric influences while ablers are asymmetric. In
asymmetric domains, therefore, twice as many scenarios must be studied.

3.4 Verification

Verification is an exploration of the internal syntactic structure of a program.
Preece, Shinghal and Batarekh [19] (hereafter, PSB) define a taxonomy of struc-

tural “anomalies” in rule-based expert systems (see Figure 15) and argue that a
variety of verification tools target different subsets of these anomalies (perhaps
using different terminology).

Redundancy i Redundant rules i Duplicate rules

Subsumed rules
Unusdblerules =<~~~ 7~
\
Ambivalence Conflicting sets of rules //
Anomaly // related
/" problem
Circularity (inference loops))/

/
7/
7

Deficiencyi Missing rules <-7

Missing values

Figure 15: PSB anomalies.

Some of these anomalies require meta-knowledge about knowledge base lit-
erals:

o A literal is PSB-askable if it represents a datum that the knowledge base
can request from the outside world. All askables must be events.

e A literal is a PSB-final hypothesis if it is declared to be so by the KB
author and only appears in a rule conclusion. Final vertices may be events
or measures.

A rule is PSB-redundant if the same final hypotheses are reachable if that
rule was removed. An unusable redundant rule has some impossible premise. A
knowledge base is PSB-deficient if a consistent subset of askables leads to zero
final hypotheses. A PSB-duplicate redundant rule has a premise that is a subset
of another rule premise. PSB define duplicate rules for the propositional case
and subsumed redundant rules for first- order case (where instantiations have
to be made to rule premise variables prior to testing for subsets). PSB define
ambivalence as the case where, given a consistent subset of askables, a rule-base
cannot infer some final hypotheses.

PSB stress that the entries in their taxonomy of KBS anomalies may not
be true errors. For example, the dependency network from a rule-base may
show a circularity anomaly between literals. However, this may not be a true
error. Such circularities occur in (e.g.) user input routines that only terminate
after the user has supplied valid input. For this reason, the ”errors” detected
by internal testing are called anomalies, not faults. Internal test anomalies are
used as pointers into the system which direct the developer to areas that require
a second glance.

In vague domains, the anomalies shown in italics of Figure 15 are to be
expected. For example:

e There is a case that subsumed rules are actually desirable in the case where
different audiences use different logic to reach the same conclusion. Such

different approaches to the same problem are very useful for explaining an
inference to different people.

e PSB ambivalence can be reported when more than one world is generated
at runtime. Note that in vague domains, ambivalence is to be expected.

However, a graph-theoretic analysis of the dependency graph D can detect
many of the other PSB anomalies:

1. Compute the components of the dependency graph; i.e. the disconnected
sub-graphs of D. Find the roots and leaves of each component. Compute
the set intersection and set difference of the askables with the roots and
the final hypotheses with the leaves. An inspection of these sets will detect
specification anomalies

2. Compute the transitive closure of each vertex using Warshall’s algorithm.
Report a circularity anomaly if a vertex is in its own transitive closure.

Other useful verification studies are:

e Generate an alphabetical list of all vertices in the system. A quick scan of
this list can find certain common spelling mistakes.

e Instrument the model compilation process:

— If a statement in the theory proposes a set of new edges for D, and
those edges are already in D, then that statement is a duplicate of a
previous statement.

— If a statement in a theory proposes edges between incompatible ver-
tices, then that statement is unusable.

3.5 Validation

Validation is an assessment of the program based on external semantic criteria.
For each model generated from the logical design, we find:

e The average percent coverage of that model for all known behaviour using
a worlds-level BEST assessment operator that favours world(s) that covers
the most outputs (recall §3.2.3).

e The frequency with each edge in D was used when processing the beha-
viour. Edges that are never/rarely use can be reviewed with the business
users and (possibly) culled from the model.

In the case of competing models, we reject the models that explain signi-
ficantly less behaviour than their competitors. Returning to the Smythe ’87
theory (Figure 10), in the scenario [coldSwim] to [dex, coldSwim], we can
infer from Figure 11 that OUT ={acthDown,corticoDown, nnaUp} and ZN =
{change(dex)=arrived, coldSwim=present}. In this comparison nnaUp can’t
be explained since their exists no proof from nnaUp to ZA which does not viol-
ate the proof invariants. Another error can be found in the comparison [dex]
to [dex,coldSwim]. In this comparison ZN'= {change(coldSwim)=arrived,
dex=present} and OUT = {acthSteady, corticoUp, nnaUp} and only nnaUp

can be explained. What is interesting here is that the Smythe ’87 theory had
been published in an international refereed journal [22] and its validation errors
were found by a detailed examination of the data published to support it! Fur-
ther, when these errors were shown to the author of the theory, he found them
novel and exciting; i.e. they were significant errors.

Smythe '87 1s a small theory. The Smythe '89 study explores how well abduct-
ive validation scales up to medium-sized models. Smythe 89 [23] is a theory of
human glucose regulation. It contains 27 possible inputs and 53 measurable en-
tities which partially evaluated into an and-or graph with 554 vertices and 1257
edges. Smythe ’89 is a review paper that summaries a range of papers from the
field of neuroendocrinology. Those papers offer 870 experimental comparisons
with between 1 to 4 inputs and 1 to 10 outputs.

Smythe ’89 was originally studied by QMOD, the technical precursor to HT4.
That study found that 32% of the observations were inexplicable. QMOD could
not explain studies or handle multiple causes. These restrictions implied that
it could only handle of 24 possible comparisons. Even with these restrictions,
QMOD found several errors in Smythe ’89 that were novel and exciting to Smythe
himself [8]. Like the Smythe ’87 study, these errors had not been detected
previously by international peer review.

When HT4 ran over the full 870 comparisons, it found more errors than
QMOD. Only 150 of the comparisons could explain 100% of their OUT puts.
On average, 45% of the OUTs in those comparisons were inexplicable. The
level of critique offered by QMOD and HT4 is surprisingly high. This is both a
disturbing and exciting finding. It is disturbing in the sense that if the very first
large-scale medical theory analysed by abductive validation contains significant
numbers of errors, then it raises doubts as to the accuracy of theories in general.
This result is exciting in the sense that the level of critique is so high. Abductive
validation promises to be a powerful technique for theory review.

4 Related Work

Vague modeling makes little use of two of the dominant themes in KA: ontolo-
gical engineering [10] and reusable problem solving strategies (e.g. KADS [24]).
While an appropriate ontology may be useful for “kick-starting” the elicitation
stage, they may not be productivity tools for the rest of the design activity
life cycle in vague domains. Further, it is not clear what (e.g.) KADS offers
for the testing phase of a KBS. Our framework easily supports validation and
verification. While KADS has a “verification” inference model®, in its current
form 1t cannot be applied reflectively on the KADS models themselves. Also,
this KADS “verification model” makes no mention to assumption space manage-
ment; a technical issue that 1s central to our architecture and validation process.

5 Conclusion

Vague modeling is the process of making what sense we can of half-formed ideas
in a poorly measured domain. In this paper we have explored the design activity

5Tn our view, KADS “verification” is really “validation” since it relies on external semantic
criteria.

cycle of vague modeling based around vague causal diagrams and abductive
inference. We have contrasted vague modeling with conventional modeling. In
conventional modeling, most of the design is generated in the analysis stage. In
vague modeling, most of the model is found during testing. Further, the limits
of the computational device used in the testing phase restricts the modeling
process back at the logical design phase. Hence, the test engine should be built
first since, in vague domains, what can’t be tested shouldn’t be modeled. HT4
imposes two restrictions: the need to avoid low-level detail and the need for
declarative representations that avoid time. Models that satisfy these restrictions
can be verified and validated.

Originally, the approach described here was developed as a general approach,
using the neuroendocrinology domain as an example. Our current task is to
test the generality of this approach in the black-box comprehension domain.
While the work done to date is preliminary, it has served to highlighted certain
restrictions with the software developed for the neuroendocrinology domain. For
example, we need better tools for building of model and data compilers (see §3.3.1
and §3.3.2). While ultimately these must be customised to a particular domain,
model compilers for rules and frames should be added to the current system.

References

[1] J. Breuker. Components of Problem Solving and Types of Problems. In 8th European
Knowledge Acquisition Workshop, EKAW ’94, pages 118-136, 1994.

[2] T. Bylander, D. Allemang, M.C. M.C. Tanner, and J.R. Josephson. The Computational
Complexity of Abduction. Artificial Intelligence, 49:25-60, 1991.

[3] W. Clancey. Heuristic Classification. Artificial Intelligence, 27:289-350, 1985.

[4] W.J. Clancey. Model Construction Operators. Artificial Intelligence, 53:1-115, 1992.

[5] P. Clark and S. Matwin. Using Qualitative Models to Guide Inductive Learning. In
P. Utgoff, editor, Proceedings of the Tenth International Machine Learning Conference,
ML-98, pages 49-56, 1993.

[6] L. Console and P. Torasso. A Spectrum of Definitions of Model-Based Diagnosis. Com-
putational Intelligence, 7:133-141, 3 1991.

[7] J. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163-196, 1986.

[8] B. Feldman, P. Compton, and G. Smythe. Hypothesis Testing: an Appropriate Task
for Knowledge-Based Systems. In 4th AAAI-Sponsored Knowledge Acquisition for
Knowledge-based Systems Workshop Banff, Canada, 1989.

[9] B. Feldman, P. Compton, and G. Smythe. Towards Hypothesis Testing: JUSTIN, Pro-
totype System Using Justification in Context. In Proceedings of the Joint Australian
Conference on Artificial Intelligence, AI ’89, pages 319-331, 1989.

[10] T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199-220, 1993.
[11] B. Hodgson. Personal communication. Hodgson derived his meta-model from a recent

analysis of how CASE tools are used in business environments, 1996.

[12] D.T. Krieger. The Hypothalmus and Neuroendocrinology. In D.T. Krieger and J.C.
Hughes, editors, Neuroendocrinology, pages 3—122. Sinauer Associates, Inc., 1980.

[13] D.B. Leake. Focusing Construction and Selection of Abductive Hypotheses. In IJCAT
93, pages 24-29, 1993.

[14] J.E.A. McIntosh and R.P. McIntosh. Mathematical Modeling and Computers in Endo-
crinology. Springer-Verlag, 1980.

[15] T.J. Menzies and P. Compton. The (Extensive) Implications of Evaluation on the Devel-
opment of Knowledge-Based Systems. In Proceedings of the 9th AAAI-Sponsored Banff
Knowledge Acquisition for Knowledge Based Systems, 1995.

(16]

(17]
(18]

[19]
[20]
[21]

(22]

(23]

(24]

T.J. Menzies. Principles for Generalised Testing of Knowledge Bases. PhD thesis,
University of New South Wales, 1995.

T.J. Menzies. On the Practicality of Abductive Validation. In FCAT ’96, 1996.

T.J. Menzies. Applications of Abduction: Knowledge Level Modeling. International
Journal of Human Computer Studies, September, 1996.

A.D. Preece and R. Shinghal. Verifying Knowledge Bases by Anomaly Detection: An
Experience Report. In ECAT ’92, 1992.

J.A. Reggia. Abductive Inference. In Proceedigns of the FEzxpert Systems in Government
Symposium, pages 484—489, 1985.
B. Selman and H.J. Levesque. Abductive and Default Reasoning: a Computational Core.

In AAAT 90, pages 343—-348, 1990.

G.A. Smythe. Hypothalamic noradrenergic activation of stress-induced adrenocortico-
tropin (ACTH) release: Effects of acute and chronic dexamethasone pre-treatment in the
rat. Ezp. Clin. Endocrinol. (Life Sci. Adv.), pages 141-144, 6 1987.

G.A. Smythe. Brain-hypothalmus, Pituitary and the Endocrine Pancreas. The Endocrine
Pancreas, 1989.

B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: a Modeling Approach to Know-
ledge Engineering. Knowledge Acquisition, 4:1-162, 1 1992.

Some of the Menzies papers can be found at hAttp:// www.sd.monash.edu.au/ ~timm/pubdb/

docs/papersonly. html.

