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Abstract. An abductive framework is described for validating the-
ories using a library of known or desired behaviour. Abduction is
known to be NP-hard which suggests that this framework is im-
practical for anything other than small theories. The computational
limits of the framework is therefore explored. We find that abductive
validation is a practical tool for the KBS we see in contemporary
practice.
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1 INTRODUCTION

The connection between abduction and other KBS inference tasks
(e.g. model-based diagnosis) is well-documented [2, 7]. It would
be convenient if we could execute and test our KBS in the same
abductive framework. This would remove the need for complicated
translations between the executable form of a KBS and its associated
test engine.

Here we explore KBS validation using HT4, an abductive inference
engine. HT4 assumes that the definitive test for a model is that it can
reproduce (or cover) known behaviour of the entity being modeled.
Theory
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1 is a better theory than theory

�
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2 . HT4

is a generalisation and optimisation of QMOD, a validation tool for
neuroendocrinological theories [5].

One drawback with abduction is that it is slow. Selman & Levesque
show that even when only one abductive explanation is required and
the theory is restricted to be acyclic, then abduction is NP-hard [9].
Bylander et. al. make a similar pessimistic conclusion [1]. Computa-
tionally tractable abductive inference algorithms (e.g. [1, 4]) typically
make restrictive assumptions about the nature of the theory or the
available data. Such techniques are not applicable to arbitrary theo-
ries. Therefore, it is reasonable to question the practicality of HT4
for medium to large theories.

This paper is structured as follows. Section 2 introduces abductive
validation and Section 3 explores its complexity. Section 4 review
studies which experimentally demonstrate the practicality of HT4 for
the KBS we see in contemporary practice.

2 ABDUCTIVE VALIDATION

Abduction is the search for assumptions � which, when combined
with some theory

�
achieves some set of goals 
�� � without causing

some contradiction [4]. That is:
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HT4 caches the proof trees used to satisfy ��� 1 and ��� 2 . These are
then sorted into worlds � : maximal consistent subsets (maximal with
respect to size). Each world condones a set of inferences. A world’s
cover is the size of the overlap between 
�� � and that world.

For example, given a set of goal 
�� � puts and known  "! puts,
then HT4 can use (e.g.) the qualitative theory of Figure 1 to build a
set of proof trees # connecting  $! puts to 
�� � puts. In Figure 1,

(i) x %"%& y denotes that y being up or down could be explained

by x being up or down respectively while (ii) x '�'& y denotes
that y being up or down could be explained by x being down or
up respectively. If we assume that (i) the conjunction of an up and a
down can explain a steady and that (ii) no change can be explained
in terms of a steady (i.e. a steady vertex has no children), then
we can partially evaluate Figure 1 into the and-or graph of literals
shown in Figure 2. This graph contains one vertex for each possible
state of the nodes of Figure 1 as well as and vertices which models
combinations of influences (for example, gDown and bDown can
lead to fSteady). The dotted lines in Figure 1 denote edges around
and vertices.
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Figure 1. A qualitative theory.

For example, in the case where 
�� � = ( dUp,eUp,fDown )
and  $! = ( aUp,bUp) , then # 1= *,+.- &0/ +.- &21 +.- &03 +.- , # 2=
*,+.- &54 +.- &76 +.- &83 +.- , # 3= *,+.- &04 +.- &76 +.- &09 +.- , # 4=: +.- &74<;>=<?<@�&A6.;>=<?<@�&7B.;>=<?<@ , # 5=

: +.- &7B.;>=<?<@ .
Some of these proofs make assumptions; i.e. use a literal that

is not one of the known CD�FE ��G (typically, CD�HE ��G =  "! �

�� � ). Note that some of the assumptions will contradict other
assumptions and will be controversial (denoted ��I ). For exam-
ple, assuming cDown and cUp at the same time is contradictory.
DeKleer’s key insight [3] was that, in terms of uniquely defining
an assumption space, the key controversial assumptions are those
controversial assumptions that are not dependent on other contro-
versial assumptions. We denote these base controversial assump-
tions �KJ . In our example, ��I = ( cUp,cDown,gUp,gDown ) and
�KJ = ( cUp, cDown ) (since Figure 1 tells us that g is fully deter-
mined by c). If we assume cUp, then we can believe in the world
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Figure 2. The search space tacit in Figure 1

� 1 containing the proofs # 1 # 2 # 3 # 5 since those proofs do not
assume cUp. If we assume cDown, then we can believe in the world
� 2 containing the proofs # 1 # 4 # 5 since these proofs do not assume
cDown. These worlds are shown in Figure 3.
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Figure 3. Two worlds from Figure 2

The overlap of � 1 and 
�� � is ( dUp,eUp,fDown ) and the
overlap � 2 and 
�� � is ( dUp,fDown) ; i.e. � �����Y��	1 = 3 = 100%
and � �Z������	2 = 2 = 67%. The maximum cover is 100%; i.e. (i) their
exist a set of assumptions ( ( cUp ) ) which let us explain all of 
�� �
and (ii) this theory passes abductive validation.

3 COMPLEXITY OF HT4

The core problem in HT4 is finding � J . In the forward sweep,
HT4 finds ��I as a side-effect of computing the transitive closure
of  "! . In the backwards sweep, HT4 constrains proof generation

to the transitive closure of  $! . As a proof is grown from a mem-
ber of 
�� � back to  $! , five invariants are maintained. (i) Proofs
maintain a forbids set; i.e. a set of literals that are incompatible
with the literals used in the proof. For example, the literals used in
# 1 forbid the literals ( aDown, aSteady, xDown, xSteady,
yDown, ySteady, dDown, dSteady ) . (ii) A proof must
not contain loops or items that contradict other items in the proof
(i.e. a proof’s members must not intersect with its forbids set). (iii) If
a proof crosses an and node, then all the parents of that node must
be found in the proof. (iv) A literal in a proof must not contradict
the known CD�HE ��G . (v) The upper-most � I found along the way is
recorded as that proof’s guess. The union of all the guesses of all the
proofs is � J .

Once � J is known then the proofs can be sorted into worlds in the
worlds sweep. HT4 extracts all the objects 
 referenced in �OJ . A
world-defining environment [>!�\^] is created for each combination
of objects and their values. In our example, [_!`\ 1 = ( cUp ) and
[_!`\ 2 = ( cDown ) . The worlds sweep is simply two nested loops
over each [>!�\a] and each #cb . A proof #db belongs in world �e] if
its forbids set does not intersect the assumptions [_!`\d] that define
that world. For more details on the internals of HT4, see [7].

HT4’s runtimes are clearly exponential on theory size. In a theory
comprising a directed and-or graph connecting literals \ with [
edges and average fan-in C = f [ f

f \ f
, the worst-case complexity of the

forwards sweep is acceptable at gDhji \�i 3 k . However, if the average

size of a proof is l , then worse case backwards sweep is gDhml C k .
Further, the worlds sweep is proportional to the number of proofs and
the number of world-defining assumptions; i.e. (i.e. gDhji #Hi�n^i [>!�\�i k
= gDhji o C iYn�i [>!�\�i k .

4 EXPERIMENTS

4.1 The Smythe ’87 Study

The Smythe ’87 [10] theory shown in Figure 4 proposes connec-
tions between serum adrenocorticotropin (acth), serum corticos-
terone (cortico), and neuro-noradrenergic activity (nna). Nna
was measured as the ratio of noradrenaline to its post-cursor, 3,4-
dihydroxphenyl-ethethyleneglycol.

nna coldSwim++

tempacth

cortico dex
++++

--++

++

--

Figure 4. The Smythe ’87 theory.

The Smythe ’87 paper contains values comparing these values
in various experiments: (i) Control i.e. no treatments; (ii) dex i.e.
an injection of dexamethasone at 100 p^qr q ; (iii) coldSwim i.e. a
two minute swim in a bath of ice cold water; and (iv) coldSwim,
dex i.e. both a coldSwim and an injection of dex. A sample of
experimental results from Smythe ’87 is shown in Figure 5. The
experiments are shown in the columns and the measures taken in the
different experiments are shown in the rows.

In the comparison coldSwim to dex, coldSwim,

�� � = ( acthDown, corticoDown, nnaUp ) . If we modeldex
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Figure 5. Some results from Smythe ’87.

Measured coldSwim dex dex,
coldSwim

nna 0.210 0.105 0.246
cortico 1231 11.3 32.8
acth 240 0 0

and coldSwim as booleans with values s 0 t 1 u then for this
comparison,  "! = ( dexUp ) . In this comparison nnaUp can’t be
explained since their exists no proof from nnaUp to  "! which
does not violate the proof invariants. Another error can be found
in the comparison dex to dex,coldSwim. In this comparison
 "! = ( coldSwimUp ) and 
�� � = ( acthSteady, corticoUp,
nnaUp ) and only nnaUp can be explained.

Note that the faults of this theory were found by a detailed exam-
ination of the data published to support it. Further, the errors were
not known by the author of the theory, till we pointed it out to him.
Lastly, these errors escaped international peer review.

4.2 Smythe ’89

.
Smythe ’87 is a small theory. The Smythe ’89 study explores how

well abductive validation scales up to medium-sized models.
Smythe ’89 [11] is a theory of human glucose regulation. It con-

tains 27 possible inputs and 53 measurable entities which partially

evaluated into an and-or graph with i \di = 554 and f [ f
f \ f

v 2 w 25.

Smythe ’89 is a review paper that summaries a range of papers from
the field of neuroendocrinology.Those papers offer 870 experimental
comparisons with between 1 to 4 inputs and 1 to 10 outputs.

Smythe ’89 was originally studied by QMOD. That study found
that 32% of the observations were inexplicable. QMOD could not
explain studies or handle multiple causes. These restrictions implied
that it could only handle of 24 possible comparisons. Even with these
restrictions, QMOD found several errors in Smythe ’89 that were
novel and exciting to Smythe himself [5]. Like the Smythe ’87 study,
these errors had not been detected previously by international peer
review.

When HT4 ran over the full 870 comparisons, it found more errors
than QMOD. Only 150 of the comparisons could explain 100% of
their 
�� � puts. On average, 45% of the 
�� � s in those comparisons
were inexplicable. The level of critique offered by QMOD and HT4
is surprisingly high. This is both a disturbing and exciting finding.
It is disturbing in the sense that if the very first large-scale medical
theory analysed by abductive validation contains significant numbers
of errors, then it raises doubts as to the accuracy of theories in general.
This result is exciting in the sense that the level of critique is so high.
Abductive validation promises to be a powerful tool for assessing
vague theories.

4.3 The Mutation Study

The previous studies are interesting, but a sample size of 2 is inade-
quate to make general claims. In the mutation study,257 theories were
artificially generated by adding random vertices and edges to the and-
or graph from Smythe ’89. These were run using 5970 experimental
comparisons.

For the changing I/O study, 1391 runs were made across the
Smythe ’89 model with an increasing number of  $! puts and 
�� � puts.
Surprisingly, HT4 runtimes were noted to decrease as the size of
 "! and 
�� � was increased. This seemed a surprising result till
we realised that every CD�HE � culls the search space. For example,
if know that day=tuesday, then that rules out day=monday,
day=wednesday, w.w�w etc.

In the changing N mutation study, the fanout was kept constant
and the number of vertices were increased. Figure 6 shows the av-
erage runtime for executing HT4 over 94 and-or graphs and 1991
sx $!ytj
�� � u pairs [7]. For that study, a “give up” time of 840
seconds was built into HT4. HT4 did not terminate for i \ai{z 850
in under that “give up” time (shown in Figure 6 as a vertical line).
We conclude from Figure 6 that the “knee” in the exponential run-
time curve kicks-in at around 800 literals. These result came from a
Smalltalk V implementation on a Macintosh Powerbook 170. A port
to “C” on a Sparc Station is underway.
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Figure 6. Average runtimes.

In practice, how restrictive is a limit of 850 vertices? Details of the
nature of real-world expert systems are hard to find in the literature.
The only reliable data we could find is shown in Figure 7 which
shows the size of the dependency graph between literals in fielded
propositional expert systems [8]. Figure 7 suggests that a practical
inference engine must work at least for the range 55 z5i \ai�z 510

and 2 z�f [ f
f \ f

z 7.

Note that the Figure 6 results were obtained from a less-than-
optimum platform: Smalltalk running on a Macintosh. However, the
current results on a relatively slow platform show that HT4 is practical
for the theory sizes we see in practice.

The changing fanout mutation study examined the practicality of
HT4 for models of varying fanout. In that study, the Smythe ’89
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Figure 7. Figures from fielded expert systems.

Application i \�i f [ f
f \ f

displan 55 2
mmu 65 7
tape 80 4

neuron 155 4
DMS-1 510 6

theory size was kept constant, but edges were added at random to
produce new graphs of larger fanouts. Six models were used of sizes
i \�i v (Y�.�>�_t��>�.�_tZ�>�.�_tm�>�<��t����.�<t��.�.�_) . Figure 8 shows the results.
At low fanouts, many behaviours were inexplicable. However, after a
fanout of 4.4, most behaviours were explicable. Further, after a fanout
of 6.8, nearly all the behaviours were explicable [7].
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Figure 8. Explicable outputs.

As a result of the mutation study we conclude that HT4 is practical
for the size and fanout of expert systems seen in current practice
and for nearly the range of fanouts seen in fielded expert systems.
However, after a certain level of inter-connectivity, a theory is able
to reproduce any input/output pairs. An inference procedure that

condones any behaviour at all from a theory is not a useful inference
procedure. After the point where % 
�� � coveredapproaches 100%,
the HT4 becomes a useless validation tool.

5 DISCUSSION

In the literature, there at least two types of KBS testing: verifica-
tion and validation. Verification tools search for syntactic anomalies
within a knowledge base such as tautologies, redundancies, and cir-
cularities in the dependency graph of literals in a knowledge base [8].
Verification is not a definitive test for a KBS. Preece reports exam-
ple where working expert systems contained syntactic anomalies, yet
still performed adequately [8]. Validation tools assess a knowledge
via some external semantic criteria; e.g. testing that a knowledge
base model of l can reproduce known behaviour of l . If such a test
suite of behaviour is missing, then non-monotonic reasoning tech-
niques can be used to explore the dependency graph between KB
literals to find sets of input literals which will exercise the entire
knowledge [6, 12].

In this paper, we have explored a non-monotonic abductive vali-
dation variant which assumes the presence of a library of known be-
haviour. HT4-style abductive validation executes over a finite and-or
graph of literals. Many representations can be mapped into this form.
Our examples here are from qualitative theories but the technique
could be applied to propositional rule-bases or any first-order theory
that can be unfolded in a finite number of steps to a ground theory.Ab-
ductive validation handles certain hard and interesting cases; e.g. the
processing of indeterminate models where inference implies handling
mutually exclusive assumptions in different worlds. We have shown
examples where this framework has faulted theories published in
the international peer-reviewed literature. Interesting, we have found
these faults using the data published to support those theories.

We have explored the computational limits of this approach and
concluded that abductive validation can handle at least the KBS sys-
tems seen in current practice (as defined by the Figure 7 survey).
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