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Applications of Abduction: Hypothesis Testing of

Neuroendocrinological Qualitative Compartmental Models

Tim Menzies � Paul Compton y

Abstract

It is di�cult to assess hypothetical models in poorly
measured domains such as neuroendocrinology. With-
out a large library of observations to constrain infer-
ence, the execution of such incomplete models implies
making assumptions. Mutually exclusive assumptions
must be kept in separate worlds. We de�ne a gen-
eral abductive multiple-worlds engine that assesses such
models by (i) generating the worlds and (ii) tests if these
worlds contain known behaviour. World generation is
constrained via the use of relevant envisionment. We
describe QCM, a modeling language for compartmental
models that can be processed by this inference engine.
This tool has been used to �nd faults in theories pub-
lished in international refereed journals; i.e. QCM can
detect faults which are invisible to other methods. The
generality and computational limits of this approach
are discussed. In short, this approach is applicable to
any representation that can be compiled into an and-or
graph, provided the graphs are not too big or too intri-
cate (fanout<7).

KEYWORDS: Abduction, neuroendocrinology, hy-
pothesis testing, qualitative reasoning

1 Introduction

How are we to test the numerous hypotheses pro-
posed by modern science? There are now at least 2000
medical scienti�c articles published per week in interna-
tionally recognised journals [15]. In the medical litera-
ture alone, there now over a 1000 on-line databases (e.g.
MEDLINE) with half a billion entries [57]. Clearly,
without automatic tools, no researcher could ever hope
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to assess this material. In their current form, this
mountain of published material is `dead' knowledge.
For example, if a researcher in Britain publishes a pa-
per that describes a model that subtly disagrees with
a publication from Argentina, we have no automatic
method for detecting the inconsistency:

� The current generation of on-line systems support
only a small number of syntactic indexes, usually
only on parts of the paper such as the abstract.

� While a paper may discuss some new model, or
proposes an edit to an existing model, that model
is non-executable.

This paper discusses QCM, a compartmental model-
ing language suitable for creating an active document
repository that stores models and known observations
for entities in those models. One useful feature of QCM
is that it can process hypothetical models still being
constructed. Such models, despite their shortcoming,
may represent the best current understanding of a do-
main. These models may be un�nished, only partially
speci�ed, and contain inconsistencies. Further, mea-
surements of the entities in the model may be incom-
plete. However, if any portion of that model can be used
to explain any portion of the known data, our approach
will detect those portions. Further, our approach can
assess competing models.

This work formalises, generalises, and optimises
QMOD, a prototype active document repository system
developed by Feldman & Compton [15,16, 44]. QMOD
was based around compartmental modeling (x2.1). Its
development was motivated by the problems associ-
ated with compartmental models for data-poor do-
mains (x2.2) (e.g. our test domain: neuroendocrinology,
the study of the interaction of nerves and glands). In
qualitative hypothesis testing, an under-speci�ed qual-
itative model is assessed by examining the possible
worlds it can generate. Good hypotheses can generate
worlds that contain a signi�cant percent of the known
behaviour (x3). World generation is constrained to only



those portions of the model that are relevant to testing
the hypotheses (a technique we call relevant envision-
ment (x3.2).

Using a qualitative compartmental modeling lan-
guage QCM (x4,x5) we can �nd errors in models pub-
lished in international, refereed journals (x6). These
errors were unknown and interesting to the authors of
those theories. That is, QCM can detect signi�cant
errors that are invisible to existing approaches. Quali-
tative hypothesis testing is a special type of abductive
inference (x7.1), and abduction is a general inference
procedure for many expert system tasks. Consequently,
it is feasible to implement test engines and inference en-
gines using a uni�ed abductive architecture (x7.2) [42].
Such a uni�ed architecture would remove the need for
complicated translations between the executable form
of a expert systems and its associated test engine. Our
model validation approach is an extendable (x7.3) tech-
nique which is especially suited for poorly-measured do-
mains. Since there are many domains which are poorly-
measured (x7.4), our techniques should have a wide ap-
plicability. However, we caution that this approach has
certain limits: computational complexity (x7.5), and
time-based simulation (x7.6).

Portions of this work (x5.2, x6, x7.5) summarise or
extend other publications [41,42]. Throughout this pa-
per, words in a SPECIAL font denote reserved terms
in our framework.

2 Quantitative Hypothesis Testing

Quantitative hypothesis testing is a well developed
statistical technique for testing that two sets of num-
bers are similar. If a domain supports a mathemati-
cal model, then quantitative hypothesis testing can be
used to generate a set of numbers representing the be-
haviour of a model. This output can then be compared
to measurements from the entity being modeled. A
model passes this quantitative hypothesis test if the
measurements are statistically the same as the model
output.

2.1 Quantitative Compartmental Models

For example, consider the model in Figure 1 of a
drug injected into the blood (adapted from [21]). The
level of the drug in the blood decreases as (F1) it dif-
fuses into body tissues and (F2) the drug is cleared by
the liver. Also, (F3) the drug in the blood tissues may
di�use back to the blood plasma. Figure 1 is a compart-
mental model [34]. Compartmental models utilise the
principal of conservation of mass and assume that the
sum of 
ows of substance in and out of a compartment

must equal zero. Flows are typically modeled using a
time-dependent exponential function since the rate of

ow is often proportional to the amount of stu� in the
compartment.

X3 X2X1

F2 F3

F1
plasma
blood

liver tissue
body

Figure 1. A three-compartment model.
From [21].

Three function Fi models the 
ow between the com-
partments using three constants: k1, the rate of 
ow of
the drug into the tissues; k2, the rate of clearance by
the liver and k3, the rate of 
ow of the drug into the
blood plasma. Applying conservation of mass, we get
A, the matrix for the system:

A =

�
dx1
dt

= � (k1 + k2)x1 + k3x2
dx2
dt

= k1x1 � k3x2

�
This systems characteristic equation has roots p cal-

culated as follows (see [21] for more details):

det(A� pI) =

�
(k1 + k2)� p k3

k1 �k3 � p

�
= 0

=) p1;2 =

 
� (k1 + k2 + k3)��

(k1 + k2 + k3)
2 � 4k2k3

� !
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Suppose we have values for the initial conditions of
this model and the 
ow rates: x1(t=0) = C; x2(t=0) =

0; k1 = 0:5; k2 = k3 = 1. Therefore, p1 = � 1
2 and

p2 = �2. Given this knowledge of the roots, we can
re-express our di�erential equation as follows:�

dx
dt

= Ax

xt=0 = x0

�
=) xi(t) =

PN

i=1 cie
pit

= De
�t

2 +Ee�2t

Using our initial conditions again, this equation be-
comes:

D +E = C
dx1
dt

= �3C
2

= �D
2 � 2E

=) D = C
3

=) E = 2C
3

=) x1(t) = C
3 e

�t

2 + 2C
3 e

�2t

Figure 2 graphs this function for C = 0 to 10000
and T = 0 to 3. We see that blood plasma levels x1
degrades smoothly as a simple exponential function.
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Measurement
s

c f g e
g i o i l r

Treatments l n r v u o
u s t e c t

a d c u i H a o
h h c h o l s I g n

d n g v t p s i o A o i
a e h a h g e n l A n n

control 10 10 10 10 10 10 10 10 10 10 10 10
hypox 10 10 10 10 20 10
acutEdex swimstr 10 45 20 50
msg 5 10 10 10 10 15
diaz 10 5 10 20 12 90 5 20
guan 7 30 5 5 50
parg 20 20 2 2 2 20
twoDg 10 8 20 20 20 15 50 10 15 12
acutEdex 10 10 15 10
gentle 15 8 10 8 10 10
chroniCdex 15 1 10 5
swimstr 10 10 12 20 20 100 9 12
etherstr 15 8 12 20 23 100 10 12
ptu yoh 3 20 30 20 9 11
tolbut10 9 9 11 11 5 50 50 10 10 10
tolbut20 10 10 10 10 5 20 40 10 10 10
insulin10 11 50 9 5 8 20 10 10
insulin30 10 5 20 3 9 50
msg parg 20 20 2 2 2 20
chroniCtolbut 10 10 10 10 7 10 10 15 10 10
chroniCglucose 7 10 10 10 12 10 10 7 10 10
chroniCinsulin 10 9 10 11 5 20 25 10 10
gentle yoh 5 30 15 30 9 11
guan twoDg 7 21 9 10 50
ptu swimstr 10 9 18 20 15 90 18 12
ptu etherstr 10 10 20 20 23 90 18 12
diaz chroniCdiaz 10 10 10 10 10 45 5 20
hypox hghInj 10 10 10 10 10 10
chroniCdex swimstr 10 1 21 6
chroniCglucose chroniCtolbut 10 10 10 10 8 10 10 15 10 10

Figure 3. Data published to support the Smythe ’89 model. The Feldman & Compton study used a
Prolog that only supported integers. Hence, the normalised and rounded integers in this table.

2.2 Limits to Quantitative Compartmental Mod-
eling

In the previous section, we have been able to infer a
detailed mathematical model suitable for quantitative
hypothesis testing from a seemingly simplistic approx-
imation to human physiology (the three compartments
of Figure 1). However, in terms of hypothesis testing
in poorly-measured domains such as neuroendocrinol-
ogy, quantitative compartmental modeling has certain
limitations. Recall the amount of data we required:

� 3 of the 3 
ow rates (100%)

� Measurements of 2 of the 3 compartments (67%)
at the same time interval.

Further, in order to assure statistical signi�cance,
we would have to make many such measurements of
the entity being modeled. In many poorly-measured
domains, this is not possible. Consider, for example,
neuroendocrinology. Obtaining values for certain chem-
icals within the body is not as simple as, say, attaching
a volt meter to an electric circuit:

� In one extreme case, 300,000 sheeps brains had
to be �ltered to extract 1.0 milligrams of puri�ed
thyroptin-releasing hormone [27].

� In the usual case, delicate measurements have to
be made by skilled sta� using expensive equipment.
Some of the values measured are in the pico-MOLE
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range (10�12).

Making measurements in this domain can therefore be
an expensive process and not all entities are fully mea-
sured. For example, consider the Smythe '89 model of
glucose regulation:

� Smythe '89 is a model published in an international
refereed journal [55]. The model contains 27 com-
partments linked in 82 ways. Figure 3 shows all the
experimental results Feldman & Compton [15, 16]
collected from the six journal articles used to create
Smythe '89. In Figure 3, levels of noradrenaline,
glucose, insulin, etc were measured in rats that
had been treated in one of 30 experiments such
as hypox (surgical removal of the hypothalamus)
and acutEdex swimstr (an acute dosage of dex-
amethasone and a stressful bath in ice water). The
control rats had their levels measured in the ab-
sence of any treatment. In order to use this data
for hypothesis testing, neuroendocrinologists com-
pare measurements between pairs of treatments
and try to explain the observed changes in the
measurements. For example, between control and
hypox, we would try to use the removal of the hy-
pothalamus to explain why 5HIAA went up while
da,ne,hva,dhpg and serotonin remained steady.

� Figure 3 contains insu�cient data for quantitative
hypothesis testing. Note that none of the 
ow rates
between compartments are measured. Further, on
average, only 5.2 of the compartments are mea-
sured in each treatment (5.2/27=19.2%).

3 Qualitative Hypothesis Testing

The previous section argued that there are many
domains, including neuroendocrinology, in which there
may be insu�cient data available for quantitative hy-
pothesis testing. This section argues that qualitative
approaches can support hypothesis testing, even in the
absence of data.

Qualitative models replace their numeric parame-
ters by one of three qualitative states: up, down, or
steady [25]. An example model is shown in Figure 4.

In Figure 4, x
++
! y denotes that y being up or down

Sales

Domestic

foriegn

sales

company

profits

investor

confidence

Inflation

++

++

++

++

++

--

wages

Cost of

raw materials

--

++

revenue
Tax

++

Figure 4. A qualitative economics model.
Adapted from [5].

could be explained by x being up or down respectively

and x
��
! y denotes that y being up or down could be

explained by x being down or up respectively.

A fundamental property of qualitative models is
their indeterminacy. For example, in the case of
fforiegnSalesUp, domesticSalesDowng, it is inde-
terminate if companyProfits goes up, goes down, or
remains steady. In qualitative reasoning, we have to
fork one world for each possibility. Qualitative hypoth-
esis testing assess a model by examining the generated
worlds. Good hypotheses can generate worlds that con-
tain a signi�cant percent of the known behaviour.
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P1: foriegnSales= up! companyProfits= up! investorConfidence= up;
P2: domesticSales= down! inflation = down;
P3: domesticSales= down! companyProfits= down! wages = down

P4: domesticSales= down! inflation = down! wages = down.

Figure 5. Four proofs from Figure 4.

3.1 A Simple Example

An simple example will illustrate this multiple-
world approach to hypothesis testing. Consider
Figure 4 and the case where the model INputs
are fforiegnSales=up, domesticSales=downg and
the model OUT puts are finvestorConfidence=up,
inflation=down, wages=downg (see the arrows in Fig-
ure 4). We can �nd four connections (or proofs P)
that explain the observed OUT puts in terms of the
known INputs (see Figure 5). These proofs may con-
tain assumptions, i.e. literals that are not known
FACT S. Continuing the example of Figure 4, if
FACT S=IN [ OUT , then fcompanyProfits=up,
companyProfits=downg are the assumptions. Further,
if we can't believe that a variable can go up and down

simultaneously, then these assumptions are contradic-
tory (denoted AC). A world is a set of proofs that are
consistent; i.e. none of its assumptions contradict other
assumptions in that world. We have two such worlds:
W1=fP1, P2, P4g; W2=fP2, P3 P4g (see Figure 6).
The details of implementing world generation are dis-
cussed below (x5.2).

To perform qualitative hypothesis testing, we �nd
the maximum percentage ofOUT which can be found in
the worlds. Note that W1 contains 100% of OUT while
W2 contains 67% of OUT . That is, there exists a set of
assumptions (fcompanyProfits=upg) under which this
model can explain all the known behaviour.

This is the non-naive implementation of model vali-
dation since it handles certain interesting cases:

� In the case where not all the entities are measured,
we make assumptions for the unmeasured entities
found during the inference. Mutually exclusive as-
sumptions are handled in separate worlds.

� If a theory is globally inconsistent, but contains
local portions that are consistent and useful for
explaining some behaviour, the above process will
�nd those portions.

� In the situation where no current theory explains
all known behaviour, competing theories can be
assessed by the extent to which they cover known

investor

confidence

Sales

Domestic

foriegn

sales

company

profits

Sales

Domestic company

profits

Inflation

++

++

++

wages

++

World 1

Inflation

++

++
++

++

wages

World 2

Figure 6. Worlds from Figure 4.

behaviour. Theory X is de�nitely better than the-
ory Y if theory X explains far more behaviour than
theory Y.

3.2 Restraining World Generation

One subtle feature of the above approach is
its approach to constraining world generation.
Recall that in the case of fforiegnSales=up,
domesticSales=downg, we could build three worlds
for companyProfits going up, down, and remaining
steady. Yet Figure 6 only contains two worlds for
companyProfits=up, companyProfits=down and
none for companyProfits=steady. In order to explain
the absence of a world for companyProfits=steady,
we need to de�ne relevant envisionments.

The behaviours generated by a qualitative reasoning
system are called the envisionments of that system. To-
tal envisionments are those behaviours which are possi-
ble, given some �xed collection of objects in some con-
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�guration. Extension generation in default logic [50]
systems (e.g. the ATMS [11]) produce total envision-
ments. A total envisionment of our economics exam-
ple (Figure 4) would include companyProfits=steady

and state assignments to costOfRawMaterials &
taxRevenue, even though these are not necessarily re-
quired to explain our OUT puts.

A reasonable restriction on the total envision-
ments are the attainable envisionments; i.e. all be-
haviours possible from some given initial state [18].
The QSIM qualitative reasoning system [28] gener-
ates attainable envisionments. The obtainable envi-
sionments of our economics example would include
companyProfits=steady and state assignments to
taxRevenue.

Qualitative hypothesis testing generates relevant en-
visionments; i.e. the behaviours that are possible from
some given initial state (the IN set) and which can lead
to some desired �nal state (the OUT set). In terms of
number of behaviours:

total � attainable � relevant

In essence, qualitative hypothesis testing is asking
\under what assumptions can any portion of the model
explain the most behaviour?". In the example above,
the assumptions were fcompanyProfits=upg and the
portions were fP1, P2, P4g. One way to �nd these an-
swers would be to compute the total or attainable envi-
sionments, then search them for the known behaviour.
This approach runs the risk of generating many be-
haviours that are irrelevant to the process of �nding
what percentage of known behaviours can be explained
by a hypothetical model (e.g. companyProfits=steady
and state assignments to costOfRawMaterials and
taxRevenue). In the approach taken here (build
the consistent proofs, divide them up into con-
sistent worlds), we only generate behaviours rele-
vant to the task of explaining known OUT puts in
terms of known INputs. CompanyProfits=steady

was not a relevant envisionment since it did not
participate in a proof of finvestorConfidence=up,
inflation=down, wages=downg.

For details on implementing relevant envisionment,
see x5.2.

4 Qualitative Compartmental Model-

ing

In the previous section, we described the inner work-
ings of a qualitative hypothesis tester. In terms of build-
ing a usable system, the above process is like the ma-
chine code of a computer. In this section, we describe

the layer we add on top to make it useful for model-
ing purposes. Our example will be QCM, a qualitative
compartmental modeling language.

4.1 Macro Expansion into And-Or Graphs

QCM statements are treated as macros that expand
into the super-set of explanations acceptable to the au-
thors of the original model. This space is then searched
for subsets which are internally consistent and which
are relevant to some task (i.e. the world generation
process discussed above).

There are several special kind of QCM statements:
direct and inverse (x4.2); creators and destroyers (x4.3);
enablers and disablers (x4.4); and steady vertices (x4.5).
Initially, QCM used procedural methods for handling
these di�erent statements. Whenever the world gen-
eration system tried to build a proof over these state-
ments, special procedures were called to handle the se-
mantics of that statement. This code was surprisingly
complex and hard to maintain. However, inspired by
a simple conjunction-based approach used in MECHA-
NISMS LAB [52], we found that we could handle all of
our special cases using a simpler declarative represen-
tation based on and-or graphs.

Internally, the search space of QCM is a directed
and-or graph D showing the dependencies between lit-
erals in some theory. D contains edges E which connect
vertices which have certain incompatibilities I. For ex-
ample, the vertex a=up is incompatible with a=down,

a=steady. It is a simple matter to expand statements
like \lighting is proportional to power" into such a
graph into its associated and-or graph (see Figure 7).
Incompatible vertices are marked with a cross.

xx

power=up

power=down

lights=up

lights=down

Figure 7. Lighting is proportional to power.

QCM implements other statements by controlling
how they are expanded into and-or graphs. Once ex-
panded, the same world-generation process can explore
all these di�erent statement types.

4.2 Direct and Inverse

Flow rates in a compartmental model can be e�ected
by the levels of other compartments. This can be mod-

eled using the x
++
! y (direct) and x

��
! y (inverse) links.

For example, in QCM, we would represent \`lighting is

6



proportional to power" as power ++ lights; i.e. as a
direct link. eating -- weightLoss is an inverse state-
ment.

4.3 Creators and Destroyers

Compartments have in-
ows and out-
ows. In-
ows
add material to a compartment and out-
ows remove
material. That is, in-
ows create more material in a
compartment and out-
ows destroy the material in a
compartment. Out-
ows cannot create (add) material
and in-
ows cannot destroy (remove) material.

In-
ows are modeled by creator links. We de�ne a

creator link to be half of a direct link. X
+�+
�! y denotes

that y being up could be explained by x being up, but
not visa versa.

Out-
ows are modeled by destroyer links. We de�ne

a destroyer link to be half of an inverse link. X
+��
�! y

denotes that y being down could be explained by x being
up, but not visa versa.

4.4 Enablers and Disablers

Experimental neuroendocrinologists explore human
physiology by stressing laboratory animals in various
ways. For example, one population may have no exper-
imental intervention (the control group) while the other
could have an adrenalectomy. Their models therefore
contain disabler and enabler statements. For example,
here is a disabler statement:

Normally, factors that increase the produc-
tion of catechole increase the level of catec-
hole. However, an adrenalectomy severs this
link.

That is, the presence of certain boolean events such
as adrenalectomies enables or disables certain links.
In QCM we would represent this as if x then not y

(disabler) or if x then y (enabler) where y is a direct,
inverse, creator, or destroyer link.

For example, consider the statements \throwing the
power switch turns on the lights, but only if the
rats are not in the basement". This is modeled as
the disabler statement if rats then not power ++

lights. Ablers imply we have to add conjunctions to
QCM1. All the vertices of Figure 7 are or vertices; i.e.
belief these vertices requires a belief in only one of its
parents. We can add the disabling e�ects of rats via
and vertices; i.e. vertices which we can only believe if
we believe all their parents (see Figure 8). Note that

1Conjunctions are also useful for explaining steady verti-
cies (x4.5).

we have introduced a new vertex type: event vertices
like rats that can take the state present,absent.

x
x

and034 lights=downpower=down

power=up and033 lights=up

rats=absent

Figure 8. The lights/power relationship works
when rats are absent.

In this regard, QCM handles ablers in the same way
as MECHANISM LAB. However, we go further. Ablers
not only permit explanations in terms of other liter-
als (e.g. explaining lights=up in terms of power=up),
but can be the roots of explanations. Returning to our
rats, in the case of power not rising (but on) and the
rats being present, the lights are dark. Now consider
the same situation, but the rats suddenly disappearing.
The lights going up can now be explained in terms of a
change in the rat population. More generally, changes
to an object's value downstream of an abler link can be
explained in terms of changes to the abler. Initially,
we cautiously argued that any change in the down-
stream vertex can be explained in terms of any change
to the abler. This approach is consistent with our gen-
eral goal of expanding qualitative statements into the
super-set of explanations acceptable to the authors of
the original model. However, creating edges from all
downstream vertex states to all abler states increases
the search space for a model. Heuristically, we have
never found an case in which the following two restric-
tive edge-conditional expansion rules do not su�ce:

1. An enabler c in
uencing a link a ! b

is linked c ! b in the same manner as
a ! b. For example, if transport then

education ++ literacy implies the tacit link
transport ++ literacy.

2. Disablers are linked in the opposite manner to
the downstream vertex. For example, ++ models
qualitative proportionality. The inverse link (--)
models qualitative inverse proportionality. For
example, the model if rats then not power ++

lights implies the tacit link rats -- lights.

The new rats model is shown in Figure 9. The edges
marked ?? are the one that our edge expansion rules
forbid (we will ignore them in subsequent diagrams).
In this new model, if rats=absent when can explain
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(e.g.) rats=up in two ways: (i) with respect to in-
creased power or (ii) decreasing rats. Note that we
have to model not only the current value of an event
(i.e. absent or present) as well as how we ar-
rived at this value (i.e. change(event)=arrived or
change(event)=left).

x

x

x

x

power=up and033 lights=up

rats=absent change(rats)=arrived

and034power=down lights=down

change(rats)=left

??

??

Figure 9. Changes to the rat population can
effect the lights.

4.5 Explaining Steadies

In QCM, measurements of `no change' in a measure
(i.e. steady) can be explained in one of two ways:

� Non-connection to exogeny: If a steady vertex
is not downstream from some perturbation to a
model, then a plausible explanation for the steady
is that nothing e�ected it. This is a simple special
case that is handle by a wrapper around the world
generation process.

� Competing upstream in
uences: In the case of con-
nection to exogeny, if two parents of an object
want to sent it both up and down, the net results
could be a cancelation of the exogenous e�ect; i.e.
up+ down = steady.

For example, suppose we try turning on the power at
the instant of the rats arriving. Then we could explain
the lights staying o� by a conjunction of two competing
in
uences; i.e. power=up + change(rats)=arrived =
lights=steady. We therefore add these conjunctive
e�ects (see and035 and and036 in Figure 10).

x

x

x

x

power=up and033 lights=up

rats=absent change(rats)=arrived

and034 lights=down

change(rats)=left

lights=steady

power=down

and035

and036

Figure 10. The final rats model.

5 Implementation Details

This section describes two low-level details of QCM:
the translation process from qualitative compartmental
models to and-or graphs (x5.1) and the implementation
of relevant envisionment world generation (x5.2).

5.1 The Model Compiler

In QCM, the creation of networks like Figure 10 is
performed automatically by the model compiler. This
complier is speci�ed as follows. The canEffect/2 rela-
tion speci�es what class of entities can e�ect each other
(legal classes are de�ned in class/5). For example, in
QCM, we say that (i) vertices of the same type can e�ect
each other and that (ii) events can e�ect and vertices.

canEffect(X,X).

canEffect(event,and).

canEffect(and,_).

canEffect(eventChange,measure).

% class(name, abbr,positive, neutral,negative).

class(and, a, [t], [], [] ).

class(measure, m, [up], [std], [down] ).

class(event, e, [present],[], [absent]).

class(eventChange,ec, [arrived],[], [left] ).

Once the valid vertex types are de�ned, the link/3
relation can de�ne valid edge types.

link(++,X1,X2) :- pos(X1), pos(X2). % direct

link(++,X1,X2) :- neg(X1), neg(X2). % direct

link(--,X1,X2) :- pos(X1), neg(X2). % inverse

link(--,X1,X2) :- neg(X1), pos(X2). % inverse

link(+-+,X1,X2) :- pos(X1), pos(X2). % creator

link(--+,X1,X2) :- % inverse creator

neg(X1), pos(X2).

link(+--,X1,X2) :- % destroyer

8



pos(X1), neg(X2).

link(---,X1,X2) :- % inverse destroyer

neg(X1), neg(X2).

pos(C/V) :- class(C,_,Pos,_,_), member(V,Pos).

neg(C/V) :- class(C,_,_,_,Neg), member(V,Neg).

neutral(C/V) :- class(C,_,_,Neu,_), member(V,Neu).

In order to apply the edge expansion rules, we need
knowledge that (e.g. ++ is opposite to --).

oppEdge(++,--).

oppEdge(+-+,--+).

oppEdge(+--,---).

If we know the class of x and y in the edge (e.g.)
x ++ y, then we can deduce the legal edges between
states of x and states of y using the links/5 relation.

links(Link,C1,V1,C2,V2) :-

canEffect(C1,C2),

possibleValue(C1,V1),

possibleValue(C2,V2),

link(Link,C1/V1,C2/V2).

possibleValue(C,V) :-

pos(C/V) | neg(C/V) | neutral(C/V).

For example:

?- classOf(x,C1), classOf(y,C2),

links(++,C1,V1,C2,V2).

C1 = measure, C2 = measure, V1 = up, V2 = up ;

C1 = measure, C2 = measure, V1 = down, V2 = down

This allows us to automatically generate networks
like Figure 7. A small production system (RULES1)
then adds and vertices on all edges controlled by ablers
to convert (e.g.) Figure 7 into Figure 8. RULES2
then applies the edge expansion rules to convert (e.g.)
Figure 8 into Figure 9. Finally, RULES3 looks for all
combination of competing upstream in
uences to add
and vertices which can lead to steadies (e.g. converting
Figure 9 to Figure 10).

5.2 Relevant Envisionment World Generation

The core computational problem of qualitative hy-
pothesis testing is �nding the base controversial as-
sumptions AB . AB are the controversial assumptions
that are not dependent on other controversial assump-
tion; i.e. they are the most upstream controversial as-
sumptions. Let ENVj denote a maximal consistent sub-
set of AB . A proof Pi is in Wj if that proof does not
con
ict with the environment ENVj . Returning to the
example in x3.1, none of our controversial assumptions
have any upstream controversial assumptions. There-
fore, AB=AC . Maximal consistent subsets of AB are

the two environments ENV1=fcompanyProfits=upg,
ENV2=fcompanyProfits=downg. The proofs that do
not contradict ENV1 are W1 and the proofs that do
not contradict ENV2 are W2 (see Figure 6).

How do we �nd AB? Our early prototypes
(QMOD [15], HT2 [37]) computed the worlds W via a
basic depth-�rst search chronological backtracking al-
gorithm (DFS) with no memoing. Mackworth [33] and
DeKleer [11] warn that DFS can learn features of a
search space, then forget it on backtracking. Hence, it
may be doomed to waste time re-learning those features
later on. One alternative to chronological backtrack-
ing is an algorithm that caches what it learns about
the search space as it executes. Our current system
runs in four \sweeps" which learn and cache features
of the search space as it executes: the facts sweep, the
forwards sweep, the backwards sweep, and the worlds
sweep. Each sweep restricts the search space explored
by the next sweep.

In the forward sweep, AC is found as a side-e�ect
of computing the transitive closure of IN . In the
backwards sweep, proof generation is constrained
to the transitive closure of IN . As a proof is
grown from a member of OUT back to IN , �ve
invariants are maintained. (i) Proofs maintain a
forbids set; i.e. a set of literals that are incompatible
with the literals used in the proof. For example,
the literals used in P1 of Figure 5 forbid the liter-
als fforiegnSales=down, foriegnSales=steady,

companyProfits=down, companyProfits=steady.

investorConfidence=Up,

investorConfidence=steadyg. (ii) A proof must
not contain loops or items that contradict other items
in the proof (i.e. a proof's members must not intersect
with its forbids set). (iii) If a proof crosses an and node,
then all the parents of that node must be found in the
proof. (iv) A literal in a proof must not contradict the
known FACT S. (v) The upper-most AC found along
the way is recorded as that proof's guess. The union
of all the guesses of all the proofs is AB . Once AB is
known, then ENVcan be calculated. The proofs can
then be sorted out into worlds via two nested loops
(see Figure 11). For more details, see [42].

6 Examples

This section gives two examples of qualitative hy-
pothesis testing using QCM [42].

6.1 Smythe ’87

The Smythe '87 [54] theory shown in Figure 12
proposes connections between serum adrenocorti-
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procedure worldsSweep begin

for i := 1 to size(ENV) begin

W[i] := ;;
for p 2 P

if p.forbids \ ENV[i] = ;
then W[i] := W[i] + p;

end

end

Figure 11. The worlds sweep.

nna coldSwim++

tempacth

cortico dex
++++

--++

++

--

Figure 12. The Smythe ’87 theory.

cotropin (acth), serum corticosterone (cortico), and
neuro-noradrenergic activity (nna). Nna was mea-
sured as the ratio of noradrenaline to its post-cursor,
3,4-dihydroxphenyl-ethethyleneglycol. This theory was
studied via various treatments: (i) control i.e. no treat-
ments; (ii) dex i.e. an injection of dexamethasone at
100 mg

kg
; (iii) coldSwim i.e. a two minute swim in a bath

of ice cold water; and (iv) coldSwim, dex i.e. both a
coldSwim and an injection of dex. The temp vertex is
a temporary variable used to denote that dex has the
same e�ects as cortico. Smythe '87 is a very simple
theory that makes no use of ablers, creators, or destroy-
ers.

The QCM representation of this theory is shown
in Figure 13. The associated and-or graph generated
by the QCM model compiler is shown in Figure 14.

name = 'Smythe 87'.

% define the events in this model

objects(e) = [coldSwim,dex].

% define the measures in this model

objects(m) = [nna, acth, cortico,temp].

% define the links

coldSwim ++ nna.

nna ++ acth.

acth ++ cortico.

cortico ++ temp.

temp -- acth.

temp -- nna.

dex ++ temp.

Figure 13. Smythe ’87 ( QCM format).

A sample of experimental results from Smythe '87 is

and065

and064

and063 nna=up

nna=down

acth=down

cortico=down

temp=up

acth=up

temp=down

temp=steady

cortico=up

nna=steady

left
change(dex)=

and066
arrived
change(dex)=

and062

change( coldSwim)
=arrived

and061

change(coldSwim)
=left

acth
=steady

Figure 14. The and-or graph of Smythe ’87 the-
ory (invariants not shown).

shown in Figure 15. In the comparison coldSwim to

Measurement
c
o
r

Treatments t a
n i c
n c t
a o h

coldSwim 0.201 1231 240
dex 0.105 11.3 0
dex coldSwim 0.246 32.8 0

Figure 15. Data published to support the
Smythe ’87 model.

dex, coldSwim,
OUT =facthDown, corticoDown, nna=upg. The IN
set for this comparison is IN=fdex=present,
change(dex)=arrived, coldSwim=absent,

change(coldSwim)=leftg. In this comparison
nnaUp can't be explained since their exists no link
from nna=up to IN across Figure 14 which does not
violate the proof invariants. Another error can be
found in the comparison dex to dex,coldSwim.
In this comparison IN=fcoldSwim=present,
change(coldSwim)=arrived, dex=presentg and
OUT =facth=steady, cortico=up, nna=upg and
only nna=up can be explained.

Note that the faults of this theory were found by a
detailed examination of the data published to support
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it. Also, the errors were not known by the author of
the theory, till we pointed it out to him. Further, these
errors escaped international peer review.

6.2 Smythe ’89

.
The Smythe '89 model is a medium-sized theory

that makes use of all of QCM (see Figure 16 and Fig-
ure 17). Its associated and-or graph generated by the
QCMmodel compiler had 554 vertices (jVj = 554), 1246
edges (jEj = 1246), and an average fanout from each

vertex of 2.25 (i.e. jE j
jV j = 2:25).

The observations relevant to Smythe '89 were shown
in Figure 3. Given that there are 30 treatments in
Smythe '89 data set, there are 870 pairs of treatments
(302 � 30) to be compared. Models that contain only
direct and inverse links can ignore half these compar-
isons since the links are fully symmetrical. However,
abler, destroyer, and creator links are not symmetrical;
i.e. behaviours condoned by certain INputs may not
be condoned when the inputs are reversed. Smythe '87

is symmetrical, and so we only need to run ( 3
2�3
2 = 3)

comparisons. Smythe '89 is not symmetrical. Hence,
all of its 870 comparisons should be analysed.

Smythe '89 was originally studied by QMOD. QMOD
could not explain steadies or handle multiple causes.
These restrictions implied that it could only handle of
24 of the 870 possible comparisons. Even with these
restrictions, QMOD found several errors in Smythe '89
that were novel and exciting to Smythe himself [15].
The types of inconsistencies included clerical errors in
translating models into the representation. Some of the
inconsistencies were due to deliberate simpli�cations of
the model by the researcher. However, the most im-
portant result was that the norepinephrine data in hy-
pothyroid rats who had been given an alpha-2 adre-
negeric blocker could not be explained. This was a novel
�nding that the authors of the that research paper [56]
were not aware of. Those authors had only considered
the e�ects of the alpha-2 adrenegeric blocker on hy-
pothyroid rats rather than e�ect of hypothyroidism on
alpha-2 adrenegeric blocker treated rats. That is, they
had not considered the cross-experiment data compar-
isons. Although the data was highly statistically signif-
icant, the cross-comparison was not made since the au-
thors were primarily interested in stress, not hypothy-
roidism. They therefore studied the e�ects of stress in
the presence of hypothyroidism, to see whether or not
the same mechanisms were operative as in other stress
situations. The reverse comparison looks at the e�ect
of hypothyroidism in the presence of stress, a question
that the authors were not addressing. The result is

of importance since it suggests that the described in-
teractions [56] between serotonin and norepinephrine
described will have to be relocated. This represented
a major re-organisation of the Smythe '89 model and
to our understanding of the interaction between nore-
pinephrine and serotonin. Like the Smythe '87 study,
these errors had not been detected previously by inter-
national peer review.

When the current system ran over the full 870 com-
parisons, it found more errors than QMOD. Only 150 of
the comparisons could explain 100% of their OUT puts.
On average, 45% of the OUT s in those comparisons
were inexplicable (QMOD found that 32% of the data
in its 24 comparisons were inexplicable). This level of
critique is surprisingly high. This is both a disturbing
and exciting �nding. It is disturbing in the sense that
if the very �rst large-scale medical theory analysed by
qualitative hypothesis testing contains signi�cant num-
bers of errors, then it raises doubts as to the accuracy
of theories in general. This result is exciting in the
sense that the level of critique is so high. Qualitative
hypothesis testing promises to be a powerful tool for
hypothesis testing.

7 Generality

7.1 Qualitative Hypothesis Testing = Abduction

Formally, the generation of worlds is abduction; i.e.
the search for assumptions A which, when combined
with some theory T achieves some set of goals OUT
without causing some contradiction [13]. That is:

� EQ1: T [ A ` OUT ;

� EQ2: T [ A 6`?.

Our system caches the proof trees used to satisfy
EQ1 and EQ2 and then sorts them into consistent
worlds. If more than one world can be generated,
then an world assessment operator is used to select
the BEST worlds. Qualitative hypothesis testing is
simple abduction over and-or graphs generated from
QCM statements with a BEST operator that returns
the world(s) with the largest intersection to OUT .

7.2 Architectures for Expert Systems

Abduction directly operationalises the theory subset
extraction process that Breuker [1] and Clancey [3, 4]
argue is at the core of expert systems. Apart from
the model validation task discussed here, we also be-
lieve that abduction is a useful framework for predic-
tion, classi�cation, explanation, tutoring, qualitative
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objects(e) = [acutEdex,adrx ,chroniCdex , chroniCdiaz

,chroniCglucose ,chroniCinsulin ,chroniCtolbut

,dex ,diaz ,etherstr, ,gentle ,guan ,hghInj

,hypox ,insulin10 ,insulin30 ,insulinBolis

,msg ,parg ,ptu ,stress ,swimstr ,tolbut10

,tolbut20 ,tolbut30 ,twoDg ,yoh].

objects(m) = [acth,acthProduction ,aluminium

,brainGlucose ,brainGlucoseUptake ,catechole

,catecholeDisp ,catecholeProd

,corticoidProduction ,cortisol

,cortisolProduction ,crf ,da ,da2Hva

,daProduction ,dhpg ,fiveHIAA ,fromGut

,fromLiver ,fromPancreas ,ghProduction

,ghrh ,glucagon ,glucagonDis ,glucagonProd

,glucocorticoid ,glucose ,hgh ,hva

,insulin ,ne ,ne2dhpg ,ne2Epin ,neControl

,neProduction ,pHgh ,pns ,pPrl ,prl

,prlRelease ,sateity ,serotonin

,serotoninProduction ,serotoninTOfiveHIAA

,sns ,srif ,t4 ,temp1 ,temp2 ,temp3

,toKidneys ,toTissue].

Figure 16. Smythe ’89 events ( e) and measures ( m).

reasoning, planning, monitoring, veri�cation [42], in-
telligent decision support systems [38], diagrammatic
reasoning [43], single-user knowledge acquisition, and
multiple-expert knowledge acquisition [39]. Also, the
connection between abduction and expert systems in-
ference tasks (e.g. model-based diagnosis) is well-
documented [8]. Further, abduction could model
certain interesting features of human cognition [40].
Others have argued elsewhere that abduction is a
framework for natural-language processing [46], de-
sign [47], visual pattern recognition [48], analogical
reasoning [14], �nancial reasoning [22], machine learn-
ing [23] and case-based reasoning [30].

Elsewhere [42] we have argued that systems based
around abduction can support model validation as well
as general expert systems inference. This would remove
the need for complicated translations between the exe-
cutable form of a expert systems and its associated test
engine.

7.3 Extending Qualitative Hypothesis Testing

Qualitative hypothesis testing was originally devel-
oped for model review in neuroendocrinology. However,
the technique could be applied to other domains (e.g.
economics models such as Figure 4). New qualitative
languages can be fully speci�ed/ modi�ed by editing
the predicates of Section 5.1.

More generally, qualitative hypothesis testing is de-
�ned for any domain where the language used to model
that domain can be converted into an and-or graph.
Such and-or graphs can be extracted from many repre-

sentations including propositional expert systems. This
process could also be used for �rst-order theories, but
only where that theory can be partially evaluated to an
equivalent ground (i.e. no variables) theory.

Once a model-compiler is available, then the practi-
cal limit to this approach is the size of and-or graph.
These limits are explored further in Section 7.5.

7.4 There are Many Poorly-Measured Domains

Looking beyond neuroendocrinology, there are many
domains that are modeled, yet are not su�ciently mea-
sured to support quantitative hypothesis testing.

Economics: Experiments with data collection for
economic modelling indicate that economics is a poorly-
measured domain. The (in)famous `Limits to Growth'
study attempted to predict the international e�ects of
continued economic growth [35]. Less than 0.1% of the
data required for the models was available [7].

Ecology: Puccia & Levins comment on the utility of
exhaustive data collection on ecological modelling:

In a complex system of only a modest num-
ber of variables and interconnections, any at-
tempt to describe the system completely and
measure the magnitude of all the links would
be the work of many people over a lifetime [31,
p5].

They claim that this observation from ecological
modelling also applies to sociological models. For exam-
ple, it is well known that many crimes go unreported.
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if msg then not serotoninProduction +-+ serotonin. if adrx then not cortisolProduction +-+ cortisol.

if adrx then not catecholeProd +-+ catechole. if msg then not da2Hva +-+ hva.

if guan then not sns ++ cortisolProduction. corticoidProduction +-+ glucocorticoid)

if guan then not sns ++ catecholeProd. if guan then not sns ++ glucagonProd.

if msg then not neProduction +-+ ne. if hypox then not prlRelease +-+ prl.

if hypox then ghProduction +-+ hgh. if msg then not ne2dhpg +-+ dhpg.

brainGlucose ++ serotoninProduction. serotoninTOfiveHIAA +-- serotonin.

serotoninTOfiveHIAA +-+ fiveHIAA. serotonin ++ serotoninTOfiveHIAA.

if guan then not sns -- temp2. brainGlucoseUptake +-- glucose.

glucose ++ brainGlucoseUptake. brainGlucoseUptake +-+ brainGlucose.

if guan then sns -- temp3. chroniCtolbut ++ fromPancreas.

parg -- serotoninTOfiveHIAA. glucocorticoid -- neControl.

glucocorticoid -- acthProduction. corticoidProduction +-- cortisol.

insulin ++ serotoninProduction.

acutEdex ++ glucocorticoid. chroniCdex ++ glucocorticoid. catecholeDisp +-- catechole.

twoDg -- brainGlucoseUptake. pns ++ serotoninProduction. msg -- serotoninProduction.

pns ++ serotoninTOfiveHIAA. hgh -- serotoninProduction. brainGlucose -- neControl.

neControl ++ neProduction. t4 -- serotoninProduction. t4 ++ serotoninTOfiveHIAA.

chroniCinsulin ++ insulin. tolbut10 ++ fromPancreas. tolbut20 ++ fromPancreas.

tolbut30 ++ fromPancreas. insulinBolis ++ insulin. chroniCdiaz -- neControl.

glucose ++ ghProduction. insulin -- neProduction. brainGlucose -- sateity.

acthProduction +-+ acth. hypox -- acthProduction. acth++ cortisolProduction.

crf ++ acthProduction. aluminium -- daProduction. glucagonProd +-+ glucagon.

glucagonDis +-- glucagon. glucose -- glucagonProd. insulin -- glucagonProd.

chroniCglucose ++ glucose. glucocorticoid ++ temp2. temp3 ++ fromPancreas.

fromPancreas +-+ insulin. ghProduction +-- pHgh. insulin10 ++ insulin. insulin30 ++ insulin.

stress ++ neControl. neProduction +-- da. srif -- ghProduction. ghrh ++ ghProduction.

neControl ++ ne2dhpg. dex ++ glucocorticoid. fromGut +-+ glucose. fromLiver +-+ glucose.

daProduction +-+ da. toKidneys +-- insulin. insulin ++ toKidneys. aluminium -- ne2dhpg.

temp2 ++ fromLiver. catechole ++ temp2. glucagon ++ temp2. temp1 ++ toTissue.

toTissue +-- glucose. hgh ++ neProduction. fiveHIAA ++ sateity. prlRelease +-- pPrl.

yoh ++ neProduction. catechole -- temp3. glucagon ++ temp3. glucose ++ temp3.

pns ++ temp3. etherstr ++ stress. diaz -- neControl. swimstr ++ stress.

da -- prlRelease. fiveHIAA ++ ghrh. gentle ++ stress. parg -- ne2dhpg.

fiveHIAA ++ pns. glucose ++ pHgh. glucose ++ temp1.

insulin ++ temp1. insulin -- temp2. da2Hva +-- da. parg --da2Hva. insulin ++ pns. ne +-+ ne2Epin.

hghInj ++ hgh. ne2dhpg +-- ne. ne2Epin +-- ne. dhpg ++ crf. dhpg ++ sns. ne ++ ne2dhpg.

pns ++ vagus. srif -- pHgh. pns -- temp2. prl ++ da. ghrh -- pHgh. crf ++ srif.

sns--pns. pns -- sns. da -- pPrl.

Figure 17. Symthe ’89 links.

A literature review on crime statistics shows that the
resources required to gather empirical data on the level
on unreported crime is prohibitively high [36].

Others: All the domains explored by the authors in
their knowledge engineering careers (1986-1996) can be
characterised by insu�cient available measurements for
the construction of a quantitative model. These do-
mains include process control, farm management, bio-
chemical interpretation, superannuation, and consumer
credit lending.

Model review is a resource-bounded activity and col-
lecting measurements is expensive. We believe that
there are many domains where there exist useful num-
bers that we may wish to measure but lack the resources
to collect. In the absence of su�cient data for model
development and testing, we must turn to qualitative

methods such as ours to assist with model review.

7.5 Computational Limits

Recall the description of relevant envisionment world
generation (x5.2). This process is clearly exponential
on model size. In a theory comprising a directed and-
or graph connecting literals V with E edges and av-

erage fan-in F= jE j
jVj , the worst-case complexity of the

forwards sweep is acceptable at O(jVj3). However, if
the average size of a proof is X , then worse case back-

wards sweep is O(XF ). Further, the worlds sweep is
proportional to the number of proofs and the number
of world-de�ning assumptions; i.e. O(jPj � jENVj) =

O(jXF j � jENVj).
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Certain formal results con�rm that the runtimes
should be exponential. Qualitative hypothesis testing
is abduction (x7.1) and one drawback with abduction
is that it is slow. Selman & Levesque show that even
when only one abductive explanation is required and
the theory is restricted to be acyclic, then abduction
is NP-hard [53]. Bylander et. al. make a similar pes-
simistic conclusion [2]. Computationally tractable ab-
ductive inference algorithms (e.g. [2,13]) typically make
restrictive assumptions about the nature of the theory
or the available data. Such techniques are not applica-
ble to arbitrary theories. It is therefore reasonable to
doubt the practicality of abductive qualitative hypoth-
esis testing. This issue was explored via a mutation
study [41]. Hundreds of theories were arti�cially gener-
ated by adding random vertices and edges to the and-or
graph from Smythe '89. These were run using thou-
sands of treatment comparisons. Figure 18 shows the
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Figure 18. Average runtimes.

average runtime for executing the system over 94 and-
or graphs and 1991 < IN ;OUT > pairs [41]. For that
study, a \give up" time of 840 seconds was built into the
system. The system did not terminate for jVj � 850 in
under that \give up" time (shown in Figure 18 as a ver-
tical line). We conclude from Figure 18 that the \knee"
in the exponential runtime curve kicks-in at around 800
literals. These �gures were collected from a Smalltalk
implementation of QCM running on a Macintosh 170.
Subsequent experiments with \C" on a Sparc-Station
have not demonstrated that a di�erent platform or lan-
guage makes a signi�cant di�erence to the exponential
nature of these runtimes.

The changing fanout mutation study examined the
practicality of the system for models of varying fanout.
In that study, the Smythe '89 theory size was kept
constant, but edges were added at random to pro-
duce new graphs of larger fanouts. Six models were
used of sizes jVj = f449; 480; 487; 494; 511;535g. Fig-
ure 19 shows the results. At low fanouts, many be-
haviours were inexplicable. However, after a fanout
of 4.4, most behaviours were explicable. Further, af-

ter a fanout of 6.8, nearly 100% the behaviours were
explicable [42]. It would appear that after a certain
level of inter-connectivity, a theory is able to repro-
duce any input/output pairs. An inference procedure
that condones any behaviour at all from a theory is not
a useful validation procedure. After the point where
% OUT covered approaches 100% (which, according to
Figure 19, is fanout=6.8), then qualitative hypothesis
testing becomes a useless validation tool.
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Figure 19. Explicable outputs.

As a result of the mutation study we conclude that
our qualitative hypothesis testing is suitable for theo-
ries whose associated and-or graph has hundreds (not
thousands) of vertices and a fanout less than 6.8. Many
real-world expert systems have a dependency graph of
the literals in their rules that are less than these lim-
its [49]. Smythe '87 and Smythe '89 demonstrate that
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qualitative hypothesis testing can �nd new insights into
published neuroendocrinological theories. Therefore,
despite these limits, it would seem that our approach
has a practical utility.

7.6 Time

All the neuroendocrinology models that we have
tested lacked time series observations. A world
can only store one state for a variable. Conse-
quently, the current system can not model time-
based simulations in which a variables' state changes
over time; the negative feedback loop in Smythe
'87 Figure 12: acth=up, cortico=up, temp=up,

acth=down, cortico=down, temp=down, ....
To handle such time-based simulations, three

changes are required. Firstly, we add a time stamp
to each vertex in the and-or graph. Secondly, if we are
to run the simulation for N time intervals, we copy the
and-or graph N times. Thirdly, we add connections
from a literal at time T = i to the same literal at time
T = i+1. Now we can model feedback loops as follows:

acth = upt=1, cortico = upt=1, temp = upt=1;

temp = upt=2, acth = downt=2, cortico = downt=2,
temp = downt=2

Recall the computational limits to qualitative hy-
pothesis testing described above (i.e. hundreds, not
thousands of vertices). An and-or graph with jVj ver-
tices copied N times will haveN �jVj vertices; i.e. time-
based simulations will meet the computational limits
very quickly, especially for large N . We are currently
exploring culling techniques to tame the computational
cost.

8 Related Work

8.1 Active Documents

Swanson shares our goal of an active document
repository [57]. He describes one study that found extra
inferences hidden within existing publications. Texts
were manually examined for syllogisms. If text 1 sup-
plied A ^ B and text 2 supplied B ^ C, then Swanson
makes the extra inference that A ^ C. Swanson reports
that this simply technique can make some non-trivial
conclusions: e.g. �sh oil can help Reynaud's disease;
magnesium could bene�t migraine su�erers; and argi-
nine intake assists aging patients with their declining
levels of thymic function and protein synthesis.

Swanson's approach emphasises the use of existing
texts, which implies a manual processing of that mate-
rial. Until the day when natural language processing
research matures su�ciently to generate active models

from such texts, these texts will be unable to automat-
ically generate behaviour. Hence, while we �nd his re-
sults pragmatically useful, we believe his approach to
be limited and their scalability unlikely.

8.2 ROUNDSMAN

Executable documents are the focus of the
ROUNDSMAN system [51]. ROUNDSMAN is a
publication-centred tool for augmenting a physician's
reasoning. The salient details of a patient's case are
matched against cases stored in published medical lit-
erature represented as frames in the ROUNDSMAN

knowledge base. A comparison is made between the
case presented and the type of patients mentioned in
the trials used in the literature. Treatment is critiqued
based on the trials. Trials are assessed according to how
close they are to the actual patient.

Unlike our approach, the ROUNDSMAN system does
not attempt to model the underlying physiology of
the domain. The internal knowledge structures of
ROUNDSMAN are declarative descriptions of the pub-
lications and pointers to related publications. The sys-
tem has no causal knowledge of disease processes. In
essence, ROUNDSMAN is a representation of the dis-
cussion and not the domain of the medical research lit-
erature. ROUNDSMAN's critiques of a clinicians plan
is made with respect to the knowledge base. No valida-
tion tools are proposed for this knowledge base. Hence,
ROUNDSMAN is not a tool for hypothesis testing.

8.3 Model Anomaly Localisation

Darden [10] discusses theory anomaly localisation
based on an analysis of the development of genetic the-
ory in the early part of this century. While it was not
their intention, the study also demonstrated the central
role of directed causal links in model anomaly locali-
sation. The technical appendix to the Darden study
describes how their theory was represented in a system
called FR. While the FR representation was useful for
structuring a complicated domain, most of the architec-
ture was not needed for the anomaly localisation. The
essential part of the implementation required for the lo-
calisation process were the causal links between parts
of the theory (modeled as `function frames'). Anomaly
localisation was a process of walking backwards from
the �nal state back towards the initial state, inquiring
at each point whether the intermediate state had been
entered. Later versions of the program are more so-
phisticated use more of the FR architecture. Entities
within the domain are bundled into groups (using func-
tional knowledge) and anomaly localisation proceeds by
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groups, rather than by mere entities [45].
The goal of the program used in the Darden study

was to illustrate how a functional representation such as
FR could yield a systematic generation of possible faults
that could be �xed in a process of redesign. That is,
unlike our work, they were exploring an existing repre-
sentation rather than seeking the minimal architecture
needed for model refutation.

8.4 Qualitative Reasoning

We are not the �rst researchers to argue that intu-
itions about models can be represented in an indetermi-
nant, under-speci�ed modeling framework. The quali-
tative reasoning (QR) community focuses on the pro-
cessing of systems called qualitative di�erential equa-
tions (QDE) which are:

� Piece-wise well-approximated by low-order linear
equations or by �rst-order non-linear di�erential
equations;

� Whose numeric values are replaced by one of three
qualitative states: up, down, or steady [25].

A QDE is still a mathematical equation and math-
ematics is a poor model for causality. Ohms's Law
(R = V

I
) relates resistance R to current I and volt-

age V . Note that changes in voltage and current do not
cause changes in resistance, even though the mathemat-
ical formulae suggests this is possible. Resistors cannot
be manufactured to a certain speci�cation merely by
attaching wire to some rig and altering the voltage and
current over the rig. Ignoring the e�ects of temperature
and high-voltage breakdown, resistance is an invariant
built into the physics of a wire. Hidden within Ohm's
Law are rules regarding the direction of causality be-
tween voltage, current, and resistance. Such rules are
invisible to a mathematical formulation.

An essential feature of our domain is the ability to
explain OUT puts in terms of known INputs. Explana-
tion and causality are intimately connected. Causality
was a central concern in QR till the mid-1980s [6]:

... It is clear that causality plays an essential
role in our understanding of the world ... to
understand a situation means to have a causal
explanation of the situation [24].

Initially two qualitative ontologies were proposed:
DeKleer & Brown's 1984 CONFLUENCES sys-
tem [12] and Forbus's 1984 qualitative process theory
(QPT) [17]. Later work in 1986 recognised that both
these systems processed QDEs and a special theorem

prover, QSIM, was written by Kuipers especially for
QDEs [28]. Compilers were written to covert QPTmod-
els into QSIM [9].

After an inclusive public debate between public de-
bate in 1986 between the CONFLUENCES approach
and a rival theory [26], the term \causality" was avoided
by many QR researchers. Forbus's 1992 retrospective
on causality and the 1980s QR research is primarily
negative:

... In terms of violating human intuitions,
each system of qualitative physics fails in some
way to handle causality properly. Like (QPT)
theory, deKleer and Brown's CONFLUENCES
theory... fails to distinguish between equations
representing causal versus non-causal laws.
Kuipers QSIM contains no account of causal-
ity at all [19].

In summary, the 1980s experiment with using QDEs
to model causal explanations failed. We prefer our
directed-graph approach since this at least gives us
a strong sense of inference direction and explanation.
Further, when we review the evolution of QR theory,
we see a movement away from complex modeling lan-
guages to simpler, graph-theoretic approaches. Kuipers
himself now believes that underlying QSIM was a more
basic inference process: Mackworth's arc consistency
algorithm [29,33] which is based around a simple graph-
theoretic framework (though Mackworth's work can be
expressed in a logic framework [32]).

8.5 Truth-Maintenance Systems

Here we have explored a graph-theoretic framework
for multiple worlds logic. An alternative approach
is the logic-based approach pioneered by DeKleer's
assumption-based truth maintenance system [11]). In
the ATMS framework, an inference engine passes justi-
�cations to a database which, as a side-e�ect, would
incrementally modify sets of consistent literals stor-
ing the root assumptions of di�erent worlds. In later
work, DeKleer linked his approach with Reiter's default
logic [50]. An extension E of a default theory is a set
of literals from the theory which do not violate a set
of invariants (called the justi�cations). All formulae
whose preconditions (called prerequisites) are satis�ed
by E and whose invariants are consistent with E are
also in E. Hence, an extension is a total envisionment
and we have argued above that we prefer to generate
only relevant envisionments (x3.2).

At its core, the ATMS builds the dependency net-
work between literals in a knowledge base and explores
this network. Invariant knowledge is maintained such

16



that mutually incompatible subsets of this dependency
network are avoided. Such a representation can be used
for validation. Thus dependency network can be used
to determine inputs that will exercise all branches of
the knowledge base. This is the basis of the validation
systems by Ginsberg [20] and Zlatereva [58]. However,
note that once an input suite is inferred, an expert still
has to decide what are the appropriate outputs for those
inputs. In the case of poorly measured domains where
there is no de�nitive oracle (e.g. neuroendocrinology),
the correct outputs are unknown. Asking an expert for
the correct output across an uncertain knowledge base
is, in our view, inappropriate.

Our approach has much in common with the Gins-
berg/Zlatereva approaches. We prefer our approach
since we believe that our graph-theoretic approach is a
more minimal framework than the logic-based style of
Ginsberg and Zlatereva. Initially, we found that logic-
based approaches to TMS were very complicated. After
mapping the TMS process down to a graph-theoretic
process, we found the TMS process more approachable
and simpler to understand.

9 Summary

There are many poorly-measured domains such as
neuroendocrinology where the data required for quan-
titative hypothesis testing is unavailable. Qualitative
hypothesis testing can test models, even if much of the
model is unmeasured. To do this, a multiple-worlds
abductive inference engine computes the relevant envi-
sionments connecting known OUT puts back to known
INputs. A model is assessed via computing the size of
the intersection of the worlds and the known OUT puts.

We have o�ered here a graph-theoretic approach to
abduction. Our process is de�ned for modeling lan-
guages that can be converted into and-or graphs. QCM
is one such modeling language. It contain the special
constructs used by neuroendocrinologists when they
test hypotheses expressed as qualitative compartmental
models (ablers, creators, destroyers, steadies). Other
modeling languages could be built by customising the
QCM compiler. QCM has been used to �nd faults in
theories published in international refereed journals; i.e.
it can detect faults which are invisible to other meth-
ods. We have cautioned that this approach has certain
limits: computational complexity, and time-based sim-
ulation (and we are working on the latter).
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