Quality Metrics: TestCoverageAnalysisfor Smalltalk

Mark Connedll
OpenEnvironmentAustralia
Mark.Connell@c031.aone.net.a

Abstract

The growth in the useof objecttechnologyhasled to
a correspondingequirementor improved quality in
object-oriented O-0O) software. If the holy grail of
softwarere-useis to be achieablethentherehasto be
a large degreeof confidencen the componentuild-
ing blocks. With the possibility of a singleO-O com-
ponentbeingusedin mary software systemshe need
for greaterconfidencen the quality of thecomponent
increases.Quality assuranceomesfrom testingand
the useof metricsto give somequantitatve measure
of quality The requiremenfor research)eadingto
the availability of methodologiessystemsandtools,
to assistwith testingand quality assurances grow-
ing. This paperdealswith theuseof coverageanalysis
in testingin Smalltalk.Variousmethodsaredescribed
anddiscussedBytecoddnterpretermpproachearere-
jecteddueto the non-standardhatureof bytecodesn
differentversionsof Smalltalk. We endorsea textual
insertionmethoddueto its simplicity andits applica-
bility over differentSmalltalkimplementationsHow-
ever, we cautionthatthis textual insertionmethodhas
fixedlimits.

1 Introduction

In [Whitty 9649 Whitty detailscurrentresearchwork
in the areaof O-O metrics. The datain this report
shaws the increaseof work in this area,correspond-

*Level 1, 434 St. Kilda Rd, MelbourneVIC 3004, Australia;
+61-3-9281-3765

tAl Dept, Schoolof ComputerScience& Engineering,P.O.
Box 1, Kensington Sydngy NSW 2033, Australia; +61-2-9385—
4034

Tim Menzies
University NSW!

u timm@cse.unsw.edu.au

ing with the increaseduse of objecttechnologyand
theincreasedequiremenanduseof metricsby indus-
try. However, a closeranalysisof the dataindicatesa
shortageof researchelatedto thetestingof Smalltalk
systemsTheavailability of toolsandsystemshasnot
kept pacewith the increaseduse of Smalltalkin in-
dustry Thedatain [Whitty 96 shaws thatout of a
total of 269 articlesonly 15 entries,or 6%, are con-
cernedwith thefield of softwaretesting,the majority
of which focuson testingC++ systems.A further 22
entries,or 8%, areconcernedpecificallywith Small-
talk. Thereis notonesingleentryrelatedto bothtest-
ing and Smalltalk.

Thefindingsfrom the OOPSLA95 “TestingSmall-
talk Applications” workshop[Yates95] give further
evidencefor the needfor increasedesearchelatedto
testingSmalltalk systems.Someof the pointsraised
by theworkshopinclude:

¢ thereare major differencesin testing Smalltalk
applicationdueto therole thatthe Smalltalkde-
velopmentervironmentplaysin the testingpro-
cess;

adisturbingscarcityof literatureandtoolsto sup-
port Smalltalktesting;

¢ largevendorse.g. IBM andParcPlacehave de-
velopedin-housedestcoveragetoolsbut currently
have no plansto turnthesetoolsinto products;

e recommendethe useof testcaverageanalyzers.

Richard Bacheand Martin Neil [Fenton95] recom-
mendthe selectionof a setof well-establishednet-
rics, as opposedto informally defining their own,
whenmanageritroducemetricsinto anorganization.
BacheandNeil’s setof six well-establishedhetricsin-
cludetestcoveragemetrics.

This papermwill discussvhattestcoverages, how it
is usedanddescribeglifferenttechniquedor building
atestcoverageool in Smalltalk.We rejecttechniques

basednbytecodenterpretersiueto theircompleity,

lack of documentatiorandthe non-standardatureof

bytecodevaluesin differentversionsof Smalltalk(see
Section3.1.1). We will endorsea text insertiontech-
niguethatwasinitially inspiredby atool built by Mur-

phy [Murphy 95b. Thesimplicity of theendorsedp-
proachis both a strengthand a weakness.While an
effective testcoveragetool canbe constructedjuickly
with this approach(seeSection3.1.2)we now believe
that this approachhas certain limitations (see Sec-
tion 4). Extensiongo this tool would requiremore
elaborateparsertechnology

2 Test Coverage

Testcoveragds concernedvith determiningvhatpro-
portion of a definedpieceof computercodehasactu-
ally beenexecutedduring a testingcycle. The aim of
thisanalysigs to give anindicationof which codewas
not executedby a testschemeandwasthereforenot
tested. Testcoveragedoesnot give ary indicationof
the quality of a testingscheme.Achieving 100%test
coveragedoesnotindicatethatthe applicationis error
free. Insteadit givesanindicationof howv muchof an
applicationwasactuallytested.The quality of thetest
suiteis not beenverifiedby testcoverage.

The resultof testcoverageanalysisis usually two
fold:

e a metric indicating the proportionof code exe-
cuted;

e dataindicatingwhich codewasnot executed.

The metricsproducedoy testcoveragecanbe usedas
a quality indicatorof the completenessf testingof a
givenpieceof code. If testcoverageproducesa met-
ric of 100% then somedeayree of confidencecanbe
attributedto thetestsuite. Corversely if thetestcov-

eragemetricis only 35%,i.e. only 35%of theapplica-
tion codebeingtestedwasexecutedby the testsuite,
thenthis canbe usedasanindicationthattestingmay
not have beenasthoroughas expected. In this case
the additionaldataproducedby testcoverageanaly-
siswould provide indicationsof which codewas not
tested.

2.1 UsingaTest Coverage Analysis Tool

With theuseof atestcoverageanalysigool testingbe-
comesaniterative procedureThetestsuiteis executed

anda coveragemetricis producedIf themetricis not
high enough|.e. not closeenoughto 100%,thenthe
datadetailinguncovered codeis usedto identify areas
whereadditiontestsareneedear there-writing of ex-
istingtestgs required.Thiscycleis thenrepeatedintil
the coveragemetricreacheghe requiredtarget value.
While theaim of testingwould beacoveragemetricof
100%,in reality this may not be achievable. The cre-
ation of testsuitesis no differentfrom the creationof
theapplicationbeingtested pr ary otherform of com-
puterprogrammingjn thatskill andeffort is required
to producequality;, errorfree code. The effort, time,
resourcesindskill requiredto reacha coveragemetric
of 100%for agivenapplicationmaynotbefeasibleor
achiable:

e theoretically it is possibleto analyzethe log-
ical flow network of a programand automati-
cally generatea set of inputs that exercise all
brancheof a program[Zlaterevza 92]. However,
in the casewhere portions of the network are
not known with certainty then only very small
programscan be so analysed[Menzies96h).
Formally and empirically it is known that the
patternsof calls betweenmethodsin object-
orientedlanguageghat use pointersare always
not known be certainty [Murphy 954. In or-
der to demonstratethis, considera message
sentto a memberof a containerof Shape ob-
jects,whereShape canbe oneof Triangle,
Rectangle, Sphere . Onlyin certainspecial
case$ cana compile-timeanalysisuniquely re-
solwve the recever of this messageAlso, in lan-
guagesvhoseparametergrenot strongly-typed,
thereis alwayssomemeasur@f indeterminag in
thelogical flow network. Smalltalksufiersfrom
both problems. While approximatemethodcall
patternscan be deducedfrom Smalltalk source
code[Menzies96d, theseapproximatemethod
call patternsare not detailedenoughto be used
for auto-tesgeneration;

e pragmatically it may not be possibleto (e.g.)
simulatedatabaséailuresor communicatiorpro-
tocol errors;

e the constructionof a completetest suite from
the specificationmay be inhibited by two fac-
tors. Firstly, suchananalysisis a non-trivial task

le.g. whenthat messagesendis to a methodthatis defined
onlyin oneof Triangle or Rectangle or Sphere

which mayrequirethe assistancef scareproject
resourcese.g.userexperttime). Secondlyin the
casewherethe specificationis incomplete(e.g.
thetypical OO evolutionarydevelopment)thena
testsuite deducedrom the specificatiorwill al-
waysbeincomplete.

2.2 Test Coverage and Smalltalk

Thereareseveral differenttestcoveragemetrics,each
measuringdifferent coverage attributes [Fenton91,

pages183-185]. Somecoveragemetricsdependon

the constructsdefinedby a particular programming
language.Not all coveragemetricsare applicableto

all programminganguagesUseful coveragemetrics
includethefollowing:

Statement An indication of the proportionof code
statementsxecuted.

Branch Indicates the proportion of decision out-
comesexecuted For example wereboththetrue
andfalsebranche®f anif statemenexecuted.

Loop Indicates whether loops were tested with a
rangeof invariants. For example,wasafor loop
testedwith upperandlower boundinvariants.

Boolean Expression Indicatesthe proportionof the

conditionaltestsexecutedin complex decisions.

For example,hasthe following expressionbeen
testedwith valuesso that both sidesof the & &
operatothave beenexercised:

if (X>6 &% Y <=10) \

Thesedefinitionsfit closelyto languagesuchasC,
Pascaland C++. Somemodificationis requiredto
matchthemwith the Smalltalk-80languageslements:

Statement Sameasabore Statementetric.

Conditional Selection A subset of the Branch
metric. Conditional Selection deals with
the execution of ifTrue: , ifFalse:
ifTrue:ifFalse and ifFalse:ifTrue:
messages.

Conditional Repetition Also a subset of the
Branch metric. This metric deals with the
whileTrue , whileTrue: , whileFalse
andwhileFalse: messages.

Fixed-L ength Repetition Thiscateyoryis equivalent
to the Loop metric. It dealswith messages
such as timesRepeat: , do:, to:do and
to:by:do

Logical Operations Equivalentto Boolean Expres-
sion Concernedwith the &, |, not , eqv: ,
xor: ,and: andor: messages.

A major problemin definingthe above coveragemet-
rics for Smalltalkis that a usercanadd userdefined
controlstructurego the systemsincethey aresimply
messagesentto objects. This meanst would not be
possibleto fully defineandimplementsomeof these
coveragemetrics.

Murphy [Murphy 950 definesfour coveragemet-
rics for Smalltalk; StatementBranch Loop and Path
The definitionsare confusingand someavhat mislead-
ing, for thefollowing reasons

1. Statementoverages equatedvith theexecution
of a method, but a methodcan contain0 to n
statements.

2. No definition of a Smalltalk loop statementis
given, apartfrom usingthedo: messagasan
exampleof one.

3. Murphy’s definition of the Path metric attempts
to measurevhether“every logical paththrough
a methodhasbeentried” but is definedin terms
of thenumberof possiblepathsavailablethrough
two differentmethods.

Becaus®f theseambiguitiesanddifficultiesit wasde-
cidedto definetwo testcoveragemetricsfor Smalltalk

Method Measuresthe proportion of executed in-
stancemethodsin a Smalltalk Class. This is
whatMurphyintendedanddemonstratedor his
Statemenmetric.

Block Measureghe proportionof blocksexecutedin
a given instancemethod. As a side effect this
will alsoincorporateConditionalSelection Con-
ditional Repetitionand Fixed-LengthRepetition
sinceall the messagem thesemetricsrequirea
block.

3 TCAT: Test Coverage Analysis
Tool for Visual Smalltalk

3.1 Design

This paper was inspired by certain perceved
limitations in Murphy’s Smalltalk test coverage
tool [Murphy 95h. Murphy usesthe techniqueof
method wrapping whereby the original method is
moved to a nev unusedselectorand a nev method,
with theoriginal selectoris created.This new method
performsthe coderequiredfor coverageanalysisand
thensendsa messageysingthe selectorof the moved
method o invoke the original method.As anexample
of thistechniquehemethod

SomeClass>>aMethod: anObject
"Send some messages to <anObject>"

some messages here

would be“replaced’by

SomeClass>>aMethod:
"Perform
for

anObject
method coverage
SomeClass>>aMethod:"

logging

self

log: #aMethod:

forClass: SomecClass.
"Call the original method"
“self real_aMethod: anObject

anda“new” methodaddedo SomeClass

SomeClass>>real_aMethod: anObject
"Send some messages to <anObject>"

some messages here

Thereare somelimitations to Murphy’s implementa-

tion (thefirst is notedby Murphy):

¢ binarymessagesyhicharemostlyusedfor arith-
metic, cannot be wrappeddue to the limita-
tions placedon the selectornameby the Small-
talk language[Goldbeg 89]. A binary mes-
sageselectoris composedof one or two non-
alphanumericcharactersselectedfrom the set
{+/*- ~<>=@9%&7?!, }, with the addedre-
strictionthatthesecondcharactecannotbea mi-
nussign{- };

e after the methodsin a classhave beenwrapped
boththenew methodsaddedo performthewrap-
pingandtheoriginal, now renamedmethodwill

bevisiblein aclassbrowser This makesit diffi-
cult and confusingto move amongthe original
classmethodswhich have beenrenamedin the
browser;

e to male a changeto a methodthat has been
wrappedwould involve finding and altering the
renamednethod.

Theselimitations, and the desireto implementaddi-
tional coveragemetrics weretheimpetusfor findinga
differentapproacho testcoverageanalysisin Small-
talk.

3.1.1 BytecodeAlteration

Initial investigationsfocusedon the alterationof the
bytecodedataproducedoy the Smalltalkcompiler It
would betheoreticallypossibleto alter, referredto as
instrumenting this compiled codeto perform addi-
tional processingo generatehedatarequiredfor cov-
erageanalysis. This approachpotentially offers the
following benefitso methodwrapping:

e thelimitation of wrappingbinary messagedoes
notapply;

e theadditionalcodeaddeds notvisiblein method
browsers;

e noadditionalmethodsareaddedo theclass;

¢ potentialimprovementsn theprocessingimere-
quiredto instrumentandremove instrumentation
from methodsas no code recompilationis re-
quiredwhichis aresourcentensve process.

Thelimitationsimposedby this approactare:

e primitive methodscannotbe instrumentedasno
codecanbeinsertedprior to the primitive invo-
cation. This may be a limited problemas prim-
itive methodsonly appearin the Smalltalkbase
classeswhichwould notnormallybetestedn an
application;

¢ vendorand compiler versiondependence.Dif-
ferent vendorsmay representinstructionswith
different bytecodevalues and combinationsof
bytecodes. The test coveragetool would need
to bere-implementedor eachversionof Small-
talk. Also a vendormay changethe compiler
and bytecodevaluesin subsequenteleasesof
their Smalltalk implementationagainrequiring

re-implementation. This doesnot make for a
portabletool.

To understandhis approachsome knowledge of
hov the Smalltalk languageis implementedis re-
quired. While a detaileddescriptionof the imple-
mentationof Smalltalkcanbefoundin [Goldbeg 89]
someof the salientpointsareincludedherefor clar
ity. Smalltalkcompilessourcemethodgo bytecodes,
eightbit numberswhich areinterpretedby the stack-
orientedSmalltalkvirtual machineat executiontime.
Theinterpretemuunderstand256bytecodenstructions,
0 to 255, that can be cateyorized as pushes,stores,
sendsreturnsandjumps.As morethan256bytecodes
arerequiredto translateSmalltalk source somebyte-
codedake extensions An extensionis simply anaddi-
tional one,two or morebytecodeghatfurther specify
the instructionand it’'s parameters.In this mannera
singlevirtual machinenstructioncanrangefrom 1 to
4 bytecodes. In additionto the bytecodeghe com-
piler alsoproducesa setof objectsreferredto asthe
literal frame The literal frame containsary objects
thatcouldnotbereferredo directlyby bytecodesThe
typesof objectsstoredin theliteral frameinclude

e global,classandpool sharedvariables;

e literal constantssuch as numbers, characters,
strings,symbolsandarrays;

° mostmessageelectors.

Since the Smalltalk-80 language defined
in [Goldbeg 89] is not an industry standarddif-
ferentvendorschooseto implementthe languagein

In VST compiled methods are stored in
the class method dictionary as instances of
CompiledMethod . Oneof theinstancevariablesof
CompiledMethod is byteCodeArray which, as
thenameimplies,containghebytecodevaluesfor the
methodasanarray The CompiledMethod classis
asubclas®f Array and,in additionto normalinstance
variables storesthe methodditeral frameasindexed
instancevariables. The VST implementationgener
atestheliteral frameastwo stackbasedists growing
from oppositeendsandmeetingin the center Literal
constantsand sharedvariablesare storedin parsed
sourceordergrowing dovnwardsfrom the top of the
array Messageselectorsare storedin parsedorder
growing upwardsfrom the endof theindexedinstance
variablearray An example shawing the bytecodes
and literal frame for some Smalltalk sourcecan be
seenin Figurel. Bytecodeghatreferto literal frame
valuesdo so by referenceto their relative position
in the literal frame stack. For example,in Figure 1
bytecode226 refersto first messageselectorin the
literal framewhich happendo be the last elementof
theframe.Bytecode227 refersto thesecondnessage
selectorwhich is the secondastframeliteral, andso
on. For the constant/ariablelist 163 refersto thefirst
constantelementand 100 to the first sharedvariable
element.

Thedatarequiredfor methodevel testcoveragecan
be reducedo methodnameandclassname. This re-
quirestheadditionof two elementdo theliteral frame.
Becausef thetwo stackmechanisnusedby VST and
thefixedlengthnatureof the CompiledMethod ob-

slightly differentways.Onenotableareaof difference J€ctthestepsrequiredareasfollows:

betweertSmalltalkimplementationgs thecompilation
and execution of code. Some Smalltalk vendors
include the sourcefor the compilerin the baseclass
library. Theavailability of the compilersourcewould

assistin the processof mapping method sourceto

bytecodevalues. Digitalk do not include the source
codefor the Visual Smalltalk 3.0.1 (VST) compiler

This meanghatdetermininghe bytecodevaluesfor a

particularsegmentof Smalltalkcodeis doneby trial

anderror After a greatdeal of experimentatiorthe
relationshipbetweenthe bytecodevaluesand some
simple messagesendswas determined. The author
wasableto alter a methodsbytecodesn sucha way

that an additional messagesendwas insertedat the

startof methoddo storethe executingmethods name
andclassnamein a global variable,for later analysis
andreporting.

1. Determinethe bytecodesequencdor the mes-
sagesendwe aregoingto insertinto the method
ie.

self
log: #methodName
forClass: self class

Createa new instanceof CompiledMethod of
size 2 greaterthan the original method. Copy
literal frame valuesfrom original method and
add two new values (a symbol for #method
(changedto the method selectorsactual value)
and an Association for the value of self
class) atthestartor endof the constant/shared
literal framelist.

TestCoverage==method1

self log: #method? farClass: TestCoverage.
self print: ‘aString'

e
EyteCodes Literal Frame
:gg [#methodl Literal constant and shared
10 #TestCoveragerTestCoverage Ei&iﬂgfgi?f@ggwa
fgg ragtring’ start of frame
10 #print: Message selector
227 stack grows upwards from
73 #log: forClass: end of frame

Figurel: RelationshipbetweerSmalltalksourceandVisual Smalltalk3.0.1.compiledobjects.

3. Insertthe bytecodesequencdrom the first step tems. Hence,we abandonedytecodeinsertionand
aboreintotheCompiledMethod instancevari- movedonto atextual codeinsertiontechnique.

ablebyteCodeArray attheappropriatelace.

4. Changeall bytecodevaluesthatreferencditeral

3.1.2 Codelnsertion

framevalue_sto refer_encmew positionsin thelit- The secondapproachproved more successfulnd is
eralframesinceaddingthetwo new values. usedin theimplementatiorof TCAT. Thebasisof this

5. Copy the original CompiledMethod instance
to a global variableandreplaceit with the new

instance. 1.

Step4 turnedout to be the mostdifficult. Without a
definitive list of what every bytecodevalue meansin
the contet of its surroundingoytecodesgdetermining

which bytecodesieedto be alteredis difficult. After 2.

several attemptswe realizedthat evenif we success-
fully worked out how to handleStep4 for VST 3.0.1,

we may have to changeour systemin orderto handle 3.

the otherbytecodesystemsusedin Smalltalkimple-
mentationgrom othervendorsor evennewer versions
of Digitalk Smalltalk. Suchchangesirecomplicated
by the lack of documentatioron version-dependent
bytecodesFurther we believedthatanimprovedver
sionof Murphy’s codeinsertionsystemwould be sim-
pler to implementand port to variousSmalltalksys- g

2Digitalk and ParcPlacerecentlymeigedto form ParcPlace-
Digitalk

approachis to parsethe methodsourceandinsertad-
ditional code.Thestepsinvolved areasfollows:

Determinethe starting position in the method
sourcetext streamfor insertion. This involves
recognizinghemethodsnessageatterntempo-
rary variablesandcomments.

Createastringrepresentinghenew testcoverage
messagsendfor this method.

Insertthe new messagesendtext into a copy of
themethodsourcetext atthe startpoint.

4. Usethe VST compilerinterfaceto compile the

nev methodsource,in the context of the meth-
odsclass,producinga nev CompiledMethod
object.

. Copy theoriginal CompiledMethod objectto

a global variableso thatit canbe restoredafter
testinghasbeencompleted.

6. Replacethe original CompiledMethod with
the new onein the methodsclassmethoddictio-
nary

7. Adjust the sourcecode instancevariablein the
new CompiledMethod objectto referencehe
original CompiledMethod object so that the
original methodssource will be displayedin
ClassandMethodBrowsers.

This approactprovidesMethodlevel coverageasde-
fined in Section2.2. To implementthe additional
Block level coveragenvolvessomemorecomplicated
parsingandthe insertionof additionalmessagesends
following the startof eachblock. For Block coverage
anadditionalparametembeingtheblocknumberin the

methodjs alsorecordedatexecutiontime. Thisallows

theidentificationof which block in a methodwasex-

ecutedandthe numberof times. With this technique
themethod

SomeClass>>aMethod: anObject
"Send some messages to <anObject>"

self firstMessage: anObject.
anObject isNil

ifTrue: [self output: anObject]
becomes
SomecClass>>aMethod: anObject

"Send some messages to <anObject>"

TCMoni tor | ogEvent: #aMet hod:
in: Somed ass.
self firstMessage: anObiject.
anObject isNil
ifTrue: [TCMoni t or | ogBl ockEvent :
for: #aMet hod
in: Sonmed ass.
self output: anObject]

1

3.2 Implementation

TCAT, implementedin Visual Smalltalk 3.0.1. for
Windows, consistf five classes:

TCMonitior Thisclasshandleghecreationof instru-
mentedmethods,performsthe monitoring, data
gatheringand metric reportingtasksfor TCAT.
It consistssolely of classmethods,no instance
methods Subclassefrom Object .

TClnstrumentedMethod This class performs the
tasks of creating an instrumentedmethod for
TCMonitor The class is subclassedrom
Object .

TCViewer Thisclassformsthemainvisualinterface
to TCAT. It allows for the selectionof classeso
beinstrumentedthedisplayof thecoveragemet-
rics, launchingthe TCAT Browserandrestoring
the original uninstrumentednethods. It is sub-
classedrom ViewManager .

TCBrowser This classis usedfor brawsing the in-
strumentedclassesand is subclassedrom the
ClassHierarchyB ro wser . In additionto
shaving methodsourceit also shawvs the num-
ber of times methodsand blocks in methods
have beenexecuted. TCBrowser alsoperforms
“on-the-fly” instrumentatiorof new andchanged
methods.

TCStack This is a “support” classsubclassedrom
OrderedCollecti on. Thisclassmplements
a simple stackdatastructure. Instancesof this
classare usedby TClinstrumented Meho d
in theparsingof sourcecode.

To prevent problemscauseddy instrumentinga class
morethanonceandthe needfor theinsertedmessage
sendto storedatain a global variable,the monitoring
anddatagatheringfunctionof TCAT is achiered with
classmethodsnot instancemethods.This meanghat
only onemonitoringfunctionis activein theimageand
canbeaccesseffom ary methodin ary class.

321 Using TCAT

Using TCAT is done by firstly starting the TCAT
Viewer, TCViewer , with an optional collection of
classedo be instrumented. The viewer openswith
a hierarchicallist of all classedn the top left-hand
“source”paneanda list of classego be, or being,in-
strumentedh thetopright-hand‘instrumenting”pane.
TCViewer canbestartedn threeways,for example

TCViewer
or
TCViewer openOn;
#(TestCoverageTests
TestCoverageTests2).

open.

or

TCViewer openOn: #('TestCoverageT*).
The first example opens TCViewer with
no entries in the instrumenting list, shavn

"~ TCAT Instrumentation

Object &
ApplicationCoordinator...
Behavior...
Boolean...

Border

CallBack...
Classlnstaller
ClassReader
ClipboardManager
Collection...

ol

Adde>

“<Hemove

I[=] E3

0%

Instrument Browse

MEetrics

Clean Up

Figure2: TCAT Viewerinterface.

in Figure 2. The second opens TCViewer
with the classes TestCoverageTes ts and
TestCoverageTes ts 2 in the instrumentinglist,
asin Figure3. Thethird exampleopensTCViewer

erageandBlock coveragemetricsfor the classesand
anoverall MethodcoverageandBlock coveragemet-
ric for all the classes.This canbe seenin Figure 4.
Themetricinformationis shavn by class,n alphabet-

with all classesvhosenamestartswith the characters ical classnameorder andtotal for all classes.There

TestCoverageT . The third form is very useful if
a commonnamingcorvention hasbeenusedfor the
classedn the applicationbeing tested. Which ever
methodof startingTCViewer is usedclassesanbe
addedto theinstrumentindist from the sourcdist by
selectingwith the pointerand choosingthe Add>>
button. Similarly, classescan be remaoved from the
instrumentindist by selectingthemandchoosingthe
< <Remove button.

Whenthe classe$o bemonitoredhave beenchosen
selectingthe I nstrument buttonwill startthe process
of methodinstrumentation. As eachclassis instru-
mentedt’ s nameappear®elov thesourcdist andthe
sliding scaleindicator shavs what percentag®f the
choserclassehave beencompletedlf a methodcan-
not beinstrumentedt’s nameappearsn the scrolling
window atthe bottomof thewindow. This could hap-
penif themethodhasnosourcecodeavailableorit isa
primitive method.An exampleof thisis shavn in Fig-
ure3. At thisstagethechoserclassesreinstrumented
andreadyfor testing.After testinghasbeencompleted
selectinghe M etrics buttonwill displayMethodcov-

arefour figuresshavn in themetricdata,eachprefixed
by aindicatorcharacter:

B This value shaws the Block coveragemetric. It
consistof aproportion thenumberof Blocksen-
teredandthetotal numberof Blocksin theclass.
A summanyfor all classess alsogiven.

C This valueonly appearsn the “Total Coverage”
line. It's valueis the numberof classeshatwere
instrumentedor testcoverage.

M This valueshavs the Methodcoveragemetric. It
consistsof a proportion,the numberof Methods
enteredand the total numberof Methodsin the
classexcludingary Primitive Methods. A sum-
maryfor all classess alsogiven.

P Thisvalueindicateghenumberof Primitive Meth-
odsin the classandis excludedif the numberis
zero.A summanyfor all classess alsogiven.

Additional coveragedatais provided whenthe TCAT
Browseris used.To usthis Browserselectthe Browse

"~ TCAT Instrumentation =] B3

TClnstrumentedMethod = TestCoverageTests s
TCMonitor TestCoverageTests?2
TestCoverage Add>>
TestCoveragel
TestCoverageTests
TextSelection Shcniove
UndefinedObject
ViewManager...
WBGraphicObject... _l_v|
| 3

|

TestCoverageTests2
| 100%
16:03:13 =
Primitive : TestCoverageTests2>>=
16:03:17
Instrument Browse Metrics Clean Up

Figure3: TCAT Viewer shaving instrumentedlasses.

"~ TCAT Instrumentation =] B3

Object 2 TestCoverageTests s
ApplicationCoordinator... TestCoverageTests?2
Behavior... Add>>
Boolean...

Border

CallBack...
Classinstaller
ClassReader
ClipboardManager

Collection... =
| | 3 =

TestCoverageTests2

“<Hemove

| 100%

16:07:37 =
Primitive : TestCoverageTests2>>=

16:07:40

TestCoverageTests — M=83.33% (10/12) B=66.67%[2{ 3]
TestCoverageTests2 — M=31.58% [6/19)B=13.64%[3[22) P=1

[Total Coverage — C=2 M=b1.612[16} 31) B=20.0%[5/25h] P=1

Instrument Browse Metrlcs Clean Up

Figure4: TCATViewerwith metricdata.

button. Thiswill opena Browsersimilar to thefamil-

iar ClassHierarchybrovser The top left panelists

the classeshatarebeingmonitoredfor testcoverage.
Thetop centempaneallows the selectionof “Covered”
or “Not Covered”methodsvia a pair of radiobuttons.
Below the buttonsis a list of blocksin the currently
selectedmethod. The top right panelists the meth-
odsin the selectectlass. The bottompaneshaws the

sourcefor aselectednethod.Thedifferencedetween
the TCAT Browserandthe standardClassHierarchy
Browser(CHB) are

e anumberdenotingthe numberof timesa method
hasbeenexecutedappearafterthemethodname
in the methodlist pane. When “Not Covered”
methodsareviewedthis numberis removedsince
it is zero;

e theblock list paneshaws a pair of numbersthe
first representshe block numberandthe second
is the numberof timesthat block hasbeenexe-
cuted. For the “Not Covered” list the execution
numberis always zero. For easeof reference
blocks are numberedsequentiallyfrom 1 based
ontheorderthatthey appeain themethod,;

e selectinga block in the block list causesthe
sourcecodefor thatblockto behighlightedin the
sourcepane;

e variouspanepop-upmenuoptionshave beenre-
moved;

e methodscan be edited, deletedand nevw meth-
ods addedas with a standardCHB. The TCAT
Browserwill instrumentary methodswhich are
addedor changed.

To endthe testcoverageprocesshe userselectsthe
Clean Up button on the TCAT Viewer or closesthe
viewerwindow. Thesewo actionsrestorethe original
uninstrumentednethods.

4 Limitationsof TCAT

None of the threelimitations detailedearlierin Mur-
phy’s methodwrapping technique(Section3.1) ap-
ply to the code insertiontechniqueusedin TCAT.
While the primitive methodlimitation (Section3.1.1)
for bytecodealterationis presentin TCAT, the porta-
bility issueof theformertechniqués not.

A subtledravback with the textual codeinsertion
methodusedin TCAT is thatwhile it canlog theentry
into amethod,jt cannotreportthe exit from a method.
Considetthefollowing codewith theloggingcodein-
serted.

File>>emptyFile: aString
| aStream |
self log: #emptyFile:
pos: O class: File class.
aStream := self pathName: aString.
°(size := aStream size.
size =0
ifTrue: [self log: #emptyFile:
pos: 1
class: File class.
self remove: aString .
aStream close; release.
size =0)

While we cantell whenthe methodor its oneblockis
enteredwe do notknow whathappensfterentry For
example,supposehelog reads:

File>>emptyFile: 0
File>>pathName: 0
Stream>>size 0

File>>emptyFile: 1

File>>remove: 0
Stream>>close 0
Using this log, we cannot tell if
File>>emptyFile or File>>remove:

called Stream>>close Hence, while we can

say which methodswere exercised,we cannotsay
in which order they were executed. Hence, TCAT

cannotgenerate call-graph representinghe patterns
of methodcalls. This is unfortunatesince,if it could,

thenTCAT couldhave (e.g.) checledif the staticcall

graphsgeneratedor Smalltalk systemsby Haynes
and Menzies[Menzies964 representedrue runtime
behaior.

To obtainthe datafor call-graphanalysisrequires
the knowledge not only of method/blockentry but
alsoof whena method/blockwasexited. Suppose¢he
above log read:

ENTER File>>emptyFile:
ENTER File>>emptyFile:
LEAVE File>>emptyFile: 1

[EnY

ENTER File>>remove: 0
LEAVE File>>remove: 0
ENTER Stream>>close 0

== TCAT Browser _|Of x|
File Edit Smaltalk Clazs Method Options

= Covered blockb [1] 2
€ Not Covered blocké: (1
1-4 S :
. print: [1]
N printf: (2]
3-0 printit: [4]
printt: [11]
- ~ftesta 1 =
4 _PI_I 4 (3 FS I I L3
block?: aNumber B
[aNumber = 0 or: ["*'aNumber < 0]] -
ifTrue: i |
ifFalse: [self printf: aNumber].
ki
i =
Figure5: TCAT Browsershaving Block metrics.
then there would no confusion about the order of phy, whichwe soughtto improve;

methodexecution. Sadly to log the LEAVE events,
additionallog codewould have to be insertedat the
end of blocks and methods. It is unclearhow to
do this without changingthe return value of some

methods. For example, in the implementationof o TCAT: ourcodeinsertionsystemwhich cangen-

¢ the bytecodeinsertion system,which we aban-
donedsinceit wasdependenbn version-specific
bytecodaletails;

File>>emptyFile :,if we placethe LEAVEmon- eratesourcecodecoveringinformationbut which
itor jUSt beforethe braclet on the last line, thenthe cannoteusedfor disco/eringpatterns)f method
methodwill not returna Boolean.If we placeit after callssinceit Cannoﬁmp]emenﬂ_EAVE]ogging_

the last braclet, thenwe would geta compilererrot _

A generalLEAVElogging mechanisnwould have to ' orderto extend TCAT, we needLEAVEIogging.
find thelastreturnedvalue,cacheit, addaLEAVElog A generalLEAVElogging systemwogld requireac-
memo,thenreturnthe cachedvalue. We attemptedo €SSO the parsetree of the methodsinvolved. We

sketchouthaw this mightbedonebut foundthatthere Choosenotto explorethis optionssincemary Small-
weretoo mary specialcasego consider talk_ systenjs{e.g. VST) do not supplysourcecodefor
their compilers.Hence we concludethat:

e codeinsertiontechniquesasusedin TCAT, can
beusedto build usefulcodecaveragetools. Note
that monitoring and instrumentingfunctions of
TCAT areamere600lineslong, includingcom-
ments;

5 Conclusion

We have discussedsource code caveragetools in
Smalltalk. We have cautionedthat on theoretical
andpragmaticgrounds,100%coverageshouldnot be

majority coveragels areasonablgoal. morecomplicatedparseibasedsystems.
Threetechniguegor sourcecodecaveragetoolsin
tained from http://www.cse. unsw.e du.au /

e themethodwrappingtechniqueasusedby Mur- ~timm/pub/lang/s mdl ta lk/ tc at.

6 Acknowledgements

Philip Haynes,from Object OrientedPty. Ltd., was
our patientguideto the internalsof the Smalltalkvir-
tualmachine.

References

[Fenton95] Fenton, Norman, Whitty, Robin, &
lizuka, Yoshinori (eds). 1995. Soft-
ware Quality Assuance and Measue-
ment: A Worldwide Perspective Interna-
tional ThomsonComputerPress.

[Fenton91] Fenton,NormanE. 1991. Softwae Met-
rics: A rigorous appioad. Chapman&
Hall.

[Goldbeg 89] Goldbeg, Adele, & Robson,David.
1989. Smalltalk-80:TheLanguaye. 2 edn.
AddisonWeslsy.

[Menzies96a] Menzies,Tim, & HaynesPhilip. 1996
(Jan.). Empirical Observationsof Class-
level EncapsulatiorandInheritance Tech.
rept. Departmentof Software Develop-
ment, MonashUniversity Caulfield, Mel-
bourneVIC 3185,Australia.

[Menzies96b] Menzies,T.J.1996.0nthePracticality
of Abductive Validation.In: ECAI'96.

[Murphy 95a] Murphy, G.C., Notkin, D., & Lan,
E.S.C.1995. An Empirical Studyof Static
Call GraphExtractors. Tech.rept. TR95-
8-01. Departmenbf ComputerScience&
EngineeringUniversity of Washington.

[Murphy 95b] Murphy, Mark L. 1995.Coverageanal-
ysisin Smalltalk. The Smalltalk Report
Oct.,4-8.

[Whitty 96a] Whitty, Robin. 1996a. Object-oriented
metrics: A statusreport. Object Expert
Jan.,35-40.

[Whitty 96b] Whitty, Robin. 1996b (June).
Object-Oriented Metrics: an Ano-
tated Bibliography Available from
South Bank University web site at
http://www.sbu.a c. uk/ ~csse
/publications/O0O Mdr ic s.h tml .

[Yates95] Yates,Barbara.1995. Testing Smalltalk

Applications:workshopreport.In: Adden-
dumto the OOPSLAProceedings

[Zlatereva 92] Zlaterara,N. 1992. TruthMaintenance

SystemsandTheir Applicationfor Verify-
ing ExpertSystemKnowledgeBases.Ar-
tificial IntelligenceReview, 6.

