
QualityMetrics:TestCoverageAnalysisfor Smalltalk

Mark Connell
OpenEnvironmentAustralia

�
Mark.Connell@c031.aone.net.a u

Tim Menzies
UniversityNSW

�
timm@cse.unsw.edu.au

Abstract

Thegrowth in theuseof objecttechnologyhasled to
a correspondingrequirementfor improved quality in
object-oriented(O-O) software. If the holy grail of
softwarere-useis to beachievablethentherehasto be
a large degreeof confidencein the componentbuild-
ing blocks.With thepossibilityof a singleO-O com-
ponentbeingusedin many softwaresystemstheneed
for greaterconfidencein thequalityof thecomponent
increases.Quality assurancecomesfrom testingand
the useof metricsto give somequantitative measure
of quality. The requirementfor research,leadingto
the availability of methodologies,systemsand tools,
to assistwith testingand quality assuranceis grow-
ing. Thispaperdealswith theuseof coverageanalysis
in testingin Smalltalk.Variousmethodsaredescribed
anddiscussed.Bytecodeinterpreterapproachesarere-
jecteddueto thenon-standardnatureof bytecodesin
differentversionsof Smalltalk. We endorsea textual
insertionmethoddueto its simplicity andits applica-
bility over differentSmalltalkimplementations.How-
ever, we cautionthatthis textual insertionmethodhas
fixedlimits.

1 Introduction

In [Whitty 96a] Whitty detailscurrentresearchwork
in the areaof O-O metrics. The data in this report
shows the increaseof work in this area,correspond-

�
Level 1, 434St. Kilda Rd, MelbourneVIC 3004,Australia;

+61–3–9281–3765�
AI Dept, Schoolof ComputerScience& Engineering,P.O.

Box 1, Kensington,Sydney NSW 2033,Australia;+61–2–9385–
4034

ing with the increaseduseof object technologyand
theincreasedrequirementanduseof metricsby indus-
try. However, a closeranalysisof thedataindicatesa
shortageof researchrelatedto thetestingof Smalltalk
systems.Theavailability of toolsandsystemshasnot
kept pacewith the increaseduseof Smalltalk in in-
dustry. The datain [Whitty 96b] shows that out of a
total of 269 articlesonly 15 entries,or 6%, arecon-
cernedwith thefield of softwaretesting,themajority
of which focuson testingC++ systems.A further22
entries,or 8%, areconcernedspecificallywith Small-
talk. Thereis not onesingleentryrelatedto bothtest-
ing and Smalltalk.

Thefindingsfrom theOOPSLA95 “TestingSmall-
talk Applications” workshop[Yates95] give further
evidencefor theneedfor increasedresearchrelatedto
testingSmalltalksystems.Someof the pointsraised
by theworkshopinclude:

� thereare major differencesin testingSmalltalk
applicationsdueto therole thattheSmalltalkde-
velopmentenvironmentplaysin the testingpro-
cess;

� adisturbingscarcityof literatureandtoolsto sup-
portSmalltalktesting;

� largevendors,e.g. IBM andParcPlace,have de-
velopedin-housetestcoveragetoolsbut currently
have noplansto turn thesetoolsinto products;

� recommendedtheuseof testcoverageanalyzers.

RichardBacheand Martin Neil [Fenton95] recom-
mendthe selectionof a set of well-establishedmet-
rics, as opposedto informally defining their own,
whenmanagersintroducemetricsinto anorganization.
BacheandNeil’ssetof six well-establishedmetricsin-
cludetestcoveragemetrics.

Thispaperwill discusswhattestcoverageis, how it
is usedanddescribesdifferenttechniquesfor building
a testcoveragetool in Smalltalk.Werejecttechniques



basedonbytecodeinterpretersdueto theircomplexity,
lack� of documentation,andthenon-standardnatureof
bytecodevaluesin differentversionsof Smalltalk(see
Section3.1.1). We will endorsea text insertiontech-
niquethatwasinitially inspiredby atool built by Mur-
phy [Murphy 95b]. Thesimplicity of theendorsedap-
proachis both a strengthanda weakness.While an
effective testcoveragetool canbeconstructedquickly
with this approach(seeSection3.1.2)wenow believe
that this approachhas certain limitations (seeSec-
tion 4). Extensionsto this tool would requiremore
elaborateparsertechnology.

2 Test Coverage

Testcoverageis concernedwith determiningwhatpro-
portionof a definedpieceof computercodehasactu-
ally beenexecutedduringa testingcycle. Theaim of
thisanalysisis to giveanindicationof whichcodewas
not executedby a testschemeandwasthereforenot
tested.Testcoveragedoesnot give any indicationof
thequality of a testingscheme.Achieving 100%test
coveragedoesnot indicatethattheapplicationis error
free. Insteadit givesanindicationof how muchof an
applicationwasactuallytested.Thequalityof thetest
suiteis notbeenverifiedby testcoverage.

The resultof testcoverageanalysisis usually two
fold:

� a metric indicating the proportionof codeexe-
cuted;

� dataindicatingwhichcodewasnotexecuted.

Themetricsproducedby testcoveragecanbeusedas
a quality indicatorof thecompletenessof testingof a
givenpieceof code. If testcoverageproducesa met-
ric of 100% then somedegreeof confidencecan be
attributedto thetestsuite.Conversely, if thetestcov-
eragemetricis only 35%,i.e. only 35%of theapplica-
tion codebeingtestedwasexecutedby the testsuite,
thenthis canbeusedasanindicationthattestingmay
not have beenas thoroughasexpected. In this case
the additionaldataproducedby test coverageanaly-
sis would provide indicationsof which codewasnot
tested.

2.1 Using a Test Coverage Analysis Tool

With theuseof atestcoverageanalysistool testingbe-
comesaniterativeprocedure.Thetestsuiteisexecuted

anda coveragemetricis produced.If themetricis not
high enough,i.e. not closeenoughto 100%,thenthe
datadetailinguncoveredcodeis usedto identify areas
whereadditiontestsareneededor there-writingof ex-
istingtestsis required.Thiscycleis thenrepeateduntil
thecoveragemetric reachestherequiredtargetvalue.
While theaimof testingwouldbeacoveragemetricof
100%,in reality this maynot beachievable. Thecre-
ationof testsuitesis no differentfrom thecreationof
theapplicationbeingtested,or any otherform of com-
puterprogramming,in thatskill andeffort is required
to producequality, error free code. The effort, time,
resourcesandskill requiredto reachacoveragemetric
of 100%for agivenapplicationmaynotbefeasibleor
achievable:

� theoretically, it is possibleto analyzethe log-
ical flow network of a programand automati-
cally generatea set of inputs that exerciseall
branchesof a program[Zlatereva 92]. However,
in the casewhere portions of the network are
not known with certainty, then only very small
programs can be so analysed[Menzies96b].
Formally and empirically, it is known that the
patternsof calls betweenmethods in object-
orientedlanguagesthat usepointersare always
not known be certainty [Murphy 95a]. In or-
der to demonstratethis, consider a message
sentto a memberof a containerof Shape ob-
jects,whereShape canbeoneof Triangle,
Rectangle, Sphere . Only in certainspecial
cases1 cana compile-timeanalysisuniquelyre-
solve the receiver of this message.Also, in lan-
guageswhoseparametersarenot strongly-typed,
thereis alwayssomemeasureof indeterminacy in
the logical flow network. Smalltalksuffers from
both problems. While approximatemethodcall
patternscan be deducedfrom Smalltalk source
code[Menzies96a], theseapproximatemethod
call patternsarenot detailedenoughto be used
for auto-testgeneration;

� pragmatically, it may not be possibleto (e.g.)
simulatedatabasefailuresor communicationpro-
tocolerrors;

� the constructionof a completetest suite from
the specificationmay be inhibited by two fac-
tors.Firstly, suchananalysisis a non-trivial task

1e.g. whenthat messagesendis to a methodthat is defined
only in oneof Triangle or Rectangle or Sphere



whichmayrequiretheassistanceof scareproject
resources(e.g.userexperttime). Secondly, in the
casewherethe specificationis incomplete(e.g.
thetypicalOOevolutionarydevelopment),thena
testsuitededucedfrom the specificationwill al-
waysbeincomplete.

2.2 Test Coverage and Smalltalk

Thereareseveraldifferenttestcoveragemetrics,each
measuringdifferent coverage attributes [Fenton91,
pages183–185]. Somecoveragemetricsdependon
the constructsdefinedby a particular programming
language.Not all coveragemetricsareapplicableto
all programminglanguages.Useful coveragemetrics
includethefollowing:

Statement An indication of the proportionof code
statementsexecuted.

Branch Indicates the proportion of decision out-
comesexecuted.For example,wereboththetrue
andfalsebranchesof anif statementexecuted.

Loop Indicates whether loops were tested with a
rangeof invariants.For example,wasa for loop
testedwith upperandlowerboundinvariants.

Boolean Expression Indicatesthe proportionof the
conditionaltestsexecutedin complex decisions.
For example,hasthe following expressionbeen
testedwith valuesso that both sidesof the &&
operatorhave beenexercised:

if ( X > 6 && Y <= 10 ) \{ ...

Thesedefinitionsfit closely to languagessuchas C,
Pascaland C++. Somemodification is requiredto
matchthemwith theSmalltalk-80languageelements:

Statement Sameasabove Statementmetric.

Conditional Selection A subset of the Branch
metric. Conditional Selection deals with
the execution of ifTrue: , ifFalse: ,
ifTrue:ifFalse and ifFalse:ifTrue:
messages.

Conditional Repetition Also a subset of the
Branch metric. This metric deals with the
whileTrue , whileTrue: , whileFalse
andwhileFalse: messages.

Fixed-Length Repetition Thiscategory is equivalent
to the Loop metric. It deals with messages
such as timesRepeat: , do: , to:do and
to:by:do .

Logical Operations Equivalent to BooleanExpres-
sion. Concernedwith the &, | , not , eqv: ,
xor: , and: andor: messages.

A majorproblemin definingtheabove coveragemet-
rics for Smalltalk is that a usercanadduser-defined
controlstructuresto thesystem,sincethey aresimply
messagessentto objects.This meansit would not be
possibleto fully defineandimplementsomeof these
coveragemetrics.

Murphy [Murphy 95b] definesfour coveragemet-
rics for Smalltalk;Statement, Branch, Loop andPath.
Thedefinitionsareconfusingandsomewhatmislead-
ing, for thefollowing reasons

1. Statementcoverageis equatedwith theexecution
of a method,but a methodcan contain � to �
statements.

2. No definition of a Smalltalk loop statementis
given, apartfrom usingthe do: messageasan
exampleof one.

3. Murphy’s definition of the Path metric attempts
to measurewhether“every logical path through
a methodhasbeentried” but is definedin terms
of thenumberof possiblepathsavailablethrough
twodifferentmethods.

Becauseof theseambiguitiesanddifficultiesit wasde-
cidedto definetwo testcoveragemetricsfor Smalltalk

Method Measuresthe proportion of executed in-
stancemethodsin a Smalltalk Class. This is
whatMurphyintended,anddemonstrated,for his
Statementmetric.

Block Measurestheproportionof blocksexecutedin
a given instancemethod. As a side effect this
will alsoincorporateConditionalSelection, Con-
ditional RepetitionandFixed-LengthRepetition
sinceall the messagesin thesemetricsrequirea
block.



3 TCAT: Test Coverage Analysis
Tool for Visual Smalltalk

3.1 Design

This paper was inspired by certain perceived
limitations in Murphy’s Smalltalk test coverage
tool [Murphy 95b]. Murphy usesthe techniqueof
method wrapping whereby the original method is
moved to a new unusedselectoranda new method,
with theoriginalselector, is created.Thisnew method
performsthecoderequiredfor coverageanalysisand
thensendsa message,usingtheselectorof themoved
method,to invoke theoriginalmethod.As anexample
of this techniquethemethod

SomeClass>>aMethod: anObject
"Send some messages to <anObject>"

..... some messages here .....

wouldbe“replaced”by

SomeClass>>aMethod: anObject
"Perform method coverage logging
for SomeClass>>aMethod:"

self
log: #aMethod:
forClass: SomeClass.

"Call the original method"
ˆself real_aMethod: anObject

anda “new” methodaddedto SomeClass

SomeClass>>real_aMethod: anObject
"Send some messages to <anObject>"

..... some messages here .....

Therearesomelimitations to Murphy’s implementa-
tion (thefirst is notedby Murphy):

� binarymessages,whicharemostlyusedfor arith-
metic, cannot be wrapped due to the limita-
tions placedon the selectornameby the Small-
talk language[Goldberg 89]. A binary mes-
sageselectoris composedof one or two non-
alphanumericcharactersselectedfrom the set�
+ 	�

� - ����� =@%�&?!, � , with the added re-

strictionthatthesecondcharactercannotbeami-
nussign

�
- � ;

� after the methodsin a classhave beenwrapped
boththenew methodsaddedto performthewrap-
pingandtheoriginal,now renamed,methodswill

bevisible in a classbrowser. This makesit diffi-
cult and confusingto move amongthe original
classmethods,which have beenrenamed,in the
browser;

� to make a changeto a method that has been
wrappedwould involve finding and altering the
renamedmethod.

Theselimitations, and the desireto implementaddi-
tionalcoveragemetrics,weretheimpetusfor findinga
differentapproachto testcoverageanalysisin Small-
talk.

3.1.1 Bytecode Alteration

Initial investigationsfocusedon the alterationof the
bytecodedataproducedby theSmalltalkcompiler. It
would betheoreticallypossibleto alter, referredto as
instrumenting, this compiled code to perform addi-
tionalprocessingto generatethedatarequiredfor cov-
erageanalysis. This approachpotentially offers the
following benefitsto methodwrapping:

� the limitation of wrappingbinarymessagesdoes
notapply;

� theadditionalcodeaddedis notvisiblein method
browsers;

� noadditionalmethodsareaddedto theclass;

� potentialimprovementsin theprocessingtimere-
quiredto instrumentandremove instrumentation
from methodsas no code recompilationis re-
quiredwhich is a resourceintensive process.

Thelimitationsimposedby thisapproachare:

� primitive methodscannotbe instrumentedasno
codecanbe insertedprior to the primitive invo-
cation. This may be a limited problemasprim-
itive methodsonly appearin the Smalltalkbase
classes,whichwouldnotnormallybetestedin an
application;

� vendorand compiler versiondependence.Dif-
ferent vendorsmay representinstructionswith
different bytecodevalues and combinationsof
bytecodes. The test coveragetool would need
to bere-implementedfor eachversionof Small-
talk. Also a vendormay changethe compiler
and bytecodevalues in subsequentreleasesof
their Smalltalk implementation,againrequiring



re-implementation. This doesnot make for a
portabletool.

To understandthis approachsomeknowledge of
how the Smalltalk languageis implementedis re-
quired. While a detaileddescriptionof the imple-
mentationof Smalltalkcanbefoundin [Goldberg 89]
someof the salientpointsare includedherefor clar-
ity. Smalltalkcompilessourcemethodsto bytecodes,
eightbit numbers,which areinterpretedby thestack-
orientedSmalltalkvirtual machineat executiontime.
Theinterpreterunderstands256bytecodeinstructions,
0 to 255, that can be categorizedas pushes,stores,
sends,returnsandjumps.As morethan256bytecodes
arerequiredto translateSmalltalksource,somebyte-
codestakeextensions.An extensionis simplyanaddi-
tional one,two or morebytecodesthatfurtherspecify
the instructionand it’s parameters.In this mannera
singlevirtual machineinstructioncanrangefrom 1 to
4 bytecodes. In addition to the bytecodesthe com-
piler alsoproducesa setof objectsreferredto asthe
literal frame. The literal framecontainsany objects
thatcouldnotbereferredto directlybybytecodes.The
typesof objectsstoredin theliteral frameinclude
� global,classandpoolsharedvariables;

� literal constantssuch as numbers, characters,
strings,symbolsandarrays;

� mostmessageselectors.

Since the Smalltalk-80 language defined
in [Goldberg 89] is not an industry standarddif-
ferent vendorschooseto implementthe languagein
slightly differentways.Onenotableareaof difference
betweenSmalltalkimplementationsis thecompilation
and execution of code. Some Smalltalk vendors
includethe sourcefor the compiler in the baseclass
library. Theavailability of thecompilersourcewould
assistin the processof mappingmethodsourceto
bytecodevalues. Digitalk do not include the source
codefor the Visual Smalltalk 3.0.1 (VST) compiler.
Thismeansthatdeterminingthebytecodevaluesfor a
particularsegmentof Smalltalkcodeis doneby trial
and error. After a greatdealof experimentationthe
relationshipbetweenthe bytecodevaluesand some
simple messagesendswas determined. The author
wasableto alter a methodsbytecodesin sucha way
that an additionalmessagesendwas insertedat the
startof methodsto storetheexecutingmethod’s name
andclassnamein a globalvariable,for lateranalysis
andreporting.

In VST compiled methods are stored in
the class method dictionary as instances of
CompiledMethod . Oneof theinstancevariablesof
CompiledMethod is byteCodeArray which, as
thenameimplies,containsthebytecodevaluesfor the
methodasanarray. TheCompiledMethod classis
asubclassof Array and,in additionto normalinstance
variables,storesthemethodsliteral frameasindexed
instancevariables. The VST implementationgener-
atesthe literal frameastwo stackbasedlists growing
from oppositeendsandmeetingin thecenter. Literal
constantsand sharedvariablesare stored in parsed
sourceordergrowing downwardsfrom the top of the
array. Messageselectorsare storedin parsedorder,
growing upwardsfrom theendof theindexedinstance
variable array. An example showing the bytecodes
and literal frame for someSmalltalk sourcecan be
seenin Figure1. Bytecodesthatrefer to literal frame
valuesdo so by referenceto their relative position
in the literal frame stack. For example, in Figure 1
bytecode226 refers to first messageselectorin the
literal framewhich happensto be the last elementof
theframe.Bytecode227refersto thesecondmessage
selectorwhich is thesecondlast frameliteral, andso
on. For theconstant/variablelist 163refersto thefirst
constantelementand100 to the first sharedvariable
element.

Thedatarequiredfor methodlevel testcoveragecan
be reducedto methodnameandclassname.This re-
quirestheadditionof two elementsto theliteral frame.
Becauseof thetwo stackmechanismusedby VST and
thefixedlengthnatureof theCompiledMethod ob-
ject thestepsrequiredareasfollows:

1. Determinethe bytecodesequencefor the mes-
sagesendwe aregoingto insertinto themethod
i.e.

self
log: #methodName
forClass: self class

2. Createa new instanceof CompiledMethod of
size 2 greaterthan the original method. Copy
literal frame values from original methodand
add two new values (a symbol for #method
(changedto the methodselectorsactual value)
and an Association for the value of self
class ) at thestartor endof theconstant/shared
literal framelist.



Figure1: RelationshipbetweenSmalltalksourceandVisualSmalltalk3.0.1.compiledobjects.

3. Insert the bytecodesequencefrom the first step
aboveinto theCompiledMethod instancevari-
ablebyteCodeArray at theappropriateplace.

4. Changeall bytecodevaluesthat referenceliteral
framevaluesto referencenew positionsin thelit-
eralframesinceaddingthetwo new values.

5. Copy the original CompiledMethod instance
to a global variableandreplaceit with the new
instance.

Step4 turnedout to be the mostdifficult. Without a
definitive list of what every bytecodevaluemeansin
thecontext of its surroundingbytecodes,determining
which bytecodesneedto bealteredis difficult. After
severalattempts,we realizedthateven if we success-
fully workedout how to handleStep4 for VST 3.0.1,
we mayhave to changeour systemin orderto handle
the otherbytecodesystemsusedin Smalltalk imple-
mentationsfrom othervendorsor evennewerversions
of Digitalk Smalltalk2. Suchchangesarecomplicated
by the lack of documentationon version-dependent
bytecodes.Further, we believedthatanimprovedver-
sionof Murphy’scodeinsertionsystemwouldbesim-
pler to implementandport to variousSmalltalksys-

2Digitalk and ParcPlacerecentlymerged to form ParcPlace-
Digitalk

tems. Hence,we abandonedbytecodeinsertionand
movedon to a textual codeinsertiontechnique.

3.1.2 Code Insertion

The secondapproachproved moresuccessfuland is
usedin theimplementationof TCAT. Thebasisof this
approachis to parsethemethodsourceandinsertad-
ditionalcode.Thestepsinvolvedareasfollows:

1. Determinethe starting position in the method
sourcetext streamfor insertion. This involves
recognizingthemethodsmessagepattern,tempo-
raryvariablesandcomments.

2. Createastringrepresentingthenew testcoverage
messagesendfor thismethod.

3. Insert the new messagesendtext into a copy of
themethodsourcetext at thestartpoint.

4. Use the VST compiler interface to compile the
new methodsource,in the context of the meth-
odsclass,producinga new CompiledMethod
object.

5. Copy theoriginal CompiledMethod objectto
a global variableso that it canbe restoredafter
testinghasbeencompleted.



6. Replacethe original CompiledMethod with
thenew onein themethodsclassmethoddictio-
nary.

7. Adjust the sourcecodeinstancevariablein the
new CompiledMethod objectto referencethe
original CompiledMethod object so that the
original methodssource will be displayed in
ClassandMethodBrowsers.

This approachprovidesMethodlevel coverageasde-
fined in Section2.2. To implement the additional
Block level coverageinvolvessomemorecomplicated
parsingandthe insertionof additionalmessagesends
following thestartof eachblock. For Block coverage
anadditionalparameter, beingtheblocknumberin the
method,isalsorecordedatexecutiontime.Thisallows
the identificationof which block in a methodwasex-
ecutedandthe numberof times. With this technique
themethod

SomeClass>>aMethod: anObject
"Send some messages to <anObject>"

self firstMessage: anObject.
anObject isNil

ifTrue: [ self output: anObject ]

becomes

SomeClass>>aMethod: anObject
"Send some messages to <anObject>"

TCMonitor logEvent: #aMethod:
in: SomeClass.

self firstMessage: anObject.
anObject isNil

ifTrue: [ TCMonitor logBlockEvent: 1
for: #aMethod
in: SomeClass.
self output: anObject ]

3.2 Implementation

TCAT, implementedin Visual Smalltalk 3.0.1. for
Windows,consistsof fiveclasses:

TCMonitior Thisclasshandlesthecreationof instru-
mentedmethods,performsthe monitoring,data
gatheringand metric reportingtasksfor TCAT.
It consistssolely of classmethods,no instance
methods.Subclassedfrom Object .

TCInstrumentedMethod This class performs the
tasks of creating an instrumentedmethod for
TCMonitor . The class is subclassedfrom
Object .

TCViewer This classformsthemainvisualinterface
to TCAT. It allows for theselectionof classesto
beinstrumented,thedisplayof thecoveragemet-
rics, launchingthe TCAT Browserandrestoring
the original uninstrumentedmethods. It is sub-
classedfrom ViewManager .

TCBrowser This classis usedfor browsing the in-
strumentedclassesand is subclassedfrom the
ClassHierarchyB ro wser . In addition to
showing methodsourceit also shows the num-
ber of times methodsand blocks in methods
have beenexecuted.TCBrowser alsoperforms
“on-the-fly” instrumentationof new andchanged
methods.

TCStack This is a “support” classsubclassedfrom
OrderedCollecti on. Thisclassimplements
a simple stackdatastructure. Instancesof this
classare usedby TCInstrumented Metho d
in theparsingof sourcecode.

To prevent problemscausedby instrumentinga class
morethanonceandtheneedfor theinsertedmessage
sendto storedatain a globalvariable,themonitoring
anddatagatheringfunctionof TCAT is achievedwith
classmethodsnot instancemethods.This meansthat
onlyonemonitoringfunctionisactivein theimageand
canbeaccessedfrom any methodin any class.

3.2.1 Using TCAT

Using TCAT is done by firstly starting the TCAT
Viewer, TCViewer , with an optional collection of
classesto be instrumented. The viewer openswith
a hierarchicallist of all classesin the top left-hand
“source”paneanda list of classesto be,or being,in-
strumentedin thetopright-hand“instrumenting”pane.
TCViewer canbestartedin threeways,for example

TCViewer open.
or

TCViewer openOn:
#( TestCoverageTests

TestCoverageTests2 ).
or

TCViewer openOn: #( ’TestCoverageT*’ ).

The first example opens TCViewer with
no entries in the instrumenting list, shown



Figure2: TCAT Viewer interface.

in Figure 2. The second opens TCViewer
with the classes TestCoverageTes ts and
TestCoverageTes ts 2 in the instrumentinglist,
asin Figure3. The third exampleopensTCViewer
with all classeswhosenamestartswith thecharacters
TestCoverageT . The third form is very useful if
a commonnamingconvention hasbeenusedfor the
classesin the applicationbeing tested. Which ever
methodof startingTCViewer is usedclassescanbe
addedto theinstrumentinglist from thesourcelist by
selectingwith the pointerand choosingthe Add ���
button. Similarly, classescan be removed from the
instrumentinglist by selectingthemandchoosingthe
��� Remove button.

Whentheclassesto bemonitoredhavebeenchosen
selectingtheInstrument buttonwill starttheprocess
of methodinstrumentation.As eachclassis instru-
mentedit’snameappearsbelow thesourcelist andthe
sliding scaleindicatorshows what percentageof the
chosenclasseshave beencompleted.If amethodcan-
not beinstrumentedit’s nameappearsin thescrolling
window at thebottomof thewindow. This couldhap-
penif themethodhasnosourcecodeavailableor it is a
primitivemethod.An exampleof this is shown in Fig-
ure3. At thisstagethechosenclassesareinstrumented
andreadyfor testing.After testinghasbeencompleted
selectingtheMetrics buttonwill displayMethodcov-

erageandBlock coveragemetricsfor the classesand
anoverall MethodcoverageandBlock coveragemet-
ric for all the classes.This canbe seenin Figure4.
Themetricinformationis shown by class,in alphabet-
ical classnameorder, andtotal for all classes.There
arefour figuresshown in themetricdata,eachprefixed
by a indicatorcharacter:

B This value shows the Block coveragemetric. It
consistsof aproportion,thenumberof Blocksen-
teredandthetotal numberof Blocksin theclass.
A summaryfor all classesis alsogiven.

C This value only appearsin the “Total Coverage”
line. It’s valueis thenumberof classesthatwere
instrumentedfor testcoverage.

M This valueshows theMethodcoveragemetric. It
consistsof a proportion,thenumberof Methods
enteredand the total numberof Methodsin the
classexcludingany Primitive Methods. A sum-
maryfor all classesis alsogiven.

P Thisvalueindicatesthenumberof PrimitiveMeth-
odsin theclassandis excludedif thenumberis
zero.A summaryfor all classesis alsogiven.

Additional coveragedatais providedwhentheTCAT
Browseris used.To usthisBrowserselecttheBrowse



Figure3: TCAT Viewershowing instrumentedclasses.

Figure4: TCATViewerwith metricdata.



button. This will opena Browsersimilar to thefamil-
iar ClassHierarchybrowser. The top left panelists
theclassesthatarebeingmonitoredfor testcoverage.
Thetopcenterpaneallows theselectionof “Covered”
or “Not Covered”methodsvia a pair of radiobuttons.
Below the buttonsis a list of blocks in the currently
selectedmethod. The top right panelists the meth-
odsin theselectedclass.Thebottompaneshows the
sourcefor aselectedmethod.Thedifferencesbetween
the TCAT Browserandthe standardClassHierarchy
Browser(CHB) are

� anumberdenotingthenumberof timesamethod
hasbeenexecutedappearsafterthemethodname
in the methodlist pane. When “Not Covered”
methodsareviewedthisnumberis removedsince
it is zero;

� theblock list paneshows a pair of numbers,the
first representstheblock numberandthesecond
is the numberof timesthat block hasbeenexe-
cuted. For the “Not Covered” list the execution
numberis always zero. For easeof reference
blocksare numberedsequentiallyfrom 1 based
on theorderthatthey appearin themethod;

� selectinga block in the block list causesthe
sourcecodefor thatblockto behighlightedin the
sourcepane;

� variouspanepop-upmenuoptionshave beenre-
moved;

� methodscan be edited,deletedand new meth-
ods addedas with a standardCHB. The TCAT
Browserwill instrumentany methodswhich are
addedor changed.

To endthe testcoverageprocessthe userselectsthe
Clean Up button on the TCAT Viewer or closesthe
viewerwindow. Thesetwo actionsrestoretheoriginal
uninstrumentedmethods.

4 Limitations of TCAT

Noneof the threelimitations detailedearlier in Mur-
phy’s methodwrapping technique(Section3.1) ap-
ply to the code insertion techniqueused in TCAT.
While theprimitive methodlimitation (Section3.1.1)
for bytecodealterationis presentin TCAT, theporta-
bility issueof theformertechniqueis not.

A subtledrawbackwith the textual codeinsertion
methodusedin TCAT is thatwhile it canlog theentry
into amethod,it cannotreporttheexit from amethod.
Considerthefollowing codewith theloggingcodein-
serted.

File>>emptyFile: aString
| aStream |
self log: #emptyFile:

pos: 0 class: File class.
aStream := self pathName: aString.
ˆ( size := aStream size.

size = 0
ifTrue: [ self log: #emptyFile:

pos: 1
class: File class.

self remove: aString ].
aStream close; release.
size = 0 )

While we cantell whenthemethodor its oneblock is
entered,wedonotknow whathappensafterentry. For
example,supposethelog reads:

File>>emptyFile: 0
File>>pathName: 0
Stream>>size 0
File>>emptyFile: 1
File>>remove: 0
Stream>>close 0
...

Using this log, we cannot tell if
File>>emptyFile : or File>>remove:
called Stream>>close . Hence, while we can
say which methodswere exercised,we cannot say
in which order they were executed. Hence,TCAT
cannotgeneratea call-graph representingthepatterns
of methodcalls. This is unfortunatesince,if it could,
thenTCAT couldhave (e.g.) checked if thestaticcall
graphsgeneratedfor Smalltalk systemsby Haynes
andMenzies[Menzies96a] representedtrue runtime
behavior.

To obtain the datafor call-graphanalysisrequires
the knowledge not only of method/blockentry, but
alsoof whena method/blockwasexited. Supposethe
above log read:

ENTER File>>emptyFile: 0
ENTER File>>emptyFile: 1
LEAVE File>>emptyFile: 1
ENTER File>>remove: 0
LEAVE File>>remove: 0
ENTER Stream>>close 0
...



Figure5: TCAT Browsershowing Block metrics.

then there would no confusion about the order of
methodexecution. Sadly, to log the LEAVE events,
additionallog codewould have to be insertedat the
end of blocks and methods. It is unclear how to
do this without changingthe return value of some
methods. For example, in the implementationof
File>>emptyFile : , if we placetheLEAVEmon-
itor just beforethe bracket on the last line, then the
methodwill not returna Boolean.If we placeit after
the last bracket, thenwe would get a compilererror.
A generalLEAVE logging mechanismwould have to
find thelastreturnedvalue,cacheit, addaLEAVElog
memo,thenreturnthecachedvalue.We attemptedto
sketchouthow thismightbedonebut foundthatthere
weretoomany specialcasesto consider.

5 Conclusion

We have discussedsource code coverage tools in
Smalltalk. We have cautionedthat on theoretical
andpragmaticgrounds,100%coverageshouldnot be
aimedfor. However, our experiencesuggeststhat a
majoritycoverageis a reasonablegoal.

Threetechniquesfor sourcecodecoveragetools in
Smalltalkhave beendescribed:

� themethodwrappingtechnique,asusedby Mur-

phy, whichwesoughtto improve;

� the bytecodeinsertionsystem,which we aban-
donedsinceit wasdependenton version-specific
bytecodedetails;

� TCAT: ourcodeinsertionsystem,whichcangen-
eratesourcecodecoveringinformationbut which
cannotbeusedfor discoveringpatternsof method
callssinceit cannotimplementLEAVElogging.

In orderto extendTCAT, we needLEAVElogging.
A generalLEAVE logging systemwould requireac-
cessto the parsetree of the methodsinvolved. We
choosenot to explore this optionssincemany Small-
talk systems(e.g.VST) donotsupplysourcecodefor
their compilers.Hence,weconcludethat:

� codeinsertiontechniques,asusedin TCAT, can
beusedto build usefulcodecoveragetools.Note
that monitoring and instrumentingfunctionsof
TCAT area mere600lineslong, includingcom-
ments;

� LEAVE logging requires more powerful, but
morecomplicated,parser-basedsystems.

The Smalltalk classes for TCAT can be ob-
tained from http://www.cse. unsw.e du.au /
� timm/pub/lang/s mall ta lk/ tc at .



6 Acknowledgements

Philip Haynes,from ObjectOrientedPty. Ltd., was
our patientguideto the internalsof theSmalltalkvir-
tualmachine.

References

[Fenton95] Fenton, Norman, Whitty, Robin, &
Iizuka, Yoshinori (eds). 1995. Soft-
ware Quality Assurance and Measure-
ment: A Worldwide Perspective. Interna-
tionalThomsonComputerPress.

[Fenton91] Fenton,NormanE. 1991. Software Met-
rics: A rigorous approach. Chapman&
Hall.

[Goldberg 89] Goldberg, Adele, & Robson,David.
1989.Smalltalk-80:TheLanguage. 2 edn.
AddisonWesley.

[Menzies96a] Menzies,Tim, & Haynes,Philip. 1996
(Jan.). Empirical Observationsof Class-
levelEncapsulationandInheritance. Tech.
rept. Departmentof Software Develop-
ment,MonashUniversity, Caulfield,Mel-
bourneVIC 3185,Australia.

[Menzies96b] Menzies,T.J.1996.OnthePracticality
of Abductive Validation. In: ECAI ’96.

[Murphy 95a] Murphy, G.C., Notkin, D., & Lan,
E.S.C.1995. An Empirical Studyof Static
Call GraphExtractors. Tech.rept.TR95-
8-01.Departmentof ComputerScience&
Engineering,Universityof Washington.

[Murphy 95b] Murphy, MarkL. 1995.Coverageanal-
ysis in Smalltalk. The SmalltalkReport,
Oct.,4–8.

[Whitty 96a] Whitty, Robin.1996a. Object-oriented
metrics: A statusreport. Object Expert,
Jan.,35–40.

[Whitty 96b] Whitty, Robin. 1996b (June).
Object-Oriented Metrics: an Ano-
tated Bibliography. Available from
South Bank University web site at
http://www.sbu.a c. uk / � css e
/publications/OO Metr ic s.h tml .

[Yates95] Yates,Barbara.1995. TestingSmalltalk
Applications:workshopreport.In: Adden-
dumto theOOPSLAProceedings.

[Zlatereva 92] Zlatereva,N. 1992.TruthMaintenance
SystemsandTheir Applicationfor Verify-
ing ExpertSystemKnowledgeBases.Ar-
tificial IntelligenceReview, 6.


