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Abstract— We are used to viewing verification and
validation as tasks to be performed after a knowledge-
base is built. In this standard view, the inference en-
gine is built first, the knowledge base is then filled out,
then finally a test engine is added to verify or validate
the knowledge. Here, we reverse this order. First, we
define a general test engine. Then, we argue that this
“test” engine is also a general inference engine. That
is, an architecture supporting a generalised test engine
subsumes architectures that merely support inference.

I. INTRODUCTION

The knowledge acquisition community can be di-
vided into a conventional majority and a minority
school of thought:

o In the majority school (e.g. KADS), KBS devel-
opment is a analysis intensive process (AIP); i.e.
before doing, much time is spent in thinking about
doing. Further, previous thinkings about doing can
be re-used for new designs.

o The minority situated cognition school [1-3,9,19]
argues that concepts elicited prior to direct ex-
perience are less important than functional units
developed via direct experience with the current
problem. This situated cognition school prefers a
maintenance intensive process (MIP); i.e. after a
little thinking about doing, most of the system 1is
developed via doing then fizing.

Note the importance of verification and validation in

the maintenance intensive process:

¢ In the situated cognition view, using V&V tools
drive the modeling process.

¢ Concepts that can’t be verified or validated cannot
be used. That is, limits to the V&V tools become
limits to the modeling process.

Here, we explore computational architectures for
general V&V. Fortunately, we find that a generalised
abductive validation engine (HT4) is also a framework
for handling common knowledge-level tasks; that is a
generalised test engine is also a inference engine. Ab-
duction is the search for assumptions .4 which, when
combined with some theory 7 achieves some set of
goals OUT without causing some contradiction [6].
That 1s:
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The proof trees P used to satisfy these two equa-
tions can be cached and sorted into worlds W: max-
imal consistent subsets (maximal with respect to size).
Each world condones a set of inferences. A domain-
specific BEST operator can then be used to return the
world(s) that satisfy some criteria (e.g. shortest infer-
ence paths). Our general claim is that this abductive
process describes both execution and testing.

Given that abduction can handle knowledge mod-
eling and V&V, then we can use this framework to
implement maintenance intensive processing.

Section 11 de-
scribes our HT4 [11] abductive inference engine. Sec-
tion Il argues that HT4 is a framework for validation
and verification. Section 1V argues that this frame-
work can also operationalise many of the knowledge-
level tasks seen in expert systems; i.e. prediction,

This paper is structured as follows.

classification, explanation, tutoring, qualitative reason-
ing, planning, monitoring, set-covering diagnosis, and
consistency-based diagnosis. Section V discusses re-
lated work. Portions of this paper have appeared else-
where [11,12].

II. ABDUCTION

In this section we expand on the description of ab-
duction given in the introduction using our HT4 ab-
ductive framework.

Given a set of goal OUT puts and known TN puts,
then HT4 can use (e.g.) the qualitative theory of Fig-
ure 1 to build a set of proof trees P connecting TN puts
to OUT puts. In Figure 1:

ex B y denotes that y being up or down could be
explained by x being up or down respectively

o x — y denotes that y being up or down could be
explained by x being down or up respectively.
If we assume that:
o the conjunction of an up and a down can explain a
steady;
¢ no change can be explained in terms of a steady
(i.e. a steady vertex has no children),
then we can partially evaluate Figure 1 into the and-or
graph of literals of Figure 2. This and-or graph con-
tains one vertex for each possible state of the nodes of
Figure 1 as well as and vertices which models combin-
ations of influences (for example, gDown and bDown can
lead to £Steady).
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Fig. 1. A qualitative theory.
For example, in the case where

OUT = {dUp,eUp,fDown} and ZA'={aUp,bUp}, then
all the possible proofs are:

¢ P;= aUp — xUp — yUp — dUp

¢ Py=alp — cUp — gUp — dUp

¢ Ps= alUp — cUp — gUp — eUp

¢ P,=bUp — cDown — gDown — fDown

¢ Ps=bUp — fDown
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Fig. 2. The search space tacit in Figure 1

Some of these proofs make assumptions; i.e. use a
literal that is not one of the known FACTS (typically,
FACTS = IN U OUT). Note that some of the as-
sumptions will contradict other assumptions and will
be controversial (denoted A ). For example, assuming
cDown and cUp at the same time is contradictory.

In terms of uniquely defining an assumption
space, the key controversial assumptions are those
assumptions that are not
other controversial assumptions. We
denote these base controversial assumptions Ag.
In our example, Ac-={cUp,cDown,gUp,gDown} and
Ap = {cUp, cDoun} (since Figure 1 tells us that g is
fully determined by c).

controversial depend-

ent on

If we assume cUp, then we can believe in the world
W;: containing the proofs P; Pz Pg Ps since those
proofs do not assume cUp. If we assume cDown, then
we can believe in the world Wz containing the proofs
P;: P; Ps since these proofs do not assume cDown.
These worlds are shown in Figure 3. Note that each
world is merely a subset of the edges shown in Figure 2.
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Fig. 3. Two worlds from Figure 1

The overlap of W; and OUT is {dUp,eUp, fDown}
and the overlap W» and OUT is {dUp,fDown}; i.e.
W = 3 = 100% and W' = 2 = 67%. The

maximum cover is 100%; i.e.:

o There exist a set of assumptions ({cUp}) which let
us explain all of OUT .

¢ This theory has passed abductive validation.

The complexity of the above process is a function
of when we apply the BEST inference assessment op-
erator to cull generated inferences. A wvertez-level
BEST could execute at the local-propagation level; e.g.
use the edges with the highest probability. A proof-
level BEST could execute when some proofs or partial
proofs are known; e.g. beam search. A worlds-level
could execute when the worlds are known. For ex-
ample, our abductive validation algorithm [12] returns
the world(s) with the maximum cover.

For more details on the internals of HT4, see [11].

ITI. ABDUCTION AS A TEST ENGINE
A. Validation

KBS wvalidation tests a theory’s validity against ex-
ternal semantic criteria. Given a library of known
behaviours (i.e. a set of pairs < ZN,OUT >), ab-
ductive validation uses a BEST that favors the worlds
with largest number of covered outputs (i.e. maximise
IN N W) [12].

Note that this process can be summarised as: “can a
theory of X explain known behaviour of X?7”. We have
argued elsewhere [10] that this is the non-naive imple-
mentation of KBS validation since it handles certain
interesting cases:

o If a theory is globally inconsistent, but contains
local portions that are consistent and useful for ex-
plaining some behaviour, HT4 will find those por-
tions.

¢ In the situation where no current theory explains
all known behaviour, competing theories can be
assessed by the extent to which they cover known
behaviour. Theory X is definitely better than the-
ory Yif theory X explains far more behaviour than
theory Y.

Elsewhere, we have shown examples where this
framework has faulted theories published in the inter-
national peer-reviewed literature. Interesting, we have
found these faults using the data published to support
those theories [12].

B. Verification

KBS verification tests a theory’s validity against in-
ternal syntactic criteria [15]. HT4 could be used for
numerous KBS verification tests. For example:

o Circularities could be detected by computing the
transitive closure of the and-or graph. If a vertex
can be found in its own transitive closure, then it
is in a loop.

o Ambivalence (ak.a. inconsistency) could be re-
ported if more than one world can be generated.
That is, given a set of ZN puts, mutually exclusive
conclusions can be made.

o Un-usable rules could be detected if the edges
from the same S, statement in the knowledge base
touch vertices that are incompatible (defined by
7).

IV. ABDUCTION AS A INFERENCE ENGINE

A. Prediction

Prediction 1s the process of seeing what will fol-
low from some events ZN. We can find all the



non-input  vertices reachable from ZA by making
OUT C V — IN. A efficient case for pre-
diction is when ZA is smaller than all the roots of
the graph and some interesting subset of the vertices
have been identified as possible reportable outputs (i.e.

OUT C V — IN).

B. Classification

Classificationis just a special case of prediction with
the interesting subset set to the vertices representing
the possible classifications. The and-or graph of a
classification theory would include edges (i) from class
attributes to the proposition that some class is true;
and (ii) from sub-classes to super-classes (e.g. if emu
then bird). BEST crassirrcarron could favors the
worlds that include the most-specific classes [14] (e.g.
emu is better than bird).

C. FEzplanation and Tutoring

If we have a profile of our users comprising vertices
familiar to the user and the edges representing pro-
cesses that the user is aware of, then we can build an ez-
planation and tutoring system. BEST ExXPLANATION
could favors the worlds with the largest intersection to
this user profile. That is, we return the world(s) that
the user is most likely to understand. We base this
explanation proposal on analogous work by Paris [13].

Further, suppose we can assess that the BEST ex-
plainable world was somehow sub-optimum. We could
then make a entry is some log of teaching goals that
we need to educate our user about the edges which are
not in their BEST explainable world but are in other,
more optimum, worlds.

D. Qualitative Reasoning

HT4 was developed from a qualitative reasoning al-
gorithm for neuroendocrinology [7]. A fundamental
property of such systems is their indeterminacy which
generate alternative values for variables. These altern-
atives and their consequences must be considered sep-
arately. Abduction can maintain these alternatives in

separate worlds.

E. Planning

Planning is the search for a set of operators that
convert some current state into a goal state. Given
a set of operators, we could partially evaluate them
into the dependency graph they propose between lit-
erals. BEST pr.anning could favor the world(s) with
the least cost (the cost of a world is the maximum cost
of the proofs in that world). If we augment each edge
with the identifier of the operator(s) that generated it,
then we could report HT4’s BEST worlds as the union
of the operators that generated the BEST worlds.

F. Monitoring

Once generated, the BEST planning worlds could
be passed to a monitoring system. As new information
comes to light, some of these assumptions made by
our planner will prove to be invalid. Hence, some of
our worlds (a.k.a. plans) will also be invalid. The
remaining plans represent the space of possible ways
to achieve the desired goals in the current situation.

G. Diagnosis

Parsimonious set-covering diagnosis [16] uses a
BEST that favors worlds that explain the most things,
with the smallest number of diseases (i.e. maximise
W, N OUT and minimise W, N IN).

The opposite of set-covering diagnosis is consistency-
based diagnosis [4,17] where all worlds consistent with
the current observations are generated. Computation-
ally, this is equivalent to the prediction process de-
scribed above, with OUT =V — IN.

In Reiter’s variant on consistency-based dia-
gnosis [17], all predicates relating to the behaviour of
a theory component V. assume a test that V; in not
acting ABnormally; i.e. “AB(V:). BEST reITER is
to favour the worlds that contain the least number of
A B assumptions.

H. Probing

A related task to diagnosis is probing. When explor-
ing different diagnosis, an intelligent selection of tests
(probes) can maximise the information gain while re-
ducing the testing cost [5]. In HT4, we would know to
favor probes of Ap over probes of A¢c over probes of
non-controversial assumptions.

V. RELATED WORK

We are not the first to argue that non-monotonic
techniques are useful for KBS validation. For example,
Ginsberg [8] and Zlatereva [22] automatically build test
suites that exercise the entire KBS from a TMS-style
analysis of the dependency graph between KB liter-
als. Our contribution here is to demonstrate that non-
monotonic architectures are useful for much more than
just validation. DeKleer’s ATMS system made a sim-
ilar claim in the 1980s.

Generic design principles for expert system design
are proposed by the KADS community (e.g. [20,21].
In the KADS approach, a library of abstract interpret-
ation models for common KBS tasks such as classi-
fication and diagnosis are used to guide KBS design.
Workers in that field have noted non-trivial similar-
ities between the different interpretation models. For
example, Tansley & Hayball [20] note that that schedul-
ing, planning, and configuration are actually the same
problem, divided on two dimensions (”goal states
known or not” and ””temporal factors considered or
not”). Also, Wielinga ef. al. [21] acknowledge cer-
tain similarities between the inference procedures such
as diagnosis and monitoring. However, having noted
some low-level similarities between the interpretation
models that they have proposed, KADS researchers do
not take the next step and simplify their distinctions
according to these observed similarities.

We view the state space traversal of SOAR [18] as
a directed and-or graph which can be extended at
runtime. While an HT4 vertex contains a single literal,
the vertices of the SOAR state space contain conjunc-
tions of literals. We prefer HT4 approach over SOAR
for two reasons. HT4 knowledge bases can be valid-
ated without additional architecture. In other expert
systems approaches (e.g. SOAR), validation requires
additional architecture. Also, HT4 is a less complic-

ated architecture than SOAR. SOAR is built on top of



if day = tuesday and weather = fine and
wind = high
then wash

if weather = raining and football = on
then watchTV

% Can’t wash and watch TV at the same time.
i(wash,watchTV).

Fig. 4. Tuesday can be washing day or football day, but not
both.
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Fig. 5. And-or graph for Tuesday, washing, and football. Note
the added modus tollens links.

an intricate forward-chaining rule-based system. HT4
uses a simpler graph-theoretic approach.

VI. DISCUSSION

Our example here was based on qualitative reason-
ing. However, note that the internal data structure of
HT4 (recall Figure 1) is an and-or graph of literals.
HT4-style abduction executes over any theory that can
be reduced to such a and-or graph of literals. Many
representations can be mapped into this form. Our
example above was from qualitative theories but the
technique could be applied to other representations.
For example, the rules of Figure 4 can be converted
into the and-or graph of Figure 5.

Similar and-or graphs can be generated from frame-
based systems. For example, Figure 7 shows the and-or
graph tacit in the frame-based theory of Figure 6; That
is given a super-class, we can infer down to some sub-
class if we can demonstrate that the extra-properties
required for the sub-class are also believable.

More generally, any first-order theory that can be
unfolded in a finite number of steps to a ground theory
can be processed in this framework.

VII. CoONCLUSION

The distinction between the test engine and the in-
ference engine is unnecessary. We find that numer-
ous, seemingly different, knowledge-level tasks can be
mapped into a single abductive inference procedure.
Also, we find that abduction can be used for KBS val-
idation and verification. If we implement expert sys-

frame(bird, [diet = worms,
big-limbs = 2,
motion = flies,
home = nest]).

% An emu is a bird that does not fly and
Y% lives in australia

frame (emu, [isa = bird,
habitat = australia,
motion = walks]).

Fig. 6. Things that fly and walk.

diet = worms &012 = partial

big-limbs =2
bird

—_
&013% partlal>

motion = walks—= & 011 = partiad—= emu
habitat = australia

motion = fli
home = nest

Fig. 7. Things that fly and walk: and-or graph. For the sake
of simplicity, modus tollens links not shown.

tems as abduction, then we can execute and evaluate
our knowledge bases within the same framework. This
is a very important conclusion for advocates of situ-
ated cognition (like ourselves) since we can use design
concepts evolved for analysis intensive processing (e.g.
knowledge level modeling) for mainteance intensive
processing.
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