Empirical Observations of

Class-level Encapsulation and Inheritance

Tim Menzies *

Philip Haynes T

January 14, 1996

Abstract

0O design theory promises numerous benefits from
the use of inheritance and the information hiding
properties of encapsulated classes. Such promises
are commonly used to justify the switch to the
OO paradigm from (e.g.) functional decomposi-
tion languages like C. In this paper, we audit these
claims via an analysis of 2000 Smalltalk classes in 5
applications. We will find that, on average, applic-
ations use low levels of inheritance and information
hiding at the class and class hierarchy level.
KEYWORDS: Smalltalk, encapsulation, inherit-
ance, empirical studies.

CATEGORY: Research.

TOPIC AREA: Object testing and metrics.

1 Introduction

This paper argues that object-oriented applica-
tions do not make extensive use of inheritance, en-
capsulation and information hiding at the class and
class hierarchy level. This is a surprising observa-
tion. OO design theorists (e.g. [3, 18]) promises
numerous benefits from the use of inheritance and
the information hiding properties of encapsulated
classes (e.g. reduced error rates [12]). Such prom-
ises are commonly used to justify the switch to the
OO paradigm from (e.g.) functional decomposi-
tion languages like C.

There are several consequences of this paper.
OO designers seek to divide up applications into
modules in order to sub-divide the tasks of design,
coding and testing. Our results suggest that
classes and class hierarchies are not the best units
In Section 7 we speculate that use
cases or OO design patterns may be a better unit

of division.

*Dept. of Software Development, Monash University,
Caulfield, Melbourne, VIC., Australia, 3185; +61-3-9903-
1022; timm@insect .sd .monash.edu.au

tOO Pty. Ltd., P.O. Box 1826, Nth. Sydney, NSW,
+61-2-957-1092; p.haynes@oose.com. au

of division. More generally, we suggest that how
we actually use OO languages is different to how
OO design theorists tell us we should use OO lan-
guages. We echo a call by Fenton et. al. [4], for
more empirical studies to produce an accurate pic-
ture of the practice of OO programming.

We will argue as follows. Section 2 describes in
approximate terms how we will measure informa-
tion hiding using call graphs. Section 3 describes
certain low-level details of call graphs. This will
lead to a more precise assessment criteria (see
Section 3.5).
that can implement our assessment criteria. This
parser is used in section 4.1 to analyses 194,451
method calls between 1,643 Smalltalk classes from
5 applications. We find that, on average, classes
make as much use of services defined in other
classes as they do in their own hierarchy. In Sec-
tion 5 we find that average number of message
sends per class is rather small. The picture that we
will paint is of lots of small classes talking as much
to their distant neighbors as to themselves. As a
side-effect of the information hiding study, we also
have evidence relating to the relative use of inher-

Section 4 describes a simple parser

itance. Section 6 reports that a surprisingly low-
level of inheritance was seen in the studied systems.
See Section 7 for a discussion of related work.

2 Assessing Information Hid-
ing and Inheritance

Traditional object-oriented (OO) design theory
states that an OO program is a set of classes in
a hierarchy. Sub-classes refine the services inher-
ited from their parent classes. In the standard
view, which we do not agree with, each class is
an independent encapsulated entity which hides its
internal details from external clients. Application
developers, it is claimed, can ignore the internal
structure of a class. That is, classes are encapsu-
lated independent computational units which hide

their internal structure (termed information hid-
ing).

According to the standard view, there are many
potential benefits of inheritance and encapsulation.
Inheritance can be used to simplify the construc-
Encapsulation could encour-

Well-design modules could
be re-usable in multiple applications. Encapsu-
lated modules could be understood and modified
in isolation to the rest of the system, thus sim-
plifying software maintenance. Errors in a well-
encapsulated system should not propagate outside
of encapsulation boundaries.

tion of new class.
age modular design.

We will assess these claims using calls graphs. A
call graph is a directed graph whose vertices rep-
resent basic data values and whose edges repres-
ent how those basic data values are passed to sub-
routines. For OO systems, a call graph vertex is
a class. Each method of a class contains calls to
methods defined in some other class. A call graph
edge is added for each such call and reference.

If class encapsulation really promotes inform-
ation hiding, then we should see some evidence
of this in call graphs. More precisely, we should
see relatively dense call graphs within classes or
class hierarchy boundaries and relatively sparse
call graphs between classes and class hierarchies.
Further, once these call graphs are generated, they
can also be used to assess levels of inheritance use.

We operationalise our test for information hiding
in Section 3.5 after reviewing the low-level details
of call graphs.

3 Call Graphs: The Details

For a detailed picture of the patterns of calls in
an OO system we can look at call-graph between
all methods MJ’ defined in a class C* which call
some other class X. Consider Figure 1. The
classes {OBJECT, SEQUENCE, L1sT, STACKMACHINE,
DEBUGGER} call the methods {do:, reject:,
do:, debug, executeMachineCode}.

These calls can categorised as either message
sends or message receives (see Sections 3.1 & 3.2).
Apart from message sends and receives, classes can
also access their own instance variables I, inher-
ited instance variables A,, or external variables in
other hierarchies E,. In some sense, such refer-
ences are “calls” to a class. However, we argue be-
low in Section 3.4 that for the purposes of assessing
information hiding, the I,,, £, , A, references can be
ignored.

1
|
’\ Sequence

Debugger
4 .
reject: debug
Am | |
4 reject: /:\ .
PRGN !
List & N !
N
Fdo: Ny
do: o I |
N~ _I_T7: / / | |
Z:l S - / | |
) debug . /p !
StackM achine E, - S m
exceptionHandler - -7 o /dor v
execut eMachi ne- 4,/':/,,/’
Code — - Lm

execut eMachi neCode

Figure 1: Message sends

3.1 Four Types of Message Sends

I, (internal method call): A method uses a method
defined in its own class. For example, in Figure 1,
a method in class LisT is sending the message do:
to itself.

Apm (ancestor method call): A method uses a
method defined in one of its super-classes. For ex-
ample, in Figure 1, a method in class L1sT is send-
ing the message reject: to itself. However, since
this method is not defined in LisT, the message
send ascends the hierarchy.

E., (external method call): i.e. a method uses a
method defined in another hierarchy. For example,
in Figure 1, a method in class STACKMACHINE is
sending the message debug: to it’s instance vari-
able exceptionHandler which is an instance of the
class DEBUGGER. This message therefore travels to
another hierarchy. Note that in languages where
all classes have a common root (e.g. the OBJECT
class in Smalltalk), hierarchies are defined to start
one level down from the common root. Figure 1
therefore shows two hierarchies: one of SEQUENCE
and one for DEBUGGER.

Cyn (child method calls): A method calls a
method defined in one of its sub-classes.
ample, in Figure 1, suppose the SEQUENCE reject:
method recursively iterates over all its contained
variables using the do: method. In that case, SE-
QUENCE could be sending do: to an instance of its
own subclass.

For ex-

3.2 Two Types of Message Receives

Lm: A message is received that has a method
name which is defined Locally in this class; i.e.
the message is handled in this class. For ex-
ample, in Figure 1, when DEBUGGER sends the mes-
sage executeMachineCode: to STACKMACHINE,
this message is caught and processed by the
executeMachineCode: method defined in STack-
M ACHINE.

Pp: A message is received that has a method
name which is not defined locally. Such messages
are searched for in the Parent of this class. For
example, in Figure 1, STACKMACHINE inherits do:
from List. When DEBUGGER sends the message
do: to STACKMACHINE, this message ascends the
hierarchy.

3.3 Testing Information Hiding with
Call Graphs

We would infer that information hiding is likely in
applications with:

(Em+Ey) < (Im+ 1, +An + Ay +Cy) (1)

It could be argued that P, and L,, should fea-
ture in Equation 1. We will argue below that this
is not necessary (see Section 3.4.1).

3.4 Simplifications

It is a non-trivial problem to correctly character-
ise all method sends and receives into internal, an-
cestor, external, etc. For example, the source code
of many OO languages may provide syntactic hints
as to references to local or inherited instance vari-
ables. However, the situation is much more com-
plicated when we consider references to instance
variables in other hierarchies. If we could recognise
get methods, then we could distinguish external
method calls into (i) “real” method calls and (ii)
“get” calls. However, in certain OO languages (e.g.
Smalltalk) it is hard to automatically recognise a
get method. A common construct is to extend a
get method such that if a variable is not found, it
is initialised. Is this still a get method? Or is it a
“real” method call?

More generally, generating the correct call graph
from OO source code is an unsolved problem.
Murphy et. al. caution that in languages that
support pointer to arbitrary constructs, then the
problem is fundamentally intractable [14]. Differ-
ent call graph generators tame this computational
problem via a variety of heuristic design decisions.

These heuristics alter the call graphs generated.
For example, Murphy et. al. report significant
differences in the graphs produced by different call
graph generators [14].

Fortunately, for the purposes of assessing in-
formation hiding, two simplification studies (see
Sections 3.4.1 & 3.4.2),

), suggests we can ignore
many of the distinctions of Sections 3.1 & 3.2.

3.4.1 Simplification Study #1

A random selection of 29 classes from a Small-
talk application (see APP, in Section 4.1) were
randomly chosen using a spreadsheet’s random
number generator. Classes which were excessively
large (< 300 message sends), or those which had
no source code were rejected from the study. The
remaining 26 classes had 386 methods. Each mes-
sage was manually inspected to see what messages
it sent. Each message send was manually categor-
ised into (i) a call back to this class or its parents
(i.e. Pm + Lm); (ii) a call down the hierarchy (i.e.
a Cy, reference) and (iii) a call to other hierarchies
(i.e. Em). Three observations were made:

e When messages arrive at an object, only 20%
of them ascend the class hierarchy. That is
80% of messages are handled by the object
that receives them. We will return to this ob-
servation later (see Section 6).

e No (), references were found;i.e. C,, ~ 0.

e The ratio of the (P, + L) to Ey, concurs with
known ratios of (A, + I,) to E,, found in a
study of 1,643 classes by the Haynes parser
(see Section 4.1). Therefore, for the purposes
of assessing information hiding, we can use
A, Im and E,, rather than P,,, L,, and F,,.

3.4.2 Simplification Study #2

Elsewhere [7], we have assessed the importance of
adding in references to local, inherited, and ex-
ternal instance variables (denoted I, A,, F, re-
spectively). In one variant of the Haynes parser,
I, and A, counts were added to the I,,, and A,,
counts. This variant was compared to another ver-
sion of the parser which ignored the I, and A
counts. The resulting numbers only differed in the
second decimal place. Hence, we argue that we can
ignore the variable references.

3.5 A Simpler Test for Information
Hiding

The simplification studies suggest that, for our pur-

poses, the values of Fy, I,,, Ay, Cp, are superfluous.

Our test for information hiding (Equation 1) there-
fore reduces to:

Fm < I + Am (2)

For the purposes of comparison, I, A, and
FEn, are normalised by expressing them as ra-
tios of the total number of calls. Once normal-
ised: Iy + Am + Em = 1. Suppose an applica-
tion APP, contains N classes. For each class
C% € APP,, we can compute < iy, €y, dy >.
Once this is known, we can compute the mean
< #,¢',a’ >, standard deviation < iy, e, a, >
and standard error of the mean < is, €5, a5 > L for

APP,.

4 The Haynes Parser

While sophisticated schemes exist for detailed type
inferencing (e.g. [1, 2, 6, 15]) we have found
that, for generating ratios of I, to Am to Em,
a simple “brute-force” approach suffices. The
Haynes parser [8] first collects lists of method
names that are only defined in one class. Such
unique names can be used to quickly determine
the class type X which is sent a message from a
method. Our experience with Smalltalk code sug-
gests that 40% of the method references can be
resolved at this point.

Next, the program parses for the special special
Smalltalk variables self and superin order to detect
calls back into the current hierarchy. This step
resolves a further 30% of the method references.

Next, the parser uses a hand-built library of
commonly-used method names to resolve certain
common calls 2. This step resolved a further 10 to
20% of the message sends.

Lastly, the parser assigns the class type X for
any remaining unresolved calls heuristically using
the distributions computed from the above tech-
niques. Experimentally, we cannot detect any stat-
istical differences between such automatically gen-
erated call graphs and call graphs built manually
by programmers reading the code [8].

1 _ _u
Recall that o = I
2For example, any call to * is taken to be a call to the
most general numeric class NUMBER; all calls to conditions
(e.g. ifTrue:, ifFalse: are taken to be a call to the most

general conditional class BOOLEAN.

4.1 Analysis of Five Smalltalk Ap-
plications

Figure 2 shows the ratios of calls in different dir-
ections for 1,643 classes and 194,451 method calls
generated from five applications using a Haynes
parser that ignores variable references. The ap-
plications were:

o APP;: FinApp is an anonymous comimercial
applications for the financial market.

o APP.: Envyis a source code control system
from Object Technology International.

o APP,: VisualAge is a general visual develop-
ment tool with built-in database hooks from
IBM. VisualAge is built on top of IBM Small-
talk.

o APP;: IBM Smalltalk.
o APP,,:

Haynes parser.

Metric 1s the source code of the

The standard deviations shown in Figure 2 are
very large. However, the sample sizes are large
enough for the numbers to still be meaningful. Ap-
plying a two-tailed t-test, we explored the null
hypothesis that APP,.x’ = APPg.2' for a,f €
{f’e”u’i’m} and ml E {i’e)p}'
ject the null hypothesis that any of #’, ¢/, p’ was the
same for two applications, then we rejected the hy-
pothesis that the mean standard deviation of the
two applications was the same. In all cases, we
could reject the null hypothesis at the 0.05 level of
significance.

Figure 2 tells us that the mean values for
I, B, Ay are 0.38, 0.5, and 0.12 respectively.
Applying Equation 2, this experiment does not
confirm that encapsulation is likely in the studied
applications (since En, = (I, + Am)). On the con-
trary, it suggest that inter-hierarchy behaviour in
the surveyed systems is just as common as intra-
hierarchy behaviour.

If we could re-

5 Effective Class Size

The Haynes parser also lets us find the average size
of a class. We define the size of a class to be the
sum of the message sends of its own methods. We
prefer message sends to lines of code since we have
found that there is less variance in the correlation
between effort and size using message sends as a
measure of software size than lines of code [9]. Met-
rics based on message sends are more uniform over

APP N i iy lo e’ €u €o a’ a, Uo
f:FinApp 313 0.44 0.29 | 0.02 0.47 0.26 | 0.01 0.09 0.10 | 0.01
e:Envy 123 0.28 0.18 | 0.02 0.57 0.22 | 0.02 0.16 0.16 | 0.01
v:VisualAge 527 0.31 0.18 | 0.01 0.49 0.19 | 0.01 0.20 0.13 | 0.01
1:IBM 666 0.56 0.36 | 0.01 0.37 0.33 | 0.01 0.07 0.12 | 0.00
Smalltalk
m:Metric 14 0.31 0.26 | 0.07 0.60 0.24 | 0.07 0.08 0.11 | 0.03
a:All 1643 0.38 - - 0.50 - - 0.12 - -
(total) || (mean (mean (mean
1) Em) Anm)
Figure 2: Mean call directions in five applications
1000 g T T T 3
g? Number of classes with X method sends <]
%S Number of class with X effective method sends + i
w s —;
i O‘é i
10 of .
e f
H <>$ + + 1
L <> _K> 4
1 F—Oo-<pbto—S—<+- ' ' ' -+
0 1000 2000 3000 4000 5000 6000

X = Message sends

Figure 3: Message sends.

different OO languages that other measures. For
example, based on an analysis of around 1 million
lines of source (including several Smalltalks and a
range of C++ class libraries), we have argued else-
where [9] that for these languages, the following re-
lationship holds. If MS be the number of message
sends and LOC be the source lines of code, then:

MS +9.6025
1.153 3)

Our definition of class size ignores the methods

LOC =

used in parent classes. We define the effective size
of a class to be the size of a class plus the sum
of the messages sends in the methods called in its
parent classes. To compute the effective size, we
added a small report generator to the internals of
the Haynes parser. For each class, we returned the
message sends in the union of the methods gener-
ating the A, references.

The number of message sends per class and ef-
fective message sends per class are shown in Fig-

ure 3. The mean class sizes and effective class sizes
for APP, and APP; are shown in Figure 4. In
Figure 4:

e Mean lines of code for the class and effect-
ive class size are calculated by applying Equa-
tion 3 to the message sends figures.

Figure 5 shows the distribution of number of
methods per class in Digitalk’s Smalltalk/V
for Windows, version 23. The mean of these
distributions is 34. In Figure 4, the mean lines
of code per method is calculated by dividing
lines of code per class by 34.

In summary, the average method is small (about
4 lines) and the average class contains a small
number (about 34) of small methods. Tn order

3Note that for this analysis, we have excluded methods
inherited from the Smalltalk root class OBJECT since OB-
JECT stores what is the same for all classes.

Class Effective
size class size
Message sends 129 154
Lines of code 120 142
Mean lines of || 3.5 4.2
code per method

Figure 4: Mean class and method sizes

250 T T T
© Classeswith X <
200 -
150 -
100 -
50 _<><> _
0
0 <><|> o [IPAVAYAN

0 50 100 150 200
X = Number of methods

Figure 5: Class size (number of methods).

to perform any non-trivial task, such an average
class would have to collaborate extensively with
other classes. Extensive intra-hierarchy collabora-
tion may not violate the principles of information
hiding since it could be argued that it is reasonable
that sibling sub-classes know something about each
other. However, recall the results of Section 4.1: at
least half the message sends are across class hier-
archy boundaries. The classes studied here exhibit
extensive inter-hierarchy collaboration. In such an
architecture, we doubt that the processing of any
particular class can be considered without respect
to its connections to classes in different hierarchies.

6 Use of Inheritance

In Smalltalk/V for Windows (version 2.0), the av-
erage class contains N methods can access 2 ¥ N
methods from its parents. However, based on three
different measures, we say that child classes use
only a small subset of the methods which they po-
tentially could inherit from their parents:

e Figure 2 shows that in all the surveyed ap-
plications inheritance accounts for only 10%

to 20% of all method calls.

e Figure 4 shows that that the mean effective
class size (154 message sends) is only 19% big-
ger than the the mean class size (129 message
sends); i.e. classes make far use of their own

services than their parent’s services.

e Simplification study #1 tells us that only 20%
of the messages received by a class are referred
up the hierarchy.

7 Related Work

We believe that the growing use of use cases [10] is
further evidence for our observation that real-world
0O programs make limited use of information hid-
ing. A class is not an independent design concept
in its own right. A class’s public interface is insuf-
ficient information to understand it. Use cases are
also required to manage class collaboration know-
ledge in OO designs. A use case is an informal
technique for requirements capture. For example,
Rumbaugh argues that use cases are the basis of
defining functional requirements, deriving objects,
allocating functions to objects, and designing the
interface [17]. Use cases are becoming a dominant
theme in OO design and have been adopted by all
the major methodologies.

Our work also gives some support for the OO
design patterns paradigm [5]. This call graph re-
search suggests that the natural unit of division
in a OO system is not the class or the class hier-
archy. OO systems design and testing should fo-
cus on groups of classes that collaborate to achieve
some goal. These groups of classes may collabor-
ate extensively across class hierarchy boundaries.
This inter-hierarchy collaboration fits the patterns
research better than the traditional view of classes
as independent processing units.

One explanation for the relatively low values of
Ay, in Figure 2 is that Smalltalk is a single parent
inheritance language. In a single parent OO lan-
guage, if a class requires the services of more than
one other class, it must reference an instance of the
other class via an F,, call. However, we note that
Phipps [16] has made a similar observation about
low-levels of inheritance use in C++4, a multiple-
inheritance language.

One drawback with our analysis is that it ig-
nores the runtime behaviour of an OO system. Call
graphs are static. They describe the possible paths
that could be taken by a running OO system. If a
running system only ever uses some subset of these
paths, then we should base our information hiding/

inheritance usage conclusions on those portions of
the program actually exercised at runtime. We are
currently exploring metering the runtime of Small-
talk systems (i.e. in the manner of [1, 6]) order to
confirm/refute the above static analysis.

Murphy et. al. use call graphs to make value
statements about an OO design [13]. In their soft-
ware reflexion model, call graphs between high-
level software modules can be generated and com-
pared to the collaborations stated in the design
documents. However, there is very little other re-
lated work that uses metrics to actively explore the
utility of a programming paradigm. Call graph re-
search typically focuses on runtime optimisation.
Grove et. al. seck classes that are highly connec-
ted in the call graph [6] Such classes are candidates
for optimisation. Agesen et. al. [1] review differ-
ent call graph generation techniques, again with a
view to optimisation.

More generally, measurements of software are
rarely used to critically assess programming
paradigms (a point expanded on by [4]). We have
argued elsewhere that we need more active exper-
imentation in software engineering [11]. More pre-
cisely, we should declare an active hypothesis (e.g.
0O applications make extensive use of information
hiding) then define a test which has the potential
to refute that hypothesis (e.g. Equation 1). Pre-
experimental intuitions, however convincing they
may appear, do not always hold true in the real
world.

8 Conclusion

Based on an analysis of call graphs generated from
Smalltalk systems, we have reported two counter-
intuitive observations:

1. Low-levels of inheritance in Smalltalk systems

2. Low usages of information hiding in Smalltalk
systems at the class and class hierarchy level.

Results from other languages [16] and the grow-
ing usage of use cases in OO design theory make us
suspect that this result is applicable to other OO
languages.

The picture that we have painted is of classes
talking as much to their distant neighbors as to
themselves. The reason for this is that, as we
have seen, classes are very small computational
units. When executing, classes have to use services
defined outside of themselves. We have shown here

that classes access services outside their own hier-
archy at least 50% of the time. More generally,
when we divide a domain model into lots of small
parts (classes), we require significant amounts of
“glue” to make them all fit together again.

9 Acknowledgments

James Noble defined the P,, and L,, directions.
Further, his comments on C,,, prompted simplific-
ation study #1.

References

[1] O. Agesen and U. Holzle. Type Feedback vs Con-
crete Type Inference: A Comparison of Optimisa-
tion Techniques for OO Languages. In OOPSLA
’95, pages 91-107, 1995.

[2] O. Agesen, J. Palsberg, and M. Schwartzbach.
Analysis of Objects with Dynamic and Multiple
Inheritance. In ECOOP’93, Seventh Furopean
Conference on Object-Oriented Programming,
pages 329-349. Springer-Verlag, 1993.

[3] G. Booch. Object-Oriented Design with Applic-
ations (second edition). Benjamin/ Cummings,
1994.

[4] N. Fenton, S.L. Pfleeger, and R.L. Glass. Science
and Substance: A Challenge to Software FEngin-
eers. [EEE Software, pages 86-95, July 1994.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: FElements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[6] D. Grove, J. Dean, C. Garnett, and C. Cham-
bers. Profile Guided Reciever Class Prediction.
In OOPSLA °95, pages 108-123, 1995.

[7] P. Haynes, T. Menzies, and R.F. Cohen. Visual-
isations of Large Object-Oriented Systems. Tech-
nical Report T'R95-4, Department of Software De-
velopment, Monash University, 1995. To appear
in the book Software Visualisations, Eades. P.
(ed).

[8] P. Haynes and T.J. Menzies. The Effects of Class
Coupling on Class Size in Smalltalk Systems. In
Tools ’94, pages 121-129. Prentice Hall, 1994.

[9] P. Haynes, T.Menzies, and G. Phipps. Using The
Size of Classes and Methods as the Basis for Early
Effort Prediction; Empirical Observations, Initial
Application; A Practitioners Experience Report.
In OOPSLA Workshop on OO Process and Met-
rics for Effort Fstimation, 1995.

[10] I. Jacobson and M. Christerson. A Growing Con-
sensus on Use Cases. JOOP, pages 15-19, 1995.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

18]

T.J. Menzies and P. Haynes. The Methodologies
of Methodologies; or, Evaluating Current Meth-
odologies: Why and How. In Tools Pacific ’94,
pages 83-92. Prentice-Hall, 1994.

B Meyer. Object-oriented Software Construction.
Prentice-Hall,Hemel Hemstead, 1988.

G.C. Murphy and D. Notkin. Software Reflex-
ion Models: Bridging the Gap Between Source
and High-Level Models. In ACM SIGSOFT Sym-
postum on the Foundations of Software Engineer-
ing (FSE °95), 1995.

G.C. Murphy, D. Notkin, and E.S.C. Lan. An
Empirical Study of Static Call Graph Extract-
ors. Technical Report TR95-8-01, Department of

Computer Science & Engineering, University of
Washington, 1995.

J. Palsberg and M. Schwartzbach. Object-
Oriented T'ype Inference. In Proc. OOPSLA’91,
ACM SIGPLAN Sizth Annual Conference on
Object-Oriented Programming Systems, Lan-
guages and Applications, pages 146-161, 1991.

G. Phipps. The Structure of Large C++ Pro-
grams. In Tools Pacific 18, pages 253-264, 1995.
J. Rumbaugh. Getting Started: Using Use Cases

to Capture Requirements. JOOP, pages 8-23,
1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorenson. Object-Oriented Modeling and
Design. Prentice-Hall, 1991.

Some of the Haynes & Menzies papers
can be obtained from hitp://www.sd.monash.edu.au/

~timm/pub/ docs/papersonly.html.

