A Graph-Theoretic Optimisation of Temporal
Abductive Validation

Tim Menzies! and Robert F. Cohen?

' Department of Artificial Intelligence, School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia, 2052; timm@cse.unsw.edu.au
2 Department of Computer Science and Software Engineering, University of
Newcastle, Callaghan, Australia 2308; rfc@cs.newcastle.edu.au

Abstract. Abductive validation for a theory 7T expressed in language
Lqcm is known to be exponential. Despite this, abductive validation over
Lgcwm using the HT4 abductive inference engine is a useful technique
for a large range of real-world theories. However, doubts persist about
Lrgcem: a time-based variant of Loon. In L1qeMm, abductive validation
is executed for for theories used in long time-based simulations. Here we
show that, in the special case where (i) the theory is only measured at a
few time intervals and (i) Lrqcwis restricted to L”I“QCM (which contains
only bi-state objects connected by symmetrical relations) then temporal
abductive validation is practical.

1 Introduction

We are used to assessing representations via their soundness, completeness and
their tractability. Here we offer an assessment criteria for a language based on
its “testability”. The assessment criteria proceeds as follows. (i) Define a rep-
resentation language £. (ii) Define a validation engine for L. (iii) Explore the
computational limits of that validation engine. (iv) Modify £ to £~ such that
the computational limits of the validation engine are reduced. This approach
echoes earlier research by Brachman & TLevesque on the tractability of testing
subsumption in frame-based languages [BL84]. Brachman & Levesque found that
seemingly minor variations in a representational language can have an enormous
impact of the computational complexity of inference over that representation.
In this paper we explore the testability of a temporal extension to the Loom
language (§3). Theories expressed in Lgcm can be tested using our HT4 abduct-
ive validation engine [Men96b, MC97]. While abductive validation approach has
proved useful for an interesting range of real world theories (§2), it cannot be ex-
tended to Lrqcm: i.e. temporal abductive validation which tests theories used in
a time-based simulation (§4) (the differences between abductive validation and
temporal abductive validation is discussed in §4.1 and §5 respectively). Such
time-based simulations occur in at least two common KBS systems. (i) Rule-
bases that are processed via a standard match-select-act loop may assert and
retract facts; i.e. at different times within the execution of the rule-base, literals
have different belief values. (ii) Domain knowledge may be expressed as qual-

itative theories which may contain loops. As the inference executes around the
loop, literals may be assigned different belief values at different times.

In this paper we prove that we can reduce the cost of temporal validation by
reducing the granularity of the time axis to the granularity of the measurements of
that theory. More precisely, based on a graph-theoretic analysis (§6), a restricted
form of Lrgcm (,CFEQCM_) is suitable for temporal abductive validation using
HT4, provided the theory is only measured at a few time intervals.

2 Is Lgcm Appropriate for KBS?

This paper explores general computational issues relating to KBS validation via
an an analysis of the computational properties of abductive validation over the
Lqcwm language. This section justifies the use of Lqoom as a general KBS valid-
ation device.

Informally, abductive validation answers the following wvalidation question:
“can a model of X reproduce the known or desired behaviour of X?”. Abduct-
ive validation was initially defined as a method of analysing qualitative neur-
oendocrinological theories (§4.3). However, once developed, it was realised that
abductive validation answers our validation question for any theory which can
be reduced to a directed and-or graph of literals. Many common knowledge rep-
resentations can be mapped into such graphs. For example, propositional rule
bases can be viewed as graphs connecting literals from the rule left-hand-side to
the rule right-hand-side. More generally, horn clauses can be viewed as a graph
where the conjunction of sub-goals leads to the head goal. In the special (but
common) case where the range of all variables is known, this graph can be par-
tially evaluated into a ground form. Once in the ground form, the literals in the
ground form can be viewed as vertices in an and-or graph.

Internally we implement this mapping via an intermediary translation into
Lgcm. That is, abductive validation over the qualitative language Lqcm can be
viewed as a virtual machine for addressing our validation question for a variety
of representations. Hence, we explore Lqaom as a means of exploring computa-
tional issues in validating numerous KBS forms. This exploration implies two
equivalences: (i) KBS = qualitative modeling; (ii) KBS = abduction.

These equivalences are supported by other research. Clancey argues convin-
cingly [Cla92] that the runtime activity of an expert system is the construction
and reflection of a specific qualitative model from a larger and more general
qualitative model (knowledge base to situation-specific model). A wide range
of knowledge-level tasks can be mapped into an abductive framework such as
prediction, classification, explanation, tutoring, qualitative reasoning, planning,
diagnosis, monitoring, case-based-reasoning, and verification [Men96b]. Hence,
we are satisfied that there is some validity to the above two equivalences.

A. A theory Th B. D:1 computed from Tq

x5 y * QO0B <+

* A O > &007 <"

. #
e R EEEEE R ED = Xsteajy
\ * : !

AN IS

IN ={aUp, bUp}

i1 bD E
OUT={dUp, eUp, fDown} N Own V fup .
ooV e 003 E
U &00L->cSteady .7 féteady :
v A TN T &005 !
£002- 80T %
A [s 4
: ;1 xDown—= yDOWI‘l-,' > &006 E
¥ 1\ AN deown \\ V :
N aDown\ e eDown\ dSteady :
/ cDown— gbbwn X
bUp fDown

Fig. 1. Theories to dependency graphs

3 ‘CQCM

Lqcwm is a qualitative compartmental modeling language [MC97]. Compartmental
models include tubs with in-flows and out-flows. In quantitative compartmental
modeling, the current level of liquid in a tub equals its initial value plus its in-
flows, minus its out-flows. In qualitative compartmental modeling, the sign of
the the rate of change (first derivative) is used to control the qualitative simula-
tion. Qualitative theories are indeterminate; i.e. multiple incompatible belief sets
can be generated. These belief sets must be maintained in one world for each
indeterminate possibility.

In Lgowm, experts can quickly sketch out their intuitions in a theory digraph
T representing objects which can be in one of 3 mutually exclusive states: up,
down, or steady denoted 1,], or @ respectively (or, more generally, we say that
an object x can have the state xo). Edges between objects denote inferences
between object states which would be acceptable to the KB author; for example:
(1) the direct link x s y denotes that y being 1 or | can be explained by x being
1 or | respectively; (ii) The inverse link x — y denotes that y being 1 or | could
be explained by x being | or 1 respectively. It is important to stress that these
edges represent possible but not mandatory inferences. That is, we give these
edges an abductive (not deductive) semantics (§4). An edge is used if it leads,

......

eventually, to the satisfaction of some global satisfaction criteria; e.g. in abductive
validation, maximum coverage.

Direct and inverse links are symmetric edges; 1.e a inference from one state of
x to one state of y tells us something about the opposite inference. For example,

1 y tells us something about y if x goes 1 or |. Asymmetric edges tell us

nothing about the opposite inference; e.g. the creator link x = y denotes that
y being 1 can be explained by x being 1 but not visa versa and the destroyer

link x 57 y denotes that y being | could be explained by x being 1 but not
visa versa. Creator and destroyer links denote in-flows and out-flows to tubs.
Only creators can increase the amount of fluid in a tub and only destroyers can
decrease the amount of tub fluid.

If we assume that (i) the conjunction of an 1 and a | can explain a @ (steady)
and that (ii) no change can be explained in terms of a steady (i.e. a steady
vertex has no children), then we can convert Figure 1.A into the dependency
graph D of literals shown in Figure 1.B. This graph contains one vertex for each
possible state of the objects of Figure 1.A as well as and vertices which models
combinations of influences (for example, gl and bl can lead to £ being steady
(denoted £@). The dotted lines in Figure 1.A denote edges around and vertices.

The following lemma shows the relationship between paths in T and D. The
proof are immediate from the definitions (see, for example, Figure 1.A).

Lemma 1. If there is a path from verter xo to verter yT in dependency digraph
D then there is a path from vertex x to vertex y in the associated theory digraph

T.

4 Abductive Validation over Lqcm

Abduction is the search for assumptions A which, when combined with some
theory 7 written in some language £ explains some subset OUT ' of our OUT put
goals without causing some contradiction [Esh93]. That is: EQ1:T UAF OUTI;
EQyTUAKL.

Mutually exclusive, generated assumptions must be managed separately. Each
maximal consistent subset of A defines a world W; which cover (explain) OUT;.
Abductive validation [Men96a] is the search for worlds that cover the greatest
percentage of the QU T puts. The maximum cover of the worlds of a theory is the
cover of that theory. If 7,°°V*"<100% then we can report that a theory 7; of X
cannot reproduce all of the known/desired behaviour of X. Further, 7; is said to
be a better theory than theory 7; if 7,%7"*">7 v

4.1 An Example

Abductive validation executes over theories with invariants of the form “certain
literals cannot be believed together”. In Lqcwm, the invariant rule is that no two
states of an object can be believed together. This section discusses abductive

validation and is adapted from [Men96b]. Temporal abductive validation executes
over theories with invariants of the form “certain literals cannot be believed at
the same time interval’. Temporal abductive validation is discussed below (§5).
For example, suppose HT4 wants to validate that certain QU7 put goals can
be reached from using the ZA puts shown in the theory 77 of Figure 1.A. If we
assume that In the case where OUT = {df,et,£l} and ZN'={af,bt}, then HT4
can find the following paths P connecting OUTs to ZN's: P1= at— xt— yt—
dt, Po= af— ct— gt— df, Ps= af— ct— gt— ef, Ps= bl— cl— gl £,
Ps= bt— £l. These paths may contain assumptions, i.e. literals that are not
known FACTS.
Continuing our example when FACT S=IN U OUT
(the usual case), then {xt,yt,ct, ¢}, gt,
gl} are assumptions. If we apply the invari- World #1

ants of Lqgcom, then we can declare {ct, e xUp —= yUp—_

cl, gt, gl} to be conflicting (denoted A.). dup
Figure 1.A shows us that g is fully depend- alp 7 eup
ent on c¢. Hence the key conflicting assump- cUp —= 9Up

tions are {ct,cl} (denoted base controver- — bUp fDown
stal assumptions or Ap). We can used Ay

to find consistent belief sets called worlds World #2

W. A path P; is in W; if that path does
not conflict with the environment EANV; (an
environment is a maximal consistent sub-
set of Ap). In our example, ENVi={ct}
and ENVy—{cl}. Hence, Wi ={Py, Ps, Ps, bUp fDown
Ps} and We={P; P4 Ps} (see Figure 2%).
The overlap of Wy and OUT is the cover
of Wi and contains {dt,et,£}}. The over-
lap of Wy and OUT is {dt,fl} That is,
Wiover =3=100% and W5°"*"=2=67%. The
maximum cover is 100%; i.e. their exist a set of assumptions ({ct}) which let us
explain all of OUT and this theory has passed HT4-style abductive validation.

Up
7 xUp —= Y
aUp N dup

/ cDown—= gDown\

Fig.2. Two consistent worlds
generated from Figure 1.B.

4.2 Complexity

The core problem in HT4 is finding the base controversial assumption set Ap.
In the forward sweep, HT4 finds the conflicting assumption set Ac as a side-
effect of computing the transitive closure of ZA. In the backwards sweep, HT4
constrains path generation to the transitive closure of ZA. As a path is grown
from a member of OUT back to ZN, five invariants are maintained. (i) Paths
maintain a forbids set; 1.e. a set of literals that are incompatible with the literals
used in the path. For example, the literals used in P; forbid the literals {al,
a®, x|, x@, yl, yo, 4}, do}. (ii) A path must not contain loops or items

% The connection of HT4 to DeKleer’'s ATMS system [DeK86] is explored else-
where [Men96b]

that contradict other items in the path (i.e. a path’s members must not intersect
with its forbids set). (iii) If a path crosses an and node, then all the parents of
that node must be found in the path (iv) A literal in a path must not contradict
the known FACTS. (v) The upper-most .A¢ found along the way is recorded as
that path’s guess. The union of all the guesses of all the paths is Ag.

Once Ap is known then the paths can be sorted into worlds via the worlds
sweep. HT4 extracts all the objects O referenced in Ap. A world-defining en-
vironment EN'V; is created for each combination of objects and their values. In
our example, ENV1 = {c1} and ENVy = {cl}. The worlds sweep is simply two
nested loops over each EN'V; and each P;. A path P; belongs in world Wj if its
forbids set does not intersect the assumptions EAV'V; that define that world. For
more details on the internals of HT4, see [MC97].

HT4’s runtimes are clearly exponential on the number of edges in the theory.
In a theory comprising a directed and-or graph with vertices V, edges £, and

_ &l

fanout F v the worst-case complexity of the forwards sweep is acceptable at

O(|V|3_). However, if the average size of a path is X, then worse case backwards
sweep is O(XT')). Further, the worlds sweep is proportional to the number of
paths and the number of world-defining assumptions; i.e. EQz:O(|P| * [ENV])=
O(XT % |[ENV)).

4.3 In Practice

The exponential complexity of abductive validation is not surprising. Abduct-
ive validation is a variant on abduction and abduction is known to be NP-
hard [BAMTJ91]. Nevertheless, it has been shown that abductive validation is
practical for many real-world theories such as certain fielded expert systems and
theories from neuroendocrinology [Men96b]. Feldman & Compton [FCS89], fol-
lowed by Menzies [MC97], have shown that abductive validation engines could
detect previously unseen errors in theories in neuroendocrinology (the study
of nerves and glands) published in international refereed journals. Surprisingly,
these faults were found using the data published to support those theories
Experiments with HT4, an abductive validation engine, showed that for a
dependency graph D; with vertices V generated from a language Lqcwm, this al-
gorithm fails after |V| > 850. The claim that abductive validation is practical for
real-world theories rests on the empirical observation that many interesting theor-
ies have |V| < 850 (e.g. the neuroendocrinological systems studied by Feldman &
Compton [FCS89] and Menzies [MC97]; the sample of expert systems studied by
the verification community [PS92]). The claim that temporal abductive valida-
tion is impractical rests on the observation that theories used for simulation runs

will have |V] > 850 (§5).

5 Lrqcom

For theories used in simulation runs,
we wish to reason about the time-
dependent behaviour of an object; e.g. x
in Figure 3, the values of x are {x; T,
x0T, %3, xa 1, x5} where 1 and
| are computed by comparing xx with
x_;. One approach to implementing
temporal abductive validation would 0 1 2 3 4 5
be to create one copy of D for each
time interval in the simulation. Liter-
als in adjacent time intervals would be
connected; i.e. belief that an object in
a certain state at time K could justify
an explanation of that object being in
the same state in time K 4 1. The invariants of Lgcwm would be extended to say
that we can’t believe that an object is in two states in the same time interval.

up up down up down
|

time

Fig. 3. Values for x generated over a
simulation run.

For example, for a simulation of Dy (Figure 4.A) over 4 time intervals, we could
execute HT4 over D3 (Figure 4.B).

The advantage of this copy-based approach is that we could use HT4 without
modification. The disadvantage of this approach is that the number of edges
would increase linearly with the number of copies. Recalling F(Q3, this means
that the worst-case complexity increases exponentially with the number of copies.
Further, recalling the experimental Lqocwm limit of [V| > 850, if D; is copied K
times, then |V| > 850 shrinks to |V| > %‘%9. This implies, for example, that
using HT4 for temporal abductive validation over 100 time intervals becomes
impractical after |V| > 8 (which is clearly a significant restriction to modeling
and the practicality of this technique).

Note that the copies repeat some structure for the known time intervals in
the simulation. A compelling intuition is that no explanation path can be found
through X + 1 copies that can’t be found in X copies. That is, we can ignore
the copies representing the intermediary time intervals between measurements.
If this was true then (i) explanations of events at time K = 4 in terms of inputs
at time K = 1 over D3 does not need the copies at K = 2 and K = 3; (ii) D3
could be re-written as the smaller D4 (Figure 5.A).

This intuition is compelling since, if true, if we simulate for K time intervals
but only measure values at K intervals (ICI < K), then we need not search
the copies for the unmeasured intervals. So, for a simulation run of 1000 time
intervals where we only measure values at the start and at the finish, abductive
validation would only need two copies of D.

Sadly, we can quickly find dependency graphs where the intermediary cop-
ies are required to make explanations. Consider Figure 4.A and the case where
OUT = {at} and ZN'={bt}. The only path which connects these two literals
is {bt— al— bl— at}. This path takes several time intervals since the tem-
poral abductive validation invariant is that no object can be in different states

A. D, B. Ds: Dy copied over 4 time intervals.
aUp —=bup at=)Up — = b(t=1)up

abDown ——= bDown at=1)Down —= b(t=1)Down

at=2)Uup = b(t=2)up

at=2)Down —— b(t=2)Down

at=3)Up = b(t=3)up

at=3)Down ——= b(t=3)Down

at=4)Up T = _ P(t=4)up

at=4)Down ——= b(t=4)Down

Fig. 4. Copying dependency graphs.

in the same time interval. Our path takes a minimum of 3 time intervals: one for
b; T— a; J; one for as |— by |; and one for by |— as 1. That is, if we took
measurements of this simulation at time intervals 1 and 3, we would need one
intermediary copy at time interval 2 to complete the explanation. This example
suggests that between each measured time interval, we may need at least one
intermediary copy (as in Figure 5.B). To make matters worse, note that Figure 6
duplicates the topology of Figure 4.A in the regions A,B,C with an extra link
from the top-left vertex of one region to the top-right vertex of the next region.
A path from bt to et will take at 3 time intervals to cross each of A,B,C. By
repeating A,B,C more times, we can generate dependency graphs which would
require any number of intermediaries to traverse. This example suggests that
between each measured time interval for theories written in LTqcwm, we may
need more than one intermediary copy.

6 L'EQCM

Whilst exploring examples like Figure 6, we observed that we could only generate
graphs requiring more than one intermediary copy if we used asymmetrical edges.
For example, the edge (e.g.) at—d? in Figure 6 is asymmetric since there is no
second edge from a]—d|. This prompted the exploration of L.y, a restrictive
form of Lrqcomin which asymmetric edges were illegal. In the special case where
objects were restricted to the two states 1 and |, we could find no examples in

A. D4: D3 without the copies at time B. D4: D3 with one intermediary copy
K=2and K =3. at time 14+ representing the space

between time between K =1 and K = 4.
at=1)Up = b(t=1)up

at=1)Uup < b(t=1)up

b(t=1)Down at=1)pown ——= b(I=hbown
a(t=1)pown —= Db(t=

at=1")Up~— b(t=1+)up

a(t=1+)Down ———= b(t=1+)Down

at=4)Up = _b(t=4)up at=4)Up —= b(t=4)up

at=4)Down —— b(t=4)Down at=4)Down — = b(t=4)Down

Fig. 5. Restrictive copying.

A 5 B : C
aup ——=bUp cup —=dup < eUp fUp
abDown ——= bDown : cDown — = dDown ¢ eDown — =" fDown

Fig.6. A dependency graph which requires intermediaries to explain et in terms of bf.

TQeMm where we needed more than one intermediary copy. Roughly speaking, we
will show that if every edge offers a comment on all the states of its downstream
vertices, then the state space rapidly saturates and explanations can be quickly
generated. However, if we permit asymmetric edges, then the state space has
unknown zones within it and explanations may take longer.

6.1 A Graph Theoretic Proof that 3 Copies of D is Enough

This section proves that paths either succeeded in 3 copies or never at all (§6.1).
The implications of this is that between any two simulation times where measure-
ments of the theory are taken (labeled 1 and 3), we only need one intermediary
copy labeled 2. Hence, Figure 5.B is the general form: between any two copies
with measurements, we only need one extra intermediary copy to prove a con-
nection. So, for a simulation measured objects at times 1, 500, and 1000, we only
need two intermediary copies representing the search space from times 1 to 500
and from 500 to 1000. That is, this simulation for 1000 time intervals measured
at only three time ticks requires a mere 5 copies.

This section assumes that ,C:,C%QCM.

The following lemma shows a relationship between paths in 7 and D for
theories expressed in E%QCM. The proof of this lemmais obvious from inspection
of Figure 1.A and discarding all the steady and and vertices of Figure 1.B. Note
that lemma 1 still holds for ,CFEQCM.

Lemma 2. [f there is a path from vertex x to vertexy in theory digraph T, then,
in the associated dependency digraph D, there are either paths: (i) from x1 to y?1

and from x| to y|, or ...; (i) from xt to y| and from x| to yt.

We will use & to refer to the opposite direction of o, that is, if ¢ =1 then & =]
and if ¢ =| then & =t. 'C"T“QCM restricts itself to only 1 and | and symmetric
edges since our proof depends on being able to say something about 7.

Consider vertices xo and y7 in dependency digraph D. A simple proof of yr
from xo, IT°(x0,y7), is a directed path from x¢ to y7 such that for any vertex z
at most one of z1 and z] are on II°(xo,y7). Simple proofs are those generated
within one time interval of a simulation.

A proof of vertex zv from vertex wp II(wp,zv) is an ordered collection of
simple proofs such that wp is the start of the first path, zv is the end of the final
path, and the final vertex of each simple proof is the start vertex of its successor
(see Fig 7). We think of each simple proof of a proof as being generated in the
same time interval. The requirement that the final vertex of a simple proof being
identical as the start vertex of its successor represents the connection between
time intervals. Note that for a vertex z, both z1 and z| can be contained in proof
II (wp,zv), but cannot be contained in the same simple proof of II (wp,zv). That
is, it cannot be found in the same time interval of the simulation.

The time of a proof, time(II(wp, zw)) is the number of simple proofs in
IT(wp, zw). For vertices xo and y7, the minimum proof time, minTime(xo,y7),
is the minimum time of any proof of yr from xo. If there is no proof of yr from
xo, then we say minTime(xo,y7)= oo.

Lemma 3. There is a path from xo to yr in dependency digraph D if and only
if minTime(xo,yT) is finite.

Proof. The “if” direction is an immediate consequence of the definition of a proof:
we form a path from xo to yr by concatenating the simple proofs of a proof of
y7 from xo.

yr—> O - 0> 00— 0 - 0O 00— 0O - 0= o
(a)
Iy
xo=» O — O =0
O - O — O 50
113
O —» O — Oy

(b)

Fig.7. Simple proofs and proofs. (a) A path P from xo to yr. (b) Dividing P into
simple proofs. Note that for any z both z1 and z] cannot be on the same simple proof.

For the “only if” direction, let P be a path from xo to yr. We can create
a proof of yr from xo by making each edge of P a simple proof. (This is valid
since the definition of a theory digraph does not allow self-loops.) Therefore,
minTime(xo,y7) is less than or equal the length of P.

Lemmad4. If minTime(xo,y7) is finite, then either minTime(xo,yt)= 1 or
minTime(xo,y})= 1.

Proof. If x = y then minTime(xo,x0)= 1.

Otherwise, by lemmas 1 and 3 there is a path from x to y in theory digraph
7. Let P be a loop-free path from z to y in 7. (Such a path is guaranteed to
exist since loops can always be removed.) Then, by lemma 2 there is a path from

xo to yr such that for any vertex z of 7 at most one of 2t and z] are on P.
Consequently, P is a simple proof and minTime(xo ,x0)= 1.

Theorem 5 is the key result of this paper.

Theorem 5. Ifxo and yr are vertices of dependency graph D, then minTime(xo,yT)
can only have values 1, 2, 3, or co.

Proof. If there is no path from xo to yr then minTime(xo,y7)= co.

Suppose there is a path Pp from xo to y7. By lemma 1, there is a path from
x to y in 7, and by lemma 4, either minTime(xo,y1)= 1 or minTime(xo,y))= 1.
If minTime(xo,y7)= 1, then the theorem is proved.

Suppose minTime(xo,y7)> 1. We will show that minTime(xo,yr)< 3 by
exploring all paths D in dependency digraph D starting at vertex xo, finding a
proof IT to the end of D that has time(IT) < 3. In this way, we are ensured that
minTime(xo,y7)< 3.

We proceed by induction on the length of shortest path from xoto a vertex

of D:

— Base Case: Distance is 0. Then the destination is xo itself and minTime(xo,x0)=
1.

— Inductive Step: Suppose that minTime(xo,vw)< 3 for all vw with shortest

path from xo less than k for some k > 0. Let zv be a vertex whose shortest
path from xo has length k. If minTime(xo,zv)= 1 then we are done.
Otherwise, minTime(xo,zv)> 1. By lemma4, we have minTime(x0,20)=
1. Let wp be the predecessor of zv on some shortest path P from xo. If
minTime(xo,up)< 3 then we can create a simple proof of zv from xo by
adding the simple proof consisting of the single edge wp—zv to a minimum
time proof of wp. Therefore, minTime(xo,zv)< 3
Suppose minTime(xo,wp)= 3. Then there is a proof I of wp from xo con-
sisting of 3 simple proofs, /{{, I{3, I13. If z¥ is not in /15 then we can create
a proof 11" of zv from xo by extending 73 by adding the edge wp—zv(see
Fig. 8) and we have time(/I') = 3 so minTime(x0,zv)< 3.
Finally, suppose z© is contained in simple proof IT§. Notice that zoZwp since
this would imply a self-loop in theory digraph 7. Let /7* be a simple proof
of z© from xo (I1* exists since minTime(xo,z0)= 1). Let u¢ be the successor
of the final occurrence of zv on IT3. We can construct a proof of zv from xo
consisting of the following 3 paths (see Fig. 8): (i) simple proof IT%; (ii) the
edge zv—uf; (iii) the remainder of /73 starting at uf and the edge wp—zv.
Since all three are simple proofs, and they form a proof of zv from xo, we
get minTime(xo,zv)< 3.

7 Related Work

We are unaware of other research into the complexity of temporal validation.
However, for the non-temporal case, our approach is similar in spirit to the non-
monotonic KBS validation research. For example, automatic test suite generation
procedures based on dependency-network are offered by of Ginsberg [Gin87] and
Zlatereva [7Z1a93]. The dependencies between rules/conclusions are computed and
divided into mutually consistent subsets. The root dependencies of these subsets
represent the space of all reasonable tests. If these root dependencies are not
represented as inputs within a test suite, then the test suite is incomplete. Test
cases can then be automatically proposed to fill any gaps.

The advantage of this technique is that it can be guaranteed that test cases
can be generated to exercise all branches of a knowledge base. The disadvantage
of this technique is that, for each proposed new input, an expert must still decide
what constitutes a valid output. This decision requires knowledge external to the
model, least we introduce a circularity in the test procedure (i.e. we test the
structure of 77; using test cases derived from the structure of 'TZ) Further, auto-
test-generation focuses on incorrect features in the current model. We prefer to
use test cases from a totally external source since such test cases can highlight
what is absent from the current model. For these reasons, we caution against
automatic test suite generation.

1y
xo=» O — —» O =0
i 113
O = O—— 00
pooom
O = O —— 25— ug——> up—> zv

xs—» O — —» O =0
O &> O0—— 00
O > 0 — ;5

.Z.’L_)_" ué
(b) it

uf === up—> zu

Fig. 8. Illustration of two of the cases in the proof of Theorem 5 . (a) Adding an edge
when zv is not in //3. (b) Using a shortcut when zv is in /3.

Our preferred framework uses a graph-theoretic approach; i.e. inference is the
selection of some subset of edges from the network of possible proof trees. We find
that underneath efficient theorem provers is some sort of graph representation.
Hence, we have elected to work directly at the graph-level rather than at a general
logical level (e.g. Zlatereva). The simplicity of the graph-theoretic framework
enables detailed complexity analyses such as this one.

8 Conclusion

We have proposed a restriction to Lqgcom in which vertices are restricted to
bi-state devices (removing steady and and vertices) and edges are restricted to
symmetrical links (direct and inverse only).

The restricted language, L1qon has three advantages. (i) D will be smaller
since there is no need for steady and and vertices. This is a significant saving
since experience with abductive validation in neuroendocrinological models shows
that at least half the vertices of D are and vertices. (ii) For a simulation runs
over K time intervals where measurements of the objects are only taken at XK'
intervals, then abductive validation need only be executed over 2 * K —1 copies
of D. In the case where K < K this represents a significant optimisation of the
processing. Roughly speaking, if every edge offers a comment on all the states

of its downstream vertices (i.e. they are symmetric), then the state space rapidly
saturates and the we can reduce the granularity of the time axis to just under
twice the granularity of the measurements of that theory. (iii) In the case where
K < K, we can use the HT4 abductive inference algorithm, without modification,
to validate theories written in L:”I“QCM and used for simulations.

9 Acknowledgments

Thanks to Paul Compton whose conversations where the initial spark for this
work. The comments of the anonymous referees prompted §2 and a better ex-
pression of the basic intuition of this paper.

References

[BAMTJ91] T. Bylander, D. Allemang, M.C. M.C. Tanner, and J.R. Josephson. The
Computational Complexity of Abduction. Artificial Intelligence, 49:25-60,

1991.

[BL&4] R.J. Brachman and H.J. Levesque. The tractability of subsumption in
frame-based description languages. In AAAT ’84, pages 34-37, 1984.

[Cla92] W.J. Clancey. Model Construction Operators. Artificial Intelligence, 53:1—
115, 1992.

[DeK8&6] J. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163—
196, 1986.

[Fsh93] K. Eshghi. A Tractable Class of Abductive Problems. In IJCAT ’93,
volume 1, pages 3-8, 1993.

[FCS89] B. Feldman, P. Compton, and G. Smythe. Hypothesis Testing: an Appro-
priate Task for Knowledge-Based Systems. In 4th AAAI-Sponsored Know-
ledge Acquisition for Knowledge-based Systems Workshop Banff, Canada,
1989.

[Gin&7] A. Ginsberg. A new Approach to Checking Knowledge Bases for Incon-
sistentcy and Redundancy. In Proc. 3rd Annual Fxpert Systems in Gov-
ernment Conference, pages 102-111, 1987.

[MC97] T.J. Menzies and P. Compton. Applications of abduction: Hypothesis test-
ing of neuroendocrinological qualitative compartmental models. Artificial
Intelligence in Medicine, 1997. To appear.

[Men96a] T.J. Menzies. On the practicality of abductive validation. In ECAI 96,
1996.

[Men96b] T.J. Menzies. Applications of abduction: Knowledge level modeling. In-
ternational Journal of Human Computer Studies, 45:305-355, September,

1996.

[PS92] A.D. Preece and R. Shinghal. Verifying knowledge bases by anomaly de-
tection: An experience report. In FCAT ’92, 1992.

[Z1a93] N. Zlatareva. Distributed verification and automated generation of test

cases. In [JCAT ’93 workshop on Validation, Verification and Test of KBs
Chambery, France, pages 67-77, 1993.

Some of the Menzies papers can be found at http:// www.cse.unsw.edu.au/ ~timm/pub/
docs/papersonly.himl.
This article was processed using the I#TEX macro package with LLNCS style

