Comparing and Generalising

Models for Metrics Repositories

Tim Menzies *

Sita Ramakrishnan 1

October 13, 1996

Abstract

Methodology assessment requires metrics. Large
scale metrics collection requires a persistent data
store. Persistent data stores require a model for
the database design. Such models reflect the as-
sumptions of their designers; e.g. waterfall devel-
opment, non-object-oriented languages, etc. We
review several models for metrics repositories to
conclude that most of the existing metrics reposit-
ories are not suitable for software developed using
an iterative, object-oriented, use-case driven ap-
proach. Based on this analysis, we have evolved
RA-2: our preferred repository model. RA-2 is
designed to be useful for both object-oriented and
non-object-oriented systems.

Artificial
of Computer and FEngineering,
of New South Wales, PO Box 1,
Sydney, 2033

http://wwu.cse.unsw.edu.au/~timm

School

University

*Department  of Intelligence,
Science
Kensington,
Australia, timm@cse.unsw.edu.au

Software Development,
Caulfield,

sitar@insect.monash.edu.au

tDepartment of
Monash

Australia

University, Melbourne,

http://www.sd.monash.edu.au/~sitar

1 Introduction

There is a pressing current need for empirical in-
vestigations of software engineering in general [5]
and object-oriented (OO) systems in particu-
lar [15,17]. If these empirical investigations are
concerned with software lifecycle issues, then these
investigations require some storage device for met-
rics collected during the entire lifecycle. That is,
empirical investigations of software engineering re-
quire a model for a persistent data store to track
software over its entire life.

There is very little in the literature concerning
the design of such data stores. Of the models we
could find [3,8,12,13,18,21], all had a different
emphasis. For example, some of them focused on
portions of the Fenton [6, chpt. 3] metrics triad:

e The RA-1 model [18] is process-centric; i.e.
it monitors the manner in which software is
constructed;

¢ The TAME resource model [12] is, as its name
suggests, focuses on the resources used to gen-
erate the product;

e The Harrison model [8] is product-centric and
only monitors details of the constructed entity.

Further, aside from the one we designed (the
RA-1 model [18]), none of these models were suit-
able for iterative, use-case driven, OO develop-
ment.

Based on our analysis of these models, we have
developed the RA-2 repository model (§2). RA-
2 is suitable for OO systems. It includes a use
case model (§2.1) and offers support for software
iteration (§3). Unlike the other models reviewed
here (§4), RA-2 supports metric collection for re-
source (§2.2) metrics and process (§2.3) metrics



and product (§2.4). Also, in order to assess the
developed software, it includes a bug and enhance-
ment tracking system (§2.5).

RA-2 makes minimal assumptions about the
structure of the product being developed. Hence,
we believe that it is useful for general software met-
rics collection and not just OO (§3).

Notation conventions: The RA-2 model will be
shown using the notation of Rational’s Unified No-
tion version 0.8. Text shown in this SMALL CAPS
font will become entities or relationships in RA-
2. Text shown in this typewriter font discusses
data entered into the RA-2 model. Text shown in
this san serif font are entities from other model re-
positories than RA-2. When the rules of grammar
demand it, we take some liberties with entity/class
names. For example, we may write ACTIVITIES
when, strictly speaking, we should write AcTIV-
ITYS.

Use case
1 uses  etends
specialises lal 0(51 *

Scenario * Primary
0.M |working: boolean \ scenario

createdOn: date ]
gl \ Secondary 0-M

*

scenario

updates Audience Z|
Test 0.M
case

Business System

scenario scenario

Figure 1: RA-2: USE CASES.

2 RA-2

2.1 Use-Cases

OO development is typically iterative. There are
two reasons for this:

e Parnas [16] cautions that for many real real
systems, in order to get the whole picture, the
design has to leave some holes to be filled in
at a later stage. This observation is central

to the OO approach. The information hid-
ing properties of class encapsulation permit
extensive internal reorganisations of a design
while maintaining a working system.

e The conceptual model used for analysis
(classes and methods) is the same concep-
tual model used in design and implementa-
tion. Hence, the gap between analysis and
implementation is much less than between
(e.g.) DFDs to a COBOL program. Experi-
ence gained during the implementation can be
quickly converted into design revisions. Con-
sequently, OO designs can be quickly revised.

A common technique for handling iterative de-
velopment and user-specifications in OO systems is
the use case [2,11,19,20]. Use cases have become
the main driver of OO development [10]. They
are used as the basis of specifying the functional
requirements, defining software objects, allocat-
ing functions to objects, and designing the inter-
face [10]. For a short tutorial introduction to use
cases, see [20]. For an intricate use of use cases for
tracing the link between requirements and code,
see [19].

Our proposed model of use cases is based on
Booch [2] (see Figure 1). A USE CASE is a general
description of the events surrounding a set of act-
ors (e.g. booking a flight). When the details of that
use case are filled in, we generate many SCENARIOS
(e.g. Tim books a national flight to Sydney; Sita
books an international flight to Delhi). SCENARIOS
have different AUDIENCES. BUSINESS SCENARIOS
are comprehensible to a business user while a sys-
TEM SCENARIO refers to some “under the hood”
processing which we will shield from the business
user. A SCENARIO is either a PRIMARY SCENARIO
(where no exception conditions arise), or a SEC-
ONDARY SCENARIO (where the typical exceptions
conditions arise). If all exceptions conditions are
fully enumerated, then the SECONDARY SCENARIO
becomes a TEST CASE. SCENARIOS can be defined
in terms of other scenarios using the uses relation-
ship (which always uses another scenario) or an
ertends relationship in which one scenario may or
may not branch to another scenario.

USE c€ASES can be used at all stages of the
software development process; e.g. during elicit-
ation to capture user requirements; during phys-



ical design to audit class designs; during valid-
ation to assess the working system; and during
auditing when tracing code fragments to user re-
quirements [19]. Further, a graph of % scENARIOS
covered by the current system versus time is a
powerful tool for monitoring an iterative develop-
ment process.

Since they are the primary control tool for OO
projects, we have to carefully monitor SCENARIO
creation, SCENARIO modification, and the business
user signing off that the SCENARIO is adequately
WORKING). RA-2 takes the following Draconian
approach: after a SCENARIO is added to the re-
pository, it can’t be modified. If a modification
is required, then a new scenario is created and an
UPDATES link is added from the new ScENARIO
back to the old SCENARIO. At any point in time,
the current SCENARIOS are those with no UPDATE
link.

The relationship between CLASSES and SCEN-
ARIOS is intricate. A single SCENARIO may require
numerous CLASSES to implement it and the same
CLASS may be be used in many scenarios. Also,
while use cases have been developed in the OO
field, we believe that they are a general tool for any
prototyping approach. Hence, for the purposes of
generality, we relate SCENARIO to the more general
term proODUCT (in RA-2, cLASS is a subclass of
propuct Figure 5).

. requires
————={Resource <
leader

| !

Usage
estimated
actual
desirable
accessible
cost

[Role |
*

revises

Product 1 ‘ 0
name
version m
type: {hw or sw} develops
visibility
platform
OM s *|OM o tes LM Y
contains Adivity

Figure 2: RA-2: RESOURCES

2.2 Resources

Three major resources in any system develop-
ment are PERSONS, PRODUCTS, and time (see
Figure 2). PERsONs work in TEAMS. TEAMS
can be part of larger teams and so-on recurs-
ively (e.g.
project team of the Information Technology
Division teamofthe IBM Australia team of the
IBM International team). PERSONS can have
many ROLES, one of which is team LEADER.

A PERSON USES existing PRODUCTS to DE-
VELOP new PrRoDUCTS. This PERSON has so
many hours of experience with this proDUCT.
PropucTs have a NAME, a VERSION number,
and a PLATFORM they run on. PRoODUCTS may
be software or hardware!. ProbpucTs may be
aggregations of other PrRoODUCTS. PRODUCTS
come from a supplier, which are other TEAMS
(e.g. the Microsoft team produces the PRODUCT
Microsoft O0ffice which, in turn, contains other
PRODUCTS such as Word, Powerpoint, Access,
etc.). In terms of looking inside/ controlling a
PRODUCT, a PRODUCT has four levels of VISIBIL-
ITY in increasing order:

the interface team of the smelter

1. None. For example, PERSONs may have
no VISIBILITY of legacy or COTS software
(commercial, off the shelf systems).

2. Customisation via parameter setting.

3. Customisation via scripting language; e.g.
Microsoft Word comes with the scripting
language Word Basic.

4. Full source code; i.e. full visiBILITY.

PrRrsoNs develop PRODUCTS via a PLAN. PLANS
change and so they may be REVISED by a sub-
sequent plan. In RA-2 time is modeled in the
time attributes in the USAGE record.

ACTIVITIES need RESOURCES. The ESTIMATED
time for USING a RESOURCE may be different to
the ACTUAL time spent with it due to (i) the com-
plexities of software estimation; (ii) the cosT of

IThere is an important class of tools used by software
developers that are not hardware or software. A informa-
tion processing system may contain many components, only
some of which are hardware or software. For example, a
software methodology is a tool, even though it may not
be embodied in hardware or software. RA-2 models such
methodological tools as ACTIVITY networks. See Figure 3



the RESOURCE; (iii) other limits to the hours of its
ACCESSIBILITY. The ACTUAL USAGE time could be
filled in from a timesheet system (not modeled in

RA-2).

2.3 Process

A process is realised by a set of ACTIVITIES (see
Figure 3). Software processes are characterised by
the network of NAMED ACTIVITIES they propose:

e ACTIVITIES are recursive; i.e.  ACTIVIT-
1ES have suB-ACTIVITIES, which themselves
are ACTIVITIES so they can have sub-sub-
ACTIVITIES and so on. The ESTIMATED-
HouRs of a super-ACTIVITY is the sum of the
ESTIMATED HOURS of its SUB-ACTIVITIES.

e An ACTIVITY may REQUIRE (i) other AcTIV-
ITIES to be completed, or (ii) other RE-
SOURCES to be available before this one can
start.

The STARTDATE and sTOPDATES of an ACTIV-
ITY can be set by the user or deduced from a re-
cursive traversal of the SUB-ACTIVITIES and RE-
QUIRES link.

gener ates sub-activi ty
o.M | | .
Product IActivity
name
startDate
stopDate requires
p‘?g%%kcst next don%: Boolean *
—nry
s
Review category

controls

followed-by

Figure 3: RA-2: ACTIVITIES

Processes contain combinations of SEQUENCED,
SUPPORT, or REVIEW ACTIVITIES:

e SEQUENCED ACTIVITIES occur in some order
according to the methodology being used. A
SEQUENCED activity is on the PLAN (see Fig-
ure 2) and has a checkpoint where a REVIEW

of its PRODUCTS is performed.

o REVIEW task lets us model checkpoints in the
process where the project may be halted if
progress is not satisfactory. Such commit par-
tition points are essential part of risk-driven,
iterative spiral software process [1].

e SUPPORT ACTIVITIES tasks are those which
occur in parallel with any project such as pro-
ject monitoring & control, quality manage-
ment, document development, training, and
configuration management (including version
control and backups). These are shown as the
WATCH! category in Figure 4.

what2do? \
\L /feedback done?

do j

Figure 4: A network of instances of ACTIVITIES.
SEQUENCED CATEGORIES are one of WHAT2DO0?,
po!, DoNE?, waTcH!.

After Hodgson [9], we categorise SEQUENCED
ACTIVITIES into the three meta-groups shown in
Figure 4:

e In the wHAT2DO? logical design acTivIiTY
CATEGORY, a  brainstorming/elicitation
sub-activity is followed by an order-
ing/representation sub-activity.

e In the po! physical design ACTIVITY CAT-
EGORY, the idealised logical design is typic-
ally compromised as it is contorted to fit into
some lower-level representation.

e In the DONE? test ACTIVITY CATEGORY, the
results of the physical design are assessed.
Testing can be divided into wverification (i.e.
was the system built right?) and walidation
(i.e. was the right system built?). Feedback
from the testing process can improve the phys-
ical and logical designs.

Hodgson argues that the cATEGORIES of Figure 4
are recursive; i.e. the work involved within any
of the SEQUENCED ACTIVITIES can be sub-divided



up into wHAT2D0?, Do!, DONE?. For example,
in the verification SUB-ACTIVITY, the tests have
to be planned (WHAT2D0?), implemented in some
programming language (Do!), then compiled, run
and their results evaluated (DONE?).

2.4 Products

The RA-2 propucts model is shown in Fig-
ure 5. PronucTs are stored in FILES by
their AuTHORS. One issue in iterative design is
maintaining traceability between cODE artefacts
and the requirements DOCUMENTS that generated
them [19]. Hence, the connection between DoCU-
MENT PRODUCTS and the CODE PRODUCTS they
discuss must be maintained. Not all DOCUMENTS
are directly related to coDE. For example, the
release plan or the business case justifying the de-
velopment may have required discusses link to a
CODE PRODUCT.

next author
i Person sub-
version * enerates activi ty
o 1 develops* < om .
File Sored Product Activity
in / \
Code
Class
j subclass
Method
Category

Figure 5: RA-2: probpucTs. The dotted line is
explained elsewhere (§3).

2.5 Tracking

Apart from the DISCUSSES relation, in order to
track changes to the PRODUCT, we need to mon-
itor BUGS and ENHANCEMENTS. A LOG is an ag-
gregation of L0G ENTRIES showing when a PERSON

engaged in some ACTIVITY found something that
needed to be changed in a ProDUCT (Figure 6).

LogEntry
[Log O~ Date

Time Activity

i

Incident Bug

siridns

Figure 6: RA-2: ENHANCEMENT and BUG track-
ing.

The legal types of INCIDENTS must be pre-
defined into $INCIDENTS variable. The RA-1 sys-
tem pre-defines [17] 14 BuGs and 8 ENHANCE-
MENTS. An appendix to this article (§6) gener-
alises those $INCIDENTS from their CLASS-specific
RA-1 definitions to copk-general terms.

3 Generality of the RA-2

Model

This section argues that RA-2 is general to a vari-
ety of development styles.

Consider the dashed line in Figure 5. Below that
line we see some OO-specific constructs: CATER-
GORIES that contain CLASSES in a hierarchy and
which hold METHODS; USE CASE; and SCENARIO.
However, note that above that line RA-2 makes no
assumptions that the PRODUCT being developed is
OO. That is, at a meta-level (i.e. in the abstract
classes), the repository is general to different pro-
gramming methodologies. This is a desirable fea-
ture. Customising RA-2 to different methodolo-
gies should be merely a matter of adding subclasses
underneath the basic RA-2 hierarchy (e.g. the ...
shown in Figure 5).

Consider the difference between iterative devel-
opment and the waterfall model. In the waterfall
model, we only traverse the loop of Figure 4 once
and there is very little feedback. Due to the iterat-
ive nature of OO development, the loop of Figure 4
may be traversed many times and there is much



feedback. In both waterfall and interative devel-
opment, there is are N versions of any product.
In waterfall, N = 1 and in iterative development,
N > 1. Note that the same metrics repository can
handle both approaches, as long as the model does
not make the N = 1 version assumption. Hence
the version control within RA-2:

o PLAN.REVISES
e FILE.NEXTVERSION

e SCENARIO.UPDATES

4 Other Repository Models

In this section we use the RA-2 framework to ana-
lyse other OO repository models (§4.1) and non-
OO repository models (§4.2).

4.1 RA-1: An OO Metrics Reposit-

ories

The only OO repository model we are aware of is
our RA-1 model [18]. RA-1 is designed for monit-
oring students implementing three SCENARIOS us-
ing EIFFEL over a one-semester subject. RA-1 is
essentially Figure 6 and a more intricate version of
Figure 2 (but without the DESIRABLE, ACCESSIBLE
and cosT attributes of USAGE). The SCENARIOS
and PRODUCTS used for DEVELOPMENT were not
exstensively modeled since they were fixed for all
the student projects. However, some resource
tracking occured: the students had to submit pro-
ject plans in a Gantt chart (which RA-2 models
in the ACTIVITIES network). The RA-1 projects
are SCENARIO-driven The top-level activity in the
Gantt charts were the three scENARIOS. RA-1
also includes a reporting module for generating a
set of pre-defined reports from the RA-1 reposit-
ory data.

4.2 Non-OO Metrics Repositories
4.2.1 Kitchenham & Mellor

Kitchenham & Mellor [13] take a very focused view
of repository modeling. They caution that:

The danger in attempting to define a
model that is too general is that it may

be large, cumbersome, and may not yield
useful measures [13, p94].

They therefore propose the minimalist reposit-
ory model summarised in Figure 7 comprising of
products that over some time period generate faults
when some version of it is installed. The other
tables of this repository are bridge entities.

1+ [* 1+ |+
Incident [ Fault- * PROD-VER
*
PV-IS PV-INS
Period [ insaliation |
Abbreviations:

INS- installation
IS installation session
PROD- product

PV- product version
VER- version

Figure 7: The Kitchenham & Mellor reliability re-
pository model.

Their model is focused only on fault collection.
The notion of a design ENHANCEMENT is missing
from this repository. This model makes no at-
tempt to record data relating to many of the is-
sues addressed by RA-2. For example, it does not
track PLANS or ACTIVITIES. Also, it does not dis-
tinguish OO from non-OO from any other devel-
opment approach (e.g. by decomposing products
into their CODE constituents).

4.2.2 SMART-2

SMART-2 [3] was develped as a software manage-
ment tool for project management based around
the US Army’s Software Test and Evaluation
Panel (STEP) metrics model.

In SMART-2, a phase (a.k.a. SEQUENCED
ACTIVITY) is distinguished from a control task
(a.k.a. sUPPORT ACTIVITY). The permitted STEP
phases are: planning, requirements analysis, prelim-
inary design, detailed design, coding, testing, sofware



integration, releasing. Further, userReqSpec, soft-
wareReqSpec, softwareSysSpec are subclasses of re-
quirements analysis. The permitted STEP control
tasks are project mgmnt, sqa (software quality as-
surance), configuration mgmnt, and change resolu-
tion. SMART-2 uses numerous traceableTo links
to maintain tracability between design fragments
documents that generated them.

RA-2 is different from SMART-2 in several

ways:

e RA-2 has a special kind of userReqSpec that
is specific to OO: USE CASES.

e The RA-2 link from the USE CASE require-
ments DOCUMENT to PRODUCTS and TEST
cAsES (Figure 1) is missing in SMART-2.

e Like the Kitchenham & Mellor model,
SMART-2 models BUGS but not ENHANCE-
MENTS.

e RA-2 makes no strict prescriptions about the
valid software phases; i.e. SMART-21s STEP-
specific. RA-2 is a more general model and
could model numerous process models (in-
cluding STEP) using its ACTIVITY networks.

e STEP is a model of a waterfall approach.
There is no version control on files or plans
as offered by RA-2 (§3). Further, there is no
REVIEW control task in SMART-2 suggesting
that commit partitions and risk-driven devel-
opment is not supported by STEP.

4.2.3 PAMPA

The PAMPA system [21] (Process Attribute
Measurement and Predicting Associate) was built
as part of an experiment in software support for
continuous process improvement. In some re-

spects, RA-2 is a simpler model than PAMPA:

e PAMPA has a three-level break-up of organ-
isation, area and group, RA-2 could model the
same information using nested TEAms. Our
approach allows for arbitray nested TEAMS
while PAMPA assumes three-levels only.

e PAMPA specifies that files store requirements,
design, documents, or source. RA-2 just as-
sumes that all FILES are the same, but are as-
sociated to different sub-classes of PRODUCT.

e PAMPA associates softwareProducts with a
supplier that can be in a reusableSourceFile or a
COTSRuntFile. RA-2 has a simpler file struc-
ture and uses the single PRODUCT.VISIBILITY
attribute (§2.2) to model the ability of a de-
veloper to change a program.

PAMPA permits more iteration than SMART-2.
Each file-type is an aggregation of a rework class
which we suspect serves the same function as our
FILE.NEXTVERSION relation (Figure 5).

The PAMPA article [21] says that the soft-
wareProduct entity somehow models resources and
schedule, but is unclear on how this is done.

While we find some aspects of the PAMPA
model unclear and over-specific, the major contri-
bution of this work is the use of software agents
to automatically populate parts of the metrics re-
pository. RA-1 was developed as part of a tool to
assist with the interactive logging of bugs and en-
hancements found in a program [18]. Experience
has shown that this is a tedious task. Any auto-
matic help with metrics collection would greatly
assist the usability of a repository. Elsewhere, we
are experimenting with the automatic generation
of method call graphs from OO programs [4, 14].
If these experiments are successful, then we would
use our message call graph generators to specify
a RA-2 propucT database down to the message
call graph level. Such a database could be used to
produce an unambiguous measure of software re-
use; i.e. reuse means having the same edges in the
call graph.

4.2.4 Harrison

The Harrison model [8] focuses solely on product
metrics (see Figure 8). The only PRODUCT recog-
nised is CODE PRODUCT. This repository breaks
up source code down to (e.g.) (i) the level of where
variables are assigned and used; and (ii) the line
where procedures are defined. The Harrison model
makes no reference to classes, but this could be
easily added.

The Harrison work raises the question: what
is the appropriate level of description for code
products? Harrison argues that his detailed code-
level breakdown could (i) support the standard
code counting-metrics (e.g. [7]); (ii) and provide
rigorous definitions of such metrics. Of the other



code_line(line_id, line_type).
statement (stmt_id, stmt_type).
identifier(identifier_id, indentifier_alias,
identifier_type).
operator(operator_id, operator_item).
proc(proc_id, proc_name).
makes_up(line_id, proc_id).
appears(line_id, stmt_id).
executed_in(operator_id, stmt_id).
used_in(identifier_id, stmt_id).
assigned_in(identifier_id, stmt_id).
invokes(stmt_id, proc_id).

Figure 8: The PROLOG-based Harrison model.

product repository models studied here, only RA-
1 and RA-2 approach the Harrison level of cong
detail. (recall that RA-1 and RA-2 map coDE
down to the METHOD level; see Figure 5). The
other models are far less-detailed: e.g. PAMPA
stops at the sourceFile level; SMART-2 stops at
a somewhat ill-defined module level. Note that
if our experiments in method call-graph generat-
ors (§4.2.3) are successful, then we will have auto-
matic tools that allow us to extend RA-1 and RA-
2 to a Harrison-level of detail for OO programs.

4.2.5 The TAME Resource Model

The TAME resource repository model [12], as its
name suggests, is focused on resource metrics. Tt
is intended to be process independent. Resources
are divided according to their type, use and descrip-
tion. Resource type includes the RA-2 software,
hardware, and PERSON resources, plus a support

resource type which we don’t understand (hence,
its absence from RA-2). The TAME model paper
also conducts an interesting comparative review of
other repository models.

The TAME repository model prompted the ad-
dition of the USAGE class in RA-2 (Figure 2). Re-
source planning requires knowledge of the cosT
and ACCESSIBILITY of that resource.
tracking requires a comparison of the current Ac-
TUAL time versus the DESIRABLE ESTIMATED time.

RA-2 simplifies some aspects of the TAME

model:

Resource

e The TAME model refers to a utilised and a
actual attribute which we have compressed to
ACTUAL.

e The TAME workType is modeled as ACTIV-
11y, pointiInCalenderTime has become the
ACTIVITY date attributes; and resourceUtilised
has become the UsaGE bridge class.

The TAME model also attempts to model nu-
merous attributes relating to ESTIMATED time such
as the source of the estimate (algorithm, indvidual
experience, database of past projects). At the time
of this writing, we are still reviewing this aspect of

the TAME model.

5 Conclusion

A widely-used metrics repository model would
have to be process independent, yet sympathetic to
certain special constructs in different approaches.
For example, the use case module of RA-2 does
not extensively effect the majority of the model.
That is, the use of use cases in RA-2 is optional.
The other repository models reviewed here are not
so sympathetic to OO (lack of iteration support
and fixed names for a set of waterfall-style activ-
ities).

In terms of diagram size, the RA-2 is much big-
ger than some (e.g. the Kitchenham & Mellor
model, the Harrison model), slightly bigger than
PAMPA, somewhat smaller than SMART-2, and
much smaller than some of the work reviewed in
the TAME resource model paper. Our experience
with students using RA-1 is that automatic sup-
port such as the PAMPA agents and out call-graph
generators is required for the maintainence of the
data in repository models.

Curiously, much of the RA-2 model makes little
reference to OO concepts. OO software is still soft-
ware and it would seem that process/resource de-
scriptions are general to much of software. Further,
Figure 5 shows us that that if we pick our meta-
model with care, then at a level of abstraction,
product descriptions can also be uniform across
different software paradigms.

The state of the art in metrics repository design
is in its infantcy. With the exception of this art-
icle and the TAME resource model paper [12],
we know of no comparative analysis of repository
models. Much more discussion is required before
we can evolve a widely acceptable standard repos-
itory model.



6 Appendix

AL algorithm Improving algorithmic logic.

BL blunder Mental typo: code is syntactic-
ally correct but (e.g.) two vari-

able names have been switched.

DA | data Inappropriate function calls to
a type (e.g. asking a hash table

for its third element).

D1 debug, Language debugger is called
levell (development environment
does not crash).

D2 debug, System locks up, crashes work-
level 2 station and/or dumps core.

DO | documen- Code  should be  better
tation commented

FO forgotten Missing function.

TE iteration Defect in use of iteration (e.g.
not initialising a counter, infin-
ite loops).

N interface Inappropriate function calls to
methods/functions in your own
application.

v invariant Variables have somehow

violation entered an illegal state.

MM | mismatch

A defect between specification
and code.

OT | other Something that does the fit the
other categories. If lots of oth-
ers are recorded, then the cat-
egories need extending.

SN syntax FError that would cause a com-

piler syntax error.

SS shocking A realisation that something is
surprise basically wrong with the cur-
rent design. SS is a special
kind of error that prompts ma-
jor design changes.

CL | design Desirable enhancement to ex-
general- isting design with an aim to fu-
isation ture possible reuse (e.g. recog-

nition of a useful OO design
pattern, adding methods to
class libraries).

CU | clean up Change needed for enhance-

ment or clarity;

EU | end-user

Making it easier for end-users

usability to use the system.
1C invariants FEnsuring that invariants re-
checking main invariant.

PF | performance| Changing a program so that it
is operationally more efficient.

QU | quality Desirable enhancement to
product.
RE | reuse Change to existing design such

that application functionality
can be implemented using ex-
isting code.

RO | robustness Making code less error-prone
(e.g. graceful degradation in

the face of typos in user input).

[8] W. Harrison.

Figure 10: Enhancements

[4] M. Connell and T.J. Menzies. Quality Metrics: Test

Coverage Analysis for Smalltalk, 1996. (in press).

[5] N. Fenton, S.L. Pfleeger, and R.L. Glass. Science and

Substance: A Challenge to Software Engineers. ITEEFE
Software, pages 86-95, July 1994.

[6] N E Fenton. Software Metrics. Chapman and Hall,

London, 1991.

[7] M.H. Halstead. Elements of Software Science. El-

sevier, 1977.
Towards Well-Defined, Shareable

\;FVX typi ETp(;)gratphmal fatigue errorl. n Product Data. In R.W. Selby H. Dieter Rombach,
wor _d P " ie © manage some plat- V.R. Basili, editor, International Workshop on Ex-
aroun orm bus. periment Software Engineering: Critical Assessment

and Future Directions, pages 107-111, 1992.
Figure 9: Bugs [9] B. Hodgson. Personal communication. Hodgson de-
rived his meta-model from a recent analysis of how
CASE tools are used in business environments, 1996.
References [10] I. Jacobson and M. Christerson. A Growing Consensus
on Use Cases. JOOP, pages 15—-19, 1995.
[1] B. Boehm. A Spiral Model of Software Develop- [11] I. Jacobson, M. Christerson, P. Jonsson, and G. Over-

ment and Enhancement. Software Engineering Notes,
11(4):22, 1986.

[2] G. Booch. Object Solutions: Managing the Object-
Oriented Project. Addison-Wesley, 1996.

[3] C.L. Chee, S. Jarzabek, and C.V. Ramamoorthy. An
Intelligent Process for Formulating and Answering
Project Queries. In SEKFE ’96: the Fight Interna-
tional Conference of Software Engineering and Know-
ledge Engineering, pages 309-316, 1996.

gaard. Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley, 1992.

[12] D. R. Jeffery and V.R. Basili. Validating the TAME

Resource Data Model. In Proceedings of the 10th
International Conference on Software FEngineering,
pages 187-201, 1988.

[13] B. Kitchenham and P. Mellor. Data Collection and

Analysis. In N. E. Fenton, editor, Software Metrics,
chapter 6. Chapman and Hall, London, 1991.



(14]

(15]

(16]

(17]

(18]

o]
[20]

(21]

T. Menzies and P. Haynes. Empirical Observations of
Class-level Encapsulation and Inheritance. Technical
report, Department of Software Development, Monash
University, 1996.

T.J. Menzies and P. Haynes. The Methodologies of
Methodologies; or, Evaluating Current Methodologies:
Why and How. In Tools Pacific '94, pages 83—-92.
Prentice-Hall, 1994.

D. Parnas. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM,
5(12):1053-1058, December 1972.

S Ramakrishnan and T. Menzies. An Ongoing Exper-
iment in O-O Software Process and Product Measure-
ments. In Procedings SEEP’96, New Zealand, 1996.

S Ramakrishnan, T. Menzies, M. Hasslinger, P. Bok,
H. McCarthy, B. Devakadadcham, and D. Moulder.
On Buidling an Effective Measurement System for
OO0 Software Process, Product and Resource Tracking.
Technical Report TR96-XX, Department of Software
Development, Monash University, 1996.

K.S. Rubin and A. Goldberg. Object Behavior Ana-
lysis. Communications of the ACM, 35(9), 1992.
J. Rumbaugh. Getting Started: Using Use Cases to
Capture Requirements. JOOP, pages 8-23, 1994.
D.B. Simmons, N.C. Ellis, and Kuo W. Software Pro-
cess Agents. In Proceedings of the Figth International

Conference on Software FEngineering and Knowledge
Engineering, pages 323-329, 1996.

Some of the Menzies and Ramakrishnan papers can

be found at http:// www.cse.unsw.edu.au/ ~timm/pub/

docs/papersonly. html.



