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Abstract

It is an interesting and exciting challenge to change
programming modalities from a traditional text-
based approach to a 2-D screen. Based on a survey
of current visual programming systems, we find
that numerous software engineering and knowl-
edge engineering techniques are required to meet
that challenge. Further, we argue that VP systems
can benefit from on-going knowledge engineering
research on the computational complexity of dif-
ferent representations. Hence, we conclude that
the designers of VP systems should be well-versed
in a wide range of knowledge engineering and soft-
ware engineering techniques.

1 Introduction

It is an interesting and exciting challenge to change
programming modalities from a traditional text-
based approach to a 2-D screen. When faced with
such a challenge, we find that a wide range of soft-
ware engineering and knowledge engineering tech-
niques are required. For example:

e The main problem with constraint-based
visual programming languages (e.g.  the
THINGLAB) is not its visual presentation.
Rather, it is the the speed of the underly-
ing constraint satisfaction mechanism. Con-
straint satisfaction is a well-studied problem

in Al (e.g. [13, 14, 29]).

e The designers of the visual expressions (see
Section 3) of a VP system often use existing
software engineering diagramming tools (e.g.
the E-R diagrams of SUPER [8], the structure
charts of PICT [15], or petri nets). The use
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of such familiar software engineering visuali-
sations reduces learning times.

More generally, the central claim of this article is
that the design of effective VP languages requires a
wide knowledge of software engineering and knowl-
edge engineering techniques. To demonstrate this,
we will first define VP and discuss some of its bene-
fits (see Section 2). We will explore the VP field us-
ing the framework shown in Figure 1 (taken from a
recent survey of the VP field [31]). Figure 1 shows
three dimensions along which we can characterise
VP systems: the visual expressions (see Section 3),
their purpose (see Section 4), and their design (see
Section 5). In our conclusion (see Section 8), we
will list the numerous knowledge engineering and
software engineering techniques used in VP. Fur-
ther, we will argue that VP designers are ignoring
important state-of-the-art knowledge engineering
research (see Section 6).

2 What i1s VP?

2.1 Definition

As a rough rule-of-thumb, a visual program-
ming system is a computer system whose execu-

purpose
(see Figure 3)

visual
expressions design
(see Figure 2) (see Figure 4)

Figure 1: Dimensions of a VP system



tion can be specified without scripting except for
entering unstructured strings such as ¢ ‘Monash
University Banking Society’’ or simple ex-
pressions such as a > 7. Visual representations
have been used for many years (e.g. Venn di-
agrams) and even centuries (e.g. maps). Exe-
cutable visual representations, however, have only
arisen with the advent of the computer. With
falling hardware costs, it has become feasible to
build and interactively manipulate intricate visual
expressions on the screen.

More precisely, a non-visual language is a one-
dimensional stream of characters while a VP sys-
tem uses at least two dimensions to represent its
constructs [5]. We distinguish between a pure VP
system and a visually supported system:

e A pure VP system must satisfy two criteria.
Rule #1: the system must execute. That is,
it is more than just a drawing tool for soft-
ware or screen designs. Rule #2: the specifica-
tion of the program must be modifiable within
the system’s visual environment. In order
to satisfy this second criteria, the specifica-
tion of the executing program must be config-
urable. This modification must be more than
just (e.g.) merely setting numeric threshold
parameters.

e There exists a class of VP systems that are
not pure, but are visually supported systems.
Most commercial VP systems are not pure VP
systems, such as Microsoft’s VISUAL BASIC,
Borland’s DELPHI, and IBM’s VISUALAGE.
For more details on visually supported sys-
tems, see Section 4.

2.2 Benefits of VP

Visual programming (VP) is an seen by many as an
exciting alternative to traditional text-based com-
puting. For example:

When we use visual expressions as a
means of communication, there is no need
to learn computer-specific concepts be-
forehand, resulting in a friendly comput-
ing environment which enables immedi-
ate access to computers even for com-
puter non-specialists who pursue appli-
cation domains of their own. [20]

Green et. al. [17] and Moher et. al. [33] sum-
marise claims such this as the superlativist po-
sition; i.e. graphical representations are inher-
ently superior to textual representations. Both the

Green and Moher groups argue that this claim is
not supported by the available experimental evi-
dence. Further, they argue against similar claims
of information accessibility; for example:

Pictures are superior to texts in a sense
that they are abstract, instantly compre-
hensible, and universal. [20]

We will return to the issue of information acces-
sibility below (see Section 3.2). For the meantime,
we note that the doubts of Green et. al. and Mo-
her et. al. regarding the utility of diagrammatic
reasoning are not universally accepted:

o Koedinger [23] argued that diagrams can sup-
port and optimise reasoning since they can
model model whole-part relations.

e Larkin & Simon [25] argue that diagrams can
optimise certain types of reasoning (e.g. fea-
ture extraction and searching through related
concepts). Both the Larkin & Simon and the
Koedinger study argue for the computational
superiority of diagrams for representing prob-
lems that have a two-dimensional component.

o Goel [16] studies the use of ill-structured dia-
grams at various phases of the process of de-
sign. In a well-structured diagram (e.g. a
picture of a chess board), each visual ele-
ment clearly denotes one thing of one class
only. In a ill-structured diagram (e.g. an im-
pressionistic charcoal sketch), the denotation
and type of each visual element is ambigu-
ous. Goel found that ill-structured tools gen-
erated more design variants (i.e. more draw-
ings, more ideas, more use of old ideas) than
well-structured tools.

e Kindfield [22] studied how diagram used
changes with expertise level. According to
Kindfield, diagrams are like a temporary swap
space which we can use to store concepts
that (i) don’t fit into our head right now and
(ii) can be swapped in rapidly; i.e. with a
single glance.

3 Expressions in a VP System

3.1 A Spectrum of Visual Expres-
sions

Visual expressions are of at least five types in in-
creasing order of visual extent: text, simple forms,
tables, icons, and diagrams (see Figure 2).
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Figure 2: Visual expression types

Purely text-based systems have the lowest-level
of visual expressiveness. Simple form-based sys-
tems are slightly more expressive. These systems
let the user “fill-in-the-blanks” of some prototype
specification to generate a more specific specifica-
tion. Simple form-based systems may require very
limited graphical support and can be developed
on character-based screens. Such character-based
screens limit the representation of (e.g.) two-
dimensional graphs. Hence, simple form-based
systems are low-end VP systems.

We take care to distinguish between “simple
form-based” systems and more general form-based
systems such as Ambler’s FORMS system [1]. Am-
bler argues that forms are a really an extension of
the tabular/spreadsheet expression. FORMS uses
a sophisticated interface in which users can specify
the properties of adjacent cells by a single mouse
drag across multiple cells.

Tabular expressions make extensive use of the
position of their cells. For example, a spread-
sheet cell can be the sum of the cell above and the
cell immediately to the left. Having mentioned
spreadsheets, we stress that the current genera-
tion of commercially available spreadsheet pack-
ages are weak examples of VP systems. All non-
trivial spreadsheet applications require the use of
intricate syntax to define formulae or macros. A
better example of the use of tabular expressions
is the original QBE system [41]. QBE allows a
user to “draw” a database query on a character-
based screens. The drawing is a little table that
reflects the relational structure of the database be-
ing queried. Projects and selects can be specified
by filling in the cells of the drawn table with re-
strictions or matches for its values. Joins can be
specified by drawing the joined tables, then using
the same variable names in the different tables.

In icon-based languages (e.g. XErOX STAR [35]),

the position of the icon usually does not effect the
services offered by that icon. Typically, users can

click on the icon to access a menu of services. How-
ever, moving the icon around the screen can repre-
sent the transfer of data or the application of some
function to some data (e.g. moving a file between
a directory).

Diagrammatic systems utilise a wide variety of
pictures in their interface. Diagrammatic systems
are characterised by “plug-and-play”;i.e. the user
creates an diagram by linking up visual compo-
nents offered from a palette. Often, users can cre-
ate the visual analogue to a sub-routine by batch-
ing up a commonly used diagram into a single icon.
For example, a new visual part representing the
constraint that a point is (i) on a line and (ii) mid-
way between the two end points can be created in
THINGLAB [2] by placing these two existing vi-
sual constraints into the same “construction view”
area. Once there, the net constraints are the union
of the individual constraints. This new constraint
can be used subsequently in the same manner as
the constraints supplied with the start-up system.
The new icon for this construct can then be added
to a palette thus extending the system’s function-
ality. Alternatively, the icon stays on the screen
and only expands out into its full detail if the user
clicks on it.

3.2 Which Visual
Use?

Expression to

In practice, a VP system uses a combination of
many of the above visual expressions. For exam-
ple, MicrosorT’s Acciss database product imple-
ments a QBE variant in which users can specify
joins across tables by drawing lines between icons
representing the different fields. Projects, selects
are specified via a tabular interface. The data
dictionary is controlled by a form-based interface
while screen designs are specified by an iconic in-
terface.

Interestingly for the claim made in our intro-
duction, many icon-based VP systems adopt di-
agramming conventions that mimic conventional
software engineering practice (e.g. the E-R dia-
grams of SUPER, the structure charts of PICT,
or petri nets). Recall the doubts of Green et. al.
and Moher et. al. mentioned in Section 2.2. Both
Green et. al. and Moher et. al. explored these
claims experimentally. Their subjects attempted
some comprehension task using both visual ex-
pressions and textual expressions of a language.
This study rejected the information accessibility
hypothesis (i.e. pictures are instantly understood)
when they found that novices had more trouble
reading the information in their visual expressions
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Figure 3: Purpose of a VP system

than experts. That is, the information in a dia-
gram can only be accessed after a training process.
The use of standard software engineering diagram-
ming conventions avoids the need for a training
program in order to understand the icons of a VP
tool.

4 Purpose of a VP System

Figure 3 shows a rough characterisation of the pur-
pose of a VP system: i.e. specifiers or visualisers.
Specifiers are tools that let the user record their
requirements visually. For example, an interactive
E-R diagramming tool could automate the gener-
ation of database tables directly from the entered
diagrams (e.g. SUPER [8]).

Specifiers may or may not be able to execute
their specification within their own visual envi-
ronment. Two interesting sub-categories of non-
executing specifiers are screen painters and design-
only tools:

o Screen painters (e.g. VISUAL Basic) give a de-
veloper an interactive point and click environ-
ment for placing window widgets (e.g. but-
tons, list boxes, text fields) on a screen. Typ-
ically, these systems can then automatically
generate the layout code for these widgets.
The developer must then use a textual lan-
guage to code the semantics and interactions
of the widgets

e Design-only tools (e.g. an OO notation draw-
ing tool) give a designer an interactive point

and click environment for placing design nota-
tion icons on a screen. Depending on the tool,
relationships between the icons can be spec-
ified via specialised edge types. These tools
may or may not support automatic code gen-
eration. These tools are design-only in the
sense that the developer cannot watch the de-
sign execute within the environment of the de-
sign tool. Note that SUPER is not a design-
only tool since developers can watch database
queries executing within the SUPER environ-
ment.

Screen painters and design-only tools do not sat-
isfy RULE #1 of a pure VP systems (see Sec-
tion 2.1) since they do not execute. However they
are widely used in industry and so, pragmatically
speaking, they represent a important category of
VP systems. Hence, we call non-executing speci-
fiers visually supported systems.

Executing specifiers can be divided into wvisual
specification shells and visual languages. A visual
shell hides a conventional syntactic language be-
neath an visual specification environment. The
shell executes by translating its diagrams down
into the underlying language (for example, PICT
converts its structure charts into a subset of PAS-
CAL [15]). A visual language allows the user
to specify new language primitives. For exam-
ple, recall the new constraint added in the above
THINGLAB example. Specifiers may include a vi-
sual trace facility. For example, whenever control
moves to a part of a program, its associated icon
may highlight.



Visualisers can be divided into scientific visu-
alisers and animators. Animators try to represent
in a comprehensible way the inner-workings of a
program. In the BALSA animator system [4], stu-
dents can (e.g.) contrast the various sorting al-
gorithms by watching them in action. Note that
animation is more than just tracing the execution
of a program. Animators aim to explain the in-
ner workings of a program. Extra explanatory
constructs may be needed on top of the program-
ming primitives of that system. For example, when
BALSA animates different sorting routines, special
visualisations are offered for arrays of numbers and
the relative sizes of adjacent entries.

Animators may or may not be pure VP sys-
tems. BALSA does not allow the user to mod-
ify the specification of the animation. To do so
requires extensive textual authoring by the devel-
oper. BALSA therefore does not satisfy RULE #2
of pure VP system a visually supported system
(see Section 2.1). However, there is no theoretical
reason why future animation system could not per-
mit visual specification of the animations. Hence
we draw animators in Figure 3 on the border of
pure VP and visually supported systems.

Scientific visualisers (e.g. THINKERTOY [18§]
and 1THINK [21]) are tools for support simula-
tions. Arbitrary networks of computational de-
vices can be drawn and executed. Tools are pro-
vided for reporting visually the output of the ex-
ecutions. A particular focus of current scientific
visualisers is the display of changes to continu-
ous variables over time. Scientific visualisation re-
quires the presentation of large amounts of data.
THINKERTOY provides the user with numerous
visual tools that support (e.g.) the graphical dis-
plays of time-varying values; crystal growth across
some 3-D terrain; and the manipulation of data
values by user-specifiable filters. Since the user can
modify the specification of the simulation within
the visualiser’s environment, scientific visualisers
are also be executable specifiers.

5 Designing a VP System

When building a VP system, designers have to
specify a semantic base, a syntactic base and a
set of basic constructs which can be used in the
start up system. For a description of the syntactic
base, see the above discussion on visual expressions
(Section 3). Many systems permit the extension of
the basic constructs (e.g.) in the manner described
above for THINGLAB (see Section 3). Note that if
a base construct does not include some sort of con-

ditional branching, then the VP system can only
ever piece together building blocks defined outside
the VP system.

Semantics bases include control-flow, func-
tional, data-flow, constraint-based, logic-based and
procedural-based (see Figure 4). Procedural-based
systems convert their diagrams into some under-
lying language (e.g. recall that PICT is converted
into PASCAL). While this has some advantages
(e.g. simple execution), it implies that the idiosyn-
crasies of the language have to be handled at the
visual level. The other semantic bases listed above
strive for a simple uniform view of the program
structures. Such uniformity simplifies the inter-
face construction, decreases the amount a user has
to learn, and promotes a uniform mental model for
the user of the VP system.

syntactic base —= (see Figure 2)

procedural
(e.g. PICT)

design <—= base constructs
data-flow

semantic base ~ (e.g. FABRIK,

LABVIEW)
control-flow
(e.g. PICT) \
declarative functional
A/\ (e.g. GARDEN/
constraint-based | ogic-based GELO)
(e.g. THINGLAB) (e.g. SUPER)

Figure 4: Design choices within a VP system

In a control-flow VP system, wusers ma-
nipulate iterator expressions (e.g. while-do,
repeat-until), conditional expressions (e.g.
if-then, case) and sequence expressions (e.g.
do this, then this, then that) to explicitly
specify the control of the system. Control-flow sys-
tems model traditional flow chart systems. Inter-
estingly, PICT is both a control-flow system and a
procedural system.

An interesting variant of control-flow systems
are functional VP systems (e.g. the LISP-based
GARDEN [36]/ GELO [37] systems). In these sys-
tems, users manipulate expressions that can re-
cursively contain expressions. All the expressions
respond to the same high-level protocol. For ex-
ample, sending the message execute to an if ex-
pression will result in the conditional part of that
if being sent the message execute. If this returns
true, then the if expression will send the message
execute to its action part, which will contain some
sequence expressions. These will all be executed



in turn. The GARDEN system uses the encapsula-
tion of object-oriented programming to implement
this common high-level protocol.

A simple trace facility for such functional sys-
tems can be implemented as follows. Whenever
execute is sent to an expression, its visual repre-
sentation on screen highlights. As this highlight
moves over the screen, users can watch the control
flow. While simple to implement, this approach
has certain intrinsic limitations. Only in a purely
functional system can the semantics of an expres-
sion be contained in itself and its contained expres-
sions. Certain global processing (e.g. joins across
two relational tables) cannot be easily visualised
by such a local propagation trace algorithm.

In a data-flow VP system (e.g. LABVIEW [39],
FABRIK [27], and the systems reviewed in [19]),
control is implicit. Each expression manipulated
by the user describes:

e A set of data sources;
e Possibly, a set of conditionals;
e And action(s) to perform when:

1. All the data sources are available and

2. The conditions (if any) that use data
from those sources are satisfied.

If the actions are performed then the expres-
sion is said to have fired. After firing, an expres-
sion may become an available data source for some
downstream expression. At runtime, the pattern
of firings ripples out across a network of connected
expressions. A simple example of a data-flow sys-
tem is a petri net. In a basic petri net comprising
directed arcs and places (i.e. edges and vertices re-
spectively), a set of tokens move out over the net.
A place is fired if out all of its incoming places and
none of its outgoing places have tokens. On firing,
tokens are removed from each incoming place and
one token is deposited in each outgoing place.

Hils argues [19] that a data-flow system is a good
design choice for the purpose of scientific visuali-
sation. Given a library of filters that can modify
data, it is a simple and intuitive process for users
to add filters to data-flow edges in order to trans-
form data. Monitors for data values can be added
in the same simple manner.

In a constraint-based VP
system (e.g. THINGLAB), the user visually speci-
fies the invariants for each expression. At runtime,
a constraint-solver permits manipulations that do
not violate the invariants. Declarative constraints
can be used to test user-proposed actions or to pro-
pose valid-actions. Any user-proposed action that

violates the invariants is blocked. Given the cur-
rent state of the system, a constraint-based system
can generate menus of valid actions by generating
all variable bindings that would not violate the in-
variants, given the current state.
Constraint-based systems are a variant on logic-
based systems (e.g. SUPER). Such logic-based sys-
tems represent their expressions in a uniform re-
cursive manner. Expressions can contain logical
variables which can be bound at runtime and only
unbound after backtracking on failure. At run-
time, a general theorem prover is used to seek a
set of bindings that are consistent with the theory.
Visual logic-based systems can be traced by up-
dating the display of expressions whenever a vari-
able is bound/unbound. Unlike tracing for func-
tional systems, this logic-based tracing can visu-
alised global variables. For example, all the rows
in a database table are global. As the theorem
prover searches over the table, the attributes that
satisfy the expressions are fetched and displayed.

6 Discussion

In this section we argue that the designers of VP
systems should take an active interest in on-going
research in other areas. Specifically, we will argue
that state-of-the-art research in knowledge engi-
neering can benefit certain VP systems.

6.1 General Explanation Systems

One criticism we have of the BALSA system is
that its explanations must be hand-crafted for each
task. General principles for explanation systems
are widely discussed in Al. Wick and Thomp-
son [40] report that the current view of ezplana-
tion is more elaborate than merely “print the rules
that fired” or the “how” and “why” queries of tra-
ditional rule-based expert systems. Explanation is
now viewed as an inference procedure in its own
right rather than a pretty-print of some filtered
trace of the proof tree. In the current view, expla-
nations should be customised to the user and the
task at hand. For example:

e Paris [34] describes an explanation algorithm
that switches from process-based explanations
to parts-based explanations whenever the ex-
planation procedure enters a region which the
user is familiar with.

o Leake [26] selects what to show the user using
eight runtime algorithms. For example, when



the goal of the explanation is to minimise un-
desirable effects, the selected structures are
any pre-conditions to anomalous situations.
Leake’s explanation algorithms require both
a cache of prior explanations and (like Paris)
an active user model.

Summarising the work of Wick and Thompson
& Leake & Paris, we can now diagnosis the reason
for the lack of generality in BALSA’s explanation
system: BALSA lacks (i) the ability to generate
multiple possible explanations; (ii) an explicit user
model; (iii) a library of prior explanations; and (iv)
a mechanism for using (ii) and (iii) to selectively
filter (i) according to who is viewing the system.

6.2 Optimisation

Al research could optimise certain VP tasks. For
example:

e The major runtime limit a of constraint-based
VP systems is the speed of the underlying con-
straint solver. This is a well-studied problem
in AI. For more details, see [13, 14, 24, 29].

e We view the data-flow model used in FAB-
RIK and LABVIEW as a generalisation of the
event-driven programming model. Each event
handler is like a data-flow node that waits for
certain data (events) to arrive. We note that
production systems [25] can also be viewed
as data-flow systems. Production rules condi-
tions act as demons that await the arrival of
certain data elements before executing their
conclusion. The AI community has spent
considerable effort in optimising production
rule systems in both a distributed and non-
distributed environments [9, 12].

6.3 Limits to Optimisation

Al has also defined hard limits to certain computa-
tional approaches. Seemingly-minor modifications
in a representation system can change the run-
time speed of that system dramatically [3]. VP
designers should therefore be aware that certain
seemingly-intuitive interfaces may be undesirable
due to the cost of executing them. We expand on
this point in the next section.

7 Case Study:
QMOD

Our general case is that VP designers who are ig-
norant of work in other fields may repeat the mis-

Optimising

takes made in those fields. This section presents a
case study demonstrating exactly this point.

7.1 About QMOD

QMOD [11] is a qualitative version of the quanti-
tative ITHINK system. The interface to QMOD
looks like TTHINK, but with all numbers replaced
with the qualitative variables up, down or steady.
When QMOD executes, it must manage the mul-
tiple what-ifs generated by executing an under-
specified system.

QMOD executes over qualitative theories like
Figure 5. Given a set of goal OUT puts and known
Z N puts, then QMOD can build a set of proof trees
‘P connecting ZA puts to OUT puts. In Figure 5,

(1) x i y denotes that y being up or down could
be explained by x being up or down respectively
while (ii) x — y denotes that y being up or down
could be explained by x being down or up respec-
tively. If we assume that (i) the conjunction of an
up and a down can explain a steady and that (ii)
no change can be explained in terms of a steady
(i.e. a steady vertex has no children), then we can
partially evaluate Figure 5 into the and-or graph of
literals shown in Figure 6. This graph contains one
vertex for each possible state of the nodes of Fig-
ure 5 as well as and vertices which models combina-
tions of influences (for example, gDown and bDown
can lead to fSteady).

Figure 5: A qualitative theory.

For  example, in  the case where
OUT = {dUp,eUp,fDown} and ZN ={aUp,bUp},
then Py=alp — xUp — yUp — dUp, P2= alUp —
cUp — gUp — dUp, P3= aUp — cUp — gUp — eUp,
Ps= bUp — cDown — gDown — fDown, Ps=
bUp — fDown.

Some of these proofs make assumptions;i.e. use
a literal that is not one of the known FACT S (typ-
ically, FACTS =ZN U OUT). Note that some of
the assumptions will contradict other assumptions
and will be controversial (denoted A¢). For exam-
ple, assuming cDown and cUp at the same time is
contradictory. The key controversial assumptions
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Figure 6: The search space tacit in Figure 5

are those controversial assumptions that are not
dependent on other controversial assumptions. We
denote these base controversial assumptions Apg.
In our example, Ac={cUp,cDown,gUp,gDown}
and Ap = {cUp, cDown} (since Figure 5 tells us
that g is fully determined by c). If we assume cUp,
then we can believe in the world YW; containing the
proofs P; Py P3 Ps since those proofs do not as-
sume cUp. If we assume cDown, then we can believe
in the world Ws containing the proofs P; Py Ps
since these proofs do not assume cDown. These
worlds are shown in Figure 7.

World #1 U U
/ p —=yUp—-~. dUp

alp eUp

World #2

Up
7 xUp —= Y
aUp N dup

/ cDown—= gDown\
bUp fDown

Figure 7: Two worlds from Figure 5

Originally, I agreed with the developers of
QMOD that the system was doing something in-

teresting and novel. I read some of the qualitative
reasoning and complexity literature, but was un-
clear if it applied at all to QMOD.

When I began experimenting with scaling up the
models used in QMOD, I found that the system
could not handle models much bigger than those
it was originally developed for. The problem was
worlds generation: it did not terminate for models
much bigger than those used to develop QMOD.
The focus of my research then changed to trying
to optimise QMOD.

7.2 Lesson 1

After much experimentation and reading in the lit-
erature, I found that I was applying a very dumb
algorithm to a very hard task. The slowest way
to build QMOD worlds was how I was doing it;
i.e. via basic chronological depth-first (DFS) back-
tracking. 1 should have known better. Mack-
worth [28], in 1977, and DeKleer [7], in 1986, of-
fered clear warnings about DFS. If a DFS search
algorithm learns some feature of the domain, it
can forget it on backtracking and be doomed to
re-learn that feature later.

After reading Mackworth and DeKleer, I build
a new version of QMOD called HT4 that caches
what information it learns about the search space
it traverses. This information is learnt via a set
of sweeps. In the forward sweep, HT4 finds Ac
as a side-effect of computing the transitive closure
of ZN. In the backwards sweep, HT4 constrains
proof generation to the transitive closure of ZN .
As a proof is grown from a member of OUT back
to ZN, five invariants are maintained. (i) Proofs
maintain a forbids set; i.e. a set of literals that
are incompatible with the literals used in the
proof. For example, the literals used in P; forbid
the literals {aDown, aSteady, xDown, xSteady,
yDown, ySteady, dDown, dSteady }. (i) A
proof must not contain loops or items that contra-
dict other items in the proof (i.e. a proof’s mem-
bers must not intersect with its forbids set). (iii) If
a proof crosses an and node, then all the parents
of that node must be found in the proof. (iv) A
literal in a proof must not contradict the known
FACTS. (v) The upper-most A¢ found along the
way is recorded as that proof’s guess. The union
of all the guesses of all the proofs is Ap.

Once Apg is known then the proofs can be sorted
into worlds in the worlds sweep. HT4 extracts all
the objects O referenced in Ag. A world-defining
environment ENV; is created for each combina-
tion of objects and their values. In our exam-

ple, ENV; = {cUp} and ENVy = {cDown}. The



worlds sweep is simply two nested loops over each
ENV; and each P;. A proof P; belongs in world
W if its forbids set does not intersect the assump-
tions EN'V; that define that world.

This algorithm ran two orders of magnitude
faster than the original QMOD.

7.3 Lesson 2

Sadly, even with the speed up noted above, this
new improved version of QMOD still did not ter-
minate for models merely twice as big as those used
in the original QMOD study. In one study [32], 94
new models were made by randomly adding in ver-
tices and edges to the original QMOD models. Fig-
ure 8 shows the average runtime for executing HT4
over 94 and-or graphs and 1991 <IN, OUT >
pairs [30]. For that study, a “give up” time of
840 seconds was built into HT4. HT4 did not ter-
minate for |[V| > 850 in under that “give up”
time (shown in Figure 8 as a vertical line). We
conclude from Figure 8 that the “knee” in the ex-
ponential runtime curve kicks-in at around 800 lit-
erals (QMOD was originally developed for a model
with 554 literals).
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Figure 8: Average runtimes.

Once again, I went back to the literature to
find that, formally, the process called HT4 is re-
ally abduction. One drawback with abduction is
that it is slow. Selman & Levesque show that
even when only one abductive explanation is re-
quired and the theory is restricted to be acyclic,
then abduction is NP-hard [38] (i.e. runtimes are
likely to be exponential on model size). Bylander
et. al. make a similar pessimistic conclusion [6].
Computationally tractable abductive inference al-
gorithms (e.g. [6, 10]) typically make restrictive
assumptions about the nature of the theory or the
available data. Such techniques are not applicable
to arbitrary theories.

Therefore, I should not have been surprised that
a mere two-orders of magnitude speed up in the

runtime of HT4 did not permit the processing of
very large models. Exponential runtimes defeat
mere polynomial optimisations. Once the knee of
the exponential runtime curve kicks-in, then a de-
veloper should not expect to be able to tame the
runtimes.

7.4 Summary

Twice in the development of a VP system, I could
have used existing Al research to (i) avoid certain
problems and (ii) recognize what problems were
unavoidable. Of course QMOD cannot be scaled
up to large theories. Anyone who is familiar with
the literature on search, complexity, and abduc-
tion would have been able to tell me that. Note
that the relevant literature was not in obscure es-
oteric publications. Rather, it was published in
mainstream Al journals and conferences.

8 Conclusion

In the above review, we have seen the use of the fol-
lowing software engineering techniques in VP sys-
tems:

e Forms-based interfaces in FORM and spread-
sheets;

o Relational databases in QBE and SUPER,;

e Numeric simulation 1n I1THINK and

THINKERTOY;

e Third-generation languages in PICT;

e Object-oriented programming in GARDEN;

e In order to encourage information accessi-
bility, many VP systems adopt standard
software engineering diagrammatic notations

(e.g. the E-R diagrams of SUPER, the struc-
ture charts of PICT as well as petri nets.

We have seen the following knowledge engineer-
ing techniques used:

o Constraint-based reasoning in THINGLAB;

e Logic-programming in the PROLOG-based
SUPER system;

e Functional programming in the LISP-based
GARDEN system;



Also, we have made a case that VP systems
can benefit from on-going knowledge engineering
research in the fields of constraint-based reason-
ing, production systems optimisation and explana-
tion. We have also cautioned against using a new
representational system without first studying its
computational complexity. We have offered a case
study in which the develop of a VP system wasted
some months because it ignored the published re-
search relating to the basic computational process
that it was trying to visualise. Hence, we advise
that the designers of VP systems should be well-
versed in a wide range of knowledge engineering
and software engineering techniques.
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