
3-1

Extending Knowledge Engineering
to Requirements Engineering
from Multiple Perspectives

Debbie Richards Tim Menzies

AI Department, School of Computer Science and Engineering,
The University of New South Wales, Kensington

Abstract: If the costs of requirements engineering (RE) are prohibiti ve, then RE will rarely be applied.
We present an RE strategy designed to handle confli cting perspectives that is an extension to current KE
techniques. We instantiate this approach in the context of formal concept analysis (FCA) and ripple-down-
rules (RDR). FCA was used to build explanatory T-boxes from performance A-boxes created by an RDR
system. This approach is applicable to any representation which can be mapped into a decision table.
However certain representations offered advantages during the conflict resolution phase.

1. Introduction

Is requirements engineering (RE) a complicated addition to current knowledge engineering (KE)?
Will the process of rationalising multiple conflicting viewpoints slow down the production of an
expert system? If the costs of RE are prohibitive, then RE will rarely be applied.

In this paper, we present a simple RE strategy that is an extension to current KE techniques. Given
assertions in rulebases (the A-boxes) from different stakeholders, we generate and critique a
concept hierarchy (the T-box). Conflicts recognised in the T-box can be used to drive negotiation
strategies amongst the different stakeholders. A general framework for this approach is described
together with an instantiation using formal concept analysis (FCA) (Will e, 1982) and ripple-down
rules (RDR) (Compton and Jansen, 1990).

This paper is organised as follows. Section 2 introduces RE and section 3 describes our RE
framework that is instantiated in section 4. Related work and the conclusion are presented in
Sections 5 and 6, respectively.

2. Requirements Engineering: A Review

Requirements engineering (RE) can be defined as "the elicitation and formulation of requirements
to produce a specification " Easterbrook (1991, p.8). Current requirements engineering focuses on
the maintenance of multiple concurrent viewpoints from different stakeholders (e.g. Easterbrook
or Finklestein et al 1994).

3-2

There are a number of reasons why it is important to capture these multiple viewpoints rather than
taking the approach that the different viewpoints must be captured into one specification. Tracking
multiple perspectives is needed because:

1. Specification errors are often the cause of a poor choice between alternatives during the
specification phase (Ramesh and Dhar 1992). By tracking multiple perspectives a history of the
design rationale is provided so that when modifications are necessary they can be made more
quickly (Easterbrook 1991) and based on the background that formulated them in the first
place (Easterbrook 1991, Ramesh and Dhar 1992).

2. Many people are involved in projects requiring information to be passed between groups and
phases. Individuals will forget and may change over time, subgroups have different roles and
viewpoints (Easterbrook 1991).

3. Allows steps to be replayed and retraced. This has implications for reuse of specifications
because if it is understood in what circumstances a certain path should be taken then these
steps can be reapplied (Easterbrook 1991).

4. A more representative specification can be developed and a better framework for conflict
resolution can be provided. The specification acts as both a contract and a communication
channel (Easterbrook 1991).

5. Ownership is an important issue and by allowing multiple perspectives owned by the originator
of that perspective we are more likely to motivate the user to participate in the resolution
process. (Easterbrook 1991).

Our concept of a viewpoint corresponds to Finkelstein et al's (1989) formalisation of a viewpoint
which includes: a style, area of concern, a specification, a work plan and a work record. This
allows for an individual to hold a number of viewpoints and removes some of the problems of
equating a particular viewpoint with an individual. Each owner of a viewpoint we call a
stakeholder. When managing different viewpoints, conflict between different stakeholders must be
handled.

3. Our Framework

Our viewpoint management framework has five steps shown in Figure 1. These five steps are
iterative. For example, once a conflict has been detected and the decision is to modify an existing
concept we go back to the first step of requirements acquisition to update the appropriate KBS.

4. An Implementation

Our general framework in Figure 1 has not committed to any particular implementation choices.
We continue now looking at this framework but within the context of our instantiation. As a result
a number of restrictions on the generality of our implementation are imposed.

3-3

Repeat
1. Requirements acquisition - Capture each viewpoint in a working

knowledge based system (KBS). The KBS is an assertional knowledge
base (A-box)1, which we call the performance system, and a
terminological knowledge base (T-box), which we call the explanation
system, plus a set of cases. These cases can be divided into historical
cases representing true observations from the domain; and hypothetical
cases representing some desired functionality. Note that historical cases
cannot be doubted while hypothetical cases can possibly be ignored.

2. Requirements integration - convert all KBS into a common format.
3. Concept generation - In this phase we add to the T-box for each

individual KBS.
4. Concept comparison and conflict detection - Compare the T-boxes of

each KBS and detect conflicts.
5. Negotiation - Employ a resolution strategy based on the type of conflict

detected in step four. Output of this phase is fed back into phase one.
Until all stakeholders satisfied

Figure 1: A Framework for Requirements Engineering.

4.1 Phase One: Requirements Acquisition using a knowledge-based approach

We take a knowledge-based system (KBS) approach to requirements acquisition. In this paper, we
focus on the case where the inputs are multiple A-boxes provided from multiple experts, the T-
boxes are empty and the set of cases for each A-box is not empty, that is A ≠ ∅, T = ∅ and X ≠
∅, where A, T and X denote an assertional KBS, terminological KBS and set of cases,
respectively. We place a further restriction that the A-box must be convertible into a decision
table. It has been shown (Colomb 1993) that any decision tree or propositional KBS may be
converted into a decision table. Other work (Richards and Compton 1997) has shown how ripple-
down rule (RDR) systems can easily be converted into decision tables. Conversion to a decision
table is also suitable for production rule-based systems and has been applied to a number of CLIPS
KBS. For our purposes we distinguish between RDR systems and propositional rulebases which
we call “standard rules”.

This phase is also the maintenance phase for once one cycle is completed it is vital to ensure that
the changes made to the explanation system (T-box) output from Phase Five are reflected in the
appropriate individual and shared performance systems (A-boxes). This study proposes the use of
multiple classification RDR (MCRDR) (Kang, Compton and Preston 1995) for Knowledge
Acquisiton (KA) and knowledge representation (KR). We adopt RDR because maintenance in
RDR is a simple task that can be performed by the user and does not suffer from the side-effect
problem which occurs in typical rule-based systems (Soloway, Bachant and Jensen 1987). An

1 Assertional KBS are made up of executable assertions (such as rules) that assert the relationships between terms.
Terminological KB consist of terms structured into inheritance networks (Brachman 1979). Their main building
blocks are concepts and roles and they reason by determination of subsumption between concepts (Nebel 1991).

3-4

additional benefit of RDR, as mentioned above, is that the rule pathways map directly into a
decision table and do not need intermediate conclusions to be mapped to primitive conditions as
many rule bases require.

The RDR approach to KA is to run a case and show the user the system-assigned conclusions. If
the user agrees with the conclusions given then they process the next case. If they do not agree
with a conclusion they take the option to reclassify the case. Reclassification involves specifying
the correct conclusion and picking some features in the case that justify the new conclusion. These
features form the conditions of the new rule. The new rule is added as an exception to the rule that
gave the misclassification. The case that prompts a rule to be added is stored in association with
the new rule. When a new rule is added, the rule must distinguish between the present case and all
the stored cases that can reach that rule. To do this, the expert is required firstly to construct a
rule which distinguishes between the new case and one of the stored cases. If other stored cases
satisfy the rule, further conditions are required to be added to exclude a further case and so on
until no stored cases satisfy the rule. Stopping rules, which prevent an incorrect conclusion by
providing a null conclusion are added in the same way. Surprisingly the expert provides a
sufficiently precise rule after two or three cases have been seen (Kang, Compton and Preston
1995). Multiple Classification (MCRDR) is defined as the triple <rule,C,S>, where C are the
children/exception rules and S are the siblings. All siblings at the first level are evaluated and if
true the list of children are evaluated until all children from true parents have been exhausted. The
last true rule on each pathway forms the conclusion for the case. Figure 2 shows an example of an
MCRDR.

� � � � � �
� � � 	 � � �
 � � � � � �

� � � �
 �
� � � � � �
 � � � � �

� � � � � �
� � � � � �
 � � � � � �

� � � � � �
� � � �
 � � � � � �

� � � � � �
� � � �
 � � � � � �

� � � � � �
� � � � � �
 � � � � � �

� � � � � �
� � � �
 � � � � � �

� � � � � �
� � � �
 �
 � � � � � �

� � � � � �
� � � �
 � � � � � �

� � � �
 � �
� � � �
 �
 � � � � � �

� � � � � �
� ! " " � # $ � � � �

Figure 2. An MCRDR KBS.
The highlighted boxes represent rules that are satisfied for the case {a,d,g,h,k}. We can see that there are two
independent conclusions for this case, Class 2 (Rule 2) and Class 5 (Rule 10). Rule 5 had been the cause of a
confli ct between viewpoints. To resolve this confli ct it was decided that attribute g should be dropped. As described
in Figure 6, the STOPPING RULE is used to say that this pathway should not fire, so even though the case satisfies
Rule 5 that rule is stopped from being reported. We can see that Rule 10 now replaces the rule pathway for Rule 5
dropping the attribute g.

3-5

The greatest success for RDR has been the Pathology Expert Interpretative Reporting System
(PEIRS) (Edwards et al 1993). PEIRS went into routine use with approximately 200 rules and
grew in a four year period (1990-1994) to over 2000 rules. The system was maintained by the
expert and the 2000 rules represents a development time of 100 hours.

As noted in our general framework, the input to Phase One also includes a set of cases. The
importance of the set of cases is twofold. Firstly, on a general level, the cases are used in the
negotiations as counterexamples for discussion. Seondly, using the RDR approach as described
above, or other case-based technique, the cases are also used for initial KA and for modification of
other views. The way this works is that when a concept is found to be in conflict, as one of our
modification strategies outlined below (see Figure 6), we pass the case or cases associated with
that concept to the other stakeholder for KA. This should either resolve the conflict or at least
ensure that both parties have given their views given the same set of criteria. In Related Work we
suggest how we can obtain cases.

4.2 Phase Two: Requirements integration

Requirements integration is the process of ensuring that all viewpoints are in formats that can be
compared. Adopting our general framework, it may be that viewpoints have been captured using
different KR. To avoid the requirement of mapping from all KR’s used into all other KR’s, that is
N2 mapping schemes, we convert all KRs into one format so that we only need 2N mapping
schemes. As mentioned in Phase One, in our current implementation we can use any
representation that maps into a decision table so that a common approach to subsequent phases
can be taken. We explain in the next section why we have the decision table format restriction.

4.3 Phase Three: Concept Generation

In our general framework, an explanation system could already exist (that is, T ≠ ∅ in Phase One).
Alternatively, it could be supplemented or built in this phase. In the current work, we restrict
ourselves to the case where T = ∅. The approach we have chosen is to begin with a performance
system and later derive the explanation system. We start with a set of privately owned and
defended A-boxes (A1..Ai) written by some experts (X1..X i). The knowledge base also includes
some data structures generated from previous cycles through Figure 1. These structures are:

• One circumvent table for each A-box. This table identifies which rules to skip in future RE
sessions.

• One synonym table for the entire system. This table stores mappings of different terms to a
common term.

• One delayIgnore table for the entire system. This table tags defines which T-box conflicts have
been marked as “ignored” or “delayed” in the previous cycle.

For more on these tables, see Section 4.5.

3-6

We have taken the approach of starting with a performance system (A-box) and using that to
derive an explanation system (T-box) because we see that defining and building models is
inherently diff icult and flawed. Easterbrook (1991) points out that one of the reasons why systems
fail to meet the user’s needs is that the original mental model of the user has not been captured in
the final design model. We see the difficulty in capturing mental models as a contributing factor to
the bottleneck associated with KA. We now show how we use FCA to make the leap from A-box
to T-box.

A concept in FCA is comprised of a set of objects and the set of attributes associated with those
objects. The set of objects forms the extent of the concept while the set of attributes forms the
intent of the concept. Knowledge is seen as applying in a context and can be formally defined as a
crosstable. We interpret the decision table in Figure 3 as a formal context where the rows are
objects and the columns are attributes. An X indicates that a particular object has the
corresponding attribute. This crosstable is used to find formal concepts.

Source-
borrower

source
library

input
book

input
card

action
check-in

action
check-out

output
book

output
card

dest.
borrower

dest.
 clerk

Borrower-
check-in

X X X X

Borrower-
check-out

X X X X X X

Library-
check-out

X X X X X X

Figure 3: Context of “Library from Borrower Viewpoint”

In Figure 3 we have the formal context “Library from the Borrower Viewpoint” with the set of
objects = { Borrower check-in, Borrower check-out, Library check-out} and set of attributes =
{ source borrower, source library, input book, input card, action check-in, action check-out, output
book, output card, destination borrower, destination clerk} . The crosses show where a relation
between the object and attribute exists, thus the set of relations = { (Borrower check-in, source
borrower), (Borrower check-in, input book),…,(Library check-out, destination borrower)} . Each
row in the crosstable represents a concept. By finding the intersections of sets of attributes and the
set of objects that share those attributes we are able to form new higher level abstractions. The set
of concepts can be ordered using the subsumption relation ≤ on the set of all concepts which can
be used to form a complete lattice. For a more detailed and formal treatment of our approach see
Richards and Compton 1997.

In Figure 4 the concepts are shown as small circles and the sub/superconcept relations as lines.
Each concept has various attributes and objects associated with it. The labelli ng has been reduced
for clarity. All attributes of a concept are reached by ascending paths from the concept and all
extents are reached by descending paths from the concept. The concept lattice provides
“hierarchical conceptual clustering of the objects (via the extents) …. and a representation of all
implications between the attributes (via its intents)” (Wille 1992, 497).

3-7

Figure 4:The Line Diagram for the Formal Context “Library from Borrower Viewpoint”.
There are 8 concepts altogether. We can see that Concepts No. 5 and 7 share many attributes as they are both
concerned with the check-out process. The differences between them are found in Concepts No. 2 and 4 which show
that Concept No.5 covers the situation when the library inputs a book and Concept No. 7 concerns the situation
where the borrower inputs a card.

4.4 Phase Four: Concept Comparison and Conflict Detection

A number of researchers offer different sets of conflict types (e.g. Easterbrook 1991 and
Schwanke and Kaiser 1988). In this paper, we use the four quadrant model of comparison
between experts developed Gaines and Shaw (1989). This model classifies two conceptual models
as being in one of four states:

Consensus is the situation where experts describe the same concepts using the same
terminology.
Correspondence occurs where experts describe the same concepts but use different
terminology.
Conflict is where different concepts are being described but the same terms are used.
Contrast is where the there is no similarity between concepts or the terminology used.

In this paper we generally take a broader view of conflict to encompass inconsistencies that
include the states of contrast, correspondence and conflict. Gaines and Shaw’s model, however,
does offer us greater precision in describing the nature of the conflict which is important in
deciding how it can be handled. We more formally define the states of consensus and contrast
according the FCA notion of a concept as a related set of attributes and objects. V denotes a
View, C denotes a concept, A denotes a set of attributes and O denotes a set of objects. Figure 5
gives an example of each of the four states as they may appear on a concept lattice.

3-8

 Consensus {V 1 .Ci.. A j } = {V 2 .Ck.. A L } where A j = A L and
 {V 1 .Ci..O j } = {V 2 .Ck.. O L} where O j = O L

 Contrast {V 1 .Ci.. A j ∩ V 2 .Ck.. A L } = ∅ and
 {V 1 .Ci..O j ∩ V 2 .Ck.. O L } = ∅

A concept not in a state of consensus (match found in another viewpoint) or contrast (completely
different to all concepts in another viewpoint) is then either in a state of correspondence or
conflict. The key to deciding which state it belongs to depends on the terminology. In our
approach it would be up to the stakeholder to decide whether the terminology used for an attribute
or object was the cause for two concepts not appearing at the same node. If more assistance for
the user is desired, Gaines and Shaw (1989) have shown that the repertory grid technique can be
used to identify where terminology is the cause of inconsistency.

In Figure 5 we can see how the concept lattice can be used to identify the different types conflict.
The line diagram, from our Windows implementation MCRDR/FCA, shows seven concepts
generated from rules from six different viewpoints, shown as M1-M6. All views include the top
Concept No. 1 which has the default condition. The diagram shows us that views M1 and M4 are
in consensus. M3 is in conflict with M1 and M4 because although it shares the same set of
attributes it has a different conclusion (%VC000 instead of %PL000). Concept No.2 shows that
view M6 is a superset of M1, M4, M3 and M5, therefore in a state of partial conflict with those
views, and is in a state of contrast with view M2. M2 is in a state of correspondence with M1, M4
and M5 because it shares the conclusion (%PL000), the attribute (SILICA = INTERMEDIATE)
but uses (PARTICLE_SIZE = MEDIUM) instead of (GRAIN_SIZE = MEDIUM). If the term

Figure 5: Using the Concept Lattice for Conflict Detection and Negotiation.

3-9

PARTICLE were changed to GRAIN then M2 would also appear at Concept No 3. Concept No.
4 is in partial conflict with Concept No. 3 because it has the additional attribute (OLIVINE =
ALWAYS). If it were decided during the next conflict negotiation phase that the attribute was not
relevant it could be removed and then concept views M1, M4 and M5 would be in consensus. Let
us now look further at the various resolution operators available.

4. 5 Phase Five: Conflict Negotiation

Before we can decide how to fix a detected inconsistency we need to provide a conflict resolution
strategy. There are a number of resolution methods which include negotiation, arbitration,
coercion and education (Strauss 1978). Negotiation is the most appropriate within the assumed
context of parties of equal status and abili ty. As Easterbrook (1989) points out, a good solution
will require creativity and creativity is not something that can be automated. However, since
automation is a fundamental goal of requirements engineering research we extend our approach
beyond a general, genial chat by offering as much automated assistance for this step as possible.

Each RE researcher appears to use a different set of resolution strategies (e.g. Easterbrook 1991,
Thomas 1976). Easterbrook and Nuseibeh (1996) offer five categories that covers the actions we
have found necessary. These are:

• Resolve, correct any errors;
• Ignore, no action is performed;
• Delay, identify the existence of the inconsistency but defer action until a later date;
• Circumvent, identify the existence of the inconsistency so it can be avoided;
• Ameliorate, reduce the degree of inconsistency. This action requires analysis and reasoning.

Resolving conflict will i nvolve correcting all errors. If the cause of disagreement is differences in
terminology, correspondence in the Gaines and Shaw four state model, then one technique is to
up-date all views to conform to an agreed upon set of terminology. This option is probably not
satisfactory to the various stakeholders and also means that the history of changes is being lost or
altered. A simple and more appropriate solution is to use synonym tables which map terms from
individual views into a shared terminology which are then used for comparison.

Another way in which conflict may be resolved is through the addition or deletion of attributes or
objects. The conflict may be that the set of attributes or objects are partially shared by another
concept. To bring these concepts into a state of consensus it may be decided to drop or add
attributes or objects. As mentioned in Phase One, part of our automated support for negotiation is
the abili ty to produce a case associated with the object (rule) that is in question. The cases
associated with all objects that can be reached by downward paths are also relevant to the
discussion. The closer, distance measured in number of objects separating the two nodes, the
object is to the concept in question the more relevant the case should be considered. New
attributes or objects could also be added by showing the associated case to the other party and
using that case for KA. Alternatively, if a hypothetical case is shown to be impossible, then the

3-10

rules based on this case should be dropped. The decision of what action to take is made in this last
phase and performed in Phase One. In Figures 6(a) and (b) we provide a summary of the strategies
applicable to standard rules and MCRDR. Note that:

• In each strategy for handling attributes or objects from standard rules we have added the
requirement that some sort of checking should be done to ensure that there are not unknown
side effects elsewhere in the rulebase. With MCRDR we get this checking for free because we
know that no previously correctly classified cases can become misclassified with the RDR
approach to KA and exception structure.

• RDR has a very tight link between rules and cases. This link is not defined for standard rule
bases. Hence, handling case addition/deletion is not defined in standard rule bases (see Figure
6(b)).

Add Attribute Delete Attribute Add Object Delete Object
Standard Rules Add attribute to

rule. Check
effect on other
rules.

Remove attribute from
rule. Check effect on
other rules.

Add new rule.
Check effect on
other rules.

Remove rule.
Check effect on
other rules.

MCRDR Defined - use
existing KA
approach

Add stopping rule to
rule in error. Add new
rule at top level with
the old rule minus the
attribute to be removed.

Perform KA
using the case
associated with
the concept
which has the
desired object.

Add a stopping
rule.

Figure 6(a) The resolution strategy for handling attribute and objects.

Adding Real
Cases

Deleting
Real Cases

Adding Hypo-
thetical Cases

Deleting Hypothetical Cases

Standard Rules N/A N/A N/A N/A
MCRDR Show to all ILLEGAL Show to all Drop rules - check refinement rules if

they should be dropped or stopped
and a new rule, without the dropped
rule conditions, added.

Figure 6(b) The resolution strategy for handling cases.

We plan to strengthen our negotiation strategies by offering filtering rules which guide the
dialogue between the stakeholder and the system. One filter is the use of preference criteria to
guide the stakeholders in deciding what part of the view should be considered first as a candidate
for change. If we consider the concept lattice structure where objects belonging to a concept are
reached by descending paths and attributes are reached by ascending paths then we can say that if
an attribute at the bottom of a pathway or an object at the top of a pathway is to be removed then
we know that no other concepts will be affected and this can be performed without further
investigation. This strategy can be useful for example, if it had been agreed upon that two
attributes were equivalent and one was at the bottom of a pathway and the other higher up, then it
would be advisable to remove the lower attribute. Other templates or KA scripts (Gil and Talli s

3-11

1997) can be used to guide the user with revising their KBS and ensuring that each of the rules
related to the change are modified and tested.

The last four resolution strategies are relevant for situations in which a complete resolution can
not be negotiated and each one has its appropriate usage. For example, ignoring is a useful
strategy where the issue is not that important or pursuing it is not worth the effort or harm it may
cause to the end solution. These approaches can be termed as living with inconsistency or ‘ lazy’
consistency (Narayanasway and Goldman 1992) and can be compared to fault-tolerant systems
that continue to function after non-critical failures occur. It has been argued that enforcing
removal of all inconsistency “constrains the specification unnecessarily” and “tends to restrict the
development process and stifle novelty and invention” (Finkelstein et al 1994, p.2 & 4). They see
that consistency is necessary within a viewpoint but partial consistency between viewpoints is
allowable.

We also accept that living with inconsistency will be necessary and use tags to identify the status
of the conflict. The use of tags is similar to the use of “pollution markers” (Balzer 1991) that act
as a warning that code may be unstable or that the users should carefully check the output.
Pollution markers can be used to screen inconsistent data from critical paths that must have
completely consistent input. If it is the concept that is being ignored or delayed, we mark the
concept in the shared T-box since there is not necessarily a one-to-one correspondence between
rules and concepts. This updated T-box is used as input in the next T-box generation. However,
we take a different approach to circumvention because the avoidance of certain unstable parts of
the requirements is more relevant to the rules. Therefore, we tag a rule as “circumvented” in the
individual A-boxes. When the new T-boxes are generated these rules will not be included.

The resolution strategies shown in Figures 6(a) and (b) are also applicable to the strategy of
amelioration. However, the result is not consensus but a reduction in the extent of the conflict.
Amelioration results in bringing concepts closer together. If we think in terms of the concept
lattice we would be shortening the distance between the two concepts.

4.6 Evaluation and Discussion

To determine that our RE strategy is resolving conflict we need to employ some measures of the
degree of conflict before and after. By computing a score for each concept in each viewpoint
compared to each other viewpoint and taking the total of these scores we can check that the
degree of conflict after the RE process is less than at the start. We assign of score of 0 to a
concept found to be in a state of consensus with a concept in another viewpoint, since the distance
between them is zero. For concepts in a state of conflict we take the number of attributes
(conditions) that they have but do not share divided by the total number of attributes. This
assumes that the two concepts share the same object (conclusion). If they do not then it appears
that they are not meant to represent the same concept so that comparison is not meaningful. For
concepts in a state of contrast (no partial or complete match in the other viewpoint) we assign a
score of 1, which is the same result as if we used the conflict measure since the number of

3-12

attributes not shared divided by the number of attributes is equal to one. Concepts in a state of
correspondence are treated the same as concepts in conflict since we are ignoring the reason for
the differences and are just interested in the size of the difference. Once terminology differences
are reconciled such concepts will move into one of the other states and be handled accordingly.

The framework described in this paper has been initially tested using the SISYPHUS III (Shadbolt
1996) geology domain. The results from that experiment are reported in a sequel paper to this one,
submitted to the Knowledge Acquisition Workshop to be held in Banff in 1988. In the sequel
paper, we have used the measures in this section to determine how well our RE strategy was
working. By using the synonym table, the resolution operators for adding and deleting attributes
and cases shown in Figure 6 and employing the various resolution tags circumvent, delay and
ignore we were able to achieve more than a 50% reduction in the amount of conflict for the
example given. We also note that the RE extension to the MCRDR/FCA tool that already existed
was less than a 2% increase in the existing 5000 lines of code. We estimate that a full
implementation would require no more than a 10% increase. The interested reader is directed to
the sequel paper for a full description of how each of the five requirements engineering phases can
be applied and evaluated.

5. Related Work

Starting with a performance system and deriving an explanation system, is in complete contrast to
mainstream KA research where the focus is on building domain (Chandrasekaran and Johnson
1993, McDermott 1988, Puerta et al 1992, Schreiber, Weili nga and Breuker 1993 and Steels
1993) and/or ontological (Guha and Lenat 1990, Patil et al 1991, Pirlein and Studer 1994) models
first and using these to develop a performance system. As explained earlier, models are difficult to
capture and unreliable and we prefer to capture knowledge the peformance knowledge that can be
demonstrated and observed. RDR has given us a reliable method for capturing and maintaining
performance knowledge and FCA is the mechanism that lets us derive the explanation system.

In our framework, cases play a critical role and we have assumed that cases are available. One
viable option for the purposes of RE is use cases since they satisfy our need for sets of attributes
and outcomes and are “primarily an approach to discovering requirements from a user-centred
viewpoint” (Rumbaugh 1994, p.23). They could be used in conjunction with RDR or as direct
input into the decision table and maintenance would consist of modification to the use cases. So
that we don’t forget parts of the system we first enumerate the actors, which are external agents
that require services from the system, and then the use cases. Specific values, not generalisations
should be plugged into the cases so that thinking is grounded in precise examples. Rumbaugh
suggests first building a system which contains the domain model and then the application model
using use cases. We can equate the domain model and application model to our T-box and A-box,
respectively. What we are advocating is to use the cases to build the A-box, the rules, from which
we derive the T-box, the concept hierarchy.

3-13

6. Conclusion

We have argued here for a different view of RE. Standard RE is an early-software lifecycle issue.
The viewpoint resolution technique discussed here can be performed whenever we have some A-
box (rules) and cases. Initially, cases will be hypothetical and the rules sets small (snippets of
known business processes). Finally, cases will be “ live” data and rule sets will be large. In either
case we can apply our technique. That is, our “RE Tool” can be applied right throughout the
system development life cycle.

We have described an RE framework as an extension to an existing KE technique. RDR and FCA
were used as subroutines within our RE system. FCA was used to build explanatory T-boxes from
performance A-boxes. This approach is applicable to any representation which can be mapped into
a decision table. However, during our discussion on resolution strategies, we noted that certain
representations offered advantages. For example, when adding an attribute in a standard
propositional rule base, the effects of this addition had to be checked all over the KB. Such a
check comes for free in RDR.

This approach has also addressed a drawback of standard RDR. RDR systems have been shown to
be useful for single expert knowledge acquisition. In such a situation, RDR offers a good
performance module, but a poor explanation module. However, in the case of multiple experts, an
explanation system is required since experts must trade off their competing views. FCA allows us
to build an explanatory T-Box from an A-box initialised by RDR.

References

Balzer, R. (1991) Tolerating Inconsistency Proceedings of 13th International Conference on Software Engineering
(ICSE-13) Austin, Texas, USA, 13-17th May 1991, 158-165; IEEE Computer Society Press.

Brachman, R.J. (1979) On the Epistemological Status of Semantic Networks In Findler, N.V. (ed) Associative
Networks: Representation and Use of Knowledge by Computers Academic Press-50.

Chandrasekaran, B. and Johnson, T. (1993) Generic Tasks and Task Structures In David, J.M., Krivine, J.-P. and
Simmons, R., editors Second Generation Expert Systems pp: 232-272. Springer, Berlin.

Colomb, Robert.M. (1993) Decision Tables, Decision Trees and Cases: Propositional Knowledge-Based Systems
Technical Report No. 266 Key Centre for Software Technology, Department of Compter Science, The
University of Queensland, Australia.

Compton, P. and Jansen, R., (1990) A Philosophical Basis for Knowledge Acquisition. Knowledge Acquisition
2:241-257

Easterbrook, Steve (1991) Eli citation of Requirements from Multiple Perspectives PhD Thesis, Department of
Computing, Imperial College of Science, Technology and Medicine, University of London, London SW7 2BZ.

Easterbrook, S. and Nuseibeh, B. (1996) Using Viewpoints for Inconsistency Management BCSEEE Software
Engineering Journal January 1996:31-43.

Edwards, G., Compton, P., Malor, R, Srinivasan, A. and Lazarus, L. (1993) PEIRS: a Pathologist Maintained
Expert System for the Interpretation of Chemical Pathology Reports Pathology 25: 27-34.

Finkelstein, A.C.W., Goedicke, M., Kramer, J. and Niskier, C. (1989) Viewpoint Oriented Software Development:
Methods and Viewpoints in Requirements Engineering In Proceedings of the Second Meteor Workshop on
Methods for Formal Specification Springer Verlag, LNCS.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J. and Nuseibeh, B. (1994) Inconsistency Handling in Multi -
Perspective Specifications IEEE Transactions on Software Engineering 20(8):569-578.

3-14

Gaines, B. R. and Shaw, M.L.G. (1989) Comparing the Conceptual Systems of Experts The 11th International
Joint Conference on Artificial Intelligence :633-638.

Gil , Yolanda and Talli s, Marcelo (1997) A Script-Based Approach to Modifying Knowledge Bases In Proceedings
of the Fourteenth National Conference on Artifi cial Intelli gence and Ninth Innovative Application of Artifi cial
Intelligence Conference AAAI Press/ MIT Press, Cambridge, Massachusetts.

Guha, T.V., and Lenat, D.B. (1990) CYC:A Mid-Term Report AI Magazine 11(3):32-59
Kang, B., Compton, P. and Preston, P (1995) Multiple Classification Ripple Down Rules: Evaluation and Possibiliti es

Proceedings 9th Banff Knowledge Acquisiti on for Knowledge Based Systems Workshop Banff. Feb 26 - March 3 1995, Vol
1: 17.1-17.20.

McDermott, J. (1988) Preliminary Steps Toward a Taxonomy of Problem-Solving Methods Automating Knowledge
Acquisition for Expert Systems Marcus, S (ed.) Kluwer Academic Publishers, pp: 225-256.

Narayanaswamy, K. and Goldman, N. (1992) “Lazy Consistency” : A Basis for Cooperative Software Development
Proceedings of International Conference on Computer-Supported Cooperative Work (CSCW’92) Toronto,
Ontario, Canada, 31 October- 4 November, 257-264; ACM SIGCHI & SIGOIS.

Nebel, B. (1991) Terminological Cycles: Semantics and Computational Properties In John Sowa (ed) Principles of
Semantic Networks: Explorations in the Representation of Knowledge Morgan Kaufmann Publishers, Inc.
California, 331-361.

Patil , R. S., Fikes, R. E., Patel-Schneider, P. F., McKay, D., Finin, T., Gruber, T. R. and Neches, R., (1992) The
DARPA Knowledge Sharing Effort: Progress Report In C. Rich, B. Nebel and Swartout, W., Principles of
Knowledge Representation and Reasoning: Proceedings of the Third Int. Conference Cambridge, MA, Morgan
Kaufman.

Pirlein, T and Struder, R., (1994) KARO: An Integrated Environment for Reusing Ontologies European
Knowledge Acquisition Workshop ’94, Springer Verlag

Puerta, A. R, Egar, J.W., Tu, S.W. and Musen, M.A. (1992) A Mulitple Method Knowledge Acquisition Shell for
Automatic Generation of Knowledge Acquisition Tools Knowledge Acquisition 4(2).

Ramesh, B. and Dhar, V. (1992) Supporting Systems Development by Capturing Deliberations During Requirments
Engineering IEEE Transactions on Software Engineering 18(6):498-510.

Richards, D. and Compton, P. (1997c) Uncovering the Conceptual Models in Ripple Down Rules In Dickson
Lukose, Harry Delugach, Marry Keeler, Leroy Searle, and John F. Sowa, (Eds) (1997), Conceptual Structures:
Fulfilli ng Peirce's Dream, Proceedings of the Fifth International Conference on Conceptual Structures
(ICCS'97), August 3 - 8, University of Washington, Seattle, USA, Lecture Notes in Artificial Intelli gence,
Springer-Verlag, Number 1257, Berlin pp:198-212

Rumbaugh, James (1994) Getting Started: Using Use Cases to Capture Requirements JOOP September 1994:8-23.
Schreiber, G., Weili nga, B. and Breuker (eds) (1993) KADS: A Principles Approach to Knowledge-Based System

Development Knowledge-Based Systems London, England, Academic Press.
Schwanke, R.W. and Kaiser, G.E. (1988) Living with Inconsistency in Large Systems Proceedings of the

International Workshop on Software Version and Configuration Control Grassau, Germany, 27-29 January
1988, 98-118;B.G. Teubner, Stuttgart.

Shadbolt, N., (1996)URL:http://www.psyc.nott.ac.uk/aigr/research/ka/SisIII
Soloway, E, Bachant, J. and Jensen, K. (1987) Assessing the Maintainabilit y of XCON-in-RIME: Coping with

Problems of a very Large Rule Base Proceedings of the Sixth International Conference on Artifi cial Intelli gence
Vol 2:824-829, Seattle, WA: Morgan Kaufman.

Steels, L. (1993) The Componential Framework and Its Role in Reusabilit y In David, J.M., Krivine, J.-P. and
Simmons, R., editors Second Generation Expert Systems pp: 273-298. Springer, Berlin.

Strauss, A. (1978) Negotiation: Varieties, Contexts, Processes and Social Order Jossey-Bass Publishers, San
Francisco, CA.

Thomas, K. (1976) Confli ct and Confli ct Management In Duneette (ed) Handbook of Industrial and Organisational
Psychology Rand McNally College Publishing Co.

Will e, R. (1982) Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts In Ordered Sets
(Ed. Rival) pp:445-470, Reidel, Dordrecht, Boston.

Wille, R. (1992) Concept Lattices and Conceptual Knowledge Systems Computers Math. Applic. (23) 6-9:493-515.

