Evaluation Issues for Problem Solving Methods

Tim Menzies
Artificial Intelligence Department
School of Computer Science and Engineering
The University of NSW

timm@cse.unsw.edu.au

http://www.cse.unsw.edu.au/ " timm

October 29, 1997

Abstract

Research into problems solving methods (PSMs) has identified numerous pos-
sible benefits for this approach. However, given the current state-of-the-art in
PSM evaluation, these benefits cannot yet be demonstrated. This paper critically
evaluates the published PSM research to argue that further evaluations are now
required. In particular, PSMs should be comparatively evaluated in order to test
if PSMs offer a comparatively better approach to expert systems development.

1 Introduction

There are two kinds of truth, small truth and great truth. You can recognize
a small truth because its opposite is a falsehood. The opposite of a great
truth is another truth. Neils Bohr

Problem solving methods (PSMs) are one of the main topics in modern knowledge
acquisition. This paper argues the PSM literature is mostly exploratory research; i.e.
for the most part it has yet to answer the numerous gquestions it has found concerning
knowledge engineering.

Cohen [Cohen, 1995] distinguishes between exploratory research and evaluation
research: exploratory research enters a new area and finds questions while evalua-
tion research tries to answer those questions. PSM research results (e.g. [Linster,
1992, Schreiber & Birmingham, 1996]), are rarely presented as comparative empiri-
cal results; i.e. some experiment is run multiple times with some variation between
each trial (exceptions: [Corbridge et al., 1995, Gil & Tallis, 1997a, Motta & Zdrahal,
1996, Runkel, 1995, Zdrahal & Motta, 1996]). That is, PSMs have found questions, but
not answers.

This is not because such empirical evaluations are impossible to explicate or collect.
Numerous examples exist in the none-PSM knowledge engineering literature where a
thorough empirical analysis has been performed (e.g. [Gordon & Shortliffe, 1985, Hayes,
1997, Lee & O’Keefe, 1996, Menzies et al., 1992, Preston et al., 1993,Reich, 1995, Vicente
et al., 1995, Waugh et al., 1997, Weiss et al., 1978, Yost, 1992, Yu et al., 1979]).

This lack of empirical evaluation does not mean that the problem solving method
research is somehow fatally flawed. The real strength of the PSM programme, in

my view, is that it lets us define questions about knowledge engineering which can
be evaluated. That is, the PSM literature should be viewed as defining a evaluation
programme that should keep us quite busy for many years to come. In this respect,
PSMs are a tremendous success (in terms of the above Bohr quote, PSMs are a great
truth).

Nor does this lack of empirical evaluations mean that PSM researchers are guilty of
poor science. While this paper will be critical of many of the experiments in the PSM
literature, it must be stressed that it takes time to design a good experiment. Better
experimental designs are created via recognising the flaws in older designs. We cannot
get to the better designs without the earlier versions. Hence, the current generation
of PSM experiments are essential initial steps towards a viable empirical evaluation
programme.

This paper does not offer experimental designs for empirical evaluations (my own
view of such designs are recorded elsewhere; see [Menzies, 1995, Waugh et al., 1997,
Menzies et al., 1997, Menzies & Cohen, 1997, Menzies, 1996b]). Before we can declare
some evaluation design to be good, we need an initial discussion on what constitutes
a good evaluation. Further, we need strong motivation to pursue evaluations since,
generally speaking, evaluations involve a lot of work. The aim of this paper is hence to
review evaluation principles and motivate further work in this area.

I will proceed as follows. Firstly, some briefing notes are presented on empirical
methods which set the stage for a review of the list-of-claims made in the PSM litera-
ture (e.g. [Angele et al., 1996, Benjamins, 1995, Breuker & de Velde (eds), 1994, Chan-
drasekaran et al., 1992, Chandrasekaran et al., 1992, Clancey, 1992, Eriksson et al.,
1995, Marques et al., 1992, Motta & Zdrahal, 1996, Schreiber et al., 1994, Shadbolt &
O’Hara, 1997, Steels, 1990, Swartout & Gill, 1996, Tansley & Hayball, 1993, Wielinga
et al., 1992, Wielinga et al., 1997, Gil & Melz, 1996]). Secondly, contradictory evi-
dence will be presented to this list-of-claims. Those claims are that PSMs support the
following:

e (Claim 1: The construction of adequate KBS systems:

— Claim 1.1: Which are computationally tractable

— Claim 1.2: Which are successful in achieving some task
e Claim 2: Simplification of KBS construction, including:

— Claim 2.1: Initial acquisition
— Claim 2.2: Design and implementation
— Claim 2.3: Better testing

— Claim 2.4: Better maintenance
e Claim 3: Reusing knowledge
e Claim 4: Explanations
Another tacit assumption in the PSM literature will also be analysed:
e Claim 5: PSMs achieves 1..4 in a manner superior to other approaches.

This article assumes that the reader is familiar with PSMs (for an short introduction
to PSM-based approaches, see [Linster & Musen, 1992]).

2 Empirical Methods

One way to assess a system is to carefully measure its behaviour in some experiment.
Standards for careful observations of software experiments have been extensively re-
searched. This section summarises the portions of that research which will be used
in our subsequent discussion. For a full discussion, see [Fenton, 1991, Cohen, 1995].
For introductory remarks to experimental methods, software measurement, and the
evaluation of expert systems, see [Reich, 1995, Fenton et al., 1994, Gaschnig et al.,
1983]. For examples of good empirical evaluations, see [Yu et al., 1979,Corbridge et al.,
1995, Menzies, 1996b, Vicente et al., 1995, Sanderson et al., 1989]. For examples of very
good empirical evaluations, see [Hayes, 1997, Yost, 1992].

2.1 How to Evaluate

Certain basic principles for measurement should always be observed.

Basili [Basili, 1992], characterises software evaluation as a goal-question-metric
triad. Beginners to experimentation report whatever numbers they can collect without
considering the goal of the research project, what questions relate to that goal, and
what measurements could be made to address those questions. Fenton [Fenton, 1991]
offers a theoretical and pragmatic analyses what makes for a good measurement. Good
measurement programs must measure how a product was generated (process measures);
what was generated (product measures); and what resources (e.g. time, skill level of
developers) were used in the production.

Fenton’s comments on resource measurements caution us that a piece of software
should be tested on a different population to those used in developing it. In machine
learning terms, this means training on one set of examples, then testing on an unseen
set of examples [Quinlan, 1986]. In human-in-the-loop knowledge acquisition systems,
this means that the developers of a system should try the system out on other people.
Otherwise, we could encounter the resource conflation problem: i.e. the results could
confuse the skill of the developer with the intrinsic value of the tool.

Measurements should be specified enough such that another researcher can repro-
duce them. Also, it is useful to have an active refutable hypothesis. A good experi-
menter defines a observation which, if seen would refute some active hypothesis.

Another useful principle is the straw man: i.e. some variant of the studied technique
that appears to be obviously inferior. Straw men allow us to be surprised since, some-
times, straw men do not burn; i.e. the apparently stupider approach may sometimes
perform as well as an apparently more sophisticated approach (e.g. see the Corbridge
study below).

Experimental instrumentation must be calibrated using baseline values and gold
standards. It is useful to compare measurements with some baseline value. For example,
if we measure (e.g.) 43 in an experiment, that tells us less than if we can measure 43,
then contrast that with the known baseline value of (e.g.) 21. Also, beware of ceiling
and floor effects; i.e. experiments in which all the measurements are stuck around some
highest or lowest figure. Ceiling and floor effects do not allow us to distinguish variables
in an experiment. For example, suppose all students score 100 percent in a university
entrance exam. That test would be a waste of time since it cannot rank candidates.
Straw men are good for identifying floor effects: if all the measures are clustered around
the measures for the straw man, then the measure should be changed. Lastly, as well
as a baseline, it is useful to be able to compare the results to some have some objective
gold standard.

Sample sizes (N) should be carefully controlled. Small sample sizes are hard to
analyse. However, as random sample size get larger, they approach a bell shape (the
normal distribution) which is a well understood distribution. In practice, N greater
than 20 is acceptable and N greater than 30 is encouraged. On the other hand, there
may be no benefit with making N very large (Cohen argues that sample sizes of N
greater than 50 can be pointless [Cohen, 1995], p116). Spurious correlations can occur
in large sample sizes which may require further experimentation or statistical analysis
to confirm or deny [Courtney & Gustafson, 1983]. In general, when dealing with large
sample sizes, it is best to restrict the conclusions to an analysis of the active hypothesis
that prompted the experiment.

The above basic requirements do not tell us what numbers to collect. This issue has
been addressed in the literature. [Buchanan & Shortliffe, 1984a, Gaschnig et al., 1983]
note that the success criteria should reflect end-user concerns and not internal criteria.
For example, in the PIGE farm-management expert systems, the evaluation was not
(e.g.) number of productions fired per second. Rather, it reflected the concerns of
the population of farmers who might wish to buy the package. We used the following
evaluation criteria: increased profitability per square meter per day [Menzies et al.,
1992].

Cohen remarks that:

Programs are not experiments, but rather the laboratory in which experi-
ments are conducted [Cohen, 1995], p xiii.

We should not ask experts to evaluate a program merely by watching it run. One
side-effect of evaluations studies is the observation that, often, experts disagree ([Gaines
& Shaw, 1989, Shaw, 1988, Gaschnig et al., 1983,Yu et al., 1979]). The halo effect
prevents a developer for looking at a program and assessing its value. Cohen likens the
halo effect to a parent gushing over the achievements of their children and comments
that...

What we need is not opinions or impressions, but relatively objective mea-
sures of performance. [Cohen, 1995], p74.

In the KBS literature, there are two prominent examples of sol-called evaluations
that are better characterised as program watching. The PSM community have the
Sisyphus studies [Linster, 1992, Schreiber & Birmingham, 1996] just as the older expert
systems community had the Oak Ridge spill study [Barstow et al., 1983, Johnson &
Jordan, 1983]. In both studies, a group of international researchers agreed to develop
systems for some common problem. The Sisyphus studies had a better criteria for
success than Oak Ridge (though in the case of Sisyphus-II, it is not clear if all the
participants meet that criteria: see below). With few exceptions (e.g. [Zdrahal & Motta,
1996], see below), reports by Sisyphus or Oak Ridge participants comprise reports of a
single run of the system. Experimentation requires more than one run. Data is collected
for each run and something is slightly different for each trial. Both these studies were
useful in unifying and focusing the work of a large number of researchers. As such, they
were a tremendous success (and the Sisyphus experiments are continuing). However,
as we shall see below, these studies do not qualify as comparative empirical evaluation
studies.

The opposite of the halo effect is when the recommendations of the expert system
are rejected merely because some judge knows that the recommendations come from
a computer program. [Gaschnig et al., 1983] hence recommends blinding studies. In

such blinding studies, the evaluating agent is not told recommendations come from the
expert systems and which come from other sources.

2.1.1 After the Evaluation

After performing one evaluation, your work does not stop there. A good experimenter
critically reviews their results (if they don’t, someone else will) and look for ways to
improve them. For example, the MYCIN evaluation study [Yu et al., 1979] took five
years and two earlier versions to define adequately. Faults with the prior versions were
used to design the next version [Buchanan & Shortliffe, 1984a].

This self-critique stage is very important. There are numerous examples in the
literature where evaluation stopped too early. For example, the first trials with the
XCON system (October to December 1979) comprised a panel of twelve experts. Ten
orders for computers were configured by XCON. These configurations were assessed
and the system deemed proficient. Note that this evaluation process had no well-define
success criteria. In terms of the above discussion, it suffered from program watching and
(possibly) the halo effect. Nevertheless, despite the results of this evaluation study, one
year later, XCON was a poor configuration tool. The earlier evaluation was incomplete
since it only studied a tiny fraction of the set of possible orders [Gaschnig et al., 1983]
(p270-271).

We should routinely expect to have to perform multiple evaluations since not ev-
erything can be measured in one experiment. An ideal experiment simultaneously
scores highly on three dimensions: specificity: tight experiment controls; face validity:
a correspondence of the experimental situation to the real situation; and meaningful-
ness: theoretical depth; i.e. generality and rigor. Sanderson [Sanderson et al., 1989]
comments that the experience of cognitive engineering and ergonomics is that:

It seems to be impossible to do all three at the same time. By mazimizing
any two, there always seems to be a compromise in the third... Individual
studies might mazimise different pairs of dimensions, but taken together the
studies would offer converging evidence on an issue.

Elsewhere, I have discussed the design of languages that support evaluation as an
on-going process through the life cycle of an expert systems [Menzies, 1995, Menzies &
Compton, 1997].

2.1.2 An Example

We illustrate some of the above points with an example taken from the PSM literature.
Corbridge et.al. studied the efficacy of problem solving methods on KA [Corbridge
et al., 1995]. In this study, subjects had a fixed two-hour time period to extract a list
of disorders and knowledge fragments from a transcript of a doctor talking to a patient.
These lists were compared to a gold standard: a list generated using unlimited time by
Corbridge et.al. The results are shown in Table 1.

In a statistical analysis of this study, there was no detected statistical difference
between the ”A” groups. That is, models of problem solving methods invented the
night before assist KA just as well as models developed over more than a decade.
Further, the ”B” group were statistically better than the ”A” groups. That is, using
no PSM was better than using a PSM at all!!

The Corbridge et.al. study is an example of a good experiment. The experiment
contains a straw man, a gold standard, and performed multiple trials with a controlled

Model % disorders | % knowledge

identied fragments
identified

A.1: A quickly developed model which was to have played the | 50 28

role of the “straw man”.

A.2: The KADS diagnosis PSM [Wielinga et al., 1992]. If | 55 34

modern KA theory is correct, this model should have been

the best KA assistant.

B.1: No model, which should have been the worst way to do | 75 41

KA.

Table 1: Analysis via different models

variation between each trial. Further, all the materials associated with the experiment
are offered in the appendix to that paper; i.e. it is reproducible. One complaint with
the study is that the time period involved (2 hours) may not reflect how industrial prac-
tioners really use tools like PSMs. In terms of comments of Sanderson, the Corbridge
study was not optimised for face validity. However, since a single experiment cannot
optimise for face validity and specificity and meaningfulness, this is not a fatal flaw
with the Corbridge study. The best we can usually do is design multiple experiments
that optimise different pairs of the above three goals.

3 Reviewing the Claims of PSMs

This section reviews the list-of-claims made by the PSM literature.

3.1 Claim 1: PSMs Enable the Construction of Adequate KBS
3.1.1 Claim 2.1: Adequate = Computationally Tractable

This section argues that the knowledge-levelview taken by PSM research precludes
arguments of computational tractability.

Expressibility vs tractability trade offs are discussed extensively in the knowledge
representation (KR) literature (e.g. [Levesque & Brachman, 1985]). Solutions to a class
of problems (the NP-hard problems) are known to have an exponential upper-bound
on their runtimes; i.e. may be intractable. Much of the KR literature is concerned with
finding restrictive cases in which a representation can be shown to tractable; i.e. worst-
case runtimes are polynomial. This style of analysis requires a detailed knowledge of the
syntactic structure of a knowledge base (e.g. [Tambe et al., 1990, Tambe & Rosenbloom,
1994, Brachman & Levesque, 1984]). In the usual case, PSM research separates itself
from symbol-level implementation detail (exceptions: [Benjamins, 1993, Fensel, 1995]).
This has the advantage that many implementations could handle this functionality
such as rules, frames, a statistical package, or even a human operator to operationalise
the functionality However, without a commitment to symbol-level detail, a KR-style
analysis of the computational tractability of a KB is impossible.

3.1.2 Adequate = Successfully Achieving Some Task

My reading of the current PSM literature is that experimental evaluations of PSMs
are rare. Hence, it is hard to make a definitive evaluation of the success of PSM-based

Capacity | 20025 [250 | 300-LL | 350 1L | 400 1L
2000 lbs success success fail success success
2500 lbs fail fail success success sucess
3000 1lbs fail success success success success
3500 lbs success fail fail fail fail
4000 1bs fail fail fail fail fail

Table 2: The P&R local greedy search method for configuring elevators fails in 13 out
of 25 legal ranges of speed and capacity. From [Zdrahal & Motta, 1996].

approaches. For example, three impressive PSM-based developments are SHELLEY: a
PSM-based knowledge engineering workbench [Wielinga et al., 1992]; VT: an elevator
configuration system [Marcus et al., 1987,Marcus & McDermott, 1989]; and Sisyphus-II:
attempts to emulate VT [Schreiber & Birmingham, 1996]. These are discussed below.

An example of using the SHELLEY workbench is given in [Wielinga et al., 1992].
In that example a knowledge engineer is shown mapping a transcript of an expert
interview into a library of PSMs. If a user of SHELLEY decides that they are using
some PSM, then the knowledge acquisition process can be directed towards collecting
lists of the terminology required for that PSM. This report of SHELLEY includes no
measurements which explore the efficacy of SHELLEY.

VT was built using a knowledge acquisition tool called SALT [Marcus et al., 1987,
Marcus & McDermott, 1989]. SALT was based on a propose-and-revise PSM. SALT’s
interface restricted itself to only collecting information relevant to that PSM. SALT
automatically generated the majority of the VT rules (2130/3062=70 percent). The
VT results are an impressive demonstration that, in one application, the SALT im-
plementation technology can scale up to very large systems. However, the VT report
is an experience report rather than an evaluation report of the adequacy of the sys-
tem (such an evaluation report would describe data collected from numerous runs with
slight variations between each trial).

While PSMs are extensively studied, their utility in working systems is rarely ex-
perimentally evaluated in the literature. For example, only one Sisyphus-II offering
reports multiple runs with their implementation [Zdrahal & Motta, 1996]. Five vari-
ants on elevator speed and elevator capacity were explored. In 13 of the reported 25
runs, their system could not configure the elevator Their results are shown in Table 2.

Zdrahal and Motta argue that the failures of their elevator configuration system were
fundamental to the propose and revise PSM in the Sisyphus-II specification [Zdrahal
& Motta, 1996]. Standard propose and revise is a local greedy search; i.e. constraint
violations are fixed as they occur. Such a hill-climbing algorithm may ignore solutions
which are initially unpromising, but lead later on to better solutions. That is, the
above errors where not a function of the Zdrahal and Motta implementation. Rather,
they should also have been seen in the other Sisyphus-II offerings if they had followed
the problem specification and if they had run their program over the range of legal
inputs. The fact these errors were not reported elsewhere strongly suggests that the
other Sisyphus-II offerings were not extensively tested. That is, it cannot be argued
that the Sisyphus-II successfully achieve the task of elevator configuration.

In summary, PSM research generally lacks experimental evaluations (exceptions:
the Corbridge study and the work of Motta and Zdrahal). Hence, the claim that PSMs
successfully achieve some task is still an exploratory claim, not an evaluation claim.

3.2 Claim 2: SIMPLIFICATION OF THE KBS CONSTRUC-
TION

3.2.1 Claim 2.1: Initial Acquisition

The Corbridge study (mentioned above) suggests that it is not necessarily so that PSMs
simplify initial acquisition.

3.2.2 Claim 2.2: Design and Implementation

Do PSMs clarify or confuse design and implementation issues? Evaluations in this
regard are rare so this is an open issue. Two studies of the effects of PSMs on imple-
mentation are given below. Note that they offer contradictory results: more empirical
evaluation is required.

Clancey reports that after a PSM analysis of 176 MYCIN rules, he could generate a
new knowledge base where 80 percent of the rules had only a single condition. Further,
the problem solving strategies removed all uncontrolled backtracking [Clancey, 1992].
However, this result has not been reported elsewhere and it can hardly be called an
evaluation study (no repeated runs with some slight change between each run).

Motta and Zdrahal discuss the various Sisyphus-IT implementations using their spe-
cial knowledge of constraint satisfaction algorithms [Zdrahal & Motta, 1994]. I find
their analysis more insightful into the construction process than the less-detailed, high-
level PSM approach. This low-level view of a problem can find errors that experienced
PSM practioners cannot. For example, Motta and Zdrahal argue that one declarative
translation of the procedures in the Sisyphus-II specification blurred the distinction
between hard constraints (which must not be violated) and soft constraints (which can
be optionally violated) [Motta & Zdrahal, 1995].

Elsewhere [Menzies, 1996a], I have argued that PSMs can obscure important simi-
larities. Significant similarities exist between seemingly different PSMs. If we actively
explore those similarities, one basic abductive inference procedure becomes apparent:
the extraction of a consistent subset of a theory that is relevant to some task. Abduc-
tion over and-or graphs can be shown to implement many of the PSMs; i.e. prediction,
classification, explanation, tutoring, qualitative reasoning, planning, monitoring, set-
covering diagnosis, consistency-based diagnosis, validation, and verification [Menzies,
1996a).

3.2.3 Claim 2.3: Better Testing

This section argues that the literature has yet to evaluate the testability of PSMs. While
claims that PSMs improve KBS testing are common, e.g [Shadbolt & O’Hara, 1997,van
Harmelen & ten Teije, 1997, van Harmelen & Aben, 1996, Fensel & Schoenegge, 1997].
However, none of this work has yet to devise an experimental evaluation of their claims
that PSMs = better testing.

A well-developed area of testing research is the knowledge base verification and
validation (V and V) community. Nearly all V and V work focuses on an analysis of
the dependency networks between literals in a rule-base; e.g. [Preece, 1992] (exceptions:
[Fensel et al., 1996,van Harmelen & ten Teije, 1997,van Harmelen & Aben, 1996, Menzies
& Compton, 1997, Menzies, 1996b, Waugh et al., 1997, Zlatereva & Preece, 1994]). As
such, it is usually a symbol-level analysis. One of the premises of knowledge level
modeling is that intelligence can be analysed using knowledge content rather than
knowledge form; i.e. it is irrelevant if it is expressed in rules or frames or C code or

whatever. Hence, for the most part, PSMs cannot utilise the symbol-level V and V
techniques. Note that this rejection of symbol-level analysis was seen above when PSM
tractability was discussed.

In my own research into KBS testing I encountered numerous issues which are
just not addressed in the PSM literature. Firstly, in order to properly validate a
theory, some outside source of knowledge must be mentioned. Generally, this quality
assessment knowledge or social context knowledge must reflect how the knowledge base
will be perceived when it is deployed. Secondly, in my view [Menzies & Compton,
1997], a real world test engine for a knowledge base has to handle inconsistent theories
being developed in poorly measured domains. Routinely, such a test engine has to make
assumptions and mutually exclusive assumptions must be kept in separate worlds. Once
they worlds are generated, a preference criteria must be applied to heuristically select
the best world. Using the criteria of return the world(s) which contain the most known
outputs, we can fault published theories of neuroendocrinology using the data published
to support them (a result first obtained by Feldman and Compton [Feldman et al.,
1989], then repeated and generalised by myself and Compton [Menzies & Compton,
1997]). This test engine has been experimentally evaluated in numerous studies in
which various aspects of the theory being analysed were varied (e.g. theory size and
connectivity [Menzies, 1996a], effects of conjunctions in the theory [Menzies et al., 1997)
and different interpretations of time [Waugh et al., 1997]).

3.2.4 Claim 2.4: Better Maintenance

Maintenance is different to validation and verification. A good maintenance strategy
permits knowledge modification but blocks changes which make changes harder in the
future. That is, changes to section I of KB do not also break sections J, K, L,... Three
significant explorations of the maintenance problem are ripple down rules [Compton
& Jansen, 1990, Preston et al., 1993]; the RIME editor [Bachant & McDermott, 1984,
de Brug et al., 1986, Soloway et al., 1987]; and KA scripts [Gil & Tallis, 1997a]. Of
these, only KA scripts comes from the PSM community. Ripple down rules (discussed
below) abandons the idea of knowledge level altogether. RIME was not based on PSM-
principles:

e RIME had a single hard-wired PSM: control of operator selection in problems
space traversal.

e Problem-solving methods are explicit in standard PSM but are implicit in problem-
space traversal systems. The observation that a problem-space traversal system
is performing (e.g.) classification is a user-interpretation of a lower-level infer-
ence [Yost & Newell, 1989].

This section argues that the KA scripts results represent an interesting exploration
of PSMs, but not an evaluation of the maintainability of PSMs. A comparative analysis
of do PSMs provide better maintenance than alternative approaches? is done below (see
claim 5).

In the case where numerous changes have to be made to a PSM, if the user does
not complete all those changes, then the PSM may be broken. Gil and Tallis [Gil &
Tallis, 1997a] use a scripting language to control the modification of a PSM to prevent
broken knowledge. These KA scripts are controlled by the EXPECT TRANSACTION
MANAGER (ETM) which is triggered when EXPECT’s partial evaluation strategy
detects a fault (errors are detected if a method cannot fire because the types of the

Simple task #1 Harder task #2

no ETM with ETM no ETM with ETM
S4 S1 S2 S3 S2 S3 | S1 S2
Total time (min) 25 22 19 15 74 53 40 41
Time completing transactions 16 11 9 9 53 32 17 20
Total changes 3 3 3 3 7 8 10 9
Changes made automatically | n/a | n/a | 2 2 n/a | n/a | 7 8

Table 3: Change times for ETM with four subjects: S1...S4. From [Gil & Tallis,
1997b]

input parameters to the methods are not available). In one study of maintenance times
by four subjects (51..54) and two change tasks for EXPECT KBS, maintenance was
easier with ETM. For example, ETM performed some changes automatically. The Gill
& Tallis results are shown in Table 3.

These results cannot be read as an evaluation results demonstrating that PSMs
simplify maintenance. While some attempt was made to perform repeated trials whilst
varying some factor, the results do not satisfy several Fenton’s software measurement
criteria:

e Product measures: The two tasks undertaken are not described. We therefore
cannot get a sense of the complexity of the tasks involved. Also, there is no
success criteria offered for the tasks; i.e. it is not clear if the subjects successfully
made changes to the system. Further, since the tasks were not defined, we cannot
attempt to reproduce this experiment (In fairness to the authors of [Gil & Tallis,
1997a), it should be noted that this report was made at a conference with strict
and short page limits).

e Resource measures: It is possible that some of the subjects in the [Gil & Tallis,
1997a] experiment were the authors of the ETM tool. If this were true, then we
have the resource conflation problem.

Also, the results conflate three effects:

e It is possible that the ability to browse around the search space which the proof
procedure could or has traversed is the major contribution of this work.

o It is also possible that transaction control over changes to procedural knowledge
is a technique that could benefit the editors of any procedural representation, not
just PSMs

e It is possible that PSMs enable the above two benefits. But this is not clear from
these results.

3.3 Claim 3: Reusing Knowledge

Reuse is the holy grail of software and knowledge engineering. This section argues that
the reusability of PSMs has not been adequately evaluated.

My reading of the PSM literature is that PSMs change more than they are reused.
Between the various camps of PSM researchers, there is little agreement on the details of
the PSMs. The list of primitives within the PSMs (e.g. select, classify, etc) from KADS
[Wielinga et al., 1992] and the SPARK/ BURN/ FIREFIGHTER project [Marques

10

et al., 1992] are significantly different. Also, the number and nature of the problem
solving methods is not fixed. Often when a domain is analysed using PSM, a new
method is induced [Linster & Musen, 1992].

When we look at published problem solving methods, we see many differences.
For example, [Menzies, 1998] describes eight different supposedly reusable models of
diagnosis (four from the PSM community, four from elsewhere). While some of the these
views on diagnosis share some common features, they reflect fundamentally divergent
different views on how to perform diagnosis. I therefore believe that, at least in the case
of diagnosis, a consensus view on diagnosis has not stabilised with time and that such
a view may not do so in the foreseeable future. More generally, since PSMs have not
stabilised over time, their extensive reuse is hence unlikely. My reading of the current
literature is that my no-reuse argument cannot be faulted due to drawbacks with the
PSM reuse evaluations studies.

Two major studies in PSM-based reuse are the SPARK/ BURN/ FIREFIGHTER
(hereafter, SBF) experiment [Marques et al., 1992] and the MeKA study [Runkel, 1995].
In the SBF toolkit, SPARK builds a domain-specific KA tool that is tailored to the
business information supplied by the user. BURN conducts a structured interview
with the expert. This interview maps the business information offered by the user
into a library of inference sub-routines (called mechanisms). The mapping process is
guided by PSM meta-knowledge. At choice points in the mapping, SBF can ask the
user questions questions which select different PSMs. Once this mapping has been
made, a rule base can be generate which solves the business problem. This is given
to the FIREFIGHTER environment which assists the user in executing and debugging
the operationalised program. Marques et.al. report significantly reduced development
times for expert systems using the 13 mechanisms in the SBF toolkit. In the nine
applications studied by Marques et.al., development times changed from one to 17 days
(using SBF) to 63 to 250 days (without using SBF).

To the best of my knowledge, this study represents the high-water mark in reported
productivity increases in software or knowledge engineering. Nevertheless, the study
has its drawbacks:

e Poor controls on product measures: There is no success criteria offered for each
application. Hence it is possible that the SBF-based application are somehow
inferior to the none-SBF applications.

e Poor controls on resource measures: Who were the personnel who worked on the
SBF development? If they were the SBF developers, then like the KA scripts
study, these we may have the resource conflation problem.

e The SBF experiment is virtually unrepeatable. Only a few organisations like DEC
can spare the personnel to work for nearly a year on throw-away prototypes.

In the MeKA study, Runkel describes eight applications using mechanisms for
knowledge acquisition, or MeKA. Each MeKA divided a PSM into data structure knowl-
edge and control knowledge. MeKAs contain four modules: (i) an acquire/ module
which gathers information such as a formula; (ii) a verify module that checks it; (iii) a
generalise module which tries to apply the new knowledge to more general expressions,
e.g. is the formula applicable to other parameters?; (iv) a dialogue module which han-
dles the screen design for the other modules. All the MeKAs had to be built for the
first application (0 percent reuse), but MeKA reuse in subsequent applications rose as
high as 88 percent. The Runkel results are shown in Table 4.

11

Development Application name %
order

1 Room assignment 2 =0%

2 Elevator configuration 2 =63%

3 Elevator design validation % = 88%

4 Configuration validation | £ =86%

5 Truck design #1 5 =56%

6 Truck pricing 12 =83%

7 Truck design #2 = =50%

8 Truck manufacturing 2 =88%

Table 4: Reuse in the MeKA system. From [Runkel, 1995].

The MeKA study is a better experiment than SBF in that the MeKA work has
more chance of being reproducible. However, it terms of evaluating the reusability of
PSMs, the MeKA study has some drawbacks. Runkel does not comment on who built
the applications. If was himself, then once again we may have the resource conflation
problem. Also, unlike the SBF study, Runkel does not record the time taken to build
each application. That is, if Runkel’s goal related to productivity improvements, his
measurements could not address that question.

3.4 Claim 4. Better Explanations

Wielinga et.al. argue that one of the advantages of KADS (a technique which uses
PSMs) is that its superior ability to explain the inner workings of an expert system
[Wielinga et al., 1992]. Clancey’s Heuristic Classification paper [Clancey, 1985] is an
impressive PSM-based reverse engineering of numerous expert systems in terms of his
heuristic classification technique. The reader is left with a strong impression that
heuristic classification explains the inner-workings of the surveyed expert systems. This
section repeats the arguments of [Menzies & Compton, 1994] to argue that this strong
impression may not be true.

From an empirical evaluation perspective, it is still an open question if PSM-based
approaches produce better explanations. Current thinking in the explanation field
(e.g. [Wick & Thompson, 1992, Leake, 1991, Leake, 1993, Paris, 1989]) is that good
explanations cannot be generated merely via an abstract trace of the system’s traversal
over a task description (e.g. a PSM) or the print the rules that fired approach used in
early expert systems such as MYCIN [Buchanan & Shortliffe, 1984b]). In the current
view, explanation is a problem solving task in its own right. Explanations are user-
specific:

The audience of an explanation can significantly affect the purpose and
therefore the content of an explanation [Wick & Thompson, 1992]

Explanation is an inference procedure that determines what is to be presented to the
user. Leake [Leake, 1991] and Paris [Paris, 1989] discuss explanation algorithms where
explanation presentation is constrained to those explanations which contain certain
significant structures. Paris’s significant structures are determined at design time while
Leake assigns significance at runtime. For example, when the goal of the explanation is
to minimise undesirable effects, the runtime significant structures are any pre-conditions
to anomalous situations. From a range of possible inferences, some subset is selected

12

that meets some understandability criteria for different users and different goals. That
is, a model that is good for explanatory purposes contains some degree of indeterminacy
(can generate more than one behaviour). Also, Leake argues convincingly that a cache
of prior explanations and an active user model are essential components of a good
explanation module [Leake, 1993].

User-profiles, indeterminate models, and case libraries are not issues addressed in
current PSMs approaches. Therefore, in their current form, PSMs may not be a good
generalised explanation tool.

3.5 Claim 5. PSMs Achieve Claims 1..4 in a Manner Superior
to Other Approaches

Consider the statement software technology X lets me do task Y. This is hardly an
evaluation statement since there may be many software technologies that allow us to
implement Y. A better statement is comparative: software technology X lets me do
task Y better than software technology Z. In order to compare an approach, we need
to identify an alternative approach. This section records certain alternatives to PSMs
which have demonstrated competency: problem-space traversal systems, standard soft-
ware engineering, ripple down rules, and human-computer interaction. At the very
least, these systems are straw men. PSMs should at least be able to out-perform the
following, apparently less sophisticated, techniques.

3.5.1 Standard Software Engineering

Significant levels of reuse are already reported in the standard software engineering
literature. Stark reports code reuse levels of 70-80 percent using FORTRAN and some
object-oriented design principles [Stark, 1993]. Frakes and Fox found maximum median
values for reuse in requirements, design, and code reuse at 15, 70, and 40 percent
respectively [Frakes & Fox, 1995]. Frakes and Fox found no significant correlation
between reuse and technology options such as the use of CASE tools; the presence of
code repositories; or language level (assembler has a lower language level than object-
oriented languages such as Smalltalk); The factors that were positively correlated to
reuse were all organisational factors such as practioner education in reused; unified
software process; or industry type (telecommunications always was one of the highest
reusers, possibly due to the standard hardware configurations in that field).

These reports of Stark, Frakes and Fox suffer from inexact measures of reuse. For
example, the Frakes and Fox study never looked at source code: it’s data was based
on a questionnaire sent and returned by post. Nevertheless, this work does show that
some levels of significant reuse may be achievable without technology options such as
PSMs. The empirical evaluation goal of PSM researchers should be some test that
PSMs produce higher levels of reuse that (e.g.) standard software engineering.

3.5.2 Problem-Space Traversal Systems

One of the largest studies in knowledge maintenance is the RIME’s KB editor [de Brug
et al., 1986, Soloway et al., 1987]. RIME acquired parts of the meta-knowledge for
the XCON computer configuration system [Bachant & McDermott, 1984]. RIME is a
problem-space traversal system. It assumes that the KB comprised operator selection
knowledge which controlled the exploration of a set of problem spaces. After asking
a few questions, RIME could auto-generate complex executable rules. RIME has not

13

been evaluated in an empirical experiment (but see [Soloway et al., 1987]). Nevertheless,
RIME is a landmark system. Other PSM-based maintenance research has yet to make
an empirical case that their techniques are superior to RIME.

Another problems-space traversal system was Yost’s Sisyphus-II contribution [Yost,
1994]. The rest of the Sisyphus-II contribution were all PSM approaches. I can see no
evidence of productivity benefits of PSM over Yost’s system in the Sisyphus-II results.
Indeed, Yost’s ”old-fashioned” problem-space traversal system was developed in times
comparable to SALT and faster than many of the other PSM approaches.

These comments on comparative evaluations and Sisyphus-II could be criticised
as follows. The sample size was too small and too inaccurately measured to yield
meaningful results (most Sisyphus-II groups were less-than-rigorous in documenting
their development times except for Runkel et.al. [Runkel & Birmingham, 1994] and
Yost [Yost, 1994]). I return below to the issue of comparative analysis of maintenance
techniques (see ripple down rules). For the moment, all we need to say is that the
comparative advantage of PSMs for maintenance over none-PSM approaches is an open
issue in the literature.

3.5.3 Ripple Down Rules

Compton takes a weak situated cognition [Menzies, 1997] line, which he calls justifica-
tion in context, His argument is that patching in the context of erroris a more realistic
KA approach than assuming that a human analyst will behave in a perfectly rational
way to create some initial correct design [Compton & Jansen, 1990].

RDR implements this patching process. The RDR representation is optimised for
fault localisation in KBS without PSMs [Compton & Jansen, 1990, Compton et al.,
1993]. RDR knowledge is organised into a patch tree. If a rule is found to be faulty,
some patch logic is added on a wunless link beneath the rule. The patch is itself a rule
and so may be patched recursively. Whenever a new patch (rule) is added to an RDR
system, the case which prompted the patch is included in the rule. These cornerstone
cases are used below when fixing an RDR system. At runtime, the final conclusion is
the conclusion of the last satisfied rule. If that conclusion is faulty, then the fault is
localised to the last satisfied rule. Once a fault is localised, an expert can then ask the
system for a list of possible patches. The system replies with a difference list which
is calculated as follows. As the current case navigates down the RDR tree, if it finds
a some satisfied rule, it then checks their unless patches. The different between the
current case and the cornerstone case of the last satisfied rule is the difference list. In
terms of empirical evaluation, RDR is exceptional in that RDR builds evaluation into
the life cycle of the whole system. At anytime, the current RDR tree can correctly
classify 100 percent of the cases seen to date.

RDR trees are a very low-level representation. RDR rules cannot assert facts that
other RDR rules can use. In no way can a RDR tree be called a model in a PSM sense.
Further, the RDR formalism makes no commitment to tree structures that are optimal.
An RDR tree can contain repeated tests, redundant knowledge, and its sub-trees can
overlap each other semantically. Despite these apparent drawbacks, RDR has produced
large working expert systems in routine daily use. In practice the RDR trees are only
twice as big as the optimum tree [Gaines & Compton, 1992] and runtimes have never
been an issue. It may be somewhat misguided to attempt to optimise an RDR tree to
(e.g.) remove the redundancies or separate the overlaps. The important feature of an
RDR tree is that is it optimised for maintenance. Alternative representations may run
faster, but incurs the penalty of more complicated maintenance.

14

In practice, RDR appears to work very well. For example, the PIERS system at
St. Vincent’s Hospital, Sydney, modeled 20 percent of human biochemistry sufficiently
well to make diagnoses that are 95 percent accurate [Preston et al., 1993]. RDR has
succeeded in domains where previous attempts, based on much higher-level constructs,
never made it out of the prototype stage [Patil et al., 1981]. Further, while large expert
systems are notoriously hard to maintain [de Brug et al., 1986], the no-model approach
of RDR has never encountered maintenance problems. System development blends
seamlessly with system maintenance since the only activity that the RDR interface
permits is patching faulty rules in the context of the last error. For a 2000-rule RDR
system, maintenance was very simple (a total of a few minutes each day).

3.5.4 Human-Computer Interaction

The core of the competency of problem-space traversal systems and ripple down rules
is some knowledge base. However, it may be possible to build a system that supports
(e.g.) diagnosis without such a knowledge base. For example, [Vicente et al., 1995]
discusses diagnosis, and fault detection using ’ecological interface design’ (EID). An
EID contains visual representations at five levels of an abstraction hierarchy:

e The functional purpose: visualisations of the purpose for which the interface was
designed;

o The abstract function: visualisations of the intended causal structure of the pro-
cess in terms of mass, energy, information or value flows;

e The generalised function: visualisations of the basic functions that the device is
designed to achieve;

e The physical function: visualisations of the characteristics of the components and
the connections between them;

e The physical form: visualisations of the appearance and spatial location of the
components.

Interestingly, none of this abstraction hierarchy may exist in a knowledge base of an
EID system. Rather, the above five principles are used by an interface designer when
re-arranging and augmenting the display on the screen. No inference engine accesses
this hierarchy at runtime in the conventional knowledge representation sense.

[Vicente et al., 1995] suggest that EID-based interfaces lead to better performance
on diagnosis tasks when subjects are simply asked to monitor the physical While it was
not the intention of the authors of [Vicente et al., 1995] to do so, this work offers a chal-
lenge to the standard KBS view of model-based diagnosis and repair. Rather than build
sophisticated KBS systems, perhaps we should be looking at better interface design?
At the very least, it seems to me that the KBS community should attempt a compara-
tive evaluation of KBS-style diagnosis and fault detection vs EID-based diagnosis and
fault detection.

4 Conclusion

Give me a fruitful error any time, full of seeds, bursting with its own cor-
rections. You can keep your sterile truths for yourself. Vilfredo Pareto

15

PSM research is still exploratory; i.e. it lets us define questions for knowledge engi-
neering (the list-of-claims). However, PSM research is not evaluatory; i.e. the questions
it asks have yet to be answered using empirical evaluation techniques. Evaluation is very
important. Before we can sell PSMs to the wider knowledge engineering community,
we should be able to demonstrate that PSMs are valuable. Such demonstrations are
lacking in the current literature. We should work towards performing such evaluations
in the future.

This article has analysed the drawbacks with current PSM evaluation studies. This
analysis can be used to avoid certain traps in future PSM evaluations such as:

e Lack of empirical experiments: With few exceptions, PSM evaluations are not
conducted via some experiment conducted multiple times with some variation
between each trial.

e Poor calibration: When empirical evaluations are presented, their measurements
lack baselines or comparisons to alternative approaches. Such comparisons are
possible, given the numerous straw men documented above such as ripple down
rules, EID, and problem-space traversal systems.

o Lack of experimental critique: Using standard metrics theory, we can find flaws in
the experimental designs of the few known PSM evaluations. Such flaws should
have been commented on previously in the literature. An analysis of these flaws
will show what kind of experimental evaluations we should conduct in the future.

This critique has only focused on PSMs. A similar critique (too much exploration,
not enough evaluation) cannot yet be applied to the ontologies research (e.g. [Gruber,
1993]). PSMs research is at least 14 years old [Chandrasekaran, 1983] while ontologies
are a much newer concept which are being explored. However, I would hope that
within the next five years, ontological researchers move away from exploratory research
towards evaluation research.

References

[Angele et al., 1996] Angele, J., Fensel, D., & Studer, R. (1996). Domain and Task Modelling in
MIKE. In et.al., A. S., (Ed.), Domain Knowledge for Interactive System Design. Chapman & Hall.

[Bachant & McDermott, 1984] Bachant, J. & McDermott, J. (1984). R1 Revisited: Four Years in the
Trenches. AI Magazine, pages 21-32.

[Barstow et al., 1983] Barstow, D., Aiello, N., Duda, R., Erman, L., Forgy, C., Gorlin, D., Greiner,
R., Lenat, D., London, P., McDermott, J., Nii, H. P., Politakis, P., Reboh, R., Rosenchein, S.,
Scott, A., van Melle, W., & Weiss, S. (1983). Languages and Tools for Knowledge Engineering.
In Hayes-Roth, F., Waterman, D., & Lenat, D., (Eds.), Building Ezpert Systems, chapter 9, pages
283-345. Addison-Wesley.

[Basili, 1992] Basili, V. R. (1992). The Experimental Paradigm in Software Engineering. In Rombach,
H. D., Basili, V. R., & Selby, R. W., (Eds.), Ezperimental Software Engineering Issues: Critical
Assessment and Future Directions, International Workshop, Germany, pages 3—12.

[Benjamins, 1993] Benjamins, R. (1993). Problem Solving Methods for Diagnosis. PhD thesis, Uni-
versity of Amsterdam.

[Benjamins, 1995] Benjamins, R. (1995). Problem-Solving Methods for Diagnosis and their Role in
Knowledge Acquisition. International Journal of Ezpert Systems: Research & Applications, 8(2):93—
120.

[Brachman & Levesque, 1984] Brachman, R. & Levesque, H. (1984). The Tractability of Subsumption
in Frame-Based Description Languages. In AAAT ’8/4, pages 34-37.

[Breuker & de Velde (eds), 1994] Breuker, J. & de Velde (eds), W. V. (1994). The CommonKADS
Library for Ezpertise Modelling. 10S Press, Netherlands.

16

[Buchanan & Shortliffe, 1984a] Buchanan, B. & Shortliffe, E. (1984a). Rule-Based Ezpert Systems:
The MYCIN Ezperiments of the Stanford Heuristic Programming Project, chapter 10. Uncertainty
and Evidential Support, pages 209-232. Addison Wesley.

[Buchanan & Shortliffe, 1984b] Buchanan, B. & Shortliffe, E. (1984b). Rule-Based Expert Systems:
The MYCIN Ezxperiments of the Stanford Heuristic Programming Project. Addison-Wesley.

[Chandrasekaran, 1983] Chandrasekaran, B. (1983). Towards a Taxonomy of Problem Solving Types.
Al Magazine, pages 9-17.

[Chandrasekaran et al., 1992] Chandrasekaran, B., Johnson, T., & Smith, J. W. (1992). Task Struc-
ture Analysis for Knowledge Modeling. Communications of the ACM, 35(9):124-137.

Clancey, 1985] Clancey, W. (1985). Heuristic Classification. Artificial Intelligence, 27:289-350.

Clancey, 1992] Clancey, W. (1992). Model Construction Operators. Artificial Intelligence, 53:1-115.

Cohen, 1995] Cohen, P. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

Compton & Jansen, 1990] Compton, P. & Jansen, R. (1990). A Philosophical Basis for Knowledge
Acquisition. Knowledge Acquisition, 2:241-257.

[Compton et al., 1993] Compton, P., Kang, B., Preston, P., & Mulholland, M. (1993). Knowledge
Acquisition Without Analysis. In European Knowledge Acquisition Workshop.

[Corbridge et al., 1995] Corbridge, C., Major, N., & Shadbolt, N. (1995). Models Exposed: An Empir-
ical Study. In Proceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge
Based Systems.

[Courtney & Gustafson, 1983] Courtney, R. & Gustafson, D. (1983). Shotgun Correlations in Software
Measures. Software Engineering Journal, pages 5-11.

[de Brug et al., 1986] de Brug, A. V., Bachant, J., & McDermott, J. (1986). The Taming of R1. IEEE
Ezpert, pages 33—-39.

[Eriksson et al., 1995] Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., & Musen, M. A. (1995).
Task Modeling with Reusable Problem-Solving Methods. Artificial Intelligence, 79(2):293-326.

[Feldman et al., 1989] Feldman, B., Compton, P., & Smythe, G. (1989). Hypothesis Testing: an
Appropriate Task for Knowledge-Based Systems. In 4th AAAI-Sponsored Knowledge Acquisition
for Knowledge-based Systems Workshop Banff, Canada.

[Fensel, 1995] Fensel, D. (1995). The Knowledge Acquisition And Representation Language KARL.
Kluwer Academic Publisher.

[
[
[
[

[Fensel & Schoenegge, 1997] Fensel, D. & Schoenegge, A. (1997). Hunting for Assumptions as De-
veloping Method for Problem-Solving Methods. In Workshop on Problem-Solving Methods for
Knowledge-based Systems, IJCAI ’97, August 23.

[Fensel et al., 1996] Fensel, D., Schonegge, A., Groenboom, R., & Wielinga, B. (1996). Specification
and Verification of Knowledge-Based Systems. Available from http://ksi.cpsc.ucalgary.ca/KAW/
KAW96/fensel/svkbs .html.

[Fenton et al., 1994] Fenton, N., Pfleeger, S., & Glass, R. (1994). Science and Substance: A Challenge
to Software Engineers. IEEE Software, pages 86—95.

[Fenton, 1991] Fenton, N. E. (1991). Software Metrics. Chapman and Hall, London.

[Frakes & Fox, 1995] Frakes, W. & Fox, C. (1995). Sixteen Questions About Software Reuse. Com-
munications of the ACM, 38(6):75-87.

[Gaines & Compton, 1992] Gaines, B. & Compton, P. (1992). Induction of Ripple Down Rules. In
Proceedings, Australian AI ’92, pages 349-354. World Scientific.

[Gaines & Shaw, 1989] Gaines, B. & Shaw, M. (1989). Comparing the Conceptual Systems of Experts.
In IJCAI ’89, pages 633—-638.

[Gaschnig et al., 1983] Gaschnig, J., Klahr, P., Pople, H., Shortliffe, E., & Terry, A. (1983). Evaluation
of Expert Systems: Issues and Case Studies. In Hayes-Roth, F., Waterman, D., & Lenat, D., (Eds.),
Building Ezpert Systems, chapter 8, pages 241-280. Addison-Wesley.

[Gil & Melz, 1996] Gil, Y. & Melz, E. (1996). Explicit Representations of Problem-Soving Strategies
to Support Knowledge Acquisition. In Proceedings AAAI’ 96.

[Gil & Tallis, 1997a] Gil, Y. & Tallis, M. (1997a). A Script-Based Approach to Modifying Knowledge
Bases. In Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97).

17

[Gil & Tallis, 1997b] Gil, Y. & Tallis, M. (1997b). A Script-Based Approach to Modifying Knowledge
Bases. In Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97).

[Gordon & Shortliffe, 1985] Gordon, J. & Shortliffe, E. H. (1985). A Method for Managing Evidential
Reasoning in a Hierarchical Hypothesis Space. Artificial Intelligence, 26(3):323-357.

[Gruber, 1993] Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199-220.

[Hayes, 1997] Hayes, C. (1997). A Study in Solution Quality Human Expert and Knolwedge-Based
System Reasoning. In Feltovich, P., Ford, K., & Hoffman, R., (Eds.), Ezpertise in Contexzt, chap-
ter 14, pages 339-362. MIT PRess.

[Johnson & Jordan, 1983] Johnson, C. & Jordan, S. (1983). Emergency Management of Inland Oil and
Hazardous Chemical Spills: A Case Study In Knowledge Engineering. In Hayes-Roth, F., Waterman,
D., & Lenat, D., (Eds.), Building Ezpert Systems, chapter 10, pages 349-397. Addison-Wesley.

[Leake, 1991] Leake, D. (1991). Goal-Based Explanation Evaluation. Cognitive Science, 15:509-545.

[Leake, 1993] Leake, D. (1993). Focusing Construction and Selection of Abductive Hypotheses. In
IJCAI ’93, pages 24-29.

[Lee & O’Keefe, 1996] Lee, S. & O’Keefe, R. (1996). The Effect of Knowledge Representation Schemes
on Maintainability of Knowledge-Based Systems. IEEE Transactions on Knowledge and Data
Engineering, 8(1):173-178.

[Levesque & Brachman, 1985] Levesque, H. & Brachman, R. (1985). A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version). In Brachmann, R. & Levesque, H.,
(Eds.), Readings in Knowledge Representation, pages 41-70. Palo Alto, Morgan Kaufmann.

[Linster, 1992] Linster, M. (1992). A review of Sisyphus 91 and 92: Models of Problem-Solving
Knowledge. In Aussenac, N., Boy, G., Gaines, B., Linser, M., Ganascia, J.-G., & Kordratoff, Y.,
(Eds.), Knowledge Acquisition for Knowledge-Based Systems, pages 159-182. Springer-Verlag.

[Linster & Musen, 1992] Linster, M. & Musen, M. (1992). Use of KADS to Create a Conceptual Model
of the ONCOCIN task. Knowledge Acquisition, 4:55—-88.

[Marcus & McDermott, 1989] Marcus, S. & McDermott, J. (1989). SALT: A Knowledge Acquisition
Language for Propose-and-Revise Systems. Artificial Intelligence, 39:1-37.

[Marcus et al., 1987] Marcus, S., Stout, J., & McDermott, J. (1987). VT: An Expert Elevator Designer
That Uses Knowledge-Based Backtracking. Al Magazine, pages 41-58.

[Marques et al., 1992] Marques, D., Dallemagne, G., Kliner, G., McDermott, J., & Tung, D. (1992).
Easy Programming: Empowering People to Build Their Own Applications. IEEE Ezpert, pages
16-29.

[Menzies, 1995] Menzies, T. (1995). Principles for Generalised Testing of Knowledge Bases. PhD
thesis, University of New South Wales.

[Menzies, 1996b] Menzies, T. (1996b). On the Practicality of Abductive Validation. In ECAI ’96.

[Menzies, 1997] Menzies, T. (1997). Is Knowledge Maintenance an Adequate Response to the Chal-
lenge of Situated Cognition for Symbolic Knowledge Based Systems? Special issue of the Inter-
national Journal of Human Computer Studies: “The Challenge of Situated Cognition for Sym-
bolic Knowledge Based Systems”. In press. Available from http://www.cse.unsw.edu.au/~timm/
pub/docs.

[Menzies, 1998] Menzies, T. (1998). OO Patterns: Lessons from Expert Systems. Softare Practice &
FEzperience. In press.

[Menzies, 1996a] Menzies, T. (September, 1996a). Applications of Abduction: Knowledge Level Mod-
eling. International Journal of Human Computer Studies, 45:305-355.

[Menzies et al., 1992] Menzies, T., Black, J., Fleming, J., & Dean, M. (1992). An Expert System for
Raising Pigs. In The first Conference on Practical Applications of Prolog.

[Menzies & Cohen, 1997] Menzies, T. & Cohen, R.. (1997). A Graph-Theoretic Optimisation of Tempo-
ral Abductive Validation. In European Symposium on the Validation and Verification of Knowledge
Based Systems, Leuven, Belgium.

[Menzies et al., 1997] Menzies, T., Cohen, R., Waugh, S., & Goss, S. (1997). Evaluating Conceptual
Qualitative Modeling Languages. In Submitted to the Banff KAW ’98 workshop. Available from
http://www.cse.unsw.EDU.AU/"timm/pub/aka97/papers.

18

[Menzies & Compton, 1994] Menzies, T. & Compton, P. (1994). Knowledge Acquisition for Perfor-
mance Systems; or: When can ”tests” replace ”tasks”? In Proceedings of the 8th AAAI-Sponsored
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.

[Menzies & Compton, 1997] Menzies, T. & Compton, P. (1997). Applications of Abduction: Hypoth-
esis Testing of Neuroendocrinological Qualitative Compartmental Models. Artificial Intelligence in
Medicine, 10:145-175.

[Motta & Zdrahal, 1995] Motta, E. & Zdrahal, Z. (1995). The Trouble with What: Issues in Method-
Independent Task Specifications. In Proceedings of the 9th AAAI-Sponsored Banff Knowledge Ac-
quisition for Knowledge-Based Systems Workshop Banff, Canada.

[Motta & Zdrahal, 1996] Motta, E. & Zdrahal, Z. (1996). Parametric Design Problem Solving. In
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop.

[Paris, 1989] Paris, C. (1989). The Use of Explicit User Models in a Generation System for Tailoring
Answers to the User’s Level of Expertise. In Kobsa, A. & Wabhlster, W., (Eds.), User Models in
Dialog Systems, pages 200-232. Springer-Verlag.

[Patil et al., 1981] Patil, R., Szolovitis, P., & Schwartz, W. (1981). Causal Understanding of Patient
Illness in Medical Diagnosis. In IJCAI ’81, pages 893-899.

[Preece, 1992] Preece, A. (1992). Principles and Practice in Verifying Rule-based Systems. The Knowl-
edge Engineering Review, 7:115-141.

[Preston et al., 1993] Preston, P., Edwards, G., & Compton, P. (1993). A 1600 Rule Expert System
Without Knowledge Engineers. In Leibowitz, J., (Ed.), Second World Congress on Ezpert Systems.

[Quinlan, 1986] Quinlan, J. (1986). Induction of Decision Trees. Machine Learning, 1:81-106.

[Reich, 1995] Reich, Y. (1995). Measuring the Value of Knowledge. International Journal of Human-
Computer Studies, 42(1):3-30.
[Runkel, 1995] Runkel, J. (1995). Analyzing Tasks to Build Reusable Model-Based Tools. In Pro-

ceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop Banff, Canada.

[Runkel & Birmingham, 1994] Runkel, J. & Birmingham, W. (1994). Solving VT by Reuse. In Gaines,
B. & Musen, M., (Eds.), Proceedings of the 8th AAAI-Sponsored Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, pages 42.1-42.28.

[Sanderson et al., 1989] Sanderson, P., Verhapge, A., & Fuld, R. (1989). State-space and Verbal

Protocol Methods for Studying the Human Operator in Process Control. Ergonomics, 32(11):1343—
1372.

[Schreiber & Birmingham, 1996] Schreiber, A. T. & Birmingham, W. P. (1996). The Sisyphus-VT
initiative. International Journal of Human-Computer Studies, 44(3/4).

[Schreiber et al., 1994] Schreiber, A. T., Wielinga, B., Akkermans, J. M., Velde, W. V. D., & de Hoog,
R. (1994). CommonKADS. A Comprehensive Methodology for KBS Development. IEEE Ezpert,
9(6):28-37.

[Shadbolt & O’Hara, 1997] Shadbolt, N. & O’Hara, K. (1997). Model-based Expert Systems and the
Explanations of Expertise. In Feltovich, P., Ford, K., & Hoffman, R., (Eds.), Ezpertise in Context,
chapter 13, pages 315-337. MIT PRess.

[Shaw, 1988] Shaw, M. (1988). Validation in a Knowledge Acquisition System with Multiple Experts.
In Proceedings of the International Conference on Fifth Generation Computer Systems, pages 1259—
1266.

[Soloway et al., 1987] Soloway, E., Bachant, J., & Jensen, K. (1987). Assessing the Maintainability
of XCON-in-RIME: Coping with the Problems of a VERY Large Rule-Base. In AAAI ’87, pages
824-829.

[Stark, 1993] Stark, M. (1993). Impacts of Object-Oriented Technologies: Seven Years of Software
Engineering. J. Systems Software, 23:163-169.

[Steels, 1990] Steels, L. (1990). Components of Expertise. AI Magazine, 11:29-49.

[Swartout & Gill, 1996] Swartout, B. & Gill, Y. (1996). Flexible Knowledge Acquisition Through
Explicit Representation of Knowledge Roles. In 1996 AAAI Spring Symposium on Acquisition,
Learning, and Demonstration: Automating Tasks for Users.

[Tambe et al., 1990] Tambe, M., Newell, A., & Rosenbloom, P. (1990). The Problem of Expensive
Chunks and its Solution by Restricting Expressiveness. Machine Learning, 5(3):299-348.

19

[Tambe & Rosenbloom, 1994] Tambe, M. & Rosenbloom, P. (1994). Investigating Production System
Representations for Non-combinatorial Match. Artificial Intelligence, 68(1).

[Tansley & Hayball, 1993] Tansley, D. & Hayball, C. (1993). Knowledge-Based Systems Analysis and
Design. Prentice-Hall.

[van Harmelen & Aben, 1996] van Harmelen, F. & Aben, M. (1996). Structure-Preserving Specifica-
tion Languages for Knowledge-Based Systems. International Journal of Human-Computer Studies,
44:187-212.

[van Harmelen & ten Teije, 1997] van Harmelen, F. & ten Teije, A. (1997). Validation and Verification
of Conceptual Models of Diagnosis. In European Symposium on the Validation and Verification of
Knowledge Based Systems, Leuven, Belgium.

[Vicente et al., 1995] Vicente, K., Christoffersen, K., & Pereklita, A. (1995). Supporting Operator
Problem Solving Through Ecological Interface Design. IEEE Transactions of Systems, Man, and
Cybernetics, 25(4529-545).

[Waugh et al., 1997] Waugh, S., Menzies, T., & Goss, S. (1997). Evaluating a Qualitative Reasoner.
In Australian AI °97. Available from http: //www. cse. unsw. edu. au/ “timm/pub/docs.

[Weiss et al., 1978] Weiss, S., Kulikowski, C., & Amarel, S. (1978). A Model-Based Method for
Computer-Aided Medical Decision-Making. Artificial Intelligence, 11.

[Wick & Thompson, 1992] Wick, M. & Thompson, W. (1992). Reconstructive Expert System Expla-
nation. Artificial Intelligence, 54:33-70.

[Wielinga et al., 1997] Wielinga, B., Akkermans, J., & Schreiber, A. (1997). A Comptence Theory
Approach to Problem Solving Method Construction.

[Wielinga et al., 1992] Wielinga, B., Schreiber, A., & Breuker, J. (1992). KADS: a Modeling Approach
to Knowledge Engineering. Knowledge Acquisition, 4:1-162.

[Yost, 1992] Yost, G. (1992). TAQL: A Problem Space Tool for Ezpert System Development. PhD
thesis, Computer Science, Carnegie Mellon.

[Yost, 1994] Yost, G. (1994). Implementing the Sisyphus-93 Task Using SOAR/TAQL. In Gaines,
B. & Musen, M., (Eds.), Proceedings of the 8th AAAI-Sponsored Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, pages 46.1-46.22.

[Yost & Newell, 1989] Yost, G. & Newell, A. (1989). A Problem Space Approach to Expert System
Specification. In IJCAI ’89, pages 621-627.

[Yu et al., 1979] Yu, V., Fagan, L., Wraith, S., Clancey, W., Scott, A., Hanigan, J., Blum, R.,
Buchanan, B., & Cohen, S. (1979). Antimicrobial Selection by a Computer: a Blinded Evalua-
tion by Infectious Disease Experts. Journal of American Medical Association, 242:1279-1282.

[Zdrahal & Motta, 1994] Zdrahal, Z. & Motta, E. (1994). An In-Depth Analysis of Propose & Revise
Problem Solving Methods. In Mizoguchi, R., Motoda, H., Boose, J., Gaines, B., & Compton, P.,
(Eds.), Proceedings of the Third Japanese Knowledge Acquisition for Knowledge-Based Systems
Workshop: JKAW ’94.

[Zdrahal & Motta, 1996] Zdrahal, Z. & Motta, E. (1996). Improving Conpetence by Intergrating Case-
Based Reasoning and Heuristic Search. In 10th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, November 9-14, 1996, Banff, Canada.

[Zlatereva & Preece, 1994] Zlatereva, N. & Preece, A. (1994). State of the Art in Automated Valida-
tion of Knowledge-Based Systems. Ezpert Systems with Applications, 7:151-167.

Some of the Menzies papers can be found at http://www.cse.unsw.edu.au/~timm/pub/docs

20

