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Abstract

We describe an experimental method to evaluate options within an
ontology. (I) We commit to some precise description of the task of a
theory written in an ontology. (II) A mutator automatically generates
variants to known problems according to the different ontological options.
(III) We try to perform the task over the mutations. (IV) We search for
cases where the task fails. In this framework, ontological options can be
assessed as follows. The better ontological options fail less on the task.
This framework is instantiated in the context of a causal ontology. Four
variants are proposed for handling time in the given ontology. Two of
those four are found to be clearly superior and two were found to be
clearly inferior.

Submitted to the International Conference on Formal Ontology in In-
formation Systems (FOIS’98) (in conjunction with the 6th International
Conference on Principles of Knowledge Representation and Reasoning:
KR’98) Trento, Italy, June 6-8, 1998.

1 Introduction

Are all ontologies good ontologies? Given a particular domain and a particular
community of analysts, a range of ontologies can be proposed. How are we to
assess the utility of these different ontologies? In this paper, we take the view
that ontologies are useful for theory construction and theories are written for
some task. We will show that seemingly trivial variants in a temporal causal
ontology block the performance of a task we call KB-maintainability. Roughly
speaking, KB-maintainability means checking if we can tell if some change is an
improvement to a theory.



If ontologies are assessed with respect to a specific task (e.g. KB-maintainability),

then that task will skew the choice of ontologies. Consequently, we find that
we cannot propose a single best temporal causal ontology. Rather, we think
that knowledge engineers should develop libraries of ontological variants. When
exploring a new domain, representative problems from that domain should be
explored to find which variants are useful. However, all the ontological options
discussed here are really small variants on a small part of an ontology. If this
is generally the case, then we can look forward to the day in which ontological
engineering is a partially automatic process in which assessment agents (such as
the one proposed here) explore variants in sub-classes of a meta-ontology. When
these agents terminate, they report back which ontological variants are relevant
to the current problem. An analogous process of recursively exploring options
in problem solving methods has been extensively explored (e.g. [Benjamins &
Jansweijer, 1994, O’Hara & Shadbolt, 1997]).

Experimental ontological assessment is an infant science. To our knowledge,
our work is the first proposal to assess ontologies using empirical methods; i.e.
hundreds of thousands of trials, controlled variants between each trial, numeric
data collected during each trial. A drawback with the current work is that,
given the state-of-the-art, we can only report results on a very limited ontology.
For example, the ontology studied here is only a flat causal structure without
terms in a subsumption hierarchy. However, our belief (as yet untested) is that
the methods used here (mutators, analysis of KB-maintainability) are quite
general and could be used to find restrictions to other ontologies. Menzies
has argued [Menzies, 1997] that the KE field needs such general evaluation
methodologies.

This paper is structured as follows. Our ontology was developed in response
to certain drawbacks with the 1980s research into qualitative reasoning. That
work is reviewed first, followed by our ontology. Next, we explore how we would
add time into that ontology. Several options are identified for adding time. An
experiment is then defined to assess these options. When the experiment was
performed, it was found that not all these options were useful. Our discussion
section generalises this work into a framework for assessing ontologies.

2  Causality, Qualitative Reasoning, and QCM

Qualitative compartmental modeling (QCM) [Menzies & Compton, 1997, Waugh
et al., 1997] offers a physical causal ontology for testing hypotheses in neu-
roendocrinology (the study of nerves and glands). QCM is a generalisation of
QMOD: Feldman and Compton’s work [Feldman et al., 1989a, Feldman et al.,
1989b] on qualitative reasoning (QR). This section reviews the research into QR
and causality. In the rest of this article, we use the term QCM to refer to both
QMOD and its successor QCM.

Systems developed in the late 1970s let the domain expert specify explicit
networks of causal connections. Early work demonstrated the utility of this
approach; e.g. CASNET [Weiss et al., 1978] and MECHANISMS LAB [Rieger
& Grinberg, 1977]. Subsequent work argued for adding abstraction hierarchies
to causal models; e.g. ABEL [Patil et al., 1981]. Causal models at various
levels of abstraction permit inferencing down/up/across abstraction level(s) if
more/less/same abstraction is useful in the reasoning. These early systems were



significant pieces of original and innovative research and successes in their own
right. However, they failed to provide general principles for later work. In a
quest for more general principles, the qualitative reasoning (QR) community
focused on the processing of systems called qualitative differential equations
(QDE) which are:

e Piece-wise well-approximated by low-order linear equations or by first-
order non-linear differential equations;

e Whose numeric values are replaced by one of three qualitative states: up,
down, or steady [Iwasaki, 1989].

(Note that not all QR is based directly on QDEs. For example, Yip discusses
the dynamics of hamiltonians [Yip, 1991]. Bratko et. al. discuss the KARDIO
system. KARDIO generated a rule-base for heart disease via a machine learning
program that condensed the output from an indeterminate qualitative model of
heart disease [Bratko et al., 1989]. Yip and Bratko do not discuss causality
directly so we will leave them out of the subsequent discussion. In the bond
graph approach, models are built out of components representing abstract en-
ergy sources, sinks, storage, and dissipater devices [Top & Akkermans, 1991].
We still group bond graphs with the rest of equation- based QR since bond
graph models serve as a front-end to equation specification. )

A QDE is still a mathematical equation and mathematics is a poor model for
causality. Ohms’s Law (R=V/I) relates resistance R to current I and voltage V.
Note that changes in voltage and current do not cause changes in resistance, even
though the mathematical formulae suggests this is possible. Resistors cannot
be manufactured to a certain specification merely by attaching wire to some
rig and altering the voltage and current over the rig. Ignoring the effects of
temperature and high-voltage breakdown, resistance is an invariant built into
the physics of a wire. Hidden within Ohm’s Law are rules regarding the direction
of causality between voltage, current, and resistance. Such rules are invisible to
a mathematical formulation.

Qualitative reasoning, explanation, and causality are intimately connected.
Causality was a central concern in QR till the mid-1980s [Coiera, 1992]:

It is clear that causality plays an essential role in our under-
standing of the world ... to understand o situation means to have a
causal explanation of the situation. [Iwasaki, 1988].

Initially two qualitative ontologies were proposed: DeKleer and Brown’s 1984
CONFLUENCES system [DeKleer & Brown, 1984] and Forbus’s 1984 qualita-
tive process theory (QPT) [Forbus, 1984]. Later work in 1986 recognised that
both these systems processed QDEs and a special theorem prover, QSIM, was
written by Kuipers especially for QDEs [Kuipers, 1986]. Compilers were written
to covert QPT models into QSIM [Crawford et al., 1992].

After an inclusive public debate in 1986 between public debate between the
CONFLUENCES approach and a rival theory [Iwasaki & Simon, 1986], the term
causality was avoided by many QR researchers. Forbus’s 1992 retrospective on
causality and the 1980s QR research is primarily negative:

... In terms of violating human intuitions, each system of qualitative
physics fails in some way to handle causality properly. Like (QPT)



theory, deKleer and Brown’s CONFLUENCES theory... fails to
distinguish between equations representing causal versus non-causal

laws. Kuipers QSIM contains no account of causality at all. [Forbus,
1992].

In summary, the 1980s experiment with using QDEs to model causal expla-
nations failed. Hence, Feldman and Compton [Feldman et al., 1989b], followed
by Menzies and Compton [Menzies, 1995, Menzies & Compton, 1997], explored
causal modelling via direct causal mappings. Unlike the QR research of the
1980s, QCM does not infer causality from a non-causal source (e.g. equations).
Rather, like the earlier work of CASNET, MECHANISMS LAB, and ABEL,
experts could enter their causal links directly. However, due to the vagueness of
causality, QCM does not treat its causal models as gospel truths. Rather, the
causal models are treated as very approximate, possible very incorrect, models.
All models are assessed via an abductive validation engine discussed below.

QCM adopted a physical ontology taken from compartmental modelling
[McIntosh & McIntosh, 1980]. Informally, the QCM metaphor is that of lig-
uids sloshing around between containers. More precisely, a QCM knowledge
base contains pipes connecting tubs (we will specialise tub below to be a com-
partment or a flow). The state of a tub is the sign of the first derivative of the
value in that tub (i.e. up, down or steady):

change be something
has value are in (up,down,steady).

tub be something

has inflow are of pipe
are many

has outflow are of pipe
are many

has state are of change.

pipe be something
has from are of tub
has to are of tub
has influence are of effect
has controller are of abler
are maybe.

(This article uses Menzies’ Pirate Prolog-based notation for UML-type spec-
ifications [Booch et al., 1997]. X be Y denotes that Y is a subclass of X. Some-
thing is the default initial superclass. X has Y denotes a slot Y inside class X.
The slot Yinside X is denoted X.Y. Are denotes a slot constraint. Several kinds
of constraints are defined: multiplicity, range, and types. X are of Y is a type
constraint saying that slot X is filled with instances of type Y. The default type
constraint is X are of something. X are 1 to many is a multiplicity constraint.
There is a shorthand defined for common multiplicity constraints: many means
0 to many and maybe means 0 to 1. If no multiplicity constraint is offered, the
default is 1 to 1. X are in List is a range constraint. Default values are set using
=. Subclasses can install new defaults into slots defined in superclasses using
with. Comments in the above figure offer explanations of Pirate constructs.)

The flow through pipes can be enabled or disabled by controller events. If
that event is known to be on (which QCM interprets as meaning state.change=up),
then the enabler will permit flow through the pipe. On the other hand, disablers
block the flow if the event is on.



abler be something

has owner are of event.
disabler be abler.
enabler be abler.

There are two special kinds of tubs: compartments and flows. Flows can
increase or decrease the rate of transfer of stuff through a pipe. Two special
kinds of compartments are experimental interventions (called events) and mea-
sured outcomes (called measures). Compartments can change the flow rates;
i.e. flows rates are controlled by compartments.

compartment be tub.

measure be compartment.
event be compartment.
flow be tub

has controller are maybe
are of compartment.

There are several types of influences according to how the state at one end
of the pipe influences the state at the other end of the pipe: ++, -, +—, +-+:

xplain has fromType are of tub

has cause are of change
has toType are of tub
has effect are of change.

effect be something
has symbol
has synonym are maybe
has transitions are of xplain
are of 1 to 2.
direct be effect
with symbol = 44 with synonym = ’encourages’
with transitions = (xplain and cause=up and effect=up,
xplain and cause=down and effect=down).
inverse be effect
with symbol = -7 with synonym = ’discourages’
with transitions = (xplain and cause=up and effect=down,
xplain and cause=down and effect=up).
creator be effect
with symbol = 4=+
with transitions = (xplain with cause=up and effect=up).

destroyer be effect
with symbol = 4==?
with transitions = (xplain with cause=up and effect=down).

X++Yis called a direct or encourages influence and means that Y.state be-
ing up or down could be explained by X.state being up or down respectively.
Direct influences could be used to partially replicate mathematical proportion-
ality. X-Y is called an inverse or discourages influence and means that Y.state
being up or down could be explained by X.state being down or up respectively.
Inverse influences could be used to partially replicate mathematical inverse pro-
portionality. Note that ++ and — are not the same as QSIM’s M+ and M-
constraint since QCM only applies these influences if they satisfy an abductive
inference plausibility operator (discussed below). X+-+Y is called a creator
influence and means that Y.state being up could be explained by X.state be-
ing up. Creators can be used to model in-flows into the top of a tank. Such



in-flows can only ever increase the amount of stuff in that tank. If the level of
that in-flow decreases, then the amount of stuff in the tank does not decrease.
X+-Yis called a destroyer influence and means that Y.state being down could
be explained by X.state being up. Destroyers can be used to model out-flows
from the bottom of a tank. Such out-flows can only ever decrease the amount
of stuff in that tank. If the level of that out-flow decreases, then the amount of
stuff in the tank does not increase.

To use QCM, the user first enters statements which are compiled down into
instances of the above classes. For example, consider the statements throwing
the power switch turns on the lights, but only if the rats are not shorting out the
wires in the basement. This is modeled as the disabler statement if rats then
not power ++ lights where power and lights are measures connected by a direct
influence. The connection power ++ lights is disabled if the rats event is on.
Note the indeterminacy in the definitions of the effects. Consider the case of
someone losing weight (weight=down) and taking less exercise (ezercise=down)
in the system weight ++ heartDisease and exercise — heartDisease. It is un-
clear if heartDisease will do up or down. Such chatter is a fundamental part
of qualitative reasoning [Kuipers, 1986]. We handle chatter using an abductive
inference engine. Abduction is the search for consistent explanations [Eshghi,
1993]. Explanations can make assumptions and mutually exclusive assumptions
must be kept in separate worlds [Menzies, 1996b]. Unlike deduction, abduction
is a plausible, not certain inference. The utility of making a particular ab-
ductive inference must be assessed via some plausibility operator pl [Bylander
et al., 1991]. A range of different knowledge-level tasks can be modeled via an
appropriate choice of plausibility operators [Menzies, 1996a, Menzies & Mahi-
dadia, 1997]. For example: least-cost planning is a synonym for abduction with
a plausibility operator that favours explanations that maximises goal coverage
whilst minimising inference cost. Minimal-fault diagnosis is a synonym for ab-
duction [Console & Torasso, 1991] with a plausibility operator that maximises
goal coverage whilst minimising the number of input causes. Validation is a
synonym for abduction with a plausibility operator that maximises goal cover-
age [Menzies & Compton, 1997, Menzies, 1996b]. Other synonyms are discussed
in [Menzies, 1996a).

Next, a problem is specified. A problem is a pair of input and output tub
states (e.g. output = (light.state=up), input=(rats=down)). Inputs are always
events and outputs are always measures. Abduction is then performed looking
for pathways from outputs back to inputs. Pathways must satisfy the following
criteria: (1) only terminates on members of the input set. (2) starts on members
of the output set; (3) must not contain loops; and must (4) not contain two
states from the same tub (i.e. it is illegal to believe both heartDiesase=up and
heartDisease=down in the same proof). If an output vertex can be so connected
to an input vertex, it is called an ezplicable output. Once the pathways are
generated, they are divided into maximal consistent subsets which become our
abductive worlds. For more details, see [Menzies & Compton, 1997].

Pathway criteria number 4 makes this an NP-hard problem. Gabow et.al.
[Gabow et al., 1976] showed that finding a directed path across a directed graph
that has at most one of a set of forbidden pairs is NP-hard. Such forbidden
pairs are present in the above definition of abduction; i.e. two mutually exclu-
sive states of some tub. When implemented, QCM has been observed to ex-
hibit exponential runtimes [Menzies, 1995], as one would expect for an NP-hard
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Figure 1: A theory (left) renamed over 3 time intervals and connected using
IEDGE (time edges shown as dashed edges).

problem. Despite being NP-hard, it has been shown that QCM is practical tool
for validating many real-world theories such as certain fielded expert systems
and theories from neuroendocrinology [Menzies, 1996a]. Recall from the above
discussion that abductive validation is the search for worlds that explain the
maximum number of outputs. If after making all assumptions possible a theory
can still not generate worlds that cover the known output, then that theory is
clearly faulty. Feldman and Compton [Feldman et al., 1989a], followed by Men-
zies [Menzies & Compton, 1997], have shown that abductive validation engines
could detect large numbers of previously unseen errors in neuroendocrinology
theories published in international refereed journals. Surprisingly, these faults
were found using the data published to support those theories

3 Adding Time to QCM

This section discusses temporal extensions to the QCM ontology.

Recall the above pathway criteria number 4: we cannot believe in two states
of the same tub. This criteria should not hold in the case of feedback loops.
Suppose we executed the system sunshine ++ hot and hot ++ evaporation and
evaporation ++ rain and rain — sunshine for several time ticks. We would see
the state of sunshine rise and fall. That is, we would be believing in several
values of sunshine, but at different times.

We can extend QCM to handle such time-based feedback loops as follows.
We create one copy of the search space for each time interval in the simulation.
For example, consider the theory A ++ B but B — A. If we executed A++B
and B-A over three time ticks, we could search the space shown in Figure 1.

Here we are connecting objects at different time intervals by an implicit time
edge linking or TEDGE policy: when i.e. X++Y implies that X at time T=i
also connects to Y at T=i+1 (see the dashed lines). Pathway criteria number
4 is now extended to: pathways must not contain loops and must not contain
two states from the same tub at the same time.



Alternatives to IEDGE are discussed later. Here, we pause to comment that
IEDGE has some interesting properties for long simulation runs. We have shown
elsewhere [Menzies et al., 1997] that for ...

e Tubs which take S states without steadies;
e Pipes which are not creators or destroyers;
e Pipes which have no ablers;

e Simulations that are connected via IEDGE

... then if we cannot generate a proof in S copies, then we will never be able
to generate a proof at all. Roughly speaking, if every edge offers a comment on
all the states of its downstream vertices (e.g. direct and inverse), then the state
space rapidly saturates and we can reduce the granularity of the time axis to
just under twice the granularity of the measurements of that theory. We can use
this proof as an optimisation technique as follows. Suppose, for example, that
we ran a simulation over the tubs for a million time steps and we only collected
measurements at three time points (say, 1 and 500,000 and 1,000,000). If we had
not proved saturation for our device, then the search for these proofs would have
to explore 1,000,000 renamings. Given the exponential runtimes of abduction,
this is clearly undesirable. However, since we have proved saturation, then
we know that if a proof cannot be found in two renamings, then no such proof
exists. Consider a proof from (e.g.) time 1 to time 500,000. If that proof cannot
terminate in the space 1 and 500,000, then it will never terminate. That is, when
building this proof, we could ignore the search space that used the renamings
from 2 to 499,999. A similar argument could be made for proofs from 500,000
to 1,000,000. In practice, we would only need to search the space created for
the three measured time points. That is, in this example, this optimisation lets
us reduce the search space to three-millionths of the unoptimised version.

4 Temporal Extensions to the QCM Ontology

How can time be represented in QCM? We saw above the use of IEDGE: when
X connects to Y, then we say that X at time T=i also connects to Y at T=i+1.
IEDGE is only one of a family of temporal QCM ontological variants. Firstly,
we can cross time over edges or over nodes. Secondly, we can cross time on all
structures in the theory, or only on those explicitly mentioned by the user. Each
combination of these alternatives defines a temporal causal ontology illustrated
in Figure 2. In this figure, in the ezplicit node linking language (or XNODE),
we only cross time on the nodes explicitly denoted as time nodes by the user (in
this example, A). In the implicit node linking language (or INODE), we cross
time on all nodes. In the explicit edge linking language (or XEDGE), we only
cross time on the edges explicitly denoted as time edges by the user (in this
example, A to B). Lastly, in IEDGE, we cross time on all edges.

Note that there are many more possible interpretations of time. However,
in this article, we restrict ourselves to four.

All these variants imply a small variation to the above ontology. All pipes
and tubs have to know their timeLinkStatus. In XNODE, only some tubs have
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Figure 2: Figure 1 (left) renamed over 3 time intervals using different time
linking methods. Dashed lines indicate time edges.

timeLinkStatus=true while in INODE, all tubs have timeLinkStatus=true. Sim-
ilarly, in XEDGE, only some pipes have timeLinkStatus=true while in INODE,
all pipes have timeLinkStatus=true. Further, the nature of the time link must be
specified. A link can be within the same time tick (e.g. AI++B1) which takes
zero time to traverse (the mythical time of the CONFLUENCES system [DeK-
leer & Brown, 1984]) or across time (e.g. A1+=A2) which will take 1 time tick
to traverse. As a default, we assume zero time for the traversal.

qcmElement be something
has timeLinkStatus=false
are of boolean
has timeLink are of delay.
tub be gcmElement.
pipe be gcmElement.

delay be something
has duration=0 are in (0,1).

4.1 KB-maintainability

Are all the variants (XNODE, XEDGE, INODE, IEDGE) valid? This sec-
tion defines a necessary, but not sufficient pre-condition for KB-maintainability
which we will use to assess these variants.

How do we know if we can maintain a theory? One requirement would be
the ability to check if some variation of a theory is better than the original
theory. We divide this requirement into two parts. Firstly, we need a quick
first-pass test that can clearly identify obviously poor theories. Secondly, we
need a more detailed view that can assess minor variants on a theory. Given a
range of theories which degrade from good to poor, we like to see the maintenance
success curve of Figure 3.

A good theory is permissive; i.e. it can explain known behaviour (the success
curve rises high on the left-had-side). However, we also need to test that the
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Figure 3: Visualising a maintainable representation language. The KB-
testability curve of a good representation should be both permissive to all good
theories (explains correct behaviour) and restrictive to all bad theories (prevent
poor theories explaining any behaviour).

permissiveness is not due to a poorly-constrained theory. A theory that con-
dones any conclusion is a poor theory. Hence, a theory must also be restrictive
(the success curve descents to a low value on the right-hand-side). Further, we
want the second derivative of this graph to be non-negative; e.g. the ski-slope
shape of success curve. With such a curve, we can quickly get feedback if some
change improves or degrades a theory.

We say that a representation is KB-maintainable if its this test curve for good
to bad theories looks like the ski-slope of the success curve. We show below that
only some ontological options for handling time in QCM satisfy this definition
of KB-maintainability. Hence, in QCM, the ontologies should be restricted to
these representations of time.

Note that our current definition of KB-maintainability is a necessary, but
not sufficient pre-condition to true maintainability. We only claim that if a
system does not satisfy our KB-maintainability test, then it will not support
true maintainability (and leave the converse statement to future work).

4.2 Testing KB-maintainability

To test KB-maintainability for these four temporal languages, we performed the
following experiment. First, we implemented a quantitative fisheries simulation
model using the equations from [Bossel, 1994] (pages 135-141). Secondly, we
built a qualitative form of the fisheries model as shown in Figure 4.

Note that this fisheries model is silent on the issue of how to handle time. We
must add in a temporal causal interpretation is order to handle the feedback
loops. In the following experiment, we added in XNODE or XEDGE or IN-
ODE or IEDGE and checked if any of them supported the maintenance success
curve. The quantitative model was used to generate numeric test data which
was stored in the measure array. From each comparison of measure(i) with
measure(j), entries were written to an array of qualitative observations called
changes. Changes was used to generate the input/output needed for for abduc-
tive validation. For example, if in comparison change(87), the fish density fdens
was increased and the fish catch featch was always seen to decrease at all time
steps, then change(37).in is (fdensUp) and change(37).out is (featch(t=1)Down,
featch(t=2)Down, featch(t=38)Down, fcatch(t=4)Down, featch(t=5)Down)

Next, we need to generate a range of theories. To do this, we built a mutator

10
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Figure 4: The fisheries model. Adapted from [Bossel, 1994] (pp135-141). Vari-
ables in italics were used in the XNODE study. Edges downstream of an XN-
ODE were used as the explicit time edges in the XEDGE language.

that produced successively worse versions of the fisheries model. The mutator
worked as follows: the sign on a random sample of the X statements in the
qualitative theory were corrupted: i.e. flipped (++ to — or visa versa). Given
a model with E edges, then as we vary X from 0 to E, we are moving from a
good model to a poor model; i.e. the x-axis of our maintenance success curve.
This corrupted model was then copied to create a set of time copies. These time
copies were connected using one of our temporal languages: IEDGE, INODE,
XEDGE, XNODE. Change inputs were mapped into copy(0). Change outputs
were mapped into some copy(i) (i greater than zero). The success of each run
was assessed by recording the percent of the explicable outputsi.e. those outputs
that the model could connect back to inputs. The details of this experiment are
shown in Figure 5.

4.3 Results

Figure 6 graphs the average values of Xplicable variable from the experimental
design. INODE was not sufficiently restrictive. Even with all edges corrupted,
INODE allowed theories to explain correct behaviour. Also, XEDGE was not
sufficient permissive. Even on correct theories, XEDGE could only explain half
the known behaviour. XNODE was the closest to the maintenance success
curve, followed by IEDGE. However, IEDGE was not as permissive as XNODE.
Hence, except in the case where we need to optimise long simulation runs, we
recommend XNODE. Otherwise, we recommend IEDGE.

Note that for XNODE and IEDGE, after only a third of the theory being
mutated, only half the outputs were inexplicable. This is a nice result: with
these modelling languages, we can get a clear and early indication if we are stray
from a good theory.

We conclude that, in terms of KB-maintainability, the four variants on the

11



T = MaxTime;
MO := fisheries; measure := run_quantitative_model(T,MO)
M1 := qualitativeVersionOf (MO); change := comparisons(measure)

for policy € (IEDGE, INODE, XNODE, XEDGE) begin
for corrupted:=0 to |E| begin
for r:=1 to 20 begin

end end

M2 :=corruptSomeEdgesChoosenAtRa.ndom(corrupted,M1)

for t:=0 to T  copy(t):= M2

for t:=0 to T-1 time_connect (copy(t),copy(t+1),policy)

for i:=1 to |change| begin
(In,Out(1..T)):= change(i)
Xplained(1..T):= run_qualitative_model(copy,In,0Out)
Xplicable(policy,r,corrupted,i) :=|Xplained(T) |*100/|0ut(T) |

end end

Figure 5: Experimental design for assessing linking options
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Figure 6: Graph of Xplicable from Figure 5.
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QCM conceptual modelling language are ranked as follows: XNODE (best for
short to medium length simulation runs), then IEDGE (best for long simulation
runs where XNODE fails due to the size of the search space), then XEDGE
(poor: no permissive enough) and INODE (poor: not restrictive enough).

5 Related Work

We have argued above that seemingly minor variants in an ontology can have
major effects on the utility of that ontology for generating theories which can
satisfy some task. This is an analogous results to other researchers:

e The satisfiability community reports that there exist very narrow regions
in which the behaviour of a knowledge base can change markedly, and
undesirably (e.g. [Smith, 1996, Cheeseman et al., 1991]).

e Tambe, Newell, and Rosenbloom [Tambe et al., 1990, Tambe & Rosen-
bloom, 1994] discuss multiple attributes in production rule conditions.
Given an attribute test of an object, if one query to one attribute of that
object can result in multiple matches, then the time bound on matching
a single rule can be exponential.

e Brachman and Levesque [Brachman & Levesque, 1984] discuss a seemingly
minor variation to a frame-based language FL. FL contains the RESTR
construct which places restrictions on valid slot values. At first glance,
RESTR seems to reduce the search space associated with processing that
frame. However, Brachman and Levesque prove that the exact opposite is
true. A language without RESTR, (FL™) can test if some frame subsumes
another frame in, at most, polynomial time. However, the same test in
FL has an upper bound of exponential time; i.e. it may be too slow to be
practical.

6 Discussion

We have some good news and bad news about ontologies. First, the good news.
We can see general principles for building agents that automatically support
ontological engineering;:

e We commit to some precise description of the the task of a theory written
in an ontology (in this case, KB-maintainability).

e A mutator automatically generates variants to known problems according
to the different ontological options.

e We try to perform the task over the mutations.
e We search for cases were the task fails.
e We caution against the ontological options which generate the failure.

Secondly, the bad news. We speculate that ontologies cannot be reused verba-
tim. Rather, once a knowledge engineer selects an ontology near to her target
domain, she must then take the time to commission the ontology. That is, given
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the tasks of the theories in her domain, she must explore aspects of the ontol-
ogy looking for constructs which block those tasks. Once those constructs are
found, they should not be used in knowledge acquisition. For example, in this
work, we would offer a different set of temporal causal constructs for building
theories that are used in short to medium length simulation runs (XNODE) to
long simulation runs (IEDGE and no state=steady and no creators or destroyers
influences and no ablers).

Lastly, we note that the bad news is not so bad. The effort of comissioning
the ontology need not be prohibitive if the knowledge engineer has an ontological
engineering workbench available that contains semi-automatic ontology assess-
ment agents. This research is the first step towards building such a workbench.
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