Knowledge Maintenance: the State of the Art

Tim Menzies*

Artificial Intelligence Department,
School of Computer Science & Engineering,
The University of NSW, Sydney, Australia, 2052

timm@cse.unsw.edu.au

www.cse.unsw.edu.au/ timm

January 25, 1999

Abstract

In the software and knowledge engineering literature we can mainte-
nance strategies offered to maintain seven main types of knowledge: words;
sentences; behavioral knowledge; and meta-knowledge. Meta-knowledge

5 divides into problem solving methods; quality knowledge; fiz knowledge;
social knowledge; and processing activities. There are five main ways in
which these seven knowledge types are processed: acquire; operationalise;
fault; fir; and preserve. We review systems that contribute to these
7% 5 = 35 types of knowledge maintenance to make the following con-

10 clusions. Firstly, open issues with the current maintenance research are
identified. These include (a) areas that are not being addressed by any re-
searcher; (b) the recursive maintenance problem; and (c) drawbacks with
rapid acquire systems and the operationalisation KM assumption. Sec-
ondly, a process is described for commissioning a new maintenance tool.

15 Thirdly, a general common principle for maintenance (search-space reflec-
tion) is isolated.

*The Knowledge Engineering Review, 1999, To appear

page 2 of 61

Contents
1 Introduction 5
2 Knowledge Types 8
2.1 WordK: Word Knowledge 9
2.2 SentenceK: Sentence Knowledge. 10
2.3 BehaviouralK: Behavioural knowledge 10
2.3.1 BehaviouralK in UML 11
2.3.2 BehaviouralK in Case-based Reasoning 12
2.3.3 BehaviouralKin HT4 12
2.3.4 SE/KE BehaviouralK Tools 15
2.3.5 The Operationalisation KM Assumption 16
2.4 Meta-knowledge oo oL 16
2.4.1 PSMs: Problem Solving Methods 17
2.4.2 QualityK: Quality Knowledge 19
24.3 FixK:FixKnowledge 25
24.4 SocialK: Social Knowledge 26
2.5 The Recursive Maintenance Problem 26
3 Knowledge Processing Activities 27
31 Acquire 29
3.1.1 RAS: Rapid Acquire Systems 29
3.1.2 Acquire in Software Engineering 30
3.1.3 Acquire using IO-SCHEMAS 30
3.1.4 Acquire using PSMs and Ontologies 31
3.1.5 Acquire using Expert Critiquing Systems 33
3.1.6 Other Acquire Techniques 34
3.2 Operationalisation 35
33 Fault 36
3.3.1 Fault Localisation 37
3.3.2 Browse-Around oo 38
34 Fix . . . 39
341 Fixing ViaRDR 39
3.4.2 Fixing Via Extended Ripple Strategies 40
3.4.3 Fixing Using Conflict Resolution 42
3.44 Fixing via ECS Debiasers 44
3.4.5 Fixing via Specialisation and/or Generalisation 44
3.4.6 Fixing Via Machine Learning 45
3.4.7 Fixing Via Case-Based Reasoning 47
3.4.8 Fixing ViaKA scripts 47
3.4.9 Other Fix Strategies 49
3.5 Preserve 49
4 Discussion 51
4.1 Search Space Reflection: A General Tool for KM 51

4.2 Commissioninga KM Tool 53

60

65

70

75

80

85

90

95

100

105

page 3 of 61

List of Figures

1

0 3O Ut W

©

11

12

13
14

15
16

17
18

19

20
21
22
23

24
25
26

27

Maintenance KBs are a special kind of execution KBs which ac-

cess more types of knowledge. Much of modern KA is focused
onlyonexecution KBs o oo 6
Some example systems that cover the 35 points in the knowledge
management options SPAcCe.o i e e e e 6
Abbreviations used in this paper 7
Different knowledge types (in the notation of Figure 1). 8
Rules are sentenceK containing wordK (wordK is underlined) .. 9
Some sentences from Figure 5. 10
A use case expressed as a sequence diagram. 11
An explanation of David’s symptoms using aortic valve disease.
From [Kolodner, 1993, p419]. 12
A theory processed by HT4. oo 13
Proofs from Figure 9 connecting 0UT= {investorConfidencelp,
wagesRestraintUp, inflationDown} back to INputs= {foriegnSalesUp,
domesticSalesDown}. 13
World #1 is generated from Figure 9 by combining P[2], P[5],

and P[6]. World #1 assumes companyProfitsUp and covers
100% of the known QUTputs. v v v v v v v oo v .. 14
World #2 is generated from Figure 9 by combining P[1], P[2],
P[3], and P[4]. World #2 assumes companyProfitsDown and
covers 67% of the known OUTputs. 14
The real heuristic knowledge within Figure 5. 17
Explicit problem solving (PSM) meta-knowledge: A simple KADS-
style PSM for diagnosis. Abstract and hypothesis are primitive
inferences which may appear in other PSMs. From [van Harmelen

& Aben, 1996]. 17
PSMs identified by Clancey [Clancey, 1992] within Figure 5. . . . 17
NFR quality knowledge: strategy knowledge from QARCC. From [Boehm,
1996]. . o e e e 20
PSB anomalies.o 21
Ratios of (true errors/,;,qomalies) in a sample of fielded expert sys-
tems. From [Preece & Shinghal, 1992]. 21
Repertory grids. Generated from the WebGrid WWW server [Shaw,
1997). o e e 23
Critical success metrics for PIGE. From [Menzies et al., 1992]. . . 24
SEEK rules. o e 25
SocialK in REMAP. From [Ramesh & Dhar, 1992]. 25
Different knowledge processing activity types (in the notation of
Figure 1). 28
Ttems in i-schemas. 31
Objects in o-schemas. 31
A simple concept map showing dependencies between schema
CONCEPYS.o 32

Portions of the TINA rules used for converting problems descrip-
tions into solutions. Adapted from [Benjamins, 1994]. 36

110

115

120

page 4 of 61

28

29
30
31

32

33

34
35

After exploring its problems/solution mappings, TINA can au-

tomatically generate a PSM for diagnosis. Adapted from [Ben-

jamins, 1994] and converted into a procedural formalism.

A RDR knowledge base
RDF= RDR plus a Function stack (top right).
Comparing manual KA (RDR) vs automatic inductive learners

(ID3). From [Mansuri et al., 1991].
An explanation of Newman’s symptoms using an edited version

of the explanation of David’s symptoms from Figure 8. Added

edges are shown as dashed lines. David’s “murmur of as” vertex

has also been deleted. From [Kolodner, 1993, p419].
Change times for ETM with four subjects: S1...S4. From [Gil

& Tallis, 1997] L.
The NFRs of Figure 16 expressed as a dependency graph.
The 35 points in the knowledge management options space are

covered by all, most, many, some, one, or none of the systems

found by thisreview.

125

130

135

140

145

150

155

160

165

page 5 of 61

1 Introduction

A general trend in the twentieth century is an increasing level of doubt about
the things we speak or write or try to enter into programs. Many factors have
combined to reduce our belief that we can know the ”truth” (in some absolute
sense) about our world; for example: relativity, Heisenburg’s uncertainty prin-
ciple, the indeterminacy of quantum mechanics, Godel’s theorem [Hofstadter,
1980], the failure of AT to replicate human cognition via manipulation of sym-
bols according to classical logic [Clancey, 1993], chaos theory [Glass & Mackey,
1988], and situated cognition [Menzies & Clancey, 1999]. Popper argues that all
knowledge is a hypothesis since nothing can ever be ultimately proved: our cur-
rently believed ideas are merely those that have survive active attempts to refute
them [Popper, 1963]. Knowledge representation theorists stress that knowledge
bases (KBs) are approximate surrogates of reality [Davis et al., 1993, Wielinga
et al., 1992a,Bradshaw et al., 1991]; i.e. their accuracy is doubtful. A similar line
is taken by Agnew, Ford & Hayes who say that “expert-knowledge is comprised
of context-dependent, personally constructed, highly functional but fallible ab-
stractions” [Agnew et al., 1993]. In practice, we know that explicit records of
domain knowledge may not evolve to some final stable point, even when the
domain itself is stable. Compton reports one expert systems development in
which there was always one further important addition, one more significant
and essential change [Compton et al., 1989]. Experiments in machine learning
confirm that an intelligent agent generalising from experience can always use
more experience to improve their specification. Catlett observers that these im-
provements may imply large-scale reorganisation to that specification [Catlett,
1991].

The premise of this article is as follows. If we doubt our KBs and routinely
expect them to change significantly, then we must move the focus of knowledge
engineering (KE) from knowledge acquisition (KA) to knowledge maintenance
(KM). To facilitate this change, we offer here a review of the state-of-the-art
in the emerging field of KM. Techniques from many different communities (e.g.
software engineering, requirements modeling, the verification & validation com-
munity, case-based reasoning, machine learning, object-oriented databases) will
be shown to all contribute to solving the KM problem.

We will say that current KA is focuses on ezecution KBs which acquire and
operationalise wordK (e.g. atomic terms) and sentenceK (e.g. rules and ontolo-
gies) using problem solving methods (PSMs). However, we can see a growing
body of research into maintenance KBs which contain:

o behaviouralK storing the known or desired behaviour of the KB;

e socialK representing the social context;
e fizK representing KB repair strategies;
o qualityK representing how the quality of the KB will be assessed.

These different knowledge types are shown in Figure 1. The maintenance KB
is itself an execution KB which leads to the recursive maintenance problem
(i.e. how do we maintain the maintenance KB? §2.5). Further, we can see in
the literature five main strategies for processing these seven knowledge types:
acquire, operationalise, fault, fix and preserve. These five processing strategies

page 6 of 61

/ focus of most of current KA

,
- [Wordk] [SentenceK | [Psm

: ExecutionKB

C R | executionKB
maintained

by a second
maintenanceK B

MaintenanceK B

Processing
Activity

Zmay use
visa versa)

Figure 1: Maintenance KBs are a special kind of execution KBs which access
more types of knowledge. Much of modern KA is focused only on execution
KBs

Knowledge Processing Activities (Figure 23)
Knowledge 1.Acquire 2.0perationalise | 3.Fault 4.Fix 5.Preserve
types (Fig-
ure 4)
1.WordK All sys- | methods in an | repertory RDF RDF
tems 0O system grids (Fig 30) (Fig 29)
(Fig 19)
2.SentenceK MYCIN MYCIN verification CBR RDR
(includes (Figs 5,6) | (Figs 5,6) tools (Figs 8 to 32) (Fig-
ontologies) I0- (Figs 17,18); ure 30)
SCHEMAS
(Figs 24,25)
3.BehaviouralK|| UML test suites | TCAT Zlatereva -
(Fig 7) (§2.3.4) (§2.3.4) (§2.3.4)
4.PSMs KADS TINA Fensel RD-RA RD-RA
(Fig 14) | (Figs 27,28) (§3.3.2) (§3.4.2) (§3.4.2),
(Fig- KA scripts
ure 15) (Fig 33)
5.QualityK QARCC QMOD/HT4 | - - -
(includes (Figs 16,34) | (Figs 9 to 12)
inconsisten- CSMs (Fig-
cyK) ure 20)
6.FixK SEEK machine learn- | - - -
(Fig 21) ing; (Fig 31)
7.SocialK REMAP | - - - -
(Fig 22)

Figure 2: Some example systems that cover the 35 points in the knowledge
management oplions space.

170

175

180

185

190

195

page 7 of 61

CAKE computer-aided knowledge en- | CASE computer-aided software engi-
gineering neering
CBR case-based reasoning CSMs critical success metrics
DSE data-schema evolution EBG explanation-based generalisa-
tion
ECS expert critiquing system ETM EXPECT TRANSAC-
TION MANAGER
ILP inductive logic programming K knowledge
KA knowledge acquisition KB knowledge base
KL knowledge-level modeling KIL-A KL using a single PSM
KL-B KL using libraries of PSMs KM knowledge maintenance
ML machine learning NFR non-functional requirement
OO Object-oriented P a proof generated by HT4
PSB Preece, Shinghal, Batarekh PSCM problem-space computational
model
PSM problem solving method RAS rapid acquire system
RD-RA ripple-down rationality RDF ripple-down functions
RDR ripple-down rules RM requirements modeling
SBF SPARK/BURN/ FIRE- SC situated cognition
FIGHTER
W a world generated by HT4

Figure 3: Abbreviations used in this paper

and seven knowledge types define the 35 points of a knowledge management
options space (see Figure 2).

Due to the fragmented and diverse nature of the KM field, this article does
not aim to cover every KM system. Rather, we will mention systems that
illustrate portions of the maintenance strategy option space!. Many of the
systems reviewed here contribute to multiple places within the maintenance
strategy option space. Hence, their descriptions may be broken up into different
sections. This article will use the term KM to denote some maintenance strategy
for processing some combination of our seven knowledge types. Abbreviations
used in the paper are described in Figure 3.

The structure of this article is as follows:

e In §2, we explore the seven knowledge types

e In (§3), we review the five processing activities on those types.

e In (§4), we draw the following conclusions. Firstly, a process called search-
search reflection is central to many KM tools. Search-space reflection will
be shown to be a simple extension of Newell’s original knowledge-level
vision [Newell, 1982, Newell, 1993] (§2.4). Secondly, current knowledge
maintenance research is incomplete.

We will see several indicators that current KM research is incomplete. For
example, over a third of the 35 points in the knowledge maintenance space are
not explored in the literature. Also, many KM systems are rapid acquire sys-
tems that assume that if knowledge is expressed at a sufficiently high-level, then
its flaws are obvious and quick to change. We offer examples below where this
is clearly not the case (§3.1.1). Further, some research makes the operational-
isation KM assumption; i.e. if we can watch a program execute, then we can
understand it. We will argue that mere program watching is hardly a complete

L1KM researchers who feel their system is not accurately reflected in this survey are encour-
aged to contact the author. It is planned to update this document on a regular basis.

page 8 of 61

BehaviouralK |<>—|BK Item |

input explanations

depends
on

Generic
Primitivelnference

Knowledge
Type

executioncontrolledBy
-M etak
v/@/

Processing O
Activity

= | Primitivelnference |

NonFunctional Requirements |

ProductOrientedA ssessment |

Qualityk

Figure 4: Different knowledge types (in the notation of Figure 1).

KM strategy (§2.3.5). Lastly, most KM research ignores the recursive mainte-
nance problem (§2.5). That is, if we maintain KB1 using knowledge stored in
some KB2, do we then then need some KB3 to maintain KB2 and a KB4 to
maintain KB3 and... The missing third of the KM space are all a result of the
200 recursive maintenance problem. To address this incompleteness in current KM
research, our final section discusses how a KM tool should be commissioned.

2 Knowledge Types

Figure 4 summarises our seven knowledge types. KBs contain:
e Words (§2.1) collected into sentences (§2.2). Words may depend on other
205 words, thus forming a dependency network; e.g. some tests may be a pre-
condition for some result or rule left-hand-side words must be true before
we can infer rule right-hand-side words. An important class of sentences
are ontologies [Gruber, 1993, Gomez-Perez, 1996, Neches et al., 1991].

e Known, desired, or past behaviour of a KB is stored in as behaviouralK (§2.3).
210 Members of this library may be:
— Just KB inputs (e.g. test case generation, §2.3.4);
— Or input/output pairs (e.g. QMOD/HT4,§2.3.3);

— Or an “explanation”: portions of the dependency network which con-
nects inputs to outputs (e.g. CBR, §2.3.2).

page 9 of 61

if the infection is meningitis and

the infection is bacterial and

the patient has undergone surgery and

the patient has undergone neurosurgery and

the neurosurgery-time was < 2 months ago and

the patient received a ventricular-urethral-shunt
then infection = eColi (.8) or klebsiella (.75)

Figure 5: Rules are sentenceK containing wordK (wordK is underlined)

215 e In the knowledge-level modeling (KL) paradigm, KB execution is con-
trolled by problem solving methods (PSMs) (§2.4.1). A single PSM is a
set of generic primitive inferences. We distinguish two kinds of KL mod-
eling: KL-A and KL-B [Menzies, 1995a]. In KL-A, there is only one PSM
which applies preference operator selection control over a traversal of the

220 dependency network (e.g. abduction or the problem-space computational
model: PSCM [Yost & Newell, 1989]). KL-B uses libraries containing
more than one PSM.

e PSMs are one kind of meta-knowledge. Other kinds of meta-knowledge
include:

225 — Quality knowledge which assesses a KB via testing for inconsistency
(using inconsistencyK); testing the non-functional requirements; or
performing product-oriented assessment (§2.4.2);

— Knowledge of how to fix a broken KB (§2.4.3);
— Social knowledge describing the agents that interact around the KB (§2.4.4);

220 — Maintenance processing activities (§3).

Technically, ontologies is also meta knowledge about words. How-
ever, they are also sentenceK and so, to avoid an overly-complex
classification scheme, we will discuss ontologies under the heading of
sentenceK and not meta-knowledge.

235 All seven types (wordK, sentenceK, behaviouralK, PSMs, qualityK, fixK,
socialK) are heuristic knowledge. That is, they are subjective and (potentially)
will require change over the lifetime of a KB.

2.1 WordK: Word Knowledge

At the lowest level, a KB connects simple words. When generating explanations,
20 words are the concepts which cannot be decomposed into other concepts. For
example, consider the MYCIN rule discussed by Clancey (Figure 5) [Buchanan
& Shortliffe, 1984, Clancey, 1992]. Words in this rule are underlines and include
meningitis, surgery, eColi, etc. In a logic program, words are the ground
terms. In an object-oriented (OO) system, a word could be a call to a method
25 in an object. In a functional system or OO, a word would be a call to some
function, perhaps with a simple comparisons (e.g. age(patient)=o0ld).
The meaning of words must be maintained since the rest of the knowledge
base is a construction that connects these terms. Given a dependency network
representing the inference flow in a system, the words would be the vertices

250

255

260

265

270

275

280

page 10 of 61

subtype (meningitis, bacteriaMenigitis).
subtype (bacteriaMenigitis, eColi).
subtype (bacteriaMenigitis, klebsiella).
subsumes (surgery, neurosurgery).
subsumes (neurosurgery, recentNeurosurgery).
subsumes (recentNeurosurgery, ventricularUrethralShunt).
causalEvidence(bacteriaMenigitis, exposure).
circumstantialEvidence(bacteriaMenigitis, neurosurgery).

Figure 6: Some sentences from Figure 5.

(such a dependency network would be computed from knowledge of sentences
and PSMs).

2.2 SentenceK: Sentence Knowledge

Knowledge restricts the search space in a domain. The role of sentenceK is to
restrict the valid inferences that connect wordK. For example, words may be
connected in rules as in Figure 5.
In many domains, there exists knowledge of the legal sentence types. Such
knowledge can be expressed as a special kind of sentenceK called ontologies.
Gruber defines such ontologies as “an explicit specification of a conceptualisa-
tion”. This article includes many examples of ontologies:

e Figure 1 describes the types of words used in this article to describe knowl-

edge types.

e Figure 6 shows Clancey’s preferred ontology for MYCIN rules. This ontol-
ogy is instantiated with domain-specific terms from the MYCIN system.
For example, according to Clancey, MYCIN rules include a subsumes,
causalEvidence and circumstantialEvidence relationships. Further,
the word bacterialMenigitis “isa” meningitis.

e Later in this article, we will meet other ontologies including the REMAP
ontology for design discussions (Figure 22) and an intricate ontology de-
scribing knowledge processing activities (Figure 23).

In an ontology, abstract terms usual appear high in some isa hierarchy while
specific domain terms appear lower down the hierarchy.

2.3 BehaviouralK: Behavioural knowledge

We say that when a KB executes (i.e. PSMs §2.4.1 have controlled the appli-
cation of the sentences from §2.2), then the KB has exhibited some behaviour.
Once way to assess a KB is to compare the behaviour it can create with the de-
sired behaviour. This implies the presence of behaviouralK: a library of known or
desired or past behaviour. BehaviouralK can be found or built in at least four
system groups described below: UML (§2.3.1), case-based reasoning (§2.3.2),
QMOD/HT4 (§2.3.3), and various tools from software and knowledge engineer-
ing (§2.3.4),

We take care to distinguish the term behaviouralK from “functional specifica-
tion”. Functional specifications are generally much larger and more detailed
than behaviouralK. In software engineering, for example, a functional specifica-
tion is a statement of desired program behaviour. These statements are collected

285

290

295

300

305

310

page 11 of 61

Dieter: Caller 612 :Phone Line Tim: Callee

caller liftsreceiver

dial tone begins
dia(6)

dial tone ends
dial(1)

diad(2)

ringing tone

phone rings

answer phone
tone stops ringing stops

Time

Figure 7: A use case expressed as a sequence diagram.

during system analysis time and are uncontorted, as far as possible, by imple-
mentation details. Fensel [Fensel, 1995] argues that function specifications in
expert systems can include some implementation knowledge (the problem solv-
ing methods of §2.4.1). However, for the most part, functional specifications
describe the “what” of the program and ignores the “how”. BehaviouralK may
not be a full description of the system: it may only be the small portions known
at analysis time. Also, behaviouralK may be restricted to only observables on
the interface of a program (exception: case libraries in case-based reasoning in
§2.3.2).

2.3.1 BehaviouralK in UML

This section notes that behaviouralK can be collected from object-oriented spec-
ifications via uses cases [Jacobson et al., 1992, Rumbaugh, 1994, Booch, 1996,Ru-
bin & Goldberg, 1992]. A use case has a very simple text structure. Developers
write a short “story” (say less than 2 pages) describing some flow of events
within their system. The text of the use case is mapped into classes via se-
quence diagram such as Figure 7. The arrows on a sequence diagram represent
the flow of events of the use case text. Each such arrow implies a method at
the sender end and a method at the receiver end. A standard sequence diagram
does not support conditionals. If a use case divides into N sub-cases, then each
such sub-case is a separate use case.

Use cases have become the main driver of OO development [Jacobson & Chris-
terson, 1995]. After dividing up software into multiple small modules, use cases
are the “glue” that demonstrate how those modules can be strung together. In
OO analysis techniques such as UML [Booch et al., 1997], use cases are used
as the basis of specifying the functional requirements, defining software objects,
allocating functions to objects, and designing the interface [Jacobson & Chris-
terson, 1995)%.

Note the specific data contained in Figure 7 (dialing of 612, specific data values
like Dieter and Tim). Use cases can also be used to extract behaviouralK from
business users.

2For a short tutorial introduction to use cases, see [Rumbaugh, 1994]. For an intricate
use of use cases for tracing the link between requirements and code, see [Rubin & Goldberg,
1992].

315

320

325

330

page 12 of 61

Limited Aortic

cardiac valve

output disease

Dyspnea Aortic Murmur
on exertion stenosis of as
General Fixed high High
flow outflow LV press
deficit resistance chronic
Unstable Slow LV hyper-
angina gjection trophy
Unstable EKG:
angina LV strain
Chest pain

Figure 8: An explanation of David’s symptoms using aortic valve disease.
From [Kolodner, 1993, p419].

2.3.2 BehaviouralK in Case-based Reasoning

Case-based reasoning (CBR) is an inference strategy where new situations are
managed by reviewing prior situations [Kolodner, 1991,Kolodner, 1993]. Knowl-
edge in a CBR system is a library of prior cases. Inference at runtime consists of
matching prior cases that are most like the new situation, then adapting those
prior cases to the new situation. CBR fixK controls the finding and adaptation
of cases (§3.4.7) .

BehaviouralK typically describes input-output pairs. CBR, behaviouralK (the
case library) includes details of how these input-output pairs were connected at
runtime. Each stored case is generated from prior solutions and may be used
to guide future solution generation.

For example, Figure 8 shows a stored case in the CASEY system [Kolodner,
1993, p418] which contains an explanation for the symptoms of the patient
David. Note that some of the nodes in Figure 8 are directly observable (e.g.
unstable angina) while others are inferred (e.g. aortic valve disease).

2.3.3 BehaviouralK in HT4

In the QMOD/HT4 system [Menzies & Mahidadia, 1997, Feldman et al., 1989],
the behaviouralK was a list of input/output pairs. QMOD/HT4 used the be-
haviouralK to validate neuroendocrinological theories (the study of connections
of nerves to glands). For example, consider the task of achieving certain 0UTputs

335

340

345

350

page 13 of 61

current
account
balance
investor
fori egn confidence
++
++
++ company corporate -- _ < wages
domestic ——=
profits ++ spending restraint
sales
++ \\\\\\\\\\\\\\\\Q\ ////
public inflation
confidence

Figure 9: A theory processed by HT4.

P[1]: domesticSalesDown, companyProfitsDown, inflationDown

P[2]: foriegnSalesUp, publicConfidenceUp, inflationDown

P[3]: domesticSalesDown, companyProfitsDown, corporateSpendingDown, wagesRestraintUp
P[4]: domesticSalesDown, companyProfitsDown, inflationDown, wagesRestraintUp

P[5]: foriegnSalesUp, publicConfidenceUp, inflationDown, wagesRestraintUp

P[6]: foriegnSalesUp, companyProfitsUp, corporateSpendingUp, investorConfidenceUp

Figure 10: Proofs from Figure 9 connecting 0UT= {investorConfidencelUp,
wagesRestraintUp, inflationDown} back to INputs= {foriegnSalesUp,
domesticSalesDown}.

using some INputs across the knowledge shown in Figure 9. In that figure:

o x X y denotes that y being up or down can be explained by x being up or
down respectively;

e x — y denotes that y being up or down could be explained by x being
down or up respectively.

Figure 9 is a combination of the opinions of two authors: Dr. Thick (whose
contribution is drawn with thick lines) and Dr. Thin (whose contribution is
drawn with thin lines). Observe the apparent conflict in the middle of Figure 9
on the left-hand-side. Dr. Thick believes foriegnSales H companyProfits
while Dr. Thin believes foriegnSales — companyProfits. We will discuss
the resolution of this conflict in §3.4.3.

In the case of the observed 0UTputs being {investorConfidenceUp, wagesRestraintUp,
inflationDown}, and the observed INputs being {foriegnSalesUp, domesticSalesDown},

QMOD/HT4 can connect 0UTputs back to INputs using the proofs of Figure 10.
These proofs may contain controversial assumptions; i.e. if we can’t believe that
a variable can go up and down simultaneously, then we can declare the known
values for companyProfits and corporateSpending to be controversial. Since

page 14 of 61

*
* investor

fori egn confidence
company corporate wages
proflts ++ spendl ng restraint
++

confidence

public * - infion

Figure 11: World #1 is generated from Figure 9 by combining P[2], P[5], and
P[6]. World #1 assumes companyProfitsUp and covers 100% of the known
0UTputs.

foriegn *

saes
++ company corporate -- _ . wages

ic —=

domestic profits ++ spending restraint

sales *

- \ /
public inflation
confidence

Figure 12: World #2 is generated from Figure 9 by combining P[1], P[2],
P[3], and P[4]. World #2 assumes companyProfitsDown and covers 67% of
the known 0UTputs.

355

360

365

370

375

380

385

390

395

page 15 of 61

corporateSpending is fully dependent on companyProfits (see Figure 9), the
key conflicting assumptions are {companyProfitsUp, companyProfitsDown}
(denoted base controversial assumptions or A.b). We can used A.b to find con-
sistent belief sets called worlds W using an approach inspired by the ATMS [DeK-
leer, 1986]. A proof P[i] is in W[j] if that proof does not conflict with the
environment ENV[j] (a maximal consistent subset of A.b). In our example,
ENV[1]={companyProfitsUp} and ENV[2]={companyProfitsDown}. Hence,
wl11={P[2]1, P[5], P[61} and W[21={P[1] P[2] P[3], P[4]} (see Figure 11
and Figure 12). Note that:

e While the background theory (Figure 9) may be inconsistent, the gener-

ated worlds are guaranteed to be consistent.

¢ QMOD/HT4 has some association to CBR. If we compare Figures 11 & 12
with Figure 8, we see that a CBR case library item could be a QMOD/HT4
world.

QMOD/HT4 defined cover to be size of the intersection of a world and the
0UTput set. The cover of Figure 11 is 3 (100%) and the cover of Figure 12 is 2
(67%). Note that since there exists a world with 100% cover, then all the 0UTputs
can be explained. Feldman & Compton [Feldman et al., 1989], followed by
Menzies [Menzies, 1995b, Menzies, 1996a], have shown that QMOD/HT4 could
detect previously unseen errors in theories in neuroendocrinology (the study of
nerves and glands) published in international refereed journals. Surprisingly,
these faults were found using the data published to support those theories
2.3.4 SE/KE BehaviouralK Tools

This section describes a range of testing tools from software engineering [Marick,
1997, Connell & Menzies, 1996] and knowledge engineering [Ginsberg, 1990,
Zlatereva, 1992] which use behaviouralK. See §2.4.2 for other testing tools which
do not use behaviouralK.

Two standard testing techniques based on behaviouralK is test suite generation
and code coverage. Test suite generation builds the behaviouralK while code
coverage tools explores what fraction of the code has been exercised by the
behaviouralK.

Test coverage tools use known dependencies between words to augment the
source code and/or the interpretor/virtual machine and generate logs of which
portions of the code were exercised. For example, Connell & Menzies’ TCAT
system added calls to logging software into the source code of Smalltalk meth-
ods [Connell & Menzies, 1996]. Special browsers were written to allow users to
quickly find unused portions of code, or code used very frequently.

A standard technique for behaviouralK generation is to analyse the branches in
the source code in order to build test suites which cover all branches. Standard
branch analysis makes a single-world assumption in which any combination of
forks are compatible. A harder case is multiple-world test suite generation in
which incompatibilities may exist within forks. Such mutually exclusive forks
must be managed in separate worlds. Further, the source code itself may have
to be divided into portions (a.k.a. worlds). Each portion must be internally
consistent.

A flavor of such multi-world division of source code was supplied above (§2.3.3).
The key conflicting assumptions must be uncovered by a PSM reflecting over
the generated proofs. In our example above (Figures 11 & 12), these were the

400

405

410

415

420

425

430

435

440

445

page 16 of 61

ENV sets. Each such ENV set would be an interesting test case. Automatic test
suite generation is systems which support inconsistencies have been implement
by Ginsberg [Ginsberg, 1987, Ginsberg, 1990] and Zlatereva [Zlatareva, 1992,
Zlatareva, 1993]. The dependencies between rules/conclusions are computed
and divided into mutually consistent subsets. The root dependencies of these
subsets represent the space of all reasonable tests. If these root dependencies are
not represented as inputs within a test suite, then the test suite is incomplete.
Test cases can then be automatically proposed to fill any gaps.

Formally, multiple-world test suite generation is abduction [Eshghi, 1993] and
abduction is slow. Selman & Levesque show that even when only one abductive
explanation is required and the theory is restricted to be acyclic, then abduc-
tion is NP-hard [Selman & Levesque, 1990]. Bylander et. al. make a similar
pessimistic conclusion [Bylander et al., 1991]. Computationally tractable ab-
ductive inference algorithms (e.g. [Bylander et al., 1991,Eshghi, 1993]) typically
make restrictive assumptions about the nature of the theory or the available
data. Such techniques are not applicable to arbitrary theories. Therefore, it is
reasonable to question the practicality of multiple-world test suite generation
for medium to large theories. Hence the single-world assumption taken by most
test suite generators (e.g. PISCES [technlogies, 1997]). However, Menzies has
shown that multiple-worlds reasoning is practical at least for a sample of the
theories seen in contemporary KE practice [Menzies, 1996b].

2.3.5 The Operationalisation KM Assumption

A common assumption in KM research is that if we can watch a program ex-
ecute, then we can understand it. This section raises doubts with this opera-
tionalisation KM assumption.
Supporters of this assumption believe that if we can watch a KB execute, then
we see where it goes wrong. However, operationalisation may be an incom-
plete maintenance strategy without behaviouralK. Recall the tools described in
the previous sections. Systematic methods for processing behaviouralK were
discussed that supported:

e The collection of libraries of known or desired behaviour using use cases

and test suite generation tools.

e The analysis of the execution of those libraries of test data using case-
based reasoning, HT4, and code coverage tools.

Note that these tools were much more that “let it run and see what happens”.
We should not ask the creators of a program to evaluate that program by merely
watching it run. The “halo effect” prevents a developer from looking at a
program and assessing its value. Cohen likens the halo effect to a parent gushing
over the achievements of their children and comments that...

What we need is not opinions or impressions, but relatively objective
measures of performance. [Cohen, 1995, p74].

Unless we have (a) some expectation of appropriate behaviour and (b) anal-
ysis tools for the resulting behaviour (i.e. behaviouralK), then we cannot assess
if the runtime behavior of a system is adequate.

2.4 Meta-knowledge

Meta-knowledge is knowledge about the structure, assessment, or modification
of the different knowledge types. Meta-knowledge is a very broad area and is

450

455

460

465

470

page 17 of 61

if the patient received a ventricular-urethral-shunt
then infection = e.coli (.8) or klebsiella (.75)

Figure 13: The real heuristic knowledge within Figure 5.

abstractl on rules &

Figure 14: Explicit problem solving (PSM) meta-knowledge: A simple KADS-
style PSM for diagnosis. Abstract and hypothesis are primitive inferences
which may appear in other PSMs. From [van Harmelen & Aben, 1996].

the focus of much of the advanced research into knowledge engineering. One
characterisation of the difference between software engineering and knowledge
engineering is that the former only concerns itself with wordK and sentenceK
while the latter supports reflection over that knowledge [Clancey, 1989]. That
is, software engineering does not usually model meta-knowledge (exceptions:
the reflection pattern [Buschmann et al., 1996] and the software engineering
product-oriented assessment tools listed in §2.4.2). Meta-knowledge will be
discussed below under the headings: problems solving methods (PSMs) (§2.4.1);
quality knowledge (§2.4.2); fix knowledge (§2.4.3); and social knowledge (§2.4.4).
2.4.1 PSMs: Problem Solving Methods

In Newell’s knowledge-level modeling KL approach [Newell, 1982, Newell, 1993],
intelligence is modeled as a search for appropriate operators that convert some
current state to a goal state. Domain-specific knowledge in used to select the
operators according to the principle of rationality; i.e. an intelligent agent will
select an operator which its knowledge tells it will lead the achievement of
some of its goals. By reverse-engineering KB implementations, we can identify
common sets of operators that have been used in many applications. These are
called problem solving methods (PSMs).
We can divide research into knowledge level modeling into two broad camps:
1. In the majority KL-B view, a KB should be divided into domain-specific
facts (which we call here wordK and sentenceK) and libraries of domain-
independent PSMs. For example, Clancey argues that knowledge engi-
neering should separate heuristics like Figure 5 into domain-specific knowl-
edge about the terminology (see Figure 6), meta-knowledge which controls
the application of the knowledge (see Figure 15) and true domain-specific

Strategy Description
exploreAndRefine | Explore super-types before sub-types.
findOut If an hypothesis is subsumed by other findings which are not
present in this case then that hypothesis is wrong.
test Hypothesis Test causal connections before mere circumstantial evidence.

Figure 15: PSMs identified by Clancey [Clancey, 1992] within Figure 5.

475

480

485

490

495

500

505

510

515

page 18 of 61

heuristic knowledge (see Figure 13) [Clancey, 1992]. In the KADS ap-
proach, PSMs may be expressed graphically such as in Figure 14 (ovals
are functions, rectangles are data structures).

2. In the minority KL-A view, KBs contain wordK, sentenceK, and a single
PSM. In Newell’s operationalisation of KL, this single PSM is the problem-
space computational model (PSCM) [Newell, 1993, Yost & Newell, 1989,
Yost, 1993]. Programming the PSCM involves the consideration of mul-
tiple, nested problem spaces. Whenever a “don’t know what to do” state
is reached, a new problem space is forked to solve that problem. The
observation that a PSCM system is performing (e.g.) classification is
a user-interpretation of a single lower-level inference (operator selection
over a problem space traversal) [Yost & Newell, 1989]. Our own mainte-
nance proposal is a KL-A approach since it is based the exception-driven
modification of choice operators within a single problem solving method:
abduction (§3.4.2).

That is, both KL-A and KL-B use PSMs. However, KL-A uses 1 PSM while
KL-B uses N PSMs. In KL-B, each PSM combines a common set of underlying
inference mechanisms (called various terms like “knowledge sources” [Wielinga
et al., 1992a], “mechanisms” [Marques et al., 1992], etc; e.g. abstract and
hypothesis in Figure 14). KL-B is the major focus of much of the KA commu-
nity: e.g. generic tasks [Chandrasekaran et al., 1992]; configurable role-limiting

methods [Swartout & Gill, 1996,Gil & Melz, 1996]; SPARK/BURN/FIREFIGHTER-

hereafter, SBF [Marques et al., 1992]; model construction operators [Clancey,
1992]; CommonKADS [Wielinga et al., 1992a,Schreiber et al., 1994]; the Method-
To-Task approach [Eriksson et al., 1995]; components of expertise [Steels, 1990];
MIKE [Angele et al., 1996]). Libraries of PSMs are described in [Benjamins,
1995, Breuker & de Velde (eds), 1994, Chandrasekaran et al., 1992, Motta & Zdra-
hal, 1996, Tansley & Hayball, 1993]. See the Related Work section of [Wielinga
et al., 1992a] for a discussion of the differences in some of these techniques. In the
terminology of this paper, the KL-B PSM research focuses on acquiring (§3.1)
and operationalising (§3.2) PSMs.

A halfway position between KIL-A and KL-B is offered by Chandrasekaran
et. al. [Chandrasekaran et al., 1992] in which:

e PSMs describe tasks (e.g. diagnosis) which can be implemented by. ..

e Methods (e.g. classification, simulation) which can be specified in a generic
way using the PSCM. Note that methods may be implemented as tasks
(which may recursively contain methods).

However, even though Chandrasekaran et. al. use the PSCM internally, they
argue that the task-level is the best view for understanding the system without
using too much low-level detail. We have some sympathy with this view. Our
biggest criticism of the PSCM is that there is nowhere to model cliched sets of
operators which have proved useful in previous applications.

On the other hand, our biggest criticism of KL-B is that the complexity
and diversity of the multiple PSM KL-B libraries may be hard to maintain. A
standard assumption in the KL-B community is that the PSM will remain con-
stant (or nearly constant) over the lifetime of the project (but see the exceptions
discussed in the next paragraph). For example, Pos et. al. [Pos et al., 1997]

page 19 of 61

offer a detailed analysis of “redesign problem solving”: the process of selecting
s0 or adapting a PSM. They stress in their conclusion that this process would be
useful during the early stages of KBS design. We make two comments here:
e Many of the techniques surveyed by Pos et. al. are relevant to the general
KM problem throughout the lifecycle.

e PSMs are still being developed. For example, we see in the literature at
525 least 8 definitions of “diagnosis”: three from the KADS community [Wielinga
et al., 1992a,Benjamins, 1995, Tansley & Hayball, 1993]; Clancey’s heuristic-
classification-as-diagnosis approach [Clancey, 1985]; Fowler’s object-oriented
approach [Fowler, 1997, cph3]; Menzies graph-based approach based on ab-
duction [Menzies, 1996a]; DeKleer & William’s approach based around a
530 distinction between a problem solver and a assumption-based truth main-
tenance system [DeKleer & Williams, 1987]; and Poole’s approach based
on Bayesian reasoning [Poole, 1993]. If (e.g.) DeKleer tried to maintain
(e.g.) Clancey’s system, he might make extensive modifications to the
KB. Consequently, it is not clear to us that PSM knowledge is free from
535 the maintenance problem.

Not all PSM research assumes static PSMs. For example, recall that domain-
specific words (e.g. meningitis) are mapped into general PSMs- recall Fig-
ure 6). This mapping process introduces a degree of flexibility into PSMs: facts
can take on different roles in different problem solving contexts. It has hence

s been argued [Hoffman et al., 1997, Shadbolt & O’Hara, 1997] that PSMs are a
technology for addressing the issue of changing knowledge. This may only be
partially correct since while domain facts can be mapped into different parts
of a PSM, the PSM itself is assumed to be fixed during the lifecycle of the
programme. Some research addresses the issue of dynamic configuration of

ss & problem solver. Often, PSM configuration is implemented via a depth-first
traversal of a hierarchy describing PSM options (e.g. see [O’Hara & Shadbolt,
1997] and the TINA system described below in Figure 27). In this approach,
the depth-first traversal is constrained by the current problem being analysed.
This is only a partial solution since while the generated PSMs can vary accord-

ss0 ing to the problem context, the background space of PSM options is fixed. No
guidelines are given for how experience with the running program can feedback
into modifying the PSM options hierarchy. Van de Velde hints at a more general
mechanism in which machine learners learn model review strategies via watching
human revise their models [veld93], but such work is only in its infancy.

s 2.4.2 QualityK: Quality Knowledge

QualityK stores some manner of generating an opinion about the value of the
KB. For example, QMOD/HT4 applied a very generalised quality procedure. It
computed the worlds with maximum cover (§2.3.3) and assessed the quality of
a KB via that maximum coverage figure.

ss0o The QMOD/HT4 quality knowledge assumed the presence of behaviouralK (§2.3).
If we do not have such a library, we can identify three broad classes of qual-
ity knowledge in the literature: non-functional requirements; product-oriented
assessment; and inconsistency detection knowledge (this inconsistencyK is a
special kind of product-oriented assessment), and critical success metrics. All

ss these forms of quality knowledge are discussed below.

570

575

580

585

590

page 20 of 61

‘‘Monitoring and control’’
Preconditions:
‘ ‘Monitoring instrumentation’’
‘¢Control limits’’
‘‘Algorithms’’

Postconditions:
‘‘If the function is stable, checks the performance and reports
it, otherwise stabilises the function by controlling the
configuration or environment. May also report predicted future
undesirable states.’’

Effects on quality attributes:

Assurance : pros ‘‘Avoids undesirable states’’

Performance : cons ‘‘Needs additional processing in short term’’
pros ‘‘Improves performance in long term via tuning’’

Timeliness,

Affordability : coms ‘‘More effort to specify’’
cons ‘‘More effort to develop’’
cons ‘‘More effort to verify’’

Figure 16: NFR quality knowledge: strategy knowledge from QARCC.
From [Boehm, 1996].

Non-Functional Requirements: Functional requirements can be measured
via executing and measuring a program. Non-functional requirements (NFR)
such as portability, evolvability, development affordability, security, privacy, or
reusability cannot be assessed with respect to the current version of the working
program. For example, consider the NFR of maintainability. Maintainability
can only be definitively assessed in retrospect; i.e. only after delivery has oc-
coured and we have some track record of the system’s performance in the field.
Nevertheless, during initial construction, we may still want to assure ourselves
as to the potential maintainability of the system.

Two example of NFR qualityK are Chung & Nixon’s goal graph [Chung & Nixon,
1995] approach and Boehm’s et. al. QARCC tool [Boehm, 1996]:

e The QARCC quality KB represents the concerns of different stakeholders
(e.g. user, customer, developer, developer, maintainer, interfacer, and gen-
eral public) and the quality attributes which map into those concerns. For
example, maintainers are mostly concerned with evolvability and porta-
bility while customers and developers are mostly concerned with devel-
opment affordability and reusability. A strategy fragment of a QARCC
quality knowledge base is shown in Figure 16. These strategy fragments
are mapped into different stakeholders (e.g. developers and customers
both worry about Affordability). These strategies are then explored
looking for conflicts such as Performance vs Affordability trade-offs.

o Goal graphs contain similar trade off information to the QARCC strategy
fragments, but do not explicitly model stakeholders.

Product-Oriented Assessment: Product-oriented assessment knowledge is
applied to features extracted from a software product. Knowledge engineering
product-oriented assessment tools can be found in the verification literature.
Verification is the exploration of the internal syntactic structure of a program.

595

600

605

610

615

page 21 of 61

Subsumed rules

Redundancy i Redundant rules i Duplicate rules

Unusable rules

Ambivalence Conflicting sets of rules
Anomaly
Circularity (inference loops)
Deficiency i Missing rules
Missing values
Figure 17: PSB anomalies.
MMU | TAPES | NEURON | DISPLAN | DMSI1

Size (literals) 105 150 190 350 540
Logical subsumption 0 5/ 0 4/ 5
errors
Missing rule errors 0 16/16 0 17/59 0
Circularities in reason- 0 0 0 20/24 0
ing errors

Figure 18: Ratios of (true errors/,, maties) in a sample of fielded expert systems.
From [Preece & Shinghal, 1992].

Preece, Shinghal and Batarekh [Preece & Shinghal, 1992] (hereafter, PSB) de-
fine a taxonomy of structural “anomalies” in rule-based expert systems (see
Figure 17) and argue that a variety of verification tools target different subsets
of these anomalies (perhaps using different terminology).

PSB stress that the entries in their taxonomy of KBS anomalies may not be
true errors. For example, the dependency network from a rule-base may show
a circularity anomaly between literals. However, this may not be a true error.
Such circularities occur in (e.g.) user input routines that only terminate after
the user has supplied valid input. For this reason, PSB call the detected “er-
ror” anomalies, not faults. Figure 18 shows the ratio of true errors to detected
anomalies for circularities, subsumption, and missing rules. Note the large num-
ber of detected anomalies which were not true faults. Knowledge engineering
product-oriented assessment should be used as pointers into the system which
direct the developer to areas that may require a second glance.

Numerous software engineering product-assessment tools are available. For
example:

e Balbo describes software tools for assessing the usability of user inter-

faces [S, 1995].

e Potentially, high-level product-oriented assessment can be linked back to
non-functional requirements [Boehm, 1996]. Architectural and design pat-
terns [Gamma et al., 1995, Buschmann et al., 1996, Fowler, 1997, Coad
et al., 1997, Menzies, 1998d] describe common cliches in software engi-
neering. Proposed software designs can be heuristically assessed via known

620

625

630

635

640

645

650

655

660

page 22 of 61

properties of these patterns. For example, layered architectures increase
portability but slow down the program. The practicality of this approach
is being explored within the QARCC project.

e Haynes, Menzies, and Phipps argue that product-oriented assessment of
object-oriented systems can be mapped back to quality attributes; e.g.
smaller classes seem to produce fewer bugs that larger classes [Haynes
et al., 1995]. The long term goal of research such as the Haynes, Men-
zies, and Phipps paper is a mapping from product-oriented metrics (i.e.
numbers extracted from the source code) back to NFRs such as main-
tainability and extendibility. Haynes believes that such a mapping can
be generated via rigorous statistical means. However, we believe that ul-
timately this mapping will be subjective; i.e. open to disagreement and
therefore will require maintenance using the tools described in this paper
(see below §2.5: the recursive maintenance problem).

e A variety of other tools apply software engineering quality criteria to assess
systems. For example, the TCAT system of Connell & Menzies reports
what percentage of a Smalltalk program was exercised during the execu-
tion of a test suite [Connell & Menzies, 1996].

Note that the success of TCAT depends on executing a representative test
suite that covers the application’s common operations. That is, certain product-
oriented assessment software engineering tools require behaviouralK (§2.3). The
same can be said for some knowledge engineering product-oriented assessment
tools. For example, EXPECT [Gil & Tallis, 1997] detects errors in PSMs in a
LOOM representation via a partial evaluation of methods. This partial evalu-
ation is driven by a particular example (a.k.a. an item in the behaviouralK).
Errors are detected if a method cannot fire because the types of the input pa-
rameters to the methods are not available (formally, this is a variant on PSB
“unusable rules” in Figure 18). Note that the completeness of this EXPECT
error detector is a function of the completeness of the behaviouralK used to
drive the partial evaluator.

InconsistencyK: Our next qualityK performs inconsistency detection. Incon-
sistency detection is particularly important in the case of knowledge collected
from different experts.

Inconsistency detection knowledge may be very simple such as:

inconsistent(X, not X).

QMOD/HT4 knew that its vertices came from a set of variables that have can
be in one of N mutually exclusive states. QMOD /HT4 reported an inconsistency
if:

inconsistent(Vari/Statel, Varil/State2) :- not(Statel = State2).

However, inconsistency knowledge may be representation-specific. For ex-

ample:

e In an object-oriented language that supports constraint rules, the con-
straints on a sub-class should not be violated by a super-class (i.e. any
sub-class should be able to “stand in” for the super-class, wherever it is
used).

page 23 of 61

FOCUS John & Mary , Dornain: Hormes, Uzer: John & Mary

Context: choosing a new horne, P hornes , 8 qualities 100 ST G0 T ER

Origingl condition 3 2 | Extensive modernization. ...
Oz sy le | Completely remadeled. ...

Foor siudy 3 | Good study oo
Frice dap end doe low end oo
Fedendly €

Good decorations || 5 G,
rMoundzin views) { Town views. o

Pl pear |13 GHEEHEERIHIREER 2 | | ona way from sdees.

' : 100 90 80 70 &0 50

© i 436, Ryman Estate Drive MW
e 4227, Ranch %Wheel Road N
. 5??8_, Felina Drive MY
D, 275, Daklands Drive N
PR 23,080 1 20th Road, N ...
U 1 , abraharm F'|:|'in1;_l MY ...
................................. Idealhorme. oo

Figure 19: Repertory grids. Generated from the WebGrid WWW server [Shaw,
1997].

e Given state transition diagrams from two authors, report an inconsistency
if:
— A transition exists between two states in one diagram;
— Those two states appear in the other diagram;

— The transition does not appear in the other diagram [Easterbrook &
Nuseibeh, 1996].

e Shaw’s repertory grids can detect conflicts in wordK by comparing grids
from different experts. Experts are asked to identify dimensions along
which items from their domain can be distinguished. The two extreme
ends of these dimensions are recorded left and right of a grid. New items
from the domain are categorised along these dimensions. This may lead
to the discovery of new dimensions of comparisons from the expert which,
in turn, will cause the grid to grow [Gaines & Shaw, 1989]. For example,
based on how an expert scaled some example houses, we can see from the
repertory grid of Figure 19 that the ideal home is closest to 1, Abraham
Point, NW. Once the dimensions stabilise, and a representative sample of
items from the domain have been categorised, then the major distinctions
and wordK of a domain have been defined. Inconsistencies are reported
if the categorisations are significantly difference. Using this technique,
Gaines & Shaw [Gaines & Shaw, 1989] can detect four classes of inconsis-
tencies in wordK:

— Consensus: same item, same categorisations;

— Correspondence: (a.k.a. synonyms) items with different names, but
the same categorisation;

685

690

695

700

705

710

715

page 24 of 61

200

% profitt increase
100

expert —e—
expert system —4—
| |

0 4 '
1 3 5 7
Simulation run number

Figure 20: Critical success metrics for PIGE. From [Menzies et al., 1992].

— True conflict: same items, different categorisations;

— Contrast: different items, different categorisations

Critical Success Metrics: Our final qualityK are critical success metrics
(CSMs). A CSM is a combination of a numeric measure and a threshold value.
If the measure exceeds the threshold, then the system is deemed to be a suc-
cess [Menzies, 1998c]. In some cases, thresholds can be set via some “gold
standard” (e.g. [Shahsavar, 1993]).

In our experience, CSMs have several properties. Firstly, they are very
domain-specific. Secondly, CSMs are a reflection of the contribution of the
behaviour of the software in a particular business context. Hence:

e They typically do not refer to internal properties of a program.

e They cannot be developed by programmers without extensive input from
business users.

e They can only be collected once the program is running in its target
context.

Thirdly, CSMs may require extra architecture. For example, in one appli-
cation, we identified “increases sales per day” as the CSM for a dealing room
expert system. However, this number was not currently being collected. Sales
per day could be estimated from the quarterly statements, but no finer grain
data collection was performed at that site. Hence, prior to building the expert
system, we had to build a database system to collect the baseline data.

Fourthly, while CSMs are obvious in retrospect, they can take weeks of
analysis to uncover. For example, in the PIGE farm management expert sys-
tem [Menzies et al., 1992], nutrition experts argued for weeks about the merits
of different protein utilisation models. Then the marketing people commented
that such considerations were irrelevant if it could not be demonstrated that the
systems recommendations improved the overall profitability of a farm. Hence,
the evaluation focus moved from the protein utilisation models to issues of mod-
eling the farm economics. Figure 20 shows the CSM evaluation of PIGE. Given
a particular configuration of the livestock, an optimisation model could infer
the annual profit of the farm. Alternate configurations could be explored using

720

725

730

page 25 of 61

seekDiagnosisRule seekFixRule

if majorSymptoms and if the number of cases suggesting
minorSymptoms and generalisation is greater than
tests and the number of cases suggesting
not exclusions specialisation

then diagnosis is true and the most frequently missing

with confidence component is the major symptoms
[definitely or probably then delete some major symptoms

or possibly]
Figure 21: SEEK rules.

modifies Requirement leads to

generalises questlons

suggeﬂs A$umpt|on
repsondsTo suggests qualifies /[\dependsOn

supports/refutes A rgument
Position

sel ects

generalises dependsOn
Decision |
\l/ implies

dependson creates/removes/modifies

Figure 22: SocialK in REMAP. From [Ramesh & Dhar, 1992].

a simulation model. A user can choose some settings, then run the simula-
tion model to see if the system’s performance improved. Figure 20 contrasts
this exploration process between the human expert who wrote the rule base
and the expert system. Note that this expert system out-performed its author
(") [Menzies et al., 1992].

2.4.3 FixK: Fix Knowledge

Fix knowledge specifies how to correct errors. Much of the research into machine
learning (ML) (§3.4.6) and CBR (§2.3.2) can be characterised as a search for
good heuristics for fixK. Since fixing is typically a slow process, fixK is usually
expressed algorithmically for reasons of efficiency. One notable exceptions is the
SEEK [Politakis, 1985] and SEEK2 systems. SEEK [Politakis, 1985] worked with
a human operator to try fix rules of the general form of seekDiagnosisRule in
Figure 21. SEEK fixK can propose fixes to a human operator; e.g. additions
or removals of tests/symptoms, or changes to the confidence value of a rule.
SEEK? [Ginsberg et al., 1988] was a generalisation of SEEK and contained (i) a
more general rule format is processed; (ii) a special meta-language for defining

735

740

745

750

755

760

765

770

775

page 26 of 61

specify fix knowledge in a more general form than e.g. seekFixRule.
2.4.4 SocialK: Social Knowledge

Some expert systems practioners argue that knowledge cannot be understood
with understanding its social context [Winograd & Flores, 1987, Clancey et al.,
1996]. Paper documents are often collected which informally describe the organ-
isational context of a system; e.g. the organisational model of KADS [Wielinga
et al., 1992b)] or the stakeholders of the Olle-126 [Olle et al., 1991]. Some prac-
tioners also operationalise their socialK:

e Clancey et. al.’s BRAHMS system [Clancey et al., 1996] models the ex-
change of information amongst a group of agents about functional knowl-
edge (orders, organisations, roles, product flows). BRAHMS includes very
detailed descriptions of the actual day-to-day work of those agents. In
BRAHMS, the macro-workflow of an organisation is an emergent process
that is inferred from all the micro-behaviour of the agents in an organisa-
tion.

e Figure 22 shows the socialK within the REMAP system [Ramesh & Dhar,
1992]. REMAP logs design discussions and their inter-connections. If a
developer changes their position on some argument, then developers can
track the impact of that change to the constraints on the development.
Previous discussions can be replayed to generate an historical understand-
ing of how some decision was achieved.

e The REMAP system is a specific example of a more general process. De-
sign rationales are a record of why a community decided to change some
aspect of a system [Moran & Carroll, 1996]. Design rationales are de-
scribed in more detail below (§3.5).

2.5 The Recursive Maintenance Problem

The qualityK approach assumes that when assessing some ezecution KB KB1,
a second maintenance KB KB2 will be created to store the quality knowledge.
Internally, this maintenance KB (KB2) may contain wordK, sentenceK, and
PSMs. For example, a QARCC PSM might describe how to best resolve con-
flicting knowledge offered by feuding experts. However, it also contains extra
knowledge for fixing, represented agent societies, the behaviouralK, and the
processing activities (recall Figure 1). If KB2 is complex subjective, or context-
dependent, then it will need maintenance. If we maintain KB2 using qualityK
stored in some KB3, do we then then need some KB4 to maintain KB3 and a
KB5 to maintain KB4 and...

This is the recursive maintenance problem: i.e. how do we maintain the main-
tenance knowledge. The recursive maintenance problem can be seen in many
KM schemes:

e When developing some program (KB1), QARCC and goal graphs are a
knowledge base (KB2) which assesses (KB1). If KB2 (e.g. Figure 16) is
complex, subjective, or context-dependent, then it may require mainte-
nance as well.

e The mappings searched for by QARCC and Haynes et. al. between product-
oriented assessment metrics and stake holder quality attributes would have

780

785

790

795

800

805

810

815

820

page 27 of 61

to be represented in some KB2. Such mappings are subjective and may
require maintenance.

e Automatic test suite generation present an even tighter recursive main-
tenance problem than the KB1-KB2 problem. Such generators use KB1
to assess KB1 by generating test suites to exercise all branches of KB1.
After an expert describes their world-view in a KB1, that same expert will
be asked to specify the results of certain inputs. If the expert then uses
KB1 to predict the output, then they would be using a potentially faulty
KB to generate a potentially faulty prediction about the output [Menzies,
1996a]. The QMOD/HT4 study (§2.3.3) used real-world observations; i.e.
knowledge of valid INput and OUTput came from a source external to the
knowledge base.

A solution to this (potentially infinite) recursive maintenance problem would
need to demonstrate that the recursion terminates; e.g. KB2 is demonstrably
smaller or less subjective than KB1. Such demonstrations are not found in the
current KM literature (exception: RDR, see §3.4.1).

3 Knowledge Processing Activities

The previous section described seven types of knowledge, any of which may
require maintenance. This section divides “maintenance” into five knowledge
processing activities shown in Figure 23:
e Gathering “it” (a.k.a. acquire §3.1) using a variety of technique such as
rapid acquire (§3.1.1); software engineering tools (§3.1.2); IO-SCHEMAS (§3.1.3);
using PSMs or ontologies to guide the acquire process (§3.1.4); ECS influ-
encers (§3.1.5); amongst other techniques (§3.1.6).

e Making “it” erecute (a.k.a. operationalise §3.2). Operationalisation can
be automated if the KM environment can access the generic primitive
inferences used in the PSMs.

e Finding errors in “it” (a.k.a. fault §3.3). Manual expert inspection is the
usually fault approach used in software development. Automatic support
can be offered in a number of ways such as using qualityK (including incon-
sistencyK) and ontologies. Test suite generation can be used to augment
behaviouralK. This behaviouralK can be used to assess test case cover-
age. If the KM environment can access the wordK dependency network,
then (i) the cause of a fault can be localised by tracing upstream from
the fault (§3.3.1); and (ii) users can browse-around parts of the knowledge
with “how, why, why not” and “what if” queries (§3.3.2).

1.0

e Fizing “it’s”errors (a.k.a. fix §3.4). Ripple-down techniques (ripple-down
rules, §3.4.1; or ripple-down functions, §3.4.2; ripple-down rationality,
§3.4.2) patch different types of knowledge in an exception-driven man-
ner: ripple-down rules (RDR) patches sentences; ripple-down-functions
(RDF) patches words; ripple-down rationality (RD-RA) patches abduction
(a KL-A-type PSM). Conflicts can be resolved via negotiation between KB
authors (§3.4.3). Case-based reasoning (§3.4.7) or ECS debiasers (§3.4.4)
can also be used for fixing. FixK can be used to drive ML. ML systems
may be they inductive, deductive (§3.4.6), or generalisers/specialisers (a

page 28 of 61

DoAcquire

words

DoOperationalise lGeneri cPrimitivel nference |

browse around

Processing
Activity

review |QualitykK

InconsistencyK

uses

DoFault

Ontology

finds holes

Conflict detection |

est case
coverage
BehaviouralK |
ECS Debiasers
ECSuses
CBR some CBR

maintains
] < R -]
DoPreserve PP maintains _[oentencek
/
maintains

Conflict Resolve |

Logical Preserve requires
ML Inductive lots of

| Procedural Preserve|

controls requires

KA

ol e
Design Retionale scripts @ f

| Generalisation/ Specialisation |

Figure 23: Different knowledge processing activity types (in the notation of
Figure 1).

page 29 of 61

special kind of deductive ML, see §3.4.5). Inductive ML requires far more
behaviouralK than deductive ML. KA scripts can be used to ensure that
fixes requiring multiple fixes are fully completed (§3.4.8).

825 e Ensuring that the changes (i.e. fixes or more acquired knowledge) do not
break working parts of “it” (a.k.a. preserve §3.5). Two broad sub-types
of this preserve activity are logical preserver (e.g. ripples) or procedural
preserve (e.g. KA scripts).

3.1 Acquire

a0 We use the term “acquire” to denote the process of recording different knowl-
edge types. Typically, the process of acquiring occurs before operationalisation,
faulting, and fixing.
In current practice, we can see the following types of acquire tools: rapid acquire
systems (§3.1.1); software engineering acquire tool (§3.1.2); IO-SCHEMAS(§3.1.3);
ss PSM-based acquire systems (§2.4.1); expert critiquing systems; and miscella-
neous other techniques (§3.1.6).
3.1.1 RAS: Rapid Acquire Systems

In an email survey of the readers of the comp.ai news group, we asked for
information on maintenance systems. The core technology cited in many of

a0 the respondents was some style of rapid acquire system (RAS), plus opera-
tionalisation support (§3.2). In RAS systems, developers work in a high-level
environment which may include point-and-click graphical editors. The RAS as-
sumption presumes that if knowledge is expressed at a sufficiently high-level,
then its flaws are obvious and quick to change.

s RAS may be an incomplete maintenance strategy. Firstly, merely browsing
knowledge may not tell the user how the PSMs will apply the knowledge at
runtime (an analogous argument was made above in §2.3.5 when we discussed
the operationalisation KM assumption). As soon as such runtime considerations
appear, then RAS needs to be augmented at least with behaviouralK.

so Secondly, very short descriptions of knowledge may contain faults, even if they
are described at a very high level. If the reader doubts this, they are invited
to find all the errors in a one line model of population growth: dN/gp = rN
where T is time, IV is the population, and r is a constant reflecting environ-
mental conditions (positive for benign environments and negative for hostile

sss environments).

This model is wrong. Population growth must taper off as it approaches C, the
maximum carrying capacity of the environment; i.e. dN/g7 = rN(1 — N/c). If
the reader can correctly answer the following question, then we have anecdotal
evidence for believing the RAS assumption: is this new equation correct?

s0 The second equation is incorrect®. In the case of a hostile environment and over-
population, then our intuition is that population will fall. However, in that case,
N >C,r <0, and rN(1 — N/c) > 0; i.e. the maths says that population will
increase (example from [Levins & Puccia, 1985]). Our experience has been that
the error is not apparent to many people.

ss If the reader could not find all errors in a one-line model (which they may have
studied extensively in high school), then they should be suspicious of the RAS
assumption that the truth status of larger models can be accurately determined
by visual inspection. Other studies encourage us to be cautious about the RAS

3And if the reader cannot see why before reading on, then Q.E.D.

870

875

880

885

890

895

900

905

910

page 30 of 61

assumption. Myers [Myers, 1977] reports controlled experiments with a 63 line
model. 59 experienced data processing professionals hunted for errors in a very
simple text formatter (63 line of PL/1 code). Even with unlimited time and the
use of three different methods , the experts could only find (on average) 5 of the
15 errors in this 63 line model. We conclude that RAS should be augmented
with other KM options. (Note that an analogous conclusion was offered above
when we discussed the operationalisation KM assumption.)

3.1.2 Acquire in Software Engineering

Most information systems methodologies (e.g. the Olle-126 [Olle et al., 1991])
focus primarily on on acquiring knowledge (and a little on conflict detection
between different stakeholders). Numerous paper-based methodologies have
been proposed (some of which are surveyed in the Olle-126, see also [Booch,
1996, Booch et al., 1997]). Many CASE and CAKE tools and are RAS tools
for acquiring wordK and sentenceK. Some RAS CASE tools could be said to
support meta-knowledge acquisition. For example, RATIONAL-ROSE [Corpo-
ration, 1997] allow users to enter sequence diagrams such as Figure 7 and Harel-
style state charts [Harel, 1995]. These sequence diagrams and state charts could
be used to record PSMs such as Figure 14. However, they are typically not
used for knowledge engineering. Rather, they are used in a standard knowl-
edge engineering manner to record specific processing details (and not general
PSMs).

3.1.3 Acquire using IO-SCHEMAS

I-SCHEMAS and O-SCHEMAS are a method for structuring the collection of
sentenceK for KBs [Debenham, 1998] In this approach, the conceptual model
of a KB contains items connected by objects to describe data, information, and
rules:

e Items are described in I-SCHEMAS

e Objects are described by O-SCHEMAS.

e Data are simple variables.

¢ Information are relations connecting variables.
e Rules that execute over the relations.

Schemas have a uniform format, no matter if they are representing data,
information, or rules. They offer constraints and (as we shall see below) nor-
malisation procedures that are analogous to database normalisation procedures.
Schemas can be represented formally using the lambda calculus or informally
in a simple tabular format. Schemas can contain other schema’s recursively.
Three i-schemas are shown in the i-schemas of Figure 24. The general structure
is shown on the left. A simple example is shown in the middle. There can be no
more than 100 part-numbers numbered between 1000 to 9999. A recursive shown
on the right. The recursive example uses the middle example within its defini-
tion. Parts numbered under 2000 cost no more than 300 dollars. All members
of the set parts must be in the set of part/cost-price (see the forall symbol).
Horizontal lines identify components whose values determine the component
marked with an o. For example, the last line of part/cost-price denotes that
cost-price is functionally dependent on part (in traditional database jargon,
part is a candidate key).

915

920

925

930

935

page 31 of 61

structure e.qg. part e.g.part/cost-price
item-name part part/cost-price
var-i var-j - part cost-price
X y X X y
meaning of item isa(x:part-number) -
constraints on values 1000 < = < 9999 cost(x,y)
set constraints <100 z < 1999 if y < 300
v
— o

Figure 24: Items in i-schemas.

structure e.g. costs e.g. mark-up-rule
object-name costs part/cost-price
type-i type-j D! DT I? I? DT
x y x y (x,w) (y) (=)
meaning of object costs(x,y) (w=2zxy)
constraints on object values T < 1999 if y < 300 w >y
object set constraints v v |V
—_— o — o
o — N
— o | —— N

Figure 25: Objects in o-schemas.

When two parts of the KB share the same basic wisdom, i-schemas require
the wisdom be represented twice. For example:
e Suppose part/cost-price is computed from a function COSTS.

¢ Suppose also that another function MARK-UP-RULE uses part/cost-price.

Rather than represent COSTS twice (once in part/cost-price and once in
part/cost-price), we can use the O-schemas shown in Figure 25.

A coupling map shows when schemas share some common structure. For
example, the compiling map for mark-up rule is shown in Figure 26. This map
can be used to control KM. If two items are linked in the map, then modifications
to one implies that the other has to be checked again for correctness. Further,
these links can be used to simplify maintenance:

e An item is said to be decomposable if it may be constructed from other

items or objects.

o If all decomposable data, information, and knowledge is discarded, then
the knowledge base is said to be normalised [Debenham, 1995].

e A normalised system is far simpler to maintain than an un-normalised
system (a result first reported in the database community [Date, 1995]).
In a normalised system, knowledge used in many places is stored only once.
The time required to change knowledge is reduced since that knowledge
is uniquely represented in a single place in the system.

3.1.4 Acquire using PSMs and Ontologies

Some CAKE tools support PSM acquiring. For example:
e SHELLEY [Wielinga et al., 1992a] allows users to specify new KADS-style
PSMs.

940

945

950

955

960

965

page 32 of 61

part machine price mark-up

/ cost-type\ / sde-type \
| cost-price| | sale-price |

/sells—for
| part/cost-price I_I machine/oostprice| | part/sale-price |

mark up-rul e \/

| [part/sale-price, part/cost-price, mark-up] |

Figure 26: A simple concept map showing dependencies between schema con-
cepts.

e van Harmelen & Aben [van Harmelen & Aben, 1996] offer a framework
for mapping informal KADS-style PSMs into a formal language. Once
expressed in this form, formal methods can be used to explore the speci-
fication (an example is given below, in §3.4.5).

However, a more usual use of meta-knowledge is to guide the acquire pro-
cess. An observation made in the MOLE KA project [Kahn et al., 1985] was
that the acquire process can be significantly simplified with some knowledge
of the inference structure of the KB. For example, in the MOLE work, it
was found that exploring eight specific questions could lead to major improve-
ments in the knowledge base (e.g. when considering X: ”what events would
rule out X?”). Chandrasekaran argued that these inference structures (later
called PSMs) were generic across a range of application tasks [Chandrasekaran,
1983, Chandrasekaran, 1986]. Later research observed that each PSM implies
an ontological commitment; i.e. requires certain data structures to operate.
For example, if we were using the exploreAndRefine PSM of Figure 15, then
we need to ask our domain experts about the data structures needed for that
PSM: super-types and sub-types. Numerous researchers have explored building
special-purpose editors which constrain the acquire process to the information
required for a range of pre-defined PSMs and their ontological commitments.
For example:

e RIME’s KB editor [de Brug et al., 1986, Soloway et al., 1987] acquired
parts of the KL-A-type meta-knowledge for the XCON computer configu-
ration system [Bachant & McDermott, 1984]. RIME assumed that the KB
comprised operator selection knowledge which controlled the exploration
of a set of problem spaces. After asking a few questions, RIME could
auto-generate complex executable rules.

e SALT’s KA interface only collected information relating directly to its
KL-B propose-and-revise inference strategy. Most of the SALT rules
(2130/3062 = T0%) were auto-generated by SALT.

page 33 of 61

o If a user of the SHELLEY CAKE tool [Wielinga et al., 1992a] decides that

they are using the KL-B diagnosis PSM of Figure 14, then the acquire

a70 process can be directed towards collecting lists of known obs and hyp,
and rules for abstraction and causal reasoning.

e Benjamin describes TINA, an automatic configuration device for configur-
ing solutions to different problems in the context of KL-B diagnosis [Ben-
jamins, 1994, Benjamins, 1995]. TINA’s question generation system can

ors guide the user to the appropriate selection of the PSM (see below, Figures
Figure 27 and Figure 28).

e van Harmelen & Aben describe guidelines for mapping informal KL-B

PSMs into their preferred style of formal models; e.g. for each inference

(i) define a predicate and its arity; and (ii) for each argument of the

080 predicate, define types. Their transformation tool guides the user through
the application of these guidelines [van Harmelen & Aben, 1996).

Swartout & Gil argue that PSM customisation is the key to flexible acquire
environments [Swartout & Gill, 1996]. PSMs and ontologies define the common
useful structures and procedures within a domain. Knowledge engineers can

oes build problem-specific shells that are specialised to certain PSMs and their on-
tological commitments. One the other hand, such problem-specific shells cannot
be easily adapted to other tasks [marcus89]. While SALT’s propose-and-revise
PSM was successful in assisting users acquiring their knowledge, it could not be
easily adapted to other PSMs. Tools like PROTEGE-II, and SPARK/ BURN/

w FIREFIGHTER [Marques et al., 1992] permit more flexibility in the PSM li-
brary. Users of the SBF, for example, can enter their configuration knowledge
via a click-and-point editor of business process graphs [marques92]. Knowl-
edge engineers can reconfigure SBF by building new business process graphs
and connecting the to a library of reusable knowledge processing mechanisms

os (eliminate, schedule, present, monitor, transform-01, transform-02,
compare-01, compare-02, translate-01, translate-02, classify, select,
dialog-mgr). Runkel’s approach divides acquire into numerous support tools
(called mechanisms for knowledge acquisition, or MEKA) [Runkel, 1995]. Runkel’s
MEKAs are hand-built by the knowledge engineering. Marcus & Gil’s EXPECT

w0 tool uses partial evaluation techniques to automatically detecting dependencies
between knowledge and meta-knowledge, thus simplify the task of generating
MEKA-like tools.

It is a debatable point if KL-A CAKE tools like RIME suffer from PSM

inflexibility. On the one hand, they assume a single PSM (operator selection
ws Over a problem space traversal). On the other hand, this single PSM can be

applied to numerous KL-B-type tasks by customising the operator selection

rules. That is, an environment which supports KL-A operator customisation

could be extensible to a wide range of applications (§3.4.2).

3.1.5 Acquire using Expert Critiquing Systems

ww Silverman discussing representation independent methods for the engineering of
expert critiquing systems (ECS) [Silverman, 1990, Silverman, 1992b, Silverman,
1992a, Silverman & Wenig, 1993] which Silverman defines as follows:
. programs that first cause their user to maximise the falsifiability
of their statements and then proceed to check to see if errors exist.

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

page 34 of 61

A good critic program doubts and traps its user into revealing his
or her errors. It then attempts to help the user make the necessary
repairs [Silverman, 1992b)].

Silverman’s research focuses on defining ”critiquing” as a add-on to existing
systems. That is, Silverman views ECS as an domain-independent analysis
technique with domain-dependent connections to existing systems. An ECS
is a KB development support environment which offers a set of cues to its
users. These cues encourage the user to move from useless issues which they
are currently considering towards useful issues that they are currently ignoring.
An influencer cue prevents an error happening. Debiaser cues fixes after errors
have happened (§3.4.4). Silverman has some experimental results [Silverman
& Wenig, 1993] suggesting negative feedback (e.g. the use of a debiaser) is
almost always unsuitable, if only used without positive feedback (influencers).
However, this results also suggest that as task complexity grows, debiasers are
a useful adjunct to influencers.

Cues can be very simple domain-specific techniques such as:

e Help text that focuses user attention on certain issues;

¢ Colourisation techniques that avoid selective focusing on small problems.

More complex cues are directors (called “wizards” in the modern PC appli-
cations) that walk a user through a task which may be too difficult to perform
on their own.

3.1.6 Other Acquire Techniques

Other miscellaneous acquire techniques include:
e van Harmelen & Aben [van Harmelen & Aben, 1996] proposal to allow
users to access indexes on post-conditions defined within a system. So, if
a user is seeking a certain function, they can ask “in what post-condition
is this function achieved?”.

e Object-oriented researchers [Gamma et al., 1995, Buschmann et al., 1996,
Fowler, 1997, Coad et al., 1997] have cataloged “patterns”: portions of
abstract conceptual models that have reappeared in numerous previous
applications (KA researchers will recognise “patterns” as a synonym for
“ontology”). Such patterns can be used to bootstrap a user some way into
a new development. Knowledge-level patterns are PSMs [Menzies, 1998d].

All the above acquire systems collect words as a side-effect of their other
acquiring activities. Shaw’s repertory grids (Figure 19) are a unique KM op-
tion since they only acquire words. Other tools assist in acquiring the other
knowledge types. QARCC and goal graphs allow for the acquiring of NFR
quality knowledge. Easterbrook & Nuseibeh’s VIEWER system [Easterbrook &
Nuseibeh, 1996] allows for the expression of inconsistency detection knowledge.

QMOD/HT4 acquired its behaviouralK via a literature search over papers
reporting experimental results in the field of neuroendocrinology. CBR builds
behaviouralK via the incremental caching of parts of previous inferences. Auto-
matic test generation tools can build the INputs of behaviouralK (but some
other source of knowledge must be consulted to determine the appropriate
0UTputs). We argued above that sequence diagrams could be used for acquiring
behaviouralK (§2.3.1). However, we note that this is rarely done.

page 35 of 61

RDR acquires its behaviouralK via incremental capture. Experts have a
hard time enumerating large behaviouralK at one sitting. However, during
some other process, an expert may offer a specific example to illustrate some
argument. For example, the experience gained via the execution of a particular

wes example may prompt an expert to offer an opinion on what the program should
have done. Whenever such a specific example is generated, it is captured and
added to the behaviouralK.

SocialK can be manually acquired via natural language discourse analysis or
an anthropological study of individuals within a social organisation. Tools like

wo BRAHMS assist in the storage and organisation of such socialK.

3.2 Operationalisation

We using the term “operationalisation” to denote the process of executing a KB
either by direct interpretation or via compilation to some internal form.
Words that are function calls must be operationalised (i.e. the function/ method
ws must be implemented). BehaviouralK are be said to be operationalised when
they are used in test engines.
With the exception of the information systems tools and repertory grids, most of
the KM techniques support operationalisation of sentences and PSMs. We will
demonstrate how this can be done using the TINA system. TINA was a “proof-
g of-concept” prototype only and is not as sophisticated as (e.g.) PROTEGE-
II [Eriksson et al., 1995] or SBF [Marques et al., 1992] (discussed below). How-
ever, the TINA technique is quite succinct and therefore ideal for demonstrating
PSM operationalisation. In TINA, a solution is a PSM which must be config-
ured for a particular sub-context using a set of primitive inference techniques.
wss For example:
e Sub-contexts of diagnosis are defined by constraints within the domain
such as the availability or absence of simulation rules.

e A primitive inference within prediction based filtering could be a
set intersection sub-routine.

1090 A TINA problem is described via suitability criteria categorised into a small
number of types. For example inference_rules and simulation_rules are
suitability criteria with the same type of constraint suspension_ method.
The TINA system can automatically reflect over a set of rules describing the
transformation process from problems to solutions (or, in the language of TINA,

s types of suitability criteria into PSMs). A simplified version of some of TINA’s
rules is given in Figure 27. Types of suitability criteria are shown in the when sec-
tions. When executing a then section, if the PSM component is named in another
rule, the reflection can recurse. For example, executing symptom detection in
rulel makes TINA test the suitability of rule2 and rule3.

1100 A sample fragment of TINA output is shown in Figure 28. The trace back method
traces back the dependents of the broken component to find potential contrib-
utors to the fault. In the case of multiple contributors, TINA is saying that in
this sub-context, they can be simply intersected. The resulting contributors
set is assessed using the corroboration method. Innocent contributors are

ues deleted (innocence is computed via running a high-level simulation). The re-
maining contributors are potentially guilty of the faults and another sub-routine
is called to discriminate between them. Note that this corroboration method
was generated when TINA explored prediction based filtering in rule5 of

1110

1115

1120

1125

1130

1135

page 36 of 61

rulel:diagnosis when prime_diagnostic_method
then symptom_detection and hypothesis_generation
hypothesis_discrimination.

15
=1
Q.

rule2:symptom_detection when ask_user_method
then apply_user_judgment.

rule3:symptom_detection when compare_symptom or detection_method
then generate_expectation and compare.

rule4:hypothesis_generation when empirical_hypothesis_generation_method
then associate and prediction_filter.

rule5:hypothesis_generation when model_based_hypothesis_method
then find_contributors and transform_to_hypothesis_set and
prediction_based_filtering.

rule6:hypothesis_generation when hypothesis_generation_method
then select_hypothesis and collect_data and interpret_data.

Figure 27: Portions of the TINA rules used for converting problems descriptions
into solutions. Adapted from [Benjamins, 1994].

Figure 27 (using rules not shown in this article). For full details of this example,
see [Benjamins, 1994].

As a more sophisticated example of the above process, consider the SPARK/
BURN/ FIREFIGHTER (SBF) toolkit [Marques et al., 1992]. SPARK builds
a domain-specific CAKE tool that is tailored to the business information sup-
plied by the user. BURN executes the CAKE tool and conducts a structured
interview with the expert. This interview maps the business information offered
by the user into a library of inference sub-routines (called mechanisms). The
mapping process is guided by the KL-B-style PSM meta-knowledge. At choice
points in the mapping, SBF can ask the user questions questions which select
different PSMs. Once this mapping has been made, a rule base can be generate
which solves the business problem. This is given to the FIREFIGHTER envi-
ronment which assists the user in executing and debugging the operationalised
program. Marques et. al. report significantly reduced development times for
expert systems using the 13 mechanisms in the SBF toolkit. In the nine appli-
cations studied by Marques et. al., development times changed from one to 17
days (using SBF) to 63 to 250 days (without using SBF) [Marques et al., 1992].

3.3 Fault

We use the term “fault” to denote the process of recognising that an oper-
ationalised KB has produced the wrong behaviour. There are four standard
techniques for faulting sentences and PSMs:
1. Ezpert inspection: A human operator surveying the output recognises
some inappropriate output. Expert inspection uses tacit knowledge that
has not been captured in our seven knowledge types.

2. Using quality knowledge. See §2.4.2.

3. Using behaviouralK: A KB is faulted if it can’t offer explanations for
members of the behaviouralK. This was the validation technique used

1140

1145

1150

1155

1160

page 37 of 61

model_based_hypothesis_generation_method {
trace_back_method;
intersection_method;
corroboration }

trace_back_method {
find_upstream }

intersection_method {
intersection ¥

corroboration_method {
select_random;
simulate_hypothesis;
compare;
delete }

Figure 28: After exploring its problems/solution mappings, TINA can auto-
matically generate a PSM for diagnosis. Adapted from [Benjamins, 1994] and
converted into a procedural formalism.

by QMOD/HT4 (§2.3.3).
4. Using inconsistency detection knowledge.

The maintenance KBs may be heuristic and therefore may need maintenance.
Despite this, we know of no research into faulting qualityK, and inconsistencyK.

There are at least three ways to check an expert’s behaviouralK:

1. The behaviouralK could reflect records of the known behaviour of the
domain being modeled. However, in practice, such real-world data sets
are rare. Menzies & Compton have argued that many domains tacked by
KBS are very data-poor [Menzies & Compton, 1997].

2. A new KB2 could be used (and this would introduce the maintenance
recursion problem). This KB2 could some how detect if the behaviouralK
does not cover a representative sample of the domain.

3. If a test coverage tool reports that behaviouralK fails to exercise an ade-
quate portion of the KB, then a fault could be reported.

A related activity to “fault” is “fault location”; i.e. determining exactly
where within a KB has a problem occoured (§3.3.1). Fault localisation is a
special case of “browse-around” (§3.3.2). A special class of “faults” is conflict
detection amongst knowledge collected from different sources.

3.3.1 Fault Localisation

A general technique for fault localisation is dependency tracing. If the connec-
tions within a KB are known, and the inferencing has arrived in some unex-
pected part of those connections, then fault localisation can be implemented
via a backwards search of the dependencies. This technique was used in many
KM systems; e.g.:
e Davis’s TEIREISIAS rule editor [Davis, 1976] for the MYCIN [Buchanan
& Shortliffe, 1984] system.

1165

1170

1175

1180

1185

1190

page 38 of 61

rule if then

|1 | a&b|x1 |
dse
unless
@ rule if then
(2] ¢ [x]
else unless

rule if then
(3] d x| (o)

Figure 29: A RDR knowledge base

e Darden [Darden, 1990] discusses theory anomaly localisation based on an
analysis of the development of genetic theory in the early part of this
century. Anomaly localisation was a process of walking backwards from
the final state back towards the initial state across directed causal links,
inquiring at each point whether the intermediate state had been entered.

e Fault localisation is a explored extensively in the model-based diagnosis
literature [Hamscher et al., 1992].

¢ RDR is a representation optimised for fault localisation in KBS without
PSMs [Compton et al., 1989, Compton & Jansen, 1990, Compton et al.,
1992, Gaines & Compton, 1992, Mulholland et al., 1996, Preston et al.,
1993, Richards & Compton, 1997, Richards & Menzies, 1997] RDR knowl-
edge is organised into a patch tree. If a rule is found to be faulty, some
patch logic is added on a unless link beneath the rule. The patch is itself
a rule and so may be patched recursively. Whenever a new patch (rule) is
added to an RDR system, the case which prompted the patch is included
in the rule. These cornerstone cases are used below when fixing an RDR
system (§3.4.1). At runtime, the final conclusion is the conclusion of the
last satisfied rule. If that conclusion is faulty, then the fault is localised
to the last satisfied rule. More details on RDR are given below (§3.4.1).

3.3.2 Browse-Around

“Browse-around” lets the user manually generate their own explanations of why
a variable was/was not set. Browse-around is implemented via queries to the
dependency information within a KB. The user starts at some point in the KB
and explores the nearby region. For example:
¢ MYCIN’s “how” and “why” queries allowed the user to start at a con-
clusion or a question and ask “how was that conclusion reached?” or
“why are you asking me that question?”. Both queries reported the de-
pendency links in the neighborhood of the conclusion or question. How-
queries looked upstream back towards the other literals that lead to this
literal. Why-queries looked downstream to the word that is the current
goal.

1195

1200

1205

1210

1215

1220

1225

1230

1235

page 39 of 61

e SALT supported how-queries in the MYCIN-sense. However, SALT why-
queries just returned canned text since “why” queries are best used in
backward-chaining systems like MYCIN (SALT was a forward-chainer).
SALT also supported “why not” and “what if” queries. Answers to “why
not value X?” were generated by seeking other words that could lead to
“X”, but which were blocked somehow by known words. The system could
answer (e.g.) “if Z=1 was set to Z=2, then we could have achieved X”.
A what-if-query was a hypothetical look downstream of some temporary
setting of a variable. A technical complexity with what-if-queries is that
variables set in this hypothetical experiment have to be reset when the
hypothetical case is finished.

e Fensel & Schoenegge [Fensel & Schoenegge, 1997, Fensel & Schonegge,
1997] offer an interesting variant on “browse-around”. Using an interactive
theorem prover (KIV), they let a user browse-around a first-order theory
representing the PSMs. If KIV cannot solve a problem, it identifies the
missing logical formula that blocked PSM completion and presents this to
the user as an assumption to be explored. Users of KIV can hence discover
what extra assumptions are required to achieve their desired goals.

3.4 Fix

We use the term “fix” to denote the process of removing a fault in an opera-
tionalised KB. A special class of “fix” is conflict resolution for knowledge col-
lected from different sources. General mechanisms for fixing include ripple-down
strategies such as ripple-down-rules (§3.4.1) and ripple-down-rationality (§3.4.2),
conflict negotiation (§3.4.3), ECS debiasers (§3.4.4), specialisation and/or gener-
alisation (§3.4.5); machine learning (§3.4.6), CBR (§3.4.7); KA scripts (§3.4.8);
amongst others, (§3.4.9).

3.4.1 Fixing Via RDR

The RDR representation is optimised for fault localisation and fixing. Once an
expert has faulted a conclusion from an RDR system, they then ask the system
for a list of possible patches. The system replies with a difference list which is
calculated as follows. As the current case navigates down the RDR tree, if it
finds a some satisfied rule, it then checks their unless patches (Figure 29). The
different between the current case and the cornerstone case of the last satisfied
rule is the difference list. For example, Figure 29 showed the rule if a&b then
x1 patched several times. In Figure 29, if x2 is the correct conclusion when
a&b&c is true, but incorrect when c is false, we add the logic delta c to a patch
rule in the unless branch beneath rdri.

In practice, RDR appears to work very well, at least for single classification
problems. For example, the PTERS system at St. Vincent’s Hospital, Sydney,
models 20% of human biochemistry sufficiently well to make diagnoses that are
99% accurate [Preston et al., 1993]. System development blends seamlessly with
system maintenance since the only activity that the RDR interface permits is
patching faulty rules in the context of the last error. For a 2000-rule RDR
system, maintenance is very simple (a total of a few minutes each day). RDR
has succeeded in domains where previous attempts, based on much higher-level
constructs, never made it out of the prototype stage (e.g. [Patil et al., 1981]).
Further, while large expert systems are notoriously hard to maintain [de Brug

1240

1245

1250

1255

1260

1265

1270

1275

1280

page 40 of 61

et al., 1986], the no-model approach of RDR has never encountered maintenance
problems.
RDR is a unique KM strategy in two respects:
o It is the only KM strategy we know that supports the logical preserve
knowledge processing activity (§3.5).

e It avoids the recursive maintenance problem of §2.5. An RDR KB is a
very low-level structure and its fix knowledge is a single simple procedure
(difference list generation). The testing of this single simple procedure
can be done manually without requiring other KBs.

Nevertheless, RDR is not a solution to the full KM problem:
e RDR makes no statement on how to recognise and resolve conflicting
knowledge from multiple sources.

e RDR does not support KM of the words used in its rules. For example, one
medical RDR KB tests for if tsh_is_high where tsh is the thyroid stim-
ulating hormone and tsh_is high is generated by some feature extractors
which are outside of the RDR KM environment. Preston [Preston et al.,
1993] describes one method for specifying RDR time-based feature extrac-
tors. However, the Preston environment does not include KM facilities
beyond rapid acquire (§3.1.1).

e An RDR tree is not compatible with other common representation types
(e.g. isa hierarchies, state charts). Consequently, an RDR tree cannot be
initialised from pre-existing domain knowledge (but see Richards [Richards
& Compton, 1997] and Lee [Lee & Compton, 1996] for experiments in
reverse engineering classification hierarchies and causal data-flows from
an RDR tree).

¢ RDR cannot process meta-knowledge such as KL.-B PSMs. RDR is focused
on the details of the specific case at hand. PSMs may not be expressible
with respect to the specific problem at hand. For example, consider an
RDR tree maintaining taxi driver knowledge. Our student taxi driver may
learn many tricks about navigating from Sydney to Canberra through
specific streets. However, in an RDR framework, she may never learn
the generalised PSM: “open the map, find your current location, find
your destination, compute the shortest distance path from here to there”.
When Mulholland et. al. [Mulholland et al., 1996] used RDR to configure
an ion chromatography system, they found they needed an extra control
layer on top of a set of ripple trees. This top-level control knowledge was
not maintainable within the framework of a standard ripples environment.

3.4.2 Fixing Via Extended Ripple Strategies

We are developing two extensions to RDR to handle:
1. Maintenance of wordK using ripple-down functions, (RDF) [Menzies, 1992]);

2. Maintenance of PSMs using ripple-down rationality, (RD-RA) [Menzies &
Mahidadia, 1997]).

In RDF, the wordK within rules are functions that return some result. If,
while patching some rule, the function is changed, the system keeps the old

1285

1290

1295

1300

1305

page 41 of 61

8888%

BN
T | aoTQ®
.

&=

By
oo

Figure 30: RDF= RDR plus a Function stack (top right).

definition plus the new one. Each rule and function is time-stamped and rules
only use the functions developed up until they were written. For example, in
Figure 30, suppose the Function b is found to be faulty in the case of a&b&e.
A new RDR rule rdr4 is added to our RDR tree. The resultant tree is shown
in Figure 30. Each time stamp is a pointer into a function stack recording the
history of function development. Rdr4 will use the definition of function a that
was developed prior to the creation of that rule. However, when it calls b or
e, it will use the first definition of those functions it finds in the function stack
(i.e. b1, e0). Meanwhile, rdr1 will still use the old definition of a and b.
Menzies & Mahidadia’s RD-RA KM proposal [Menzies & Mahidadia, 1997]
is to model KL-A-style PSMs via RDRs that control QMOD/HT4 world gen-
eration. Recall that HT4 generates proofs (e.g. Figure 10) from a theory (e.g.
Figure 9) and sorts them into consistent worlds (e.g. Figures 11 & 12). We
have identified 5 choice points within HT4 that control the proof and world
generation. Each level j can “see” the results of the levels i (7 < j). Each level
culls possible inferences; i.e. level j only processes the inferences approved by
levels 1...7,5 <1:
1. A level 1 vertex-level choice looks one edge ahead of the current vertex
and culls edges which do not look promising; e.g. their heuristic weight is
too high or their heuristic certainty measure is too low.

2. A level 2 proof-level choice can access the proof generated generated up
to this vertex and may cull an edge if (e.g.) that edge introduced a loop
into the proof.

page 42 of 61

3. A level 8 proofs-level choice can access all the proofs generated up to this
point and could implement (e.g.) beam-first search.

4. A level 4 world-level choice can access a world as soon as it is generated.
1310 A level 4 choice might be to stop the inferencing as soon as any sufficing
world is generated.

5. A level 5 worlds-level choice can compare different worlds. We have ar-
gued [Menzies, 1996a] that a wide variety of KL-B tasks can be mapped
into different choice operators. For example, validation is a level 5 worlds-

1315 level choice that favours the worlds which explain the greatest number of
the 0UTputs. This validation choice operator can also be used for least-
cost planning by adding a level 3 proofs-level choice to favour least cost
solutions.

Each choice operator is an expert system which classifies proposed inferences
1320 as cull or accept. The core of the Menzies & Mahidadia’s KM proposal is
a suite of RDR trees that maintain each of these choice operators. Fixing
problems solving is this RD-RA framework is a process of maintaining the single
classification RDR systems controlling the choice operators. Note that:
e Each choice operator must extract features from the space it is analysing.
1325 These feature extractors are maintained using RDF.

e RD-RA could be said to fault and fix PSM knowledge.
3.4.3 Fixing Using Conflict Resolution

This section discusses techniques for handling knowledge collected from different
sources based on the following approach:
1330 1. Explicitly represent the different viewpoints of different users;

2. Automatically detect conflicts between these viewpoints;
3. Offer tools for resolution support.

Resolving a conflict implies applying the fix knowledge discussed above (§3.4).
Representation-specific strategies can also be used. Easterbrook & Nuseibeh [East-
w5 erbrook & Nuseibeh, 1996] discuss conflict resolution between state transition
charts from different authors using the VIEWER system. For each inconsis-
tency detection rule, there are associated repair actions. Note that each repair
action is offered to the users who then negotiate if they wish to apply that fix.
VIEWER supports a range of tools to assist that negotiation such as:
1340 e The ability to view different possible KBs side-by-side;

e A work record that records the history of the changes to the KB. This
work record can be browsed looking for some past decision that lead to
the current conflict. Note that Easterbrook & Nuseibeh might call the
REMAP discussion replay technique (§2.4.4) a work record.

1345 e Demons for automating certain tasks; e.g. auto-copy parts of one author’s
KB into another author’s KB. Note that we might call these demons KA
scripts (§3.4.8).

It may not always be possible to fully resolve a conflict when it is detected.
In this case, the KM problem becomes one of continuing in the presence of

page 43 of 61

w0 inconsistencies. Nuseibeh [Nuseibeh, 1997] reviews a range of domain-specific
strategies for this problem. Inconsistencies can be ignored, but this is only
appropriate for minor errors. If it is known that resolution will be possible in
the near future (e.g. when some datum or resource becomes available), then the
resolution can be delayed. For example, QARCC’s conflict handling mechanism

155 divides into three types of delay which generates annotation for:
1. “Clarification required”: used for simple conflicts and may be resolved

with a single email message.

2. “Discussion required”: used for middle-sized conflicts which require a
meeting.

1360 3. “Analysis required”: used for large-scale conflicts which require extensive
time for reconsideration.

Note that these conflict handling mechanisms contain a limited model of

social interaction knowledge (§2.4.4).

A special case of delay is ameliorate in which the inconsistency cannot be

s removed, but steps can be taken to improve the situation. Amelioration requires
techniques for reasoning over KBs with inconsistencies. Classical single-world
deductive logics are not appropriate. In classical logical, if a contradiction can
be detected, the KB is said to be able to prove anything at all; i.e. the KB has
become useless. Non-classical multiple-world logics such HT4 (§2.3) handled the

o inconsistencies that could be generated from theories like Figure 9 by sorting
them into compatible worlds (Figures 11 and 12). We have argued that access to
the consistent worlds that can be generated from a KB is a powerful knowledge
engineering tool [Menzies, 1996a]. Comparing multiple worlds is also a tool for
multi-expert conflict resolution [Menzies & Waugh, 1998]. Recall the dispute

ws between Dr. Thick and Dr. Thin in Figure 9 about the effects of foriegnSales
on companyProfits. The worlds of Figure 11 and Figure 12 tell us:

e Dr. Thin’s contributions can be found in two worlds; i.e. with respect to
the problem of OUTputs= {investorConfidenceUp, wagesRestraintUp,
inflationDown}, and INputs= {foriegnSalesUp, domesticSalesDown},

1380 a single author’s opinions are inconsistent.

e Both authors contributions exist in the same consistent world (W[1], Fig-
ure 11); i.e. the apparent conflict of Dr. Thick and Dr. Thin did not
matter for the analysed problem. If this was true for all the analysed
problems, then we could declare that for all practical purposed, Dr. Thin

1385 and Dr. Thick are not really disagreeing.

e Dr. Thinmay wish to review their opinion that foriegnSales — companyProfits
since, in terms of the studied problem, this proved to explain less of
the required behaviour that Dr. Thick’s option that foriegnSales g
companyProfits.

1o The multiple-worlds reasoning of HT4 has technical advantages over other con-
flict resolution approaches:

e Easterbrook [Easterbrook, 1991] lets users enter their requirements into an

explicitly labeled viewpoints. He makes the simplifying assumption that

all such viewpoints are internally consistent. HT4 has no need for this,

1395

1400

1405

1410

1415

1420

1425

1430

1435

page 44 of 61

potentially, overly-restrictive assumption. HT4 can handle inconsistencies
within the opinions of a single user. That is, HT4 can analyse conflicts at
a finer granularity than approaches based on manually-entered viewpoints
(e.g Easterbrook or Finkelstein et. al. [Finkelstein et al., 1994]).

e One of Easterbrook’s SYNOPTIC tool only permits comparisons of two
viewpoints [Easterbrook, 1991, p113]. HT4 can compare N viewpoints.

e We have found that it easier to build efficient implementations [Menzies,
1996a, Menzies, 1996b] using the above graph-based approach that using
purely logical approaches (e.g. [Hunter & Nuseibeh, 1997]).

e HT4 places few restrictions on the representations it can process. It ex-
ecutes over any representation that can be mapped into directed and-or
graphs, plus some invariants. Many common knowledge representations
can be mapped into such graphs. For example, propositional rule bases
can be viewed as graphs connecting words from the rule left-hand-side to
the rule right-hand-side. More generally, horn clauses can be viewed as a
graph where the conjunction of sub-goals leads to the head goal. In the
special (but common) case where the range of all variables is known, this
graph can be partially evaluated into a ground form. Once in the ground
form, the literals (words) in the ground form can be viewed as vertices in
an and-or graph.

3.4.4 Fixing via ECS Debiasers

ECS debiasers are a set of domain-specific cues for fixing problems after they
arrive. ECS debiasers may be domain-specific techniques such as:
¢ Visual feedback in the form of colourisation, highlighting imperfections in
the artifact;

¢ View argumentation including email exchanges to persuade the user that
some claim lacks support.

Silverman discusses another class of generalised ECS debiasers that overlaps
somewhat with the techniques discussed elsewhere in this paper. For example,
ECS “re-use of similar cases” reads like a CBR-variant (§3.4.7).

3.4.5 Fixing via Specialisation and/or Generalisation

Specialisation/ generalisation is a general framework for repairing logic. The
framework dates back to at least Shapiro [Shapiro, 1983]. Undesired behaviours
can be removed by specialising a pre-condition; i.e. increasing the number
of tests in a conjunction. Desired behaviour which was not achieved can be
reached via generalising a pre-condition; i.e. decreasing the number of tests in
a conjunction.

Representation-specific variants of this framework have appeared in various sys-
tems; for example, Shapiro’s system, the work of van Harmelen & Aben, and the
SEEK/SEEK?2 systems. Shapiro’s own system was a debugging facility for horn
clauses. In that system, specialisation or generalisation means adding or remov-
ing (respectively) horn clause sub-goals. van Harmelen & Aben [van Harmelen
& Aben, 1996] discuss formal methods for repairing KADS-style PSMs such

1440

1445

1450

1455

1460

1465

1470

1475

1480

page 45 of 61

as Figure 14. For example, Figure 14 can be formally represented as a map-
ping from data d to an hypothesis h via intermediaries Z and other data R;
(Equation 1).

abstract(data(d), Ry, 0bs(Z)) A hypothesize(obs(Z), Ra, hyp(h)) (1)

There are three ways Equation 1 can fail:
1. We fail to prove abstract(data(d), R1,0bs(Z)); i.e. we are missing abstrac-
tion rules that map d to observations.

2. We fail to prove hypothesize(obs(Z'), Ra, hyp(h)); i.e. we are missing
causal rules that map Z' to an hypothesis h.

3. We can prove either subgoal of Equation 1, but not the entire conjunction;
i.e. there is no overlap in the vocabulary of Z and Z’' such that Z = Z'.

Case #1 and #2 can be fixed by adding rules of the missing type. Case #3
can be fixed by adding rules which contain the overlap of the vocabulary of the
possible Z values and the possible Z' values. More generally, given a conjunction
of sub-goals representing a PSM, fixes can be proposed for any sub-goal or any
variable that is used by > 1 sub-goal.

Fixing in the SEEK system used explicit fixK (Figure 21). SEEK rules
can be specialised by adding tests/symptoms or deleting exclusions or decreas-
ing its confidence level. Similarly, such rules can be generalised by removing
tests/symptoms or adding exclusions or increasing its confidence level. SEEK
worked in association with a human operator. Its successor, SEEK?2, is a fully
automatic system. Automatic specialisation/generalisation tools can be viewed
as a special kind of machine learning algorithms (§3.4.6).

3.4.6 Fixing Via Machine Learning

Machine learning (ML) algorithms input some behaviouralK plus a background
theory (which may be empty) and output a new theory which covers more of
the behaviouralK than the initial background theory. ML techniques may be
fully automatic (e.g. [Quinlan, 1982, Quinlan, 1986]) or utilise a human in the
revision loop [Sammut & Banerji, 1986] [Winston, 1984, chpt 11]. ML can be
divided into two broad camps: deductive and inductive [Michalski, 1993]:

e Inductive learners (e.g. genetic algorithms, neural nets, decision tree learn-
ers, belief networks) create a summary theory from the behaviouralK pre-
sented to them. Inductive techniques are data hungry: the efficacy of
the inductively learnt theory can never be better than the quality of the
input examples. The more examples, the better the theory. However, if
the behaviouralK grows very large (i.e. thousands of examples or more),
then considerable manual knowledge engineering effort may be required
to prepare the data for the inductive learner [Williams & Huang, 1996].
Inductive learners typically make little use of a background theory (ex-
ception: inductive logic programming [Muggleton, 1991]). That is, a user
may be presented with a totally novel theory at the end of an inductive
learning session.

e In contrast, deductive learners (e.g. explanation-based generalisation [van
Harmelen & Bundy, 1988, Mitchell et al., 1986], chunking in rule-based sys-
tems [Laird et al., 1986] and all the systems in §3.4.5) are less data hungry

page 46 of 61

100 I

I I
rdrError ——
input : eg = array[1..9514] of example id3Error —>—
output: rdrError, id3Error &0

procedure compare begin
rdrKB := newRdrTree 60
test eg[8001..9514] .
training : @g error(i] (%)
for i := 1 to 8000 begin 40
extend the RDR KB
rdrKB := rdr(rdrKB, egl[il)

20

create a new ID3 KB
training := training + egl[i]
id3KB id3(training)

0 | | |
assess the new versions of the KBs 0 2000 4000 6000 8000
rdrError[i] := test(rdrKB, test) i (cases seen to date)
id3Error[i] := test(id3KB, test)

end end

Figure 31: Comparing manual KA (RDR) vs automatic inductive learners (ID3).
From [Mansuri et al., 1991].

and make extensive use of the background theory. Deductive learners in-
put the steps taken by some inference engine and output a better set of

1485 inference steps. For example, they may cull the middle portions of a long
inference procedure to connect inputs directly to outputs.

In the terminology of this paper, machine learners typically operationalise
fixing the sentenceK of a KB (§2.2). A common fix technique for inductive
machine learners is to rewrite the knowledge from scratch. In the case of to-

ueo tally automatic induction, a case can be made that total rewrites are acceptable.
However, in the case where a human is involved in the revision loop, total knowl-
edge rewrites may be unacceptable. Users could treasure their favorite portions
of their KB (typically, the ones they have developed and successfully defended
from all critics). It would be unacceptable to permit a learning algorithm to
uss scribble all over such treasured knowledge.

Deductive learners are more suited to human-in-the-loop maintenance for
two reasons. Firstly, deductive learners can be constrained to generate revised
theories that are similar to the initial theory. This minimises the shock to
the user when the revised theory is presented. Secondly, inductive learners

100 require more behaviouralK than deductive learners. Such libraries are hard to
generate (recall §2.3). Often, these libraries have to be built via incremental
caching (§3.1) and this can take many months. Mansuri et. al. [Mansuri et al.,
1991] compared manual KA using RDR versus automatic inductive learning
using ID3 [Quinlan, 1982]. An example set of 9514 examples (from Garvin ES-

s 1 [Compton et al., 1989]) was divided into a test set of 1514 examples and a
training set of 8000 examples. For each item in the test suite, an RDR tree was
executed. If a human operator detected an incorrect classification, the tree was

1510

1515

1520

1525

1530

1535

1540

1545

1550

page 47 of 61

patched. This item was then added into an ID3 training set. The percentage
errors of the current RDR tree and the ID3 tree are compared in Figure 31. This
comparison shows that in the case of RDR vs ID3 in the Garvin ES-1 domain:
e Manual KA (RDR) generated KBs with much fewer errors than inductive
learners (ID3) when only hundreds of examples were available.

e Only when thousands of examples are available (in this case, 5000) does
manual KA and ML perform equally as well.

In general:
e When the behaviouralK is small (say, a few hundred examples), manual
knowledge acquisition may generate a better KB than inductive ML.

e Machine learning techniques are not widely used by knowledge acquisi-
tion researchers (though see the short list of integrated ML/KA systems
in [Webb & Wells, 1996]). Roughly speaking, this is because ML research
has focused more on general-purpose inductive learners than deductive
learners since the latter relies on more domain-specific modeling assump-
tions. Hence, ML has focused on the kind of learning algorithm that is
least useful for knowledge acquisition.

3.4.7 Fixing Via Case-Based Reasoning

Kolodner [Kolodner, 1993, p. XV] observes that most CBR is simple indexed-
based matching to flat files. However, a small number of model-based CBR
systems offer facilities for retrieving and repairing old models stored in a case
library. The fix techniques by CBR used are many and various. In this section,
we offer one example of a CBR repair facility. See [Kolodner, 1993] for other
facilities.

Recall Figure 8 which explained the symptoms of patient David in terms of aortic
valve disease. Such an explanation could become an entry in the behaviouralK
of (e.g.) the CASEY CBR system. A new patient called Newman now presents
and CASEY recognises that David’s case in Figure 8 is an old explanations that
best explains Newman’s condition. However, David’s case does not explain all
of Newman’s symptoms and so CASEY consults its causal knowledge (§2.2) of
cardiac behaviour. This causal knowledge tells CASEY that it is valid to (i) add
the dashed edges in Figure 32 to connect David’s explanation to Newman’s extra
symptoms; (ii) remove David’s “murmur of as” symptom. This new explanation
for Newman is then added to the behaviouralK of CASEY and is available for
future inferencing.

Note that this CASEY model-based fix strategy is dependent on the presence
of causal knowledge. In general, while CBR offers extensive facilities for fixing
cases stored in as behaviouralK, it offers few clues on how to maintain its sen-
tences (e.g. CASEY’s causal knowledge) or its fixK (e.g. CASEY’s strategies
for partial matching of Newman’s case to David, or the subsequent attempts at
repair).

3.4.8 Fixing Via KA scripts

In the case where numerous changes have to be made to a PSM, if the user does
not complete all those changes, then the PSM may be broken. Gil & Tallis [Gil
& Tallis, 1997] use a scripting language to control the modification of a KL-
B-style PSM to prevent broken knowledge. These KA scripts are controlled

page 48 of 61

Syncope

near <~ °C
syncope

on exertion

Mitral
valve
disease

v
Mitral
calcification

Within hours
. <<----
angina

chest pain

Limited
cardiac

output

Dyspnea

on exertion

General

flow
deficit

Unstable

angina

Unstable

angina

Chest pain

Aortic Aortic
vave T = valve
disease calcification
Aortic
stenosis
Fixed high High
outflow ———= LV press
resistance chronic
Slow LV hyper-
gection trophy

v
Pulse has EKG:
sow rise LV strain

Figure 32: An explanation of Newman’s symptoms using an edited version
Added edges are
shown as dashed lines. David’s “murmur of as” vertex has also been deleted.

of the explanation of David’s symptoms from Figure 8.

From [Kolodner, 1993, p419].

Simple task #1 Harder task #2
no ETM with ETM no ETM with E'TM
S4 S1 S2 S3 S2 S3 | S1 S2
Total time (min) 25 22 19 15 74 53 40 41
Time completing transactions 16 11 9 9 53 32 17 20
Total changes 3 3 3 3 7 8 10 9
Changes made automatically | n/a | n/a | 2 2 n/a | nfa | 7 8
Figure 33: Change times for ETM with four subjects: S1...S4. From [Gil &

Tallis, 1997]

1555

1560

1565

1570

1575

1580

1585

1590

1595

page 49 of 61

by the EXPECT TRANSACTION MANAGER (ETM) which is triggered when
EXPECT’s partial evaluation strategy detects a fault. Figure 33 shows some
speed up in maintenance times for two change tasks for EXPECT KBS, with
and without ETM. Note that ETM performed some automatic changes (last row
of Figure 33).

KA scripts are a procedural meta-knowledge (§2.4) which, if they contain bugs,
will introduce numerous errors into the EXPECT KBs. If we try to check the
KA scripts, then the recursive maintenance problem is encountered (§2.5).
3.4.9 Other Fix Strategies

Shaw (personal communication) reports that “fix” is very simple for wordK.
Once the conflicting repertory grids are shown to the experts, they can quickly
(i) see why they differ; and (ii) propose some revision to their terminology to
resolve the difference in the wordK.

The MYCIN rule editor (TEIREISIAS) applied a clustering analysis to the rule
base to determine what parameters where related; i.e. are often mentioned to-
gether. If proposed rules referred to a parameter, but not its related parameters,
then TEIREISIAS would point out a possible error.

3.5 Preserve

Sometimes fixing one bug introduces two more. KM strategies that support the
preserve task prevent a fix for problem A from introducing problems B,C,D,...
One preserve tool is a design rationale annotation that describes the reasons for
a fix. Having access to such rationales is very important [Conklin & Begeman,
1988, Fischer et al., 1989, Boy, 1995]. Studies with real-world maintainers show
that the most important question a maintainer ever asks is why did they do this,
and not that? [Moran & Carroll, 1996]. Argumentation structures can record
prior debates [Conklin & Begeman, 1988, Lee & Lai, 1996, Klein, 1993, MacLean
et al., 1996]. The current state-of-the-art in design rationale defines annotation
tools for wordK and sentenceK only.
Creating such argumentation structures can be very costly to build. To re-
duce that cost, some argumentation systems (e.g. [Fischer et al., 1996]) tightly
integrate the argumentation environment with the design environment:

e To check a new argument a simulation module is also offered which allows

the user to make what-if queries.

e New arguments can be matched into a library of old arguments. Holes in
the new argument can then be filled in automatically and offered back to
the user (e.g. ‘You said this before, is this what you mean now?’).

Note that this functionality can be implemented in a HT4 framework (§2.3.3)
as follows:
¢ Simulation models performing what-if queries is a synonym for generat-
ing multiple worlds in abduction (e.g. generating the worlds from the
economics theory in Figure 9.).

e One commonly used argumentation representation [MacLean et al., 1996)
connects different options to assessment criteria via qualitative statements
of supports and objects-to. To process this kind of argumentation, we need
to build worlds containing consistent guesses about the implications of
different options.

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

page 50 of 61

e Matching new arguments to old arguments is case-based reasoning which
Leake argues is an abductive task; e.g. select the worlds containing the
most number of things we have used successfully before [Leake, 1993].

Other preserve tools described below are ETM, ripple-down techniques, and
data schema evolution (DSE). DSE is a software engineering preserve strategy.
The DSE problem is that after some change to the logical model of the pro-
gram, some parts of the program comply to the former version of the schema.
The DSE problem is particularly acute in object-oriented databases used by
many applications in which reorganisation is slow (due to the complexity of the
schemas and the disc access times) and expensive (due to the cost of changing
all the applications). While it is not currently acknowledged in literature, DSE
will become a problem in the future for object-oriented KBs.

A common DSE technique is to:

1. Create form a chain connecting versions of the schema for each class;

2. Create coercion functions that map instances of class version i to become
an instance of class version j (where j is somewhere later in the chain
than 7).

Odberg reviews a range of commercial and research OODBMS which offer par-
tial solutions to the DSE problem [Odberg, 1995, chpt2]. He comments that
most of these DSE solutions assume that changes are localised to within a class.
The more general DSE problem of changes that transcend class boundaries re-
mains an open research issue. Note that RDF (§3.4.2) could be viewed as a
restricted version coercion KM technique. When rules are compiled, they can
select their relevant functions from a chain of different versions of all functions.

Coercion down a chain of class version is a procedural preserve strategy and
can be compared to the KA scripts of ETM (§3.4.8). However, ETM KA scripts
only manage one schema at a time. When they convert a method to a revised
method, they forget the old method. Nevertheless, ETM addresses the multiple
class change problem that is generally missed by DSE. Using the dependency
knowledge gained from EXPECT’s partial evaluation of its KBs, ETM can con-
trol the change of numerous classes.

To be truly worthy of the preserve label, a KM strategy must demonstrate
that what worked before some change will work after that change. Reasoning
about procedural knowledge is harder than reasoning about declarative knowl-
edge. Consequently, it is easier to prove the preserve property in a logical
preserve strategy such as RDR than with procedural preserve strategies such as
KA scripts or DSE version coercion. The ripple-down-rule tree representation
contains two subtleties that make it an excellent preserve tool:

¢ Fixing any point in the RDR tree only changes the logic at that point.

The rest of the tree is immune to any side-effects of that fix.

e Due to the manner in which the difference list is computed (§3.4.1), the
user is constrained to only adding in relevant fix logic. That is, logic that
reflects the difference between the cases seen previously and the case been
examined currently.

Note that RDF is a procedural preserve strategy built on the logical preserve
strategy of RDR.

page 51 of 61

fr— Control
Monitoring Algorithms -
instrumentation ¢
++
++
++ & .
¢ pre-conditions
+ monitoring
. and control
avoids
undesirable
states —+
Assurance needs additional
processing
in short term
More effort to specify, Performance
develop, verify improves performance in

—+ long termvia tuning
Temporary iﬂmeﬁne&

+t Affordability

Figure 34: The NFRs of Figure 16 expressed as a dependency graph.

4 Discussion

In this article we have analysed the AI and software engineering literature to
reverse engineer 35 points of a “knowledge management strategy options space”.
We offer this space as a precise definition of KM. In this section we discuss what
150 general lessons we can take from our exploration of that space:
e A basic requirement for many KM tools is search space reflection; i.e.
analysing the network of connections between KB concepts (§4.1).

e Current KM research does not cover all the 35 points of the management
strategy options space. We hence offer an extension to current KBS prac-
1655 tice: commissioning a KM tool (§4.2).

4.1 Search Space Reflection: A General Tool for KM

Numerous KM strategies use a similar data structure; i.e. the dependency
network between words in a KB. This section argues that a theme in many of
the above techniques is search space reflection; i.e. a meta-level analysis of the
weo pathways that an inference engine has or could take through some search space.
For example:
e The coupling map of the IO-SCHEMAS approach is clearly a dependency
network between KB words (Figure 26).

e Many structures used for KM can be expressed by a dependency network
1665 between KB words. For example, the non-functional requirements of Fig-
ure 16 can be expressed in Figure 34 without any loss of information.

e The clustering analysis that computed the related parameters of TEIREISIAS (§3.4.9)
can be mapped into a graph-theoretic processing of a dependency network

1670

1675

1680

1685

1690

1695

1700

1705

1710

page 52 of 61

within a KB.

e The queries “how”, “why”, “why not” and “what if” can be mapped into
traversals of the dependency links in the neighborhood of some word (§3.3.2).

e Fault-localisation is a process of walking backwards from the fault along
the dependency network (§3.3.1).

e Inputs for test suites can be generated and assessed by an analysis of this
dependency network (§2.3.4).

e Techniques from the verification community can detect anomalies in the
KB via an analysis of this network (Figure 17).

e The computational core of many deductive learners (§3.4.6) is a partial
evaluator that generates, then edits, the search space relevant to some
problem [van Harmelen & Bundy, 1988].

e The core of model-based CBR is a reflective process on portions of the
search space which have been useful in the past for generating useful ex-
planations (§3.4.7).

e Swartout & Gil’s claim [Swartout & Gill, 1996] of the generality of EX-
PECT over other KL-B tools such as PROTEGE-II [Musen & Tu, 1993]
and SALT [Marcus & McDermott, 1989] rests on the ability of EXPECT
to automatically derive the dependencies between domain knowledge and
PSMs.

e Sequence diagrams (Figure 7) are pictures of portions of the search space
exercised by a particular example.

Sometimes, only parts of the portions of this network may be available to
the KM strategy; i.e. only those portions exercised by the current example.
Nevertheless, this partial network may be sufficient for:

¢ Finding errors in the KB; e.g. the EXPECT error detector (§2.4.2).

¢ Finding assumptions which, if changed, can repair a KL-B PSM; e.g. the
Fensel KIV approach (§3.3.2) and RD-RA (§3.4.2)

Both the Fensel KIV approach and RD-RA rely on assumption management.
Assumption management in search space reflection is a powerful KM technique.
Often there are insufficient examples available to unambiguously generate all
of the network. However, this need not block search space reflection. If the
meta-level analyser can make assumptions, then portions of the network around
the known measurements can be guessed. For example, the core of Fensel’s
technique is a search for guesses that by-pass a block in the PSM reasoning. In
the case of contradictory assumptions, then we need to separate the search space
into consistent portions; e.g. the worlds generated in Figures 11 and 12. If we
have such worlds available, then we can support a range of conflict resolution
tools:

o e.g. the Dr. Thick vs. Dr. Thin discussion in §3.4.3.

e HT4 could directly process Figure 34 looking for the worlds that cover
most of the desired goals; e.g. the most of assurance and performance
and timeliness and affordability.

1715

1720

1725

1730

1735

1740

1745

page 53 of 61

Knowledge Processing Activity
Knowledge Acquire Operationalise Fault Fix Preserve
type
WordK all most few few few
SentenceK most most many many few
BehaviouralK some few few few none
PSMs some many few few few
QualityK few few none none none
FixK few many none none none
SocialK few none none none none

Figure 35: The 35 points in the knowledge management options space are covered
by all, most, many, some, one, or none of the systems found by this review.

e The core of RD-RA technique is a structured patching of the control pro-
cedures used to process the assumptions. We argue that this process
is actually a general technique for unifying software engineering, KA and
KM. In the our approach, KL-B is replaced with libraries of multiple world
search space control devices maintained by RDF [Menzies, 1996a,Menzies,
1998a].

Note that search space reflection is just an extension to Newell’s original
knowledge-level proposal (§2.4). If a knowledge-level agent has access to the
search space and rationality operators of another knowledge level agent, then
the first agent can assist in maintaining the second. However, our reading of
Newell’s proposal is that Newell viewed rationality as a local-choice procedure
(e.g. levels 1 and 2 of RD-RA §3.4.2). Full search space reflection may require
non-local reflection (e.g. levels 3,4,5 of RD-RA).

4.2 Commissioning a KM Tool

This section argues that there is an incompleteness in current KM research. To
address this problem, a process is described for commissioning a new KM tool.
Figure 35 shows the coverage of the 35 kinds of KM which we can find in the
literature. To date, no strategy covers all 35 kinds of KM. Many strategies focus
on only small portions of the space. Also, no system covers 12 of the 35 possible
points; i.e. current research ignores at least 12/35 > 1/3 of the KM problem. Fur-
ther, KM research makes the RAS or the operationalisation KM assumptions,
which we have argued may be an incomplete approach to KM (§2.3.5, §3.1.1). In
our own research, the recursive maintenance problem (§2.5) discourages us from
building complicated architectures for KM. Instead, we seek a small number of
general mechanisms for KM which we can manually validate (e.g. RD-RA).
Given the framework of this article, commissioning a specific KM tool is a four
stage process:
1. A statement of what search space reflection techniques are supported in
the tool; i.e. where in the 35 points of the knowledge management options
space does this system work?

2. A statement of what position this tool takes on the recursive maintenance
problem (§2.5); i.e. what tools are offered for maintaining the maintenance
KB?

3. A theoretical demonstration that the tool could support the preserve ac-
tivity (§3.5).

1750

1755

1760

1765

1770

1775

1780

1785

1790

page 54 of 61

4. A practical demonstration that:
e The quality knowledge can assess the KB;

e KM metrics can be generated from the tool; i.e. we can track the
change in the quality of the KB over time.

Point four is particularly important. The empirical demonstration of the
merit of the different systems mentioned above is an open and pressing re-
search issue. We have commented elsewhere on the poor state of the art in
KA (lack of an active refutable hypothesis; insufficient data collected to satisfy
statistical analysis; experiments do not control for process, product, resource
variations) [Menzies, 1998b]. We make no further comment here except that
current KE practice rarely acquires qualityK. Without this qualityK we cannot
assess the success of a KM strategy since even if achieve reuse levels of 100%
or development times of a few days, we may still be producing inappropriate
systems.

Acknowledgments

The comments of the anonymous referees clarified many points of this paper.
Paul Compton has motivated and supported our KM work for many years now.
This particular paper grew from (i) discussions with Dieter Fensel on comparing
KM techniques; (ii) an attempt to emulate the analysis style of the Pos et. al.
review [Pos et al., 1997] on redesign techniques (that article focused on early
lifecycle issues while this article has tried to expand to cover more of the life
cycle). Dieter Fensel was kind enough to offer detailed comments on many
aspects of this paper. Simon Goss first articulated the recursive maintenance
knowledge problem. Didar Zowghi was my guide to the RM literature.

References

[Agnew et al., 1993] Agnew, N., Ford, K., & Hayes, P. (1993). Expertise in Context: Person-
ally Constructed, Socially elected, and Reality-Relevant? International Journal of Ezpert
Systems, 7.

[Angele et al., 1996] Angele, J., Fensel, D., & Studer, R. (1996). Domain and Task Mod-
elling in MIKE. In et.al., A. S., (Ed.), Domain Knowledge for Interactive System Design.
Chapman & Hall.

[Bachant & McDermott, 1984] Bachant, J. & McDermott, J. (1984). R1 Revisited: Four
Years in the Trenches. AI Magazine, pages 21-32.

[Benjamins, 1994] Benjamins, R. (1994). On a Role of Probem Solving Methods in Knowl-
edge Acquisition- Experiments with Diagnostic Strategies. In Proceedings of the European
Knowledge Acquisition Workshop, 199/.

[Benjamins, 1995] Benjamins, R. (1995). Problem-Solving Methods for Diagnosis and their
Role in Knowledge Acquisition. International Journal of Ezpert Systems: Research €&
Applications, 8(2):93-120.

[Boehm, 1996] Boehm, B. (1996). Aims for Indentifying Conflicts Among Quality Require-
ments. In IEEE Software.

[Booch, 1996] Booch, G. (1996). Object Solutions: Managing the Object-Oriented Project.
Addison-Wesley.

[Booch et al., 1997] Booch, G., Jacobsen, 1., & Rumbaugh, J. (1997). Version 1.0 of the
Unified Modeling Language. Rational. http://www.rational.com/ot/uml/1.0/index.html.

[Boy, 1995] Boy, G. (1995). Supportability-based design rationale. In Proceedings of the 6th
IFAC Symposium on Analysis, Design and Evaluation of Man-Machine Systems.

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

page 55 of 61

[Bradshaw et al., 1991] Bradshaw, J., Ford, K., & Adams-Webber, J. (1991). Knowledge
Representation of Knowledge Acquisition: A Three-Schemata Approach. In 6th AAAI-
Sponsored Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, ,October
6-11 1991, Banff, Canada, pages 4.1 — 4.25.

[Breuker & de Velde (eds), 1994] Breuker, J. & de Velde (eds), W. V. (1994). The Com-
monKADS Library for Ezpertise Modelling. I0S Press, Netherlands.

[Buchanan & Shortliffe, 1984] Buchanan, B. & Shortliffe, E. (1984). Rule-Based Ezpert Sys-
tems: The MYCIN Ezperiments of the Stanford Heuristic Programming Project. Addison-
Wesley.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal,

M. (1996). A System of Patterns: Pattern-Oriented Software Architecture. John Wiley &
Sons.

[Bylander et al., 1991] Bylander, T., Allemang, D., M.C. Tanner, M., & Josephson, J. (1991).
The Computational Complexity of Abduction. Artificial Intelligence, 49:25-60.

[Catlett, 1991] Catlett, J. (1991). Inductive learning from subsets or Disposal of excess
training data considered harmful. In Australian Workshop on Knowledge Acqusition for
Knowledge-Based Systems, Pokolbin, pages 53-67.

[Chandrasekaran, 1983] Chandrasekaran, B. (1983). Towards a Taxonomy of Problem Solving
Types. Al Magazine, pages 9-17.

[Chandrasekaran, 1986] Chandrasekaran, B. (1986). Generic Tasks in Knowledge-Based Rea-
soning: High-Level Building Blocks for Expert System Design. IEEE Ezpert, pages 23-30.

[Chandrasekaran et al., 1992] Chandrasekaran, B., Johnson, T., & Smith, J. W. (1992). Task
Structure Analysis for Knowledge Modeling. Communications of the ACM, 35(9):124-137.

[Chung & Nixon, 1995] Chung, L. & Nixon, B. (1995). Dealing with Non-Functional Re-
quirements: Three Experimental Studies of a Process-Oriented Approach. In Proceedings
of ICSE ’95: the International Conference on Software Engineering, pages 25—36.

[Clancey, 1985] Clancey, W. (1985). Heuristic Classification. Artificial Intelligence, 27:289—
350.

[Clancey, 1989] Clancey, W. (1989). Viewing Knowledge Bases as Qualitative Models. IEEE
Ezpert, pages 9-23.

[Clancey, 1992] Clancey, W. (1992). Model Construction Operators. Artificial Intelligence,
53:1-115.

[Clancey, 1993] Clancey, W. (1993). Situated Action: A Neuropsychological Interpretation
(Response to Vera and Simon). Cognitive Science, 17:87-116.

[Clancey et al., 1996] Clancey, W., Sachs, P., Sierhuis, M., & van Hoof, R. (1996). Brahms:
Simulating Practice for Work Systems Design. In Compton, P., Mizoguchi, R., Motoda, H.,
& Menzies, T., (Eds.), Proceedings PKAW ’96: Pacific Knowledge Acquisition Workshop.
Department of Artificial Intelligence.

[Coad et al., 1997] Coad, P., North, D., & Mayfield, M. (1997). Object Models: Strategies,
Patterns, and Applications. Prentice Hall.

[Cohen, 1995] Cohen, P. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

[Compton et al., 1992] Compton, P., Edwards, G., Srinivasan, A., Malor, P., Preston, P.,
Kang, B., & Lazarus, L. (1992). Ripple-down-rules: Turning Knowledge Acquisition into
Knowledge Maintenance. Artificial Intelligence in Medicine, 4:47-59.

[Compton et al., 1989] Compton, P., Horn, K., Quinlan, J., & Lazarus, L. (1989). Main-
taining an Expert System. In Quinlan, J., (Ed.), Applications of Expert Systems, pages
366-385. Addison Wesley.

[Compton & Jansen, 1990] Compton, P. & Jansen, R. (1990). A Philosophical Basis for
Knowledge Acquisition. Knowledge Acquisition, 2:241-257.

[Conklin & Begeman, 1988] Conklin, J. & Begeman, M. (1988). gIBIS: A Hypertext Tool
for Exploratory Policy Discussion. ACM Transactions on Office Information Systems,
6:303-331.

[Connell & Menzies, 1996] Connell, M. & Menzies, T. (1996). Quality Metrics: Test Coverage
Analysis for Smalltalk. In Tools Pacific, 1996, Melbourne.

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

page 56 of 61

[Corporation, 1997] Corporation, R. S. (1997). Rational-Rose. http://www.rational.com.

[Darden, 1990] Darden, L. (1990). Diagnosing and Fixing Faults in Theories. In Sharager, J. &
Langley, P., (Eds.), Computational Models of Scientific Discovery and Theory Formation.
Morgan Kaufmann Publishers Inc.

[Date, 1995] Date, C. (1995). An Introduction to Database Systems, volume 6. Addison-
Wesley.

[Davis, 1976] Davis, R. (1976). Applications of Meta-Level Knowledge to the Construction,
Mainteance and Use of Large Knowledge Bases. PhD thesis, Stanford.

[Davis et al., 1993] Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a Knowledge
Representation? Al Magazine, pages 17-33.

[de Brug et al., 1986] de Brug, A. V., Bachant, J., & McDermott, J. (1986). The Taming of
R1. IEEE FEzpert, pages 33-39.

[Debenham, 1995] Debenham, J. (1995). Understanding Expert Systems Maintenance. In
Proceedings Sizth International Conference on Database and Ezpert Systems Applications
DEXA’95, London, September.

[Debenham, 1998] Debenham, J. (1998). Knowledge Engineering: Unifying Knowledge Base
and Database Design. Springer-Verlag.

[DeKleer, 1986] DeKleer, J. (1986). An Assumption-Based TMS. Artificial Intelligence,
28:163-196.

[DeKleer & Williams, 1987] DeKleer, J. & Williams, B. (1987). Diagnosing Multiple Faults.
Artificial Intelligence, 32:97-130.

[Easterbrook, 1991] Easterbrook, S. (1991). Elicitation of Requirements from Multiple Per-
spectives. PhD thesis, Imperial College of Science Technology and Medicine, University of
London. Available from http://research.ivv.nasa.gov/"steve/papers/index.html.

[Easterbrook & Nuseibeh, 1996] Easterbrook, S. & Nuseibeh, B. (1996). Using Viewpoints
for Inconsistency Management. BCS/IEE Software Engineering Journal, pages 31-43.

[Eriksson et al., 1995] Eriksson, H., Shahar, Y., Tu, S. W., Puerta, A. R., & Musen, M. A.
(1995). Task Modeling with Reusable Problem-Solving Methods. Artificial Intelligence,
79(2):293-326.

[Eshghi, 1993] Eshghi, K. (1993). A Tractable Class of Abductive Problems. In IJCAI ’93,
volume 1, pages 3-8.

[Feldman et al., 1989] Feldman, B., Compton, P., & Smythe, G. (1989). Hypothesis Testing:
an Appropriate Task for Knowledge-Based Systems. In Jth AAAI-Sponsored Knowledge
Acquisition for Knowledge-based Systems Workshop Banff, Canada.

[Fensel, 1995] Fensel, D. (1995). Formal Specification Languages in Knowledge and Software
Engineering. The Knowledge Engineering Review, 10(4).

[Fensel & Schoenegge, 1997] Fensel, D. & Schoenegge, A. (1997). Hunting for Assumptions
as Developing Method for Problem-Solving Methods. In Workshop on Problem-Solving
Methods for Knowledge-based Systems, IJCAI ’97, August 23.

[Fensel & Schonegge, 1997] Fensel, D. & Schonegge, A. (1997). Using KIV to Specify and
Verify Architecture of Knowledge-Based Systems. In Proceedings of the 12th IEEE In-
ternational Conference on Automated Software Engineering (ASEC-97), Incline Village,
Nevada, Nov 3-5.

[Finkelstein et al., 1994] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibe, B.
(1994). Inconsistency Handling In Multi-Perspective Specification. IEEE Transactions on
Software Engineering, 20(8):569-578.

[Fischer et al., 1996] Fischer, G., Lemke, A., McCall, R., & Morch, A. (1996). Making Argu-
mentation Serve Design. In Moran, T. & Carroll, J., (Eds.), Design Rationale: Concepts,
Techniques, and Use, pages 267-293. Lawerence Erlbaum Associates.

[Fischer et al., 1989] Fischer, G., McCall, R., & Morch, A. (1989). Design environments for
constructive and argumentative design. In CHI ’89.

[Fowler, 1997] Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Addison Wes-
ley.

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

page 57 of 61

[Gaines & Compton, 1992] Gaines, B. & Compton, P. (1992). Induction of Ripple Down
Rules. In Proceedings, Australian AI ’92, pages 349-354. World Scientific.

[Gaines & Shaw, 1989] Gaines, B. & Shaw, M. (1989). Comparing the Conceptual Systems
of Experts. In IJCAI 89, pages 633-638.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[Gil & Melz, 1996] Gil, Y. & Melz, E. (1996). Explicit Representations of Problem-Soving
Strategies to Support Knowledge Acquisition. In Proceedings AAAI’ 96.

[Gil & Tallis, 1997] Gil, Y. & Tallis, M. (1997). A Script-Based Approach to Modifying

Knowledge Bases. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97).

[Ginsberg, 1987] Ginsberg, A. (1987). A new Approach to Checking Knowledge Bases for
Inconsistency and Redundancy. In Proc. 8rd Annual Ezpert Systems in Government Con-
ference, pages 102-111.

[Ginsberg, 1990] Ginsberg, A. (1990). Theory Reduction, Theory Revision, and Retransla-
tion. In AAAT ’90, pages T77-782.

[Ginsberg et al., 1988] Ginsberg, A., Weiss, S., & Politakis, P. (1988). Automatic knowledge
base refinement for classification systems. Artificial Intelligence, 35:197-226.

[Glass & Mackey, 1988] Glass, L. & Mackey, M. (1988). From Clocks to Chaos. Princeton
University Press.

[Gomez-Perez, 1996] Gomez-Perez, A. (1996). Towards a Framework to Verify Knowledge
Sharing Technology. Ezpert Systems with Applications, 11(4):519-29.

[Gruber, 1993] Gruber, T. (1993). A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199-220.

[Hamscher et al., 1992] Hamscher, W., Console, L., & DeKleer, J. (1992). Readings in Model-
Based Diagnosis. Morgan Kaufmann.

[Harel, 1995] Harel, D. (1995). On Visual Formalisms. In Glasgow, J. & N.H. Narayanan,
B. C., (Eds.), Diagrammatic Reasoning, pages 235-271. The AAAI Press.

[Haynes et al., 1995] Haynes, P., T.Menzies, & Phipps, G. (1995). Using The Size of Classes
and Methods as the Basis for Early Effort Prediction; Empirical Observations, Initial Ap-
plication; A Practitioners Experience Report. In OOPSLA Workshop on OO Process and
Metrics for Effort Estimation.

[Hoffman et al., 1997] Hoffman, R., Feltovich, P., & Ford, K. (1997). A General Framework
for Conceiving of Expertise in Expert Systems in Context. In Feltovich, P., Ford, K., &
Hoffman, R., (Eds.), Ezpertise in Contect, chapter 24, pages 543-580. MIT PRess.

[Hofstadter, 1980] Hofstadter, D. (1980). Gédel, Escher, Bach: An Eternal Golden Braid.
Penguin Books.

[Hunter & Nuseibeh, 1997] Hunter, A. & Nuseibeh, B. (1997). Analysing Inconsistent Speci-
fications. In International Symposium on Requirements Engineering, pages 78-86.

[Jacobson & Christerson, 1995] Jacobson, I. & Christerson, M. (1995). A Growing Consensus
on Use Cases. JOOP, pages 15-19.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992).
Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley.

[Kahn et al., 1985] Kahn, G., Nowlan, S., & McDermott, J. (1985). Strategies for Knowl-
edge Acquisition. IEEE Trsansactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-7:511-522.

[Klein, 1993] Klein, M. (1993). Capturing Design Rationale in Concurrent Engineering
Teams. IEEE Computer, 26(1):39-47.

[Kolodner, 1991] Kolodner, J. (1991). Improving Human Decision Making Through Case-
Based Decision Aiding. AI Magazine, page 68.

[Kolodner, 1993] Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann.

[Laird et al., 1986] Laird, P. S., J. E., R., & Newell, A. (1986). Chunking in SOAR: The
Anatomy of a General Learning Mechanism. Machine Learning, 1(1):11-46.

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

page 58 of 61

[Leake, 1993] Leake, D. (1993). Focusing Construction and Selection of Abductive Hypothe-
ses. In IJCAI 793, pages 24-29.

[Lee & Lai, 1996] Lee, J. & Lai, K. (1996). What’s in Design Rationale? In Moran, T.
& Carroll, J., (Eds.), Design Rationale: Concepts, Techniques, and Use, pages 21-52.
Lawerence Erlbaum Associates.

[Lee & Compton, 1996] Lee, M. & Compton, P. (1996). From Heuristic to Causality. In
Proceedings of the 3rd World Congress on Expert System (WcES’96).

[Levins & Puccia, 1985] Levins, R. & Puccia, C. (1985). Qualitative Modeling of Complex
Systems: An Introduction to Loop Analysis and Time Averaging. Harvard University
Press, Cambridge, Mass.

[MacLean et al., 1996] MacLean, A., Young, R., Bellotti, V., & Moran, T. (1996). Ques-
tions, options and criteria: Elements of design space analysis. In Moran, T. & Carroll,
J., (Eds.), Design Rationale: Concepts, Techniques, and Use, pages 53-106. Lawerence
Erlbaum Associates.

[Mansuri et al., 1991] Mansuri, Y., Compton, P., & Sammut, C. (1991). A comparison of
a manual knowledge acquisition method and an inductive learning method. In Boose,
J., Debenham, J., Gaines, B., & Quinlan, J., (Eds.), Australian workshop on knowledge
acquisition for knowledge based systems, Pokolbin, pages 114-132. University of Technology,
Sydney.

[Marcus & McDermott, 1989] Marcus, S. & McDermott, J. (1989). SALT: A Knowledge
Acquisition Language for Propose-and-Revise Systems. Artificial Intelligence, 39:1-37.
[Marick, 1997] Marick, B. (1997). The Testing Tools Supplier List http://www.stlabs.com/

marick/faqs/tools.htm.

[Marques et al., 1992] Marques, D., Dallemagne, G., Kliner, G., McDermott, J., & Tung, D.
(1992). Easy Programming: Empowering People to Build Their Own Applications. IEEE
Ezpert, pages 16-29.

[Menzies, 1992] Menzies, T. (1992). Maintaining Procedural Knowledge: Ripple-Down-
Functions. In Proceedings of Al ’92, Australia.

[Menzies, 1995a] Menzies, T. (1995a). Limits to Knowledge Level-B Modeling (and KADS).
In Proceedings of Al ’95, Australia. World-Scientific.

[Menzies, 1995b] Menzies, T. (1995b). Principles for Generalised Testing of Knowledge
Bases. PhD thesis, University of New South Wales. Avaliable from http://www.cse.unsw.
edu.au/"timm/pub/docs/95thesis.ps.gz.

[Menzies, 1996b] Menzies, T. (1996b). On the Practicality of Abductive Validation. In ECAI
’96. Available from http://www.cse.unsw.edu.au/"timm/pub/docs/96abvalid.ps.gz.

[Menzies, 1998a] Menzies, T. (1998a). Applications of Abduction: A Unified Framework
for Software and Knowledge Engineering. Submitted to APWISE ’98. Available from
http://www.cse.unsw.edu.au/"timm/pub/docs/98apwise.

[Menzies, 1998b] Menzies, T. (1998b). Evaluation Issues for Problem Solving Methods.
Banff KA workshop, 1998. Available from http://www.cse.unsw.edu.au/"timm/pub/docs/
97eval.

[Menzies, 1998c] Menzies, T. (1998c). Evaluation Issues with Critical Success Metrics. In
Banff KA ’98 workshop. Available from http://www.cse.unsw.EDU.AU/"timm/pub/docs/
97evalcsm.

[Menzies, 1998d] Menzies, T. (1998d). OO Patterns: Lessons from Expert Systems. Software
Practice € Ezperience. In press. Available from http://www.cse.unsw.edu.au/~timm/pub/
docs/97probspatt.ps.gz.

[Menzies, 1996a] Menzies, T. (September, 1996a). Applications of Abduction: Knowledge
Level Modeling. International Journal of Human Computer Studies, 45:305-355. Available
from http://wuw.cse.unsw.edu.au/~timm/pub/docs/96abkll.ps.gz.

[Menzies et al., 1992] Menzies, T., Black, J., Fleming, J., & Dean, M. (1992). An Expert
System for Raising Pigs. In The first Conference on Practical Applications of Prolog.
Available from http://www.cse.unsw.EDU.AU/~timm/pub/docs/ukapril92.ps.gz.

[Menzies & Clancey, 1999] Menzies, T. & Clancey, B. (1999). Editorial, Special Issue on
Situated Cognition, International Journal of Human-Computer Studies. To appear.

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

page 59 of 61

[Menzies & Compton, 1997] Menzies, T. & Compton, P. (1997). Applications of Abduction:
Hypothesis Testing of Neuroendocrinological Qualitative Compartmental Models. Artificial
Intelligence in Medicine, 10:145-175. Available from http://www.cse.unsw.edu.au/"timm/
pub/docs/96aim.ps.gz.

[Menzies & Mahidadia, 1997] Menzies, T. & Mahidadia, A. (1997). Ripple-Down Rational-
ity: A Framework for Maintaining PSMs. In Workshop on Problem-Solving Methods for

Knowledge-based Systems, IJCAI ’97, August 23. Available from http://www.cse.unsw.
edu.au/"timm/pub/docs/97rdra.ps.gz.

[Menzies & Waugh, 1998] Menzies, T. & Waugh, S. (1998). On the Practicality of Viewpoint-
based Requirements Engineering. In Proceedings, Pacific Rim Conference on Artificial
Intelligence, Singapore. Springer-Verlag.

[Michalski, 1993] Michalski, R. (1993). Toward a Unified Theory of Learning: Multistrat-
egy Task-adaptive Learning. In Buchanan, B. G. & Wilkin, D. C., (Eds.), Readings in
Knowledge Acquisition and Learning: Automatic Construction and Improvement of Ez-
pert System. Morgan Kaufmann Publishers.

[Mitchell et al., 1986] Mitchell, T., Keller, R., & Kedar-Cabelli, S. T. (1986). Explanation-
Based Generalization: A Unifying View. Machine Learning, 1:47-80.

[Moran & Carroll, 1996] Moran, T. & Carroll, J. (1996). Design Rationale: Concepts, Tech-
niques, and Use. Lawerence Erlbaum Associates.

[Motta & Zdrahal, 1996] Motta, E. & Zdrahal, Z. (1996). Parametric Design Problem Solv-

ing. In Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System
Workshop.

[Muggleton, 1991] Muggleton, S. (1991). Inductive Logic Programming. New Generation
Computing, 8:295-318.

[Mulholland et al., 1996] Mulholland, M., Preston, P., Hibbert, B., & Compton, P. (1996). An
expert system for ion chromatography developed using machine learning and knowledge in
context. In Proceedings of the Sizth International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Ezpert Systems, Edinburgh.

[Musen & Tu, 1993] Musen, M. & Tu, S. (1993). Probelm-Solving Models for Generation
of Task-Specific Knowledge Acquisition Tools. In Cuena, J., (Ed.), Knowledge-Oriented
Software Design. Elsevier, Amsterdam.

[Myers, 1977] Myers, G. (1977). A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections. Communications of the ACM, 21:760-768.

[Neches et al., 1991] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T.,
& Swartout., W. R. (1991). Enabling technology for knowledge sharing. AI Magazine,
12(3):16-36.

[Newell, 1982] Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18:87-127.

[Newell, 1993] Newell, A. (1993). Reflections on the Knowledge Level. Artificial Intelligence,
59:31-38.

[Nuseibeh, 1997] Nuseibeh, B. (1997). To Be and Not to Be: On Managing Inconsistency in

Software Development. In Proceedings of 8th International Workshop on Software Specifi-
cation and Design (IWSSD-8), pages 164-169. IEEE CS Press.

[Odberg, 1995] Odberg, E. (1995). MultiPerspectives: Object Evolution and Schema Modi-
fication Management for Object-Oriented Databases. PhD thesis, Norwegian Institute of
Technology. 408 pages.

[O’Hara & Shadbolt, 1997] O’Hara, K. & Shadbolt, N. (1997). Inerpreting Generic Struc-
tures: Expert Systems, Expertise, and Context. In Feltovich, P., Ford, K., & Hoffman, R.,
(Eds.), Ezpertise in Context, chapter 19, pages 449-472. MIT PRess.

[Olle et al., 1991] Olle, T., Hagelstein, J., MacDonald, I., Rolland, C., Sol, H., Assche, F. V.,
& Verrijn-Stuart, A. (1991). Information Systems Methodologies: A Framework for Un-
derstanding. Addison-Wesley.

[Patil et al., 1981] Patil, R., Szolovitis, P., & Schwartz, W. (1981). Causal Understanding of
Patient Illness in Medical Diagnosis. In IJCAI 81, pages 893-899.

[Politakis, 1985] Politakis, P. (1985). Empirical Analsis for Ezpert Systems. Pitman.

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

page 60 of 61

[Poole, 1993] Poole, D. (1993). Probabilistic Horn Abduction and Bayesian Networks. Arti-
ficial Intelligence, 64(1):81-129.

[Popper, 1963] Popper, K. (1963). Conjectures and Refutations,. Routledge and Kegan Paul.

[Pos et al., 1997] Pos, A., Akkermans, H., Straatman, R., & Wijngaards, N. (1997). Redesign
Problem Solving. In Workshop on Problem-Solving Methods for Knowledge-based Systems,
IJCAI ’97, August 23.

[Preece & Shinghal, 1992] Preece, A. & Shinghal, R. (1992). Verifying Knowledge Bases by
Anomaly Detection: An Experience Report. In ECAI ’92.

[Preston et al., 1993] Preston, P., Edwards, G., & Compton, P. (1993). A 1600 Rule Expert
System Without Knowledge Engineers. In Leibowitz, J., (Ed.), Second World Congress on
FEzpert Systems.

[Quinlan, 1982] Quinlan, J. (1982). Learning Efficient Classification Procedures and Thier
Application to Chess End-Games. In Machine Learning.

[Quinlan, 1986] Quinlan, J. (1986). Induction of Decision Trees. Machine Learning, 1:81-106.

[Ramesh & Dhar, 1992] Ramesh, B. & Dhar, V. (1992). Supporing Systems Development by
Capturing Deliberations During Requirements Engineering. IEEE Transactions on Soft-
ware Engineering, 18(6):498-510.

[Richards & Compton, 1997] Richards, D. & Compton, P. (1997). Combining Formal Concept
Analysis and Ripple Down Rules to Support the Reuse of Knowledge. In SEKE ’97:
Proceedings of 1997 Conf. on Software Eng. €& Knowledge Eng, Madrid.

[Richards & Menzies, 1997] Richards, D. & Menzies, T. (1997). Extending Knowledge Engi-
neering to Requirements Engineering from Multiple Perspectives. In Menzies, T., Richards,
D., & Compton, P., (Eds.), Third Australian Knowledge Acquisition Workshop, Perth.

[Rubin & Goldberg, 1992] Rubin, K. & Goldberg, A. (1992). Object Behavior Analysis. Com-
munications of the ACM, 35(9).

[Rumbaugh, 1994] Rumbaugh, J. (1994). Getting Started: Using Use Cases to Capture Re-
quirements. JOOP, pages 8-23.

[Runkel, 1995] Runkel, J. (1995). Analyzing Tasks to Build Reusable Model-Based Tools. In
Proceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge- Based
Systems Workshop Banff, Canada.

[S, 1995] S, B. (1995). Software Tools for Evaluating the Usability of User Interfaces. In
Anzi, Y. & Ogawa, K., (Eds.), Proceddings of the 6th International Conference on HCI,
Pacificon Yokohama (Japan).

[Sammut & Banerji, 1986] Sammut, C. & Banerji, R. (1986). Learning Concepts by Asking
Questions. In Michalski, R. S., Carbonell, J., & Mitchell, T., (Eds.), Machine Learning: An
Artificial Intelligence Approach, volume 2, pages 167-192. Los Altos, California: Morgan
Kaufmann.

[Schreiber et al., 1994] Schreiber, A. T., Wielinga, B., Akkermans, J. M., Velde, W. V. D., &
de Hoog, R. (1994). CommonKADS. A Comprehensive Methodology for KBS Development.
IEEE Ezxpert, 9(6):28-37.

[Selman & Levesque, 1990] Selman, B. & Levesque, H. (1990). Abductive and Default Rea-
soning: a Computational Core. In AAAI 790, pages 343-348.

[Shadbolt & O’Hara, 1997] Shadbolt, N. & O’Hara, K. (1997). Model-based Expert Systems
and the Explanations of Expertise. In Feltovich, P., Ford, K., & Hoffman, R., (Eds.),
Ezpertise in Context, chapter 13, pages 315-337. MIT PRess.

[Shahsavar, 1993] Shahsavar, N. (1993). Design, Implementation and Evaluation of a
Knowledge-Based System to Support Ventilator Therapy Management. PhD thesis, De-
partment of Medical Informatics, Linkoping University, Sweden.

[Shapiro, 1983] Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge, Mas-
sachusetts, MIT Press.

[Shaw, 1997] Shaw, M. (1997). WebGrid: a WWW PCP Server. Knowledge Systems Insti-
tute, University of Calgary, http://Tiger.cpsc.ucalgary.ca/WebGrid/WebGrid.html.

[Silverman, 1990] Silverman, B. (1990). Critiquing Human Judgmet Using Knowledge-
Acquisition Systems. Al Magazine, pages 60-79.

2120

2125

2130

2135

2140

2145

2150

2155

2160

page 61 of 61

[Silverman, 1992a] Silverman, B. (1992a). Building a Better Critic: Recent Empirical Results.
IEEE Ezpert, pages 18-25.

[Silverman, 1992b] Silverman, B. (1992b). Survey of Expert Critiquing Systems: Practical
and Theoretical Frontiers. Communications of the ACM, 35:106-127.

[Silverman & Wenig, 1993] Silverman, B. & Wenig, R. (1993). Engineering Expert Critics for
Cooperative Systems. The Knowledge Engineering Review, 8(4):309-328.

[Soloway et al., 1987] Soloway, E., Bachant, J., & Jensen, K. (1987). Assessing the Main-
tainability of XCON-in-RIME: Coping with the Problems of a VERY Large Rule-Base. In
AAAIT ’87, pages 824-829.

[Steels, 1990] Steels, L. (1990). Components of Expertise. AI Magazine, 11:29-49.

[Swartout & Gill, 1996] Swartout, B. & Gill, Y. (1996). Flexible Knowledge Acquisition
Through Explicit Representation of Knowledge Roles. In 1996 AAAI Spring Symposium
on Acquisition, Learning, and Demonstration: Automating Tasks for Users.

[Tansley & Hayball, 1993] Tansley, D. & Hayball, C. (1993). Knowledge-Based Systems Anal-
ysis and Design. Prentice-Hall.

[technlogies, 1997] technlogies, R. S. (1997). PiSCES Automatic Test Case Generator http:
//wuw.rstcorp.com/tools.html#pisces.

[van Harmelen & Aben, 1996] van Harmelen, F. & Aben, M. (1996). Structure-Preserving
Specification Languages for Knowledge-Based Systems. International Journal of Human-
Computer Studies, 44:187-212.

[van Harmelen & Bundy, 1988] van Harmelen, F. & Bundy, A. (1988). Explanation-Based
Generalisation = Partial Evaluation. Artificial Intelligence, pages 401-412.

[Webb & Wells, 1996] Webb, G. & Wells, J. (1996). Experimental Evaluation of Integrating
Machine Learning with Knowledge Acquisition Through Direct Interaction with Domain
Experts. In Proceedings PKAW ’96: Pacific Knowledge Acquisition Workshop.

[Wielinga et al., 1992a] Wielinga, B., Schreiber, A., & Breuker, J. (1992a). KADS: a Model-
ing Approach to Knowledge Engineering. Knowledge Acquisition, 4:1-162.

[Wielinga et al., 1992b] Wielinga, B., Schreiber, A., & Breuker, J. (1992b). KADS: a Model-
ing Approach to Knowledge Engineering. Knowledge Acquisition, 4:1-162.

[Williams & Huang, 1996] Williams, G. & Huang, Z. (1996). A Case Study in Knowledge
Acquisition for Insurance Risk Assessment using a KDD Methodology. In Proceedings
PKAW ’96: Pacific Knowledge Acquisition Workshop.

[Winograd & Flores, 1987] Winograd, T. & Flores, F. (1987). On Understanding Comput-
ers and Cognition: A New Foundation for Design: A respose to the reviews. Artificial
Intelligence, 31:250—261.

[Winston, 1984] Winston, P. (1984). Artificial Intelligence. Addison-Wesley.

[Yost, 1993] Yost, G. (1993). Acquiring Knowledge in Soar. IEEE Ezpert, pages 26—34.

[Yost & Newell, 1989] Yost, G. & Newell, A. (1989). A Problem Space Approach to Expert
System Specification. In IJCAI ’89, pages 621-627.

[Zlatareva, 1992] Zlatareva, N. (1992). CTMS: A General Framework for Plausible Reasoning.
International Journal of Expert Systems, 5:229-247.

[Zlatareva, 1993] Zlatareva, N. (1993). Distributed Verification and Automated Generation of
Test Cases. In IJCAI ’93 workshop on Validation, Verification and Test of KBs Chambery,
France, pages 67-77.

[Zlatereva, 1992] Zlatereva, N. (1992). Truth Mainteance Systems and Their Application for
Verifying Expert System Knowledge Bases. Artificial Intelligence Review, 6.

