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Abstract

If we lack an objective human expert oracle which can assess a system, and
if we lack a library of known or desired behaviour, how can we assess an expert
system? One method for doing so is a critical success metrics (CSMs). A CSM
is an assessment of a running program which reflects the business concerns that
prompted the creation of that program. Given pre-disaster knowledge, a CSM
can be used while the expert system is in routine use, without compromising
the operation of the system. A general CSM experiment is defined using pre-
disaster points which can compare (e.g.) human to expert system performance.
Examples of using CSMs are given from the domains of farm management and
process control.

1 Introduction

How are we to assess the knowledge engineering techniques being reported in the knowl-
edge acquisition (KA) literature? We should carefully assess superlative claims for the
efficacy of case tools or formal methods or object-oriented knowledge representations
or problem solving methods (PSM) [Schreiber et al., 1994] or ontologies [Gruber, 1993]
or ripple down rules [Preston et al., 1993] or abduction [Menzies, 1996] or the problem
space computational model [Yost, 1993] or whatever. In the software engineering liter-
ature, there are many examples of software engineering techniques (e.g. CASE tools,
formal methods) which are in common use but, when evaluated, cannot be shown to
be beneficial to the software process [Fenton et al., 1994]. Also, in the KA literature,
many of the claims in the PSM literature are not supported by the currently available
empirical evidence [Menzies, 1997a].

Clearly, we need some better method than reading the glowing reports from the
authors of these KA techniques. Even if these authors are expert in their fields, they
may still be unable to perform objective expert evaluations. Experts can often disagree
about what constitutes a competent system ( [Shaw, 1988, Gaschnig et al., 1983]). The
halo effect prevents a developer for looking at a program and assessing its value. Cohen
likens the halo effect to a parent gushing over the achievements of their children and
comments that...
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Figure 1: Critical success metrics for PIGE. From [Menzies et al., 1992].

What we need is not opinions or impressions, but relatively objective mea-
sures of performance. [Cohen, 1995], p74.

The method for assessment explored in this article is critical success metrics (CSMs);
i.e. some number inferred from the system which, if it passes some value, demonstrates
conclusively that the system is a success. If such a critical measurement is observed,
then the system will be deemed to be a success, regardless of other less critical measures
(e.g. slow runtimes).

For example, consider the PIGE farm management expert system [Menzies et al.,
1992]. PIGE advised on diets and genotypes for pigs growing in a piggery. Given a
particular configuration of the livestock, an optimisation model could infer the annual
profit of the farm. Alternate configurations could be explored using a simulation model.
A user can choose some settings, then run the simulation model to see if the system’s
performance improved. The CSM for PIGE was can the system improve farm prof-
itability as well as a pig nutrition expert?. If this could be demonstrated, then the tool
could be sold as an a kind of automatic pig growth specialist. To collect this CSM, at
the end of a three month prototyping stage, we compared the performance of the pig
nutritionist who wrote the PIGE rules against PIGE. We observed that, measured in
purely economic terms, this expert system out-performed its human author (!!). The
CSM study results for PIGE are shown in Figure 1.

This single CSM study changed the direction of the project. The graph of the CSM
study became a succinct argument for collecting further funding. It was also very useful
in sales work. PIGE became Australia’s first exported expert system and was used on
a routine daily basis in America, Holland, Belgium, France, Spain and Australia. In
part, the success of the system was due to its ability to demonstrate its utility via a
CSM.

Nevertheless, the CSM study of PIGE is a poor evaluation study. A good experiment
is run multiple times with some variation between each trial [Cohen, 1995]. CSMs
should be viewed as the inner measurement process within a well-defined experiment.
A general class of such experiments are described below, along with an example in a
process control domain. This example will use a technique called a pre-disaster point
(defined below). Our example will be preceded by general notes on CSMs and their
advantages.



2 About CSMs

This section offers some basic notes on CSMs. CSMs are a reflection of the contribution
of the behaviour of the software in a particular business context. Hence:

e They are very domain-specific. However this does not mean they are unanalysable.
This article concerns itself with the general themes of CSMs.

e They typically do not refer to internal properties of a program. In this regard,
CSMs are very different to the syntactic anomaly detection systems of the KBS
verification community [Preece, 1992].

e They cannot be developed by programmers without extensive input from busi-
ness users. Programmers developing CSMs without business user involvement
typically focus on internal properties; e.g. lines of code per function, bugs fixed
per day, etc. Such internal properties may not connect to the business case which
motivated the program’s development.

e They can only be collected once the program is running in its target context.

Even if can’t collect CSMs until an expert system is deployed, we should still define
them at a very early stage. Evaluation should be considered as early as possible when
building a system [Gaschnig et al., 1983]. The incremental application of a pre-defined
success criteria can be a powerful tool for managing evolving systems [Booch, 1996].
Often, the evaluation criteria imposes extra requirements on the implementation. We
may need to build a very simple initial system that collects baseline measurements
which reflect current practice. For example, once I identified increases sales per day as
the CSM for a dealing room expert system. However, this number was not currently
being collected in the current software. Sales per day could be estimated from the
quarterly statements, but no finer grain data collection was performed at that site.
Hence, prior to building the expert system, a database system had to be built to collect
the baseline data.

While CSMs are obvious in retrospect, they can take weeks of analysis to uncover.
For example:

o It took two weeks full time analysis on the domain before the above dealing room
CSM was uncovered.

e In the process control system discussed below, the CSMs were only isolated once
a prototype expert system system was developed.

e In the PIGE system, nutrition experts argued for weeks about the merits of dif-
ferent protein utilisation models. Then the marketing people commented that
such considerations were irrelevant if it could not be demonstrated that the sys-
tems recommendations improved the overall profitability of a farm. Hence, the
evaluation focus moved from the protein utilisation models to issues of modeling
the farm economics. The results, shown above, were an impressive demonstration
of the marketability of the system.

The observation that CSMs can take some time to isolate would not surprise software
engineering metrics researchers. Basili [Basili, 1992], characterises software evaluation
as a goal-question-metric triad. Beginners to experimentation report whatever numbers
they can collect without considering the goal of the research project, what questions



relate to that goal, and what measurements could be made to address those questions.
Before goal-question-metric there must an analysis involving the stake holders of the
project to establish the appropriate goals. Offen and Jeffery [Offen & Jeffery, 1997]
offer the appropriate caution that this important task can take a non-trivial amount of
time.

3 Advantages of CSMs

Expert systems are usually evaluated via panels of experts or some database of known
or desired behaviour. Such evaluations can report the accuracy of those system to an
enviable degree of accuracy. For example:

e [Hayes, 1997] can demonstrate that her expert system developed in two years
performs as well as someone with five years experience in that field.

o [Preston et al., 1993] reports a biochemical interpretation system that is 95
percent accurate on the cases it analyses.

e [Yu et al., 1979] reports that MYCIN, an expert system for prescribing antibiotics,
clearly out-performs senior medical personnel.

Using CSMs, we are placing a business-level success criteria on a running system.
Hence, we can evaluate a system even when:

e No objective source of expertise is available; i.e. expert panel members are un-
available.

e There exists no representative library of the known/desired behaviour of the sys-
tem; i.e. we have yet to have enough experience with the domain to record all
the possible things which can happen.

Also, the evaluation will be a business-level evaluation. Business users may demand
objective evidence as to the business value of some program before allowing it to con-
trol some critical business process. This evaluation may not comprise developer-level
concerns such as runtimes or (in the case of PIGE) current fashions in theories of pro-
tein utilisation. In the PIGE and dealing room examples, the CSMs had to reflect the
fundamental business case which motivated the project: increased profitability.

Further, given a pre-disaster point, we can do this while the system is in routine
operation. A pre-disaster point refers to a state of the system that is less-than-optimum,
but not yet critically under-performing. As we shall see below, CSMs plus pre-disaster
knowledge allows us to assess a system without compromising its operation.

4 CSM Evaluation

This section offers a general design for an evaluation experiment using CSMs and a
pre-disaster point. The aim of this evaluation is to check if the program is dumber
than than some human, with respect to some chosen CSMs. In the experiment, the
human or expert system is trying to control some aspects of the environment (e.g. make
a diagnosis, prescribe medicines which reduce fever, improve profitability, etc).

Trials would alternate between the human and computer experts. A trial would
begin when the system is in some steady state; i.e. there appears to be no currently



active problems. During the course of each trial, the expert under trial would have sole
authority to order adjustments to the environment. The trial would terminate whenever
the pre-disaster point was reached. Authority to adjust the environment would then
pass to the human experts. At the conclusion of each trial, a CSM is applied to assess
the environment during the trial period.

At the end of a statistically significant number of trials (say, 20 for each population
of experts), the mean performance of the two populations of experts would be compared
using a t-test as follows. Let m and n be the number of trials of expert system and
the human experts respectively. Each trial generates a peformance score: Xj ... X,
with mean p, for the humans; and performance scores Y; ...Y,, with mean p, for the
expert system. We need to find a Z value as follows:
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Let a be the degrees of freedom. If n = m = 20, the a = n +m — 2 = 38. We reject
the hypothesis that expert system is worse than the human (i.e. p, < p,) with 95%
confidence if Z is less than (—t35,0.95 = —1.645).

Note that this human/expert system comparison could also be used to assess dif-
ferent expert systems.
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5 An Example: Process Control CSMs

This section offers a detailed example of the above experiment. In the summer of
1986/87, I implemented QUENCH, an expert system computer program for the con-
trol of the quench oil tower at ICI Australia’s Olefines petrochemical plant in Syd-
ney [Menzies & Markey, 1987]. Once the system was built, I offered to management
the experimental design discussed below. The evaluation experiment was approved
but, due to a change in management, never performed. Nevertheless, the experiment
is relevant here since it illustrates many of the practical issues associated with CSM
evaluations. For example:

e A simple rule-based system written in two weeks would take nearly a year to
evaluate.

o The evaluation criteria chosen made no reference to the internal structure of the
rule base.

e The CSMs described below were slow to develop. In fact, only once a working
knowledge base was developed could we reverse engineer a success criteria for the
system.

e CSMs cannot be generated via mere program watching. A detailed analysis is
offered below of the drawbacks of letting experts subjectively evaluate an expert
system.



e The CSM collection implies only small changes to the running of the system.
Further, using a pre-disaster point, the evaluation can occur without losing profit
from the system. That is, evaluation may be practical even for systems as com-
plicated as a large petrochemical plant.

5.1 Background to the QUENCH System

The Olefines petrochemical plant produces 240,000 tonnes of ethylene per year. It is a
highly complex plant consisting in part of some 125 km of piping connecting numerous
chemical processes. A unit of this plant is the quench oil tower. Inside the tower, hot
cracked gases are cooled from around 400C to around 100C by mixing with oil. Certain
gases are extracted at the top of the tower and the used quench oil, containing variable
amounts of dissolved gases, is removed from the bottom. These dissolved gases effect
the density of the removed oil. If the quench oil density moves outside of a certain
narrow range, it can not be sold. In this case, ICI loses the revenue that would have
come from its sale. Further, it must pay for the reprocessing or the disposal of the bad
oil.

In order to keep the density on specification, the temperature at the bottom and the
top of the tower must be maintained within one half of a degree of a target temperature.
This is accomplished by altering the flow rates though the piping that surrounds the
tower and/or by adjusting the heat exchange units attached to this piping. In practice,
this is a non-trivial task. There have been cases when the operators of the tower have
spent days attempting to return the density to an acceptable value. This process is
directed by the the supervising engineers who communicate their instructions to the
operators using heuristics similar to production rules. For example, to correct a very
high quench oil density, an engineer could say to an operator:

if  the target temperatures are correct and
the bottom temperature of the tower is high
then bring the bottom of the tower back on target
by increasing the quench oil recycle flow
rate by 20 tonnes per hour.

QUENCH contained 104 such rules.

5.2 Features of Large Petrochemical Plants

Large petrochemical plants have certain features that complicate the process of evalu-
ation. Safety is a paramount consideration. Unsafe operating conditions could cost the
lives of the workers in these plants.

Large petrochemical plants produce hundreds of millions of dollars worth of chem-
icals each year. The loss of a single day’s revenue can cost a company hundreds of
thousands of dollars. These economic imperatives are so pressing that the prolonged
operation of these plants at less-than-optimum performance can not be tolerated.

There are major difficulties associated with deriving precise formalisations of these
complex systems. For example, a mathematical model of the quench oil system would
require the solutions of hundreds of simultaneous equations. Certain parameters re-
quired in these equations require uncertain physical properties data; i.e. these parame-
ters are not known. Consequently it is possible that after months of development work,
a mathematical model of the quench oil system may be grossly inaccurate. Without
precise formalisations, the only way to accurately predict the effects of certain changes
to the plant is to make those changes and observe the effects.



The design of these large plants is typically customised to meet local requirements.
Hence, the experience gained in (e.g.) controlling quench oil towers in other plants may
not be relevant to this quench oil tower. In fact, the two supervising engineers who
helped write QUENCH’s rules are the only authorities on the control of the Olefines’
quench oil tower. In the jargon of the psychologist or the statistician, there is no control
group available for experiments on the tower. Further, there is no objective expertise
that can be called upon to accurately assess the suggestions made by quench oil tower
experts (be they computers or human beings).

5.3 The Obvious Evaluation Method

One method for assessing the expertise of the program by running it in parallel with the
existing system. The supervising engineers could compare QUENCH’s suggestions with
their own advice for problem situations. This method will be referred to as the obvious
method and (the pre-disaster CSM evaluation will be called the preferred method). The
obvious method has several advantages:

e It does not upset the normal operations of the plant.

e The plant remains under the control of the experts with the most experience on
controlling the plant; i.e. the supervising engineers.

¢ It requires no control group.

e The computer and the human experts are being tested under identical plant
conditions.

Regrettably, there are glaring design faults in the obvious method (discussed below).

5.4 Experimental Design Theory

Campbell and Stanley [Campbell & Stanley, 1970] assess experimental designs in terms
of their internal and external validity.

Internal validity is the basic minimum without which any experiment is
uninterpretable: Did in fact the experimental methods make a difference
in this specific experimental instance? External validity asks the question
of generalisability: To what populations, settings, treatment variables, and
measurement variables can this effect be generalised? [Campbell & Stanley,
1970] (p4).

Internal validity is of particular concern. If we can not interpret the results of our
experiment, then the experiment would have been pointless. Campbell and Stanley list
several factors that could jeopardise internal validity. These factors have one feature in
common: they could result in the effect of an experimental variable under study being
confused with other factors. Each represents the effects of:

e History: events occurring between observations other those under study. The
variable of history is relevant to the feature of experimental isolation. If the effect
under study can not be isolated from other effects, then it is hard to distinguish
the results of known influences from unknown influences.



e Maturation: changes over time in the test subjects. For example, the subject in
an experiment may grow bored, tired, hungry, etc. and their reactions to various
experimental variables may alter for reasons that are not under study. Maturation
is a common problem with knowledge engineering research. Researchers often
report improvement in some process when they use their own tools for a period of
time (e.g [Runkel, 1995]). Such results hence conflate the effect of the tool with
the effect of the developer learning how to best apply their own tool.

o Testing: the act of making an initial observation may somehow alter subsequent
observations.

o Instrumentation: the calibration of the testing device changes. The springs of a
weight scale may wear out, observers may change, or the reports of the same ob-
server may alter as they gain experience with the experiment. Instrumentation is
a common problem in many knowledge engineering studies. Knowledge engineer-
ing researchers rarely calibrate their measurements against some gold standard
or straw man- an obviously inferior method (but some exceptions exist as noted
below in the related work section) [Menzies, 1997a]. Without such a calibration,
most knowledge engineering researchers can only say software technology X lets
me do task Y. This is a less convincing statement than software technology X lets
me do task Y better than software technology Z.

o Statistical Regression: the items/ people/ events in a test group are selected ac-
cording to some extreme characteristic possessed by those items/ people/ events.
Campbell and Stanley note that the more deviant the score, the larger the error
of measurement it probably contains [Campbell & Stanley, 1970], (p11). They ob-
serve that test results from such extreme test groups tend to revert to the mean
behaviour. For example, in an experiment testing some skill, observations could
show that the dull could become brighter and the bright duller.

o Selection: if a test group was selected based upon their score on a certain mea-
sure, then this score could bias the behaviour of the test group in a certain
way. Selection problems have been observed in the knowledge engineering liter-
ature. A bayesian system for medical diagnosis in a Leeds hospital apparently
out-performed senior clinicians. However, a subsequent evaluation by another
team in Copenhagen identified that the first study artificially restricted the num-
ber of possible diagnosis. When this restriction was removed, the performance of
the bayesian system fell to 65 percent of that of human doctors [Gaschnig et al.,
1983] (p250-251). Also, Gashing et.al. report that a preliminary evaluation of
the XCON system [McDermott, 1993] failed to detect flaws in XCON since it only
studied a tiny fraction of the set of possible XCON inputs [Gaschnig et al., 1983]
(p270-271).

e Mortality: mortality refers to the changes to groups under comparison resulting
from drop outs from the groups.

As to external validity, the claim of this paper is that the preferred method is
generalisable to other expert system evaluations.

5.5 Assessing the Obvious Method

On several of the above points, the obvious method ranks quite well.



o Maturation: Maturation is not a problem since the test is not lengthy. The
obvious method is an evaluation of expertise at a particular point in time.

e Selection, and statistical regression: The expert system is tested against whatever
changes occur to the plant. Since there is no choice involved in selecting these
test cases, these factors are not issues for this experimental design.

e Mortality: Mortality is only a issue to be considered for tests that take an appre-
ciable period of time. Hence, it is not an issue with the obvious method.

However, the effects of history, instrumentation and testing are majors flaw in the
obvious method.

e History: The suggestions of the supervising engineers are not always followed
faithfully by the plant room operators. It is not uncommon for evening shift
and night shift operators to ignore expert advice and apply their own control
protocols. It is possible that these operators would tend to ignore a computer’s
advice even more than those of a human being. Having documented this problem,
I now propose to ignore it. The resolution of this problem is an administrative
problem that will be crucial to the process of evaluation. However, it that is
beyond the scope of this researcher.

o Instrumentation and Testing: The program’s expertise will be assessed by the
supervising engineers. It is possible that their own perceptions of the program
could alter with time. These engineers have been intimately connected with the
program for several months. Human factors such as the halo effect (discussed
above), egotistical considerations, disappointment or elation at their perceptions
of the program’s performance, etc., may distort their evaluation.

Hence, we reject the obvious method and move to the preferred method.

5.6 Defining CSMs for QUENCH

The preferred method requires CSMs and a pre-disaster point. This section offers
CSMs. The next section offers a pre-disaster point.
There are three possibles CSMs for QUENCH:

1. A poll of all the electronic surveillance equipment that monitors the plant. This
possibility is really a whole host of possibilities. There are many ways that the
plant’s surveillance equipment could be summed together into a single perfor-
mance figure. Such a summation would be a whole research topic in itself. For-
tunately, there are easier methods.

2. The time to failure. (a method proposed by Kehoe, personal communication).
The time between the starting the trial and reaching the pre-disaster point could
be the performance figure. The longer this time, the better the performance.

3. Revenue from quench oil (a method proposed by Dr. Michael Brisk, ICI, personal
communication). The sum of revenues gained from processing the quench oil could
be the performance measure. If the density goes off specification, and money
must be spent to reprocess or dispose of the bad oil, then this amount should
be deducted from the sum. Like the time to failure, the greater this figure, the
better the performance.



Tag Range

very high > 1070
moderately high > 1060
ok > 1050
moderately low > 1040
very low <=1040

Table 1: Assessing quench oil density in QUENCH. From [Menzies & Markey, 1987].

Tag Range
rising quickly > 7
rising slowly > 2

steady > =2
falling slowly > -7
falling quickly | <= -7

Table 2: Defining changes in QUENCH. From [Menzies & Markey, 1987].

Methods two and three are not exclusive. The system could be studied using both
criteria.

5.7 Defining the Pre-Disaster Point for QUENCH

We define the QUENCH pre-disaster point as follows: the point at which the supervising
engineers realise that, despite their best efforts, the plant is defying their control strate-
gies. If the plant reaches this pre-disaster point, then the control of the plant should
be transferred to the best possible control system. In the case of testing QUENCH, the
best possible control system is the supervising engineers. In the other case, when it is
the engineers controlling the plant, the engineers would retain their authority to order
alterations to the plant. They would then continue in their attempts to regain control
over the plant processes.

Pre-disaster for QUENCH could be define as a bad quench oil density that was not
improving, for (say) two days in succession. The time delay of two days allows for the
expert time to recognize a problem, give advice for that problem, and for the tower to
react to the expert’s advice. If the at end of this time the density was still bad and not
improving, then the expert would be deemed to have lost control of the tower.

The terms bad and not improving could be defined using the ranges developed during
the implementation of QUENCH. The expert system has the ability to assigns symbolic
tags to numeric ranges. The ranges for the quench oil density (expressed in kilograms
per cubic meter) are shown in Table 1.

The time rate of change in the density (expressed in change in density per 24 hours)
has the symbolic tags shown in Table 2.

Using these tags, we can define the pre-disaster point as a quench oil density that
is either:

e moderately high or very high density and not falling quickly or falling slowly OR

e moderately low or very low density and not rising quickly or rising slowly.
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6 Maturation and the Preferred Method

While the preferred method addresses the problem of objectivity seen with the obvious
method, it will be effected by maturation. Consider the following:

¢ During stable operating periods, an evaluation of QUENCH’s expertise in bring-
ing the quench oil density back on specification is meaningless. Any test of this
expertise must wait for periods of operational instability.

e The response time of the quench oil tower to changes in low rates and heat-
exchangers can be as much as several days. Hence, once unstable conditions are
encountered, an evaluation of the effectiveness of QUENCH’s suggestions may
have to wait for as much as a week.

o If we assume twenty trials for each population, and that each trial takes at least
a week, then the total experiment time will be at least 40 weeks.

e The current version of the QUENCH rule set was developed in two weeks. As
a result of assessing the current version of the program, the system developers
would gain months of experience with the system. This experience could be used
to modify and improve the program. Therefore...

e The evaluation process could result in substantial modifications to QUENCH’s
rule set.

Another way of expressing the above could be to say that the experiment is testing
the expertise of a system that is learning. The evaluation experiment is to be attempted
for an expert system who is in the shallow end of a learning curve. As a result of the
experience gained during the evaluation process, the rule set would be improved and
the expert system will move rapidly up the learning curve. The problem is that this
improvement would occur concurrently with the experiment.

Kehoe (personal communication) offers an interesting resolution to the maturation
problem. He argues that another CSM could be added to the system. Let F be the
number of times the system is executed divided by the number of times the knowledge
base is edited:

e If F tends to zero, the system is not being used.

o If Fis less than one, then each run of the program is prompting a revision; i.e.
there is something seriously wrong with QUENCH.

e If F'is much greater than one, then the system is being run much more than it
is being changed. Such an observation would suggest that some community finds
using QUENCH to be of value.

Another response to this maturation problem would be to to forbid the modification
of the rules during the evaluation period; i.e. stop the system moving along the learning
curve. This is an undesirable solution. It is highly probable that the existing rule set
could be vastly improved. It was developed in a fortnight and this is a surprisingly
short time for an expert system. Human cognitive processes are notoriously hard to
formalise. The experience of expert systems developers is that any current specification
of an expert solution to a problem is incomplete [Menzies, 1997b]. As experience with
an expert system accumulates, inadequacies in the system’s reasoning will always be
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detected. To correct these inadequacies, the system’s knowledge based (e.g. QUENCH’s
rule set) must be modified. This cycle of flaw detection followed by knowledge base
modification can continue indefinitely but concludes when the user is satisfied that the
system can provide adequate performance in an adequate number of cases. Depending
on the expert system application, this refinement process can continue for many years.
Compton reports one case where the modification process seemed linear; i.e. it may
never stop [Compton, 1994].

This is not to say that the existing rule set lacks any utility for controlling the tower.
The problem of assessing QUENCH only arose since the supervising engineers reported
that they are satisfied with the output of the program. The short development time
might have resulted from the choice of problem. QUENCH was ICI Australia’s first
direct experience with expert systems. The quench oil tower problem was selected as
a comparatively simple first test case for the expert system methodology. One of the
factors that made the problem simple was the Olefines’ supervising engineers. These
people spend significant amounts of their time explaining the workings of the Olefines
plant to the control room operators. Hence, they have had considerable experience in
expressing their knowledge in a concise manner.

Nevertheless, it is the author’s belief that the program’s rule set would benefit
from further modification. It would be foolish to believe that QUENCH had some-
how avoided the need for the long term knowledge base refinement process found to
be necessary in other expert system application. Further, ICI would prefer the best
possible control system for their tower. They may be less than enthusiastic about an
experiment that inhibits the development of an optimum rule set. Hence, except for
the Kehoe extension, I offer no revision to the preferred method to handle maturation.

7 Related Work

At the time of creating the QUENCH system, there was nothing in the petrochemical
literature about empirical evaluation of expert systems. For example, in [Morari &
McAvoy, 1986] and [Ctc96, 1986] we can read hundreds of pages on American and
Japanese expert systems and never read anything about evaluation. Perhaps the reason
for this curious omission is the difficulties inherent in the task. As seen above, a whole
host of factors threaten the internal validity of evaluating experiments in such plants.

More generally, business-level empirical KBS evaluation is rarely performed in the
knowledge engineering field (but some exceptions were noted in the introduction). By
business-level, I mean measures of a running expert system which relate to the business
case which motivated the development of that expert system. A CSM is a business-
level evaluation measure. Elsewhere, I have criticised this lack of evaluations in the
knowledge engineering field [Menzies, 1997b, Menzies, 1997a]. This critique motivated
Feldman and Compton [Feldman et al., 1989], followed by myself and Compton [Menzies
& Compton, 1997], to devise and refine a general graph-theoretic abductive framework
for assessing a KBS using a library of known or desired behaviour is discussed in
[Menzies, 1995]. An example of using this framework is given in [Menzies & Compton,
1997]. One advantage of this framework over standard verification and validation is
that the computational limits of the technique can be studied via mutators which auto-
generate variants of known graphs [Menzies, 1996, Waugh et al., 1997, Menzies et al.,
1997].

General principles for comparative empirical evaluation of knowledge engineering
methods are discussed in [Menzies, 1997a]. Such comparative evaluations can take the
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form of:

e Analysing program vs expert performance; e.g. [Hayes, 1997, Menzies et al., 1992,
Yu et al., 1979]. In general, only these program vs expert performance evaluations
yield results relevant to the business case that motivated the construction of the
expert system.

e Analysing expert vs expert performance using different tools (e.g. [Corbridge
et al., 1995]) or records of their knowledge (e.g. [Shaw, 1988]);

e Analysing the performance of variants within some program either via an em-
pirical average case analysis (e.g. [Waugh et al., 1997, Menzies et al., 1997]) or
a theoretical analysis such as graph theory (e.g. [Menzies & Cohen, 1997]) or a
worst-case time complexity analysis (e.g. [Tambe & Rosenbloom, 1994, Levesque
& Brachman, 1985]).

The verification and validation community offer test procedures for KBS:

e The verification community typically focuses on syntactic anomalies within a KBS
(e.g. circularities, tautologies) [Preece, 1992].

e The validation community focuses on the connection of the program to its envi-
ronment. However, a typical validation paper focuses on (e.g.) automatic test
case generation from an analysis of the dependency network within a program
(e.g. [Ginsberg, 1990, Zlatareva, 1993]). The advantage of this technique is that it
can be guaranteed that test cases can exercise all branches of a knowledge base.
The disadvantage of this technique is that, for each proposed new input, an expert
must still decide what constitutes a valid output. This decision requires knowl-
edge external to the model, least we introduce a circularity in the test procedure
(i-e. we test the a KBS using test cases derived from the structure of that KBS).
Further, auto-test-generation focuses on incorrect features in the current model.
I prefer to use some criteria from a totally external source since such external test
cases can highlight

e Usually, publications from verification or validation community do not discuss
how to assess a KBS with respect to the business case.

8 Conclusion

CSMs let us evaluate a system without requiring a panel of experts of a database of
known or desired behaviour. A behavioral success criteria is derived from the busi-
ness case that motivated the construction of the expert system. The system is then
executed and measurements are made which inform the success criteria. Coupled with
a pre-disaster point, CSMs let us statistically evaluate a system in operation, without
compromising that operation.

The general themes of CSMs presented here are as follows. CSMs are usually very
domain-specific since they reflect the contribution of the behaviour of the software in a
particular business context. Hence, they typically do not refer to internal properties of
a program and they cannot be developed by programmers without extensive input from
business users. CSMs are usually obvious, but only in retrospect: a CSMs can take
weeks of analysis to uncover. CSMs may only be collectible from the working system.
However, CSMs should be explored very early in the life cycle of an expert system since
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CSM collection may imply the extension of the system’s design to collect the required
data.

References

[Basili, 1992] Basili, V. R. (1992). The Experimental Paradigm in Software Engineering. In Rombach,
H. D., Basili, V. R., & Selby, R. W., (Eds.), Ezperimental Software Engineering Issues: Critical
Assessment and Future Directions, International Workshop, Germany, pages 3-12.

[Booch, 1996] Booch, G. (1996). Object Solutions: Managing the Object-Oriented Project. Addison-
Wesley.

[Campbell & Stanley, 1970] Campbell, D. & Stanley, J. (1970). Ezperimental and Quasi- Ezperimental
Designs for Research. Rand McNally & Company.

[Cohen, 1995] Cohen, P. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

[Compton, 1994] Compton, P. (1994). Personal communication. regarding the status of the PIERS
system.

[Corbridge et al., 1995] Corbridge, C., Major, N., & Shadbolt, N. (1995). Models Exposed: An Empir-
ical Study. In Proceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge
Based Systems.

[Ctc96, 1986] Ctc96 (1986). Special Issue on Expert Systems. Control Theory and Advanced Tech-
nology. Vol. 2, No. 3.

[Feldman et al., 1989] Feldman, B., Compton, P., & Smythe, G. (1989). Hypothesis Testing: an
Appropriate Task for Knowledge-Based Systems. In 4th AAAI-Sponsored Knowledge Acquisition
for Knowledge-based Systems Workshop Banff, Canada.

[Fenton et al., 1994] Fenton, N., Pfleeger, S., & Glass, R. (1994). Science and Substance: A Challenge
to Software Engineers. IEEE Software, pages 86-95.

[Gaschnig et al., 1983] Gaschnig, J., Klahr, P., Pople, H., Shortliffe, E., & Terry, A. (1983). Evaluation
of Expert Systems: Issues and Case Studies. In Hayes-Roth, F., Waterman, D., & Lenat, D., (Eds.),
Building Ezpert Systems, chapter 8, pages 241-280. Addison-Wesley.

[Ginsberg, 1990] Ginsberg, A. (1990). Theory Reduction, Theory Revision, and Retranslation. In
AAAI 90, pages T77-782.

[Gruber, 1993] Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199-220.

[Hayes, 1997] Hayes, C. (1997). A Study in Solution Quality Human Expert and Knolwedge-Based
System Reasoning. In Feltovich, P., Ford, K., & Hoffman, R., (Eds.), Ezpertise in Context, chap-
ter 14, pages 339-362. MIT PRess.

[Levesque & Brachman, 1985] Levesque, H. & Brachman, R. (1985). A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version). In Brachmann, R. & Levesque, H.,
(Eds.), Readings in Knowledge Representation, pages 41-70. Palo Alto, Morgan Kaufmann.

[McDermott, 1993] McDermott, J. (1993). R1 (>XCON”) at age 12: lessons from an elementary school
achiever. Artificial Intelligence, 59:241-247.

[Menzies, 1995] Menzies, T. (1995). Principles for Generalised Testing of Knowledge Bases. PhD
thesis, University of New South Wales.

[Menzies, 1997a] Menzies, T. (1997a). Evaluation Issues for Problem Solving Methods. Submitted to
Banff KA workshop, 1998. Available from http://www.cse.unsw.edu.au/ " timm/pub/docs/97eval.

[Menzies, 1997b] Menzies, T. (1997b). Is Knowledge Maintenance an Adequate Response to the Chal-
lenge of Situated Cognition for Symbolic Knowledge Based Systems? Special issue of the Inter-
national Journal of Human Computer Studies: “The Challenge of Situated Cognition for Sym-
bolic Knowledge Based Systems”. In press. Available from http://www.cse.unsw.edu.au/~timm/
pub/docs.

[Menzies, 1996] Menzies, T. (September, 1996). Applications of Abduction: Knowledge Level Model-
ing. International Journal of Human Computer Studies, 45:305-355.

[Menzies et al., 1992] Menzies, T., Black, J., Fleming, J., & Dean, M. (1992). An Expert System for
Raising Pigs. In The first Conference on Practical Applications of Prolog.

14



[Menzies & Cohen, 1997] Menzies, T. & Cohen, R. (1997). A Graph-Theoretic Optimisation of Tempo-
ral Abductive Validation. In European Symposium on the Validation and Verification of Knowledge
Based Systems, Leuven, Belgium.

[Menzies et al., 1997] Menzies, T., Cohen, R., Waugh, S., & Goss, S. (1997). Evaluating Conceptual
Qualitative Modeling Languages. In Submitted to the Banff KAW ’98 workshop. Available from
http://wuw.cse.unsw.EDU.AU/"timm/pub/aka97/papers.

[Menzies & Compton, 1997] Menzies, T. & Compton, P. (1997). Applications of Abduction: Hypoth-
esis Testing of Neuroendocrinological Qualitative Compartmental Models. Artificial Intelligence in
Medicine, 10:145-175.

[Menzies & Markey, 1987] Menzies, T. & Markey, B. (1987). A Micro-Computer, Rule-Based Prolog
Expert-System for Process Control in a Petrochemical Plant. In Proceedings of the Third Australian
Conference on Ezpert Systems, May 13-15.

[Morari & McAvoy, 1986] Morari, M. & McAvoy, T. (1986). Chemical Process Control: CPC III. A
Cache Publication.

[Offen & Jeffery, 1997] Offen, R. & Jeffery, R. (1997). Establishing Software Measurement Programs.
IEEE Software, pages 45-53.

[Preece, 1992] Preece, A. (1992). Principles and Practice in Verifying Rule-based Systems. The Knowl-
edge Engineering Review, 7:115-141.

[Preston et al., 1993] Preston, P., Edwards, G., & Compton, P. (1993). A 1600 Rule Expert System
Without Knowledge Engineers. In Leibowitz, J., (Ed.), Second World Congress on Ezpert Systems.

[Runkel, 1995] Runkel, J. (1995). Analyzing Tasks to Build Reusable Model-Based Tools. In Pro-
ceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop Banff, Canada.

[Schreiber et al., 1994] Schreiber, A. T., Wielinga, B., Akkermans, J. M., Velde, W. V. D., & de Hoog,
R. (1994). CommonKADS. A Comprehensive Methodology for KBS Development. IEEE Ezpert,
9(6):28-37.

[Shaw, 1988] Shaw, M. (1988). Validation in a Knowledge Acquisition System with Multiple Experts.

In Proceedings of the International Conference on Fifth Generation Computer Systems, pages 1259—
1266.

[Tambe & Rosenbloom, 1994] Tambe, M. & Rosenbloom, P. (1994). Investigating Production System
Representations for Non-combinatorial Match. Artificial Intelligence, 68(1).

[Waugh et al., 1997] Waugh, S., Menzies, T., & Goss, S. (1997). Evaluating a Qualitative Reasoner.
In Australian AI ’97. Available from http: //www. cse. unsw. edu. au/ “timm/pub/ docs.

[Yost, 1993] Yost, G. (1993). Acquiring Knowledge in Soar. IEEE Ezpert, pages 26—34.

[Yu et al., 1979] Yu, V., Fagan, L., Wraith, S., Clancey, W., Scott, A., Hanigan, J., Blum, R.,
Buchanan, B., & Cohen, S. (1979). Antimicrobial Selection by a Computer: a Blinded Evalua-
tion by Infectious Disease Experts. Journal of American Medical Association, 242:1279-1282.

[Zlatareva, 1993] Zlatareva, N. (1993). Distributed Verification and Automated Generation of Test
Cases. In IJCAT ’93 workshop on Validation, Verification and Test of KBs Chambery, France,
pages 67-77.

Some of the Menzies papers can be found at http://www.cse.unsw.edu.au/~timm/pub/docs

15



