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Abstract. In order to support verification, validation and analysis of dynamic
Operations Research (OR) models a method of testing models against data is re-
quired. In the case of theQCMqualitative reasoning system (QRS) this requires an
extension to accommodate temporal data streams. This paper examines a number
of temporal reasoning methods forQCM. On the basis of this a general methodol-
ogy for evaluating QRSs and a statement of success criteria have been developed,
and will be used in future work.

1 Introduction

This paper examines a number of methods for extending an existing qualitative rea-
soning system (QRS), theQCMalgorithm [11], to handle time-based reasoning. This
system contains a static model compiler, a data compiler, and a hypothesis tester for
the model and data.QCMhas been able to detect previously invisible errors in theories
published in the international neuroendocrinological literature [4, 11]. However,QCM
is restricted tonon-temporaltheories with the invariant that no variable can have two
different values. In the case of time-based simulation, this invariant is inappropriate
since variables can have different values at different times. One way to extendQCMto
time-based simulation is to rename variables at each time point in the simulation; e.g.
population could be renamed topopulation1, population2 . . . populationT whereT
is some time point. Once these renamed variables are created, the design issue becomes
“how should we bestlink variables at timei to timej?”. In this paper, we assess eight
possiblelinking policiesfor TQCM, aQCMvariant which allows the processing of time
series data.

Overview articles which contrast different approaches to qualitative reasoning (QR)
(e.g. [2,3,5,7,11,12]) have little to say about how to choose between different systems.
There is also a lack of guidelines for developing and testing new modelling approaches.
In the process of testing the differentTQCMlinking policies we have developed a more
general framework for assessing QRSs. We identifycritical success metrics(CSMs) for
QR, and develop a test engine to collect the CSMs for the different variants ofTQCM. In
order for this testing to be comprehensive, a wide range of representative models must
be examined. Amodel mutatoris used to generate large numbers of these test models.
We argue that this QR evaluation framework is a process applicable to many domains.
However, (i) it is only practical after automating the test engine and (ii) it is only reliable
if the model mutator covers a sufficient range.



The following sections detail the CSMs (§2); QCM(§3) and eight linking policies
for implementingTQCM(§3.1); the test engine for calculating performance (§4); and
present our results (§5), discussion (§6) and conclusions (§7).

2 Critical Success Metrics

This section develops success criteria for a QRS; i.e. an ideal QRS must beaccurate, re-
strictiveandpractical. A QRS translates the continuous variables in quantitative models
to a small number of discrete values [5]. In order to test if the translation is valid then
(success criteria #1) anaccurateQRS must be able to reproduce the known behaviour
of the quantitative system it is modelling. For the purposes of validation, (success crite-
ria #2) arestrictiveQRS must be able to exclude a significant percentage of impossible
behaviours.

The resulting qualitative model is less defined than the original quantitative model,
and combinations of poorly-defined influences may be undefined. For example, con-
sider two continuous variables whose qualitative representation is taken from the sign
of the first derivative of their values; i.e.up, down or steady . If we add two in-
creasing values, the result must also be increasing; i.e.up + up = up . However, it
is unclear what will result from certain other combinations; e.g.up + down = up
or down or steady . This is the “chatter” problem. QRSs generate the superset of be-
haviours possible from a model [6]. The generation of these extra behaviours takes time
and can cripple a QRS. Therefore, (success criteria #3) apractical QRS must tame the
chatter problem. In practice, chatter reduces restrictiveness by the generation of such
behaviours.

We can visualise the satisfaction of these criteria in Fig. 1. Consider an human
operator trying to express an understanding of a quantitative model in a qualitative ap-
proximation. We say that their qualitative model isgood if it can explaineverything

observed in the quantitative model (pointA: success criteria of accuracy); and we say
their model ispoor if it can explainnothing (point B: success criteria of restric-
tiveness). As the qualitative model degrades fromgood to poor we would like to see
curve1 ; i.e. we quickly get feedback that we can explain progressively less and less
of the behaviour of the quantitative model. However, evencurve2 would satisfy the
success criteria of restrictiveness. Lastly, we would declare the chatter problem to be
manageable if qualitative indeterminacy does not cripple the QRS; i.e. we achieve low
runtimes (the dotted line) when we run the system on a poor model (success criteria of
practicality).

3 QCM: A Qualitative Reasoning System

QCMtakes a graph-theoretic view of QR. Qualitative statements from domain experts
are treated like macros that contribute edges to a search space. For example, if the
expert says “weight gain encourages heart disease and exercise reduces weight gain”
then (i) we would record it asweightGain ++ heartDisease andexercise --

weightGain and (ii) expand it internally into the search space of Fig. 2. This space
is then searched by an abductive inference engine looking for consistent connections
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Fig. 1. Visualising success

between known inputs and known outputs. QR indeterminacy is handled by generating
different extensions. For full details, see [11].
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Fig. 2. Weight gain, heart disease, and exercise

QCMis much simpler than other QR approaches (e.g. time averaging [7], consol-
idation [3], first-order logic qualitative modelling [2], non-linear QR [12], or linear
equation QR [5] such asQSIM [6]). Menzies and Compton [10] remark that seem-
ingly naive systems can in fact produce satisfactory competency with far less effort
than alternative “more sophisticated” approaches.QCMhas detected errors in theories
of neuroendocrinology published in the international peer-reviewed journals that were
invisible to both the reviewers of those journals and the authors of those theories [4,11].
Hence we say that is ifQCMworks in our domain (i.e. satisfies the test criteria of§2),
then we lack the motivation to explore more complex approaches.

3.1 Linking Options

This section discusses extensions toQCMto handle time-based simulation.QCMcannot
validate theories performing time-based simulations since it assumes that it is inconsis-
tent to believe that objects likeheartDisease have multiple values. While this is a
valid assumption for non-time based inferencing, a variable in a simulation run can take
multiple values over time, e.g. a sensor maintaining a real-world quantity.

In order to handle the temporal simulations, we extendQCMto TQCM. In TQCM
one copy of the model is created for each time step in the simulation, as each model
represents the processes occurring at one time step. The question then becomes how can



we sensibly link these copies of the search space together? That is, where do we place
our links between models? We can identify three types of linking strategies: (1) linking
via nodes or via edges; (2) implicit versus explicit time notation; and (3) varying the
linking look ahead.

1) Node vs. Edge Linking: In node linking an “appropriate” model node is somehow
identified and directly linked to future instances of that node; for example,X is expanded
to X(t=i) ++ X(t=i+1) 1. Alternatively, we could link by picking an edge in the
model consistent with a time connection, then creating a new edge with the starting node
of the edge in one time step and the end node the subsequent time step; for example,X

to Y is expanded toX(t=i) to Y(t=i+1) 2. This method is called edge linking.
2) Implicit vs. Explicit Linking: “Appropriate” nodes or edges can be manually cho-

sen by the model author to explicitly link models (given a “* ” marking). Alternatively,
an implicit linking process can decide that every edge or node is “appropriate”. Explicit
linking requires some domain knowledge as to where linking is sensible, but results in
much fewer links between time steps which reflects more semantic knowledge about
the domain.

Implicit node linking (TQCMinode) was explored by Menzies & Cohen [8, 9]. In
TQCMinode, every node at timei is connected to the node of the same name at timei+1 .
The regularity of this linking policy permits some general statements about the com-
putational complexity of generating proof trees over time-series simulations.TQCMinode

has the interesting property that if a proof cannot be generated in 3 copies, it can never
be generated at all. This 3-copy-limit may be used to significantly optimise the search
strategy.

3) Future Linking: How far ahead should we place time edges? The obvious solution
is to just connect ahead one time step. However, without any domain knowledge stating
this to be the case, we need to consider the possibility that a node should be connected
to all subsequent steps. That is, for timesi=1 to N link copy i to f wheref is afuture
copy that will take valuesi+1...N . Alternative combinations of forward linking are
possible, but will not be considered here.

Table 1 summarises the eight linking options, including abbreviations.

4 A Test Engine

Our test engine has four sub-routines: (1) representative model selection; (2) data gen-
eration; (3) model mutation; and (4) option exploration.

1) Representative model selection: The “fisheries simulation model” (Fig. 3) is sim-
ilar to models developed for pursuit and surveillance in the military domain. It includes
feedback loops; qualitative states; and measurable entities. A precise mathematical ex-
pression of this model is available [1, pp135-141].

2) Data generation: The selected qualitative model was run 15 times over five time
steps to generate numeric test data using different input parameters to create an array of
quantitative observationsmeasure[1..15] . From each comparison ofmeasure[i]

1 X(t=i) represents a valueX at timei .
2 Let “to ” denote an edge annotated as either++ or -- .



Table 1. Summary of linking policies.f denotes some time fromi+1...N whereN is the last
time copy.

Linking style AbbreviationTheory feature New time links
implicit edge TQCMiedge X to Y X(t=i) to Y(t=i+1)
implicit edge forward TQCMiedgef X to Y X(t=i) to Y(t=f)
implicit node TQCMinode X X(t=i) ++ X(t=i+1)
implicit node forward TQCMinodef X X(t=i) ++ X(t=f)
explicit edge TQCMxedge X to ∗ Y X(t=i) to Y(t=i+1)
explicit edge forward TQCMxedge X to ∗ Y X(t=i) to Y(t=f)
explicit node TQCMxnode X∗ X(t=i) ++ X(t=i+1)
explicit node forward TQCMxnodef X∗ X(t=i) ++ X(t=f)
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Fig. 3. The fisheries model showing explicit time edges. Adapted from [1, pp135-141].



with measure[j] (i < j ≤ 15), 105 entries were written to an array of qualita-
tive observationschanges[1..105] . For example, if in comparisonchange[33] ,
the fish densityh was increased and the fish catchb was always seen to decrease at all
time steps, thenchange[33].in is h=up andchange[33].out is b(t=1)=down,

b(t=2)=down, b(t=3)=down, b(t=4)=down, b(t=5)=down .
3) Model mutation: This process must be repeated for a large number of represen-

tative models from a domain. As these are hard to find in practice, we generate them
using amutation strategy, in which a random sample ofX statements in the qualitative
form of the known representative model are corrupted. Given a model withE edges,
then as we varyX from 0 to E , we are moving from agood model to apoor model;
i.e. the x-axis of Fig. 1. We corrupted the model by flipping the annotation on an edge
(e.g.++ to -- or visa versa). The corruption-model-mutator picks its edges to corrupt
at random, and we repeat the corruption a statistically significant number of times (20
repeats). The only exceptions are whenX=0 or E, where there is only a single possi-
ble model. Fisheries has 17 edges which allows us to generate217 possible theories
(including the original).

4) Option exploration: We created six model copiescopy[0..5] . Copy[i] was
connected tocopy[i+1] (and latter copies for forward linking) according to each of
the eight linking policies.Change inputs were mapped intocopy[0] . Change outputs
were mapped into somecopy[1..5] . The success of each run was assessed using the
generated data, by recording the percentage of theexplicable outputsi.e. those outputs
that the model could connect back to inputs. Returning to Fig. 1,everything =100%
explicable andnothing =0% explicable. Proofs for outputs at timeT = 5 must be
consistent with proofs fromT = 1 . . . 4. Hence, all the proofs must be built together
(seerunQualitativeModel in Fig. 4). For this study, we only collected percentage
explicable figures for outputs at timeT = 5. The final experimental design is shown in
Fig. 4.

5 Results

Figure 5 shows the results of applying the test engine to the fisheries model. The suc-
cess of each linking policy was assessed via comparing its plot against the goal plot of
curve1 in Fig. 1.

TQCMxnode was the clear winner showing accuracy and restrictiveness closest to the
ideal ofcurve1 . However these linking policies could still offer explanations for about
20% of data, even for very poor models. We attribute theseresidual explanationsto the
indeterminacy of qualitative models.

TQCMiedge was nearly as accurate as explicit node linking, but could never explain
100% of the behaviour of uncorrupted models (maximum explicable=85%).TQCMxedge

proved to be not accurate as, even on good models, it could not explain most outputs.
TQCMinode was not sufficiently restrictive as, even on poor models, it could explain most
outputs.

Forward linking provided no advantages for the fisheries model.TQCMinode and
TQCMinodef, andTQCMxnode andTQCMxnodef behaved in virtually the same way.TQCMiedgef

was inferior toTQCMiedge since it was far less restrictive thanTQCMiedge. TQCMxedgef was



Inputs: 1) the quantitative fisheries model M0
2) the qualitative fisheries model M1 with E := 17 edges
3) T := 5 maximum time steps
4) linkingPolicies := [iedge,iedgef,xedge,xedgef,

inode,inodef,xnode,xnodef]
Outputs: explicable, runtime

measure[1..15] := runQuantitativeModel(T,M0)
change[1..105] := comparisons(measure)
for policy ∈ linkingPolicies do

for corrupted := 0 to E do
if corrupted = 0 or E then repeats := 1 else repeats := 20
for r := 1 to repeats do

M2 := corruptSomeEdgesChoosenAtRandom(corrupted,M1)
for t := 0 to T do copy[t]:= M2 done
for t := 0 to T-1 do timeConnect(copy[t],copy[t+1],policy) done
for i := 1 to |change| do

<in,out[1..T]> := change[i]
startTime := timeNow()
explained[1..T] := runQualitativeModel(copy,in,out)
runtime[policy,r,corrupted,i] := timeNow() - startTime
explicable[policy,r,corrupted,i] := |explained[T]|*100/|out[T]|

done done done done

Fig. 4. Experimental design for fisheries model
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more permissive thanTQCMxedge, but its maximum explicable rate was too low to be use-
ful (62%). We speculate that forward linking was not useful was due to the nature of
the fisheries model. The equations of fisheries all assumed a “one-year-lookahead” as
its time step increments. We speculate that models with time links of variable delays
may benefit more from forward linking.

For the satisfactory linking policies (TQCMxnode, TQCMiedge), after only a third of the
model being mutated, only around half the outputs are inexplicable. This is a nice result:
we get clear, early indications if we are straying from a good model.

The average runtimes in seconds for each trial are shown in Fig. 6. Forward link-
ing was always slower than non-forward linking. The satisfactory linking policies had
similar runtimes. However,TQCMxnode andTQCMxedge were fastest since these define the
smallest number of time links and, hence, the smallest search space to explore. Hence,
we are satisfied that the success criteria of practicality is satisfied. One interesting fea-
ture of Fig. 6 is that as the models grow more corrupted, it becomes faster to determine
what outputs are explicable. This is a another nice result: we can reject nonsense faster.
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6 Discussion

In extendingQCMto time-based simulations,TQCMxnode was best, withTQCMiedge a close
second. SinceTQCMinode performed so poorly, this study is pessimistic about the practi-
cality of the Menzies & Cohen 3-copy-limit optimisation. However, in a personal com-
munication, Cohen reports early results indicating that a small variant on the 3-copy-
limit proof for TQCMinode may prove that there is only a 2-copy-limit forTQCMiedge.
That is, if we are willing to have a small inexplicable rate for correct models (5%), we
can runTQCMiedge models for very long periods of time. This is an exciting possibility
which is currently being actively explored.



Our approach is practical in domains where practioners can build an automatic test
engine: a non-trivial task. Our original work took weeks to generate a single line on
Fig. 5. However, once the test engine was operational, the utility of modelling options
can be assessed very quickly. For example, whilst writing this article, we detected a
small data collection error. Re-running all the linking options took less than three days
(the results shown here come from the re-run).

One drawback with the current study is that its conclusions are very dependent
on our experiments with a single model (fisheries). Note that this restriction does not
invalidate the evaluation method proposed here. Further, our current mutator did not
vary the topology of the graph, merely its edge annotations. The next generation of
mutators will address this issue.

7 Conclusion

We have offered a general framework for evaluating a QRS. We propose critical success
metrics (e.g. Fig. 1) to test the utility of modelling options within a QRS. Three general
QRS CSMs areaccuracy, restrictivenessandpracticality (§2). A useful tool for this
process is a model mutator (§4) that can build test models from representative models.
A desirable property of such a mutator isgraded degradation, e.g Fig. 1; i.e. a method
of generating a range ofgood to poor models.

This framework has been used to test linking policies for qualitative temporal mod-
els, and subsequently identifying three useful methods.

This work represents an incremental advance towards our long term research ob-
jective of establishing methodologies for OR model validation. Immediate future work
includes decreasing the number of measurements made, increasing the number of time
steps modelled, and studies with other simulation models.
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