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Abstract

An important assumption for many KA researchers is structure preser-
vation ; i.e. conceptual models can be converted in a straight forward man-
ner into a design for an implementation. This assumption may not always
hold. Seemingly trivial variants in a qualitative conceptual models can
block pragmatically desirable properties such as KB-testability and KB-
maintainability. KB-testability and KB-maintainability are an important
property: we must not build knowledge bases that are untestable or un-
maintainable. Hence, we argue against using these features within concep-
tual models. The tools used for identifying these features (instance gener-
ators, graph theory, studying KB-testability and KB-maintainability) are
quite general and could be used to find restrictions to other conceptual
modeling languages.

1 Introduction

Pragmatics must take precedence over elegance, for Nature cannot
be impressed. Coggin’s Law (from [Booch, 1994])

This paper is about pragmatic limits to conceptual modeling. We dis-
agree with the conventional wisdom in the knowledge acquisition field (KA)
(e.g [Wielinga et al., 1992, Shadbolt & O’Hara, 1997, van Harmelen & Aben,
1996]) that:

e The conceptual modeling language should be expressive enough to capture
all the expert’s knowledge.



e Starting with a conceptual model of the required expertise, various struc-
ture preserving transformations can be applied to produce a working sys-
tem. Such structure preserving transforms are straightforward conversions
of the high-level structures in the conceptual model into the design model.

Experience with the QCM qualitative modeling language suggests that not
all conceptual models can be structurally preserved. QCM is used in the earli-
est stages of KA. For our experts, it represents their ideas in a similar manner
to how they first express those ideas. It can represent under-specified ideas
and tolerate inconsistencies in an evolving specification. Further, QCM has a
built-in validation engine which can help experts to review and improve their
current specification. Hence, we say that QCM is a conceptual modeling lan-
guage [Feldman et al., 1989a, Menzies, 1995, Menzies, 1996a, Menzies & Comp-
ton, 1997, Waugh et al., 1997]. We will use the criteria of KB-testability and KB-
maintainability (defined below), to demonstrate the need for certain restrictions
to QCM conceptual models. Roughly speaking, KB-testability means checking
if a theory of X can reproduce known behaviour of X; and KB-maintainability
means checking if we can tell if some change is an improvement to a theory.
Seemingly trivial variants in the conceptual modeling language will be shown to
have a large impact on KB-testability and KB-maintainability. We will propose
below restrictions on size, connectivity, the use of conjunctions, and the types
of temporal causal connections. In these restrictions are obeyed, then we have
a necessary, but not sufficient proof, that a theory will be testable and main-
tainable. We only claim that if a system does not satisfy our criteria then it
will not support KB-testability and KB-maintainability (and leave the converse
statement to future work).

Our restrictions apply to any knowledge base (KB) which can be represented
as a cyclic dependency and-or graph of literals. Many such representations exist
including propositional rule bases used in a match-select-act loop, recursive
ground horn clauses, or qualitative theories used for simulations. Further, the
methods used here (instance generators, graph theory, analysis of KB-testability
and KB-maintainability) are quite general and could be used to find restrictions
to other conceptual modeling languages. We have argued elsewhere [Menzies,
1997] that the KE field urgently needs such general evaluation methodologies.

Our conclusions come from a theoretical and empirical analysis of a KB-
testability and KB-maintainability algorithm. We take care to distinguish this
work from the worst-case time complexity research of the knowledge repre-
sentation (KR) community. Restrictions motivated by potentially exponential
runtimes do not convince pragmatic knowledge engineers (KEs) since many
successful expert systems have been built for theoretically intractable NP-hard
problems. In this paper we motivate conceptual modeling restrictions using
pragmatic criteria such as KB-testability and KB-maintainability. If such prag-
matic criteria are ignored then, in the usual case if certain restrictions are not
enforced then something important will stop working.



2  Preliminary Notes

2.1 Defining Evaluation Criteria

An expert system passes through many stages in its life cycle. This section
argues that evaluation criteria for early-stage expert systems can be defined via
a consideration of late-stage functionality.

When we review the the life cycle of an expert system [Gaschnig et al., 1983],
we see that empirical evaluations are not possible for all points in the life cycle.
Gashing et.al. describes those stages are:

1. Top-level design and definition of long-range goals.
Prototype implementation to show feasibility.

Structured evaluation of performance.
Field testing with representative users.
Follow-up studies to address issues found in field testing.
Changes arising from the follow-up studies.
8. General release.

Researchers often stop at steps 1 or 2. Examples of reports from 3 are not
uncommon (e.g. [Schreiber & Birmingham, 1996, Menzies et al., 1992]). Stage
4 reports are much less common (e.g. [Corbridge et al., 1995]) since this stage
requires the earlier work. There are very few examples of stage 5 reports (excep-
tions include [Hori & Yoshida, 1997]) or higher, but some exist (e.g. [McDermott,
1993]). As we progress through these stages, it gets harder to isolate conflating
effects. For example, [Hori & Yoshida, 1997] reports benefits from using two
techniques: problem solving methods and an object-oriented reuse technique
called design patterns [Menzies, 1998]. It is hard to evaluate which of these
contributed to the reported benefits.

One useful technique when evaluating at stage 4 is to define experiments
using knowledge of how the system will be used in the latter stages. Suppose
we can build a detailed model of some functionality desired at stage 8. Then,
at stage 4, design variants can be assessed by how they impact on the desired
stage 8 functions. In this article, we develop succinct computational models for
two stage 8 activities: testing and maintenance.
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2.2 Should Conceptual Modeling be Restricted?

This paper has two audiences. KR researchers may be unfamiliar with model-
based KA. KA audiences may be unfamiliar with the expressibility vs tractabil-
ity research in KR. This section discusses conceptual modeling in KA. The next
section discusses tractability research in KR.

Conventional KA wisdom (e.g. [Wielinga et al., 1992, Shadbolt & O’Hara,
1997]) advocates a separation between conceptual and design models. A con-
ceptual model stores all requirements without being contorted due to implemen-
tation considerations. Only in the design model, says the conventional wisdom,
are programmers permitted to make any pragmatic compromises required to
create a practical implementation. This view assumes that there are no serious
impediments to converting the conceptual model to the design model; i.e. struc-
ture preservation is possible. Structure preservation permits simpler knowledge
base (KB) validation since an expert can see the connection of a KB back to

System refinement including running some informal tests to generate feedback.



their original conceptualisation [van Harmelen & Aben, 1996].

In the case where a conceptual model is not be used directly for computa-
tional purposes, we have no issue with the laissez faire view of conventional KA.
For example, in the KADS methodology [Wielinga et al., 1992], only the exper-
tise conceptual model is directly implemented. Tansley and Hayball [Tansley
& Hayball, 1993] list over two dozen such expertise models including system-
atic diagnosis (localisation and causal tracing), mixed mode diagnosis, verifica-
tion, correlation, assessment, monitoring, simple classification, heuristic classi-
fication, systematic refinement, prediction, prediction of behaviour and values,
design (hierarchical and incremental), configuration(simple and incremental)
planning, and scheduling. Other KADS conceptual models which are not di-
rectly implemented include the organisation model describing how workers will
be effected by the expert system, or the application model which describes the
project scope and external constraints.

However, if operational characteristics of the working program are ever used
to revise the conceptual model, then computational issues associated with that
model become relevant. For example:

e If any conceptual model is searched for conflicts (e.g. during the integra-
tion of multiple viewpoints from different experts), then computational
issues associated with that model become relevant. A case could be made
for restrictions to the conceptual model in order to permit effective conflict
detection during requirements analysis. Conceptual models appropriate
for conflict detection are discussed in [Mylopoulos et al., 1992, Chung &
Nixon, 1995].

e Many real-world complex domains can only be understood via an ex-
ploratory methodology. For example:

— Menzies and Compton note that all the expert systems they have
ever studied in detail are poorly understood; e.g. process control,
farm management, economic modeling, biochemical interpretation,
consumer lending, and model-based diagnosis [Menzies & Compton,
1997].

— Software solutions to many standard business require extensive iter-
ative development (e.g. [Jacobson et al., 1992]);

In exploratory approaches, experience with the running program informs
revisions to this conceptual model. Limitations to testing and then chang-
ing (maintaining) the running program can hence effect the nature of those
revisions.

A counter-argument to our case against laissez faire conceptual modeling
is as follows: if a domain really demands certain conceptualisations, then the
conceptual model must really contain them. Our reply to this counter argument
is that it critically depends on a demonstration of a domain really needing those
conceptualisations. Such a demonstration would require (i) the construction of
systems with and without certain conceptualisations; (ii) an assessment of those
systems using some objective success measure. Note that such a demonstration
at least implies a test measure; i.e. this test of conceptual modeling may be only
practical if the conceptual model do not violate our limits to KB-testability.



2.3 Worst-Case Time Complexity Analysis

This section argues that theoretical worst-case behaviour is not a sufficient rea-
son to restrict the modeling process. Practical KEs prefer pragmatic criteria:
i.e. a demonstration that in the wusual case, something important will stop
working (e.g. we lose KB-testability and KB-maintainability) unless we impose
restrictions. This section discusses analogous results from the knowledge rep-
resentation (KR) community. Some of these results are based on a worst-case
analysis. Others use instance generators to create a large number of represen-
tative problems. We argue that such worst-case analyses are poor motivation
for KB restrictions. Hence, we prefer pragmatic criteria such as KB-testability
and KB-maintainability which reflect usual case behaviour. However, we apply
the technique of instance generators in subsequent sections.

Expressibility vs tractability trade offs are discussed extensively in the KR
literature (e.g. [Levesque & Brachman, 1985]). Solutions to a class of problems
(the NP-hard problems) are known to have an exponential upper-bound on their
runtimes; i.e. may be intractable. Much of the KR literature is concerned with
finding restrictive cases in which a representation can be shown to tractable; i.e.
worst-case runtimes are polynomial. For example:

e Tambe, Newell, and Rosenbloom [Tambe et al., 1990, Tambe & Rosen-
bloom, 1994] discuss multiple attributes in production rule conditions.
Given an attribute test of an object, if one a query to one attribute of that
object can result in multiple matches, then the time bound on matching a
single rule can be exponential. Multiple attributes can be detected using
a simple local syntactic test.

e Brachman and Levesque [Brachman & Levesque, 1984] discuss a seemingly
minor variation to a frame-based language FL. FL contains the RESTR
construct which places restrictions on valid slot values. At first glance,
RESTR seems to reduce the search space associated with processing that
frame. However, Brachman and Levesque prove that the exact opposite is
true. A language without RESTR, (FL ™) can test if some frame subsumes
another frame in, at most, polynomial time. However, the same test in
FL has an upper bound of exponential time; i.e. it may be too slow to be
practical.

Opponents of worst-case complexity analysis argue that potentially intractable
runtimes are not sufficient reason to restrict our KR languages:

e A recent workshop on comparing different terminological logics highlighted
two schools of thought [D. Fensel, 1997]. In the one camp were proponents
of some restrictions to terminological logics to description logics which
have well-understood runtimes. In the opposing camp were proponents of
frame logics which maximise expressive power in order to capture onto-
logical features that are inexpressible in description logics.

e It is sometimes possible to transform a KB such that the complexity is
reduced. For example, for time-critical processing (e.g. real time expert
systems) it could be argued that possibly exponential runtimes must be
avoided. Tambe et.al. have shown that production rule conditions that



only use unique attribute matching have a linear time bound on the match-
ing process for a single production (in single attribute conditions, a query
to one attribute of that object can result in only a single match). How-
ever, in practice, this may not be an expressibility limit since it is possible
to convert conditions to unique attributes. Tambe et.al. report that a
manual translation of 450 production rules for R1-SOAR from multiple to
single attribute conditions took only two days. Tambe et.al. also spec-
ulate that tools could be built to fully automate the process. However,
note that KB transformation is not a general method for removing NP-
hard problems. For example, we cannot transform of FL to FL~ while
preserving the semantics of RESTR.

If a problem is NP-hard, this does not necessarily imply that real-world
examples of that problem cannot execute. Many expert systems tasks, while
theoretically intractable, have proven to be practical for many real-world situ-
ation. For example, in we describe below an empirical demonstration that an
NP-hard problem is practical for a range of real-world theories.

Further, it may be that only a narrow range within some space of theoret-
ically hard problems are actually slow in practice. For example consider the
instance generator studies of binary constraint satisfaction problems:

e A binary constraint satisfaction problem (2CSP) is to search for a set of
state assignments to variables which do not violate constraints [Gent et al.,
1995, Smith, 1996].

e A 2CSP problem can be characterised by the parameters (n,m,pl,p2)
where n is the number of variables; m is the number of states per variable;
pl is the probability of a constraint existing between variable n.i and vari-
able n.j and p2 is the probability that, given p1, that some pair of state
assignments is illegal.

e A 2CSP instance generator can build any number of examples problems
from the parameters (n,m,p1,p2).

e If n,m,p1 are held constant, then there is a small range of p2 in which
the number of possible solution falls to zero. In this phase transition area,
the cost of performing a 2CSP task spikes to very high values, before
falling away to very low values in the no-solutions zone. For example, for
(8,10,1.0,p2) problems where p2 is between 0 and 0.4, the median cost of
a 2CSP task is roughly constant. However, as p2 moves from 0.4 to 0.5,
the median cost rises rapidly by an order of magnitude before decaying
exponentially [Smith, 1996).

Such phase transition zones have been observed in numerous problems that,
theoretically, have a exponential worst-case time complexity [Cheeseman et al.,
1991]. Cheeseman et.al. have argued that this phase transition marks the zone
of truly slow tasks within the NP-hard problems. If the Cheeseman speculation
is correct, then we can ignore worst-case time complexity results if we could
somehow guarantee that our expert system tasks occur outside of the really
hard zones within theoretically hard problems.

Given the current state-of-the-art, such guarantee can only be offered in
terms of problem size and only in specific cases. For example, while KB-
testability and KB-maintainability is NP-hard (shown later), we show below



that we can define precise boundaries within which it is practical. Further, in
a result analogous to the above results from the satisfiability community, seem-
ingly trivial variants in the modeling language can make KB-testability and
KB-maintainability impractical.

3 Topological Restrictions

This section argues that KB-testability is one such pragmatic criteria. KB-
testability is then used to identify two topological limits: a size limit and a
connectivity limit. In later sections, KB-maintainability will be used to identify
limits to temporal modeling languages.

3.1 KB-testability
3.1.1 Motivation

This section explains why we view KB-testability as a necessary pragmatic cri-
teria. Modern KA theorists view KB creation as the construction of inaccurate
surrogates models of reality [Davis et al., 1993, Wielinga et al., 1992]. Agnew,
Ford and Hayes [Agnew et al., 1993] comment that expert-knowledge is com-
prised of context-dependent, personally constructed, highly functional but falli-
ble abstractions. Practioners confirm just how inaccurate KBs can be. Silver-
man [Silverman, 1992] cautions that systematic biases in expert preferences may
result in incorrect/incomplete KBs. Compton [Compton et al., 1989] reports ex-
pert systems in which thernoe was always one further important addition, one
more significant and essential change. Working systems can contain multiple un-
detected errors. Preece and Shinghal [Preece & Shinghal, 1992] document five
fielded expert systems that contain numerous logical anomalies. Myers [Myers,
1977] reports that 51 experienced programmers could only ever find 5 of the 15
errors in a simple 63 line program, even given unlimited time and access to the
source code and the executable.

Potentially inaccurate and evolving theories must be validated, lest they gen-
erate inappropriate output for certain circumstances. Testing can only demon-
strate the presence of bugs (never their absence) and so must be repeated when-
ever new data is available or a program has changed. That is, testing is an
essential, on-going process through-out the lifetime of a KB. If expressibility
blocks testability, then expressibility should be restricted.

3.1.2 Definition

Arguments such as the above motivated Feldman and Compton [Feldman et al.,
1989b], followed by Menzies and Compton [Menzies, 1995, Menzies & Compton,
1997], to develop a general test framework called QMOD/HT4. This section
describes KB-testability, a simplified version of that framework.

A KB can be characterised as domain facts and a set of problem solving
methods. If we partially evaluate the problem solving methods over the domain
facts, we arrive at the search space which could be traversed at runtime. This
search space can be characterised as the tuple (E,V,0,5) where E is a set of
directed edges connecting the vertices V of types and-vertex, or-vertex. Or-
vertices represent literals and are generated from objects O with S mutually



exclusive states (one vertex is generated for each state of each object). This
characterisation fits qualitative theories such as QCM (where S=3: up, down,
steady); propositional rule bases (where S=2: true,(false) and any first-order
theory that can be unfolded in a finite number of steps to a ground horn-clause
theory (where S=2: true,(false). F denotes the fanout of the graph formed by
(E, V) (fanout is the number of edges touching a vertex and is the ratio of edges
to vertices).

KB-testability can be characterised as the construction of pathways across £
from output vertices back to known input vertices. Pathways must satisfy four
criteria. (1) Pathways across an or-vertex must include at least one parent of
that or. (2) Pathways across an and-vertex must include all the parents of that
and. Pathways must (3) not contain loops and must (4) not contain mutually
exclusive states. If an output vertex can be so connected to an input vertex, it
is called an ezplicable output.

Pathway criteria number 4 makes this an NP-hard problem. Gabow et.al.
[Gabow et al., 1976] showed that finding a directed path across a directed graph
that has at most one of a set of forbidden pairs is NP-hard. Such forbidden pairs
are present in the above definition of KB-testability; i.e. two mutually exclusive
states S.i, S.j of some object O. When implemented, KB-testability has been
observed to exhibit exponential runtimes [Menzies, 1995], as one would expect
for an NP-hard problem.

3.2 Topological Limit Number 1: Size

This section applies the KB-testability criteria to identify a size restriction to
the topology of a KB search space.

Despite being NP-hard, KB-testability is still a practical validation algo-
rithm for a sample of fielded expert systems and published theories of neu-
roendocrinology (the study of nerves and glands). To demonstrate this, a KB-
testability instance generator was constructed by Menzies [Menzies, 1996b] as
follows:

e Let graph.0 be an and-or graph from a real-world theory with baseline
parameters E.b, V.b, O.b, S.b.

e Let AV(IN) and AV(OUT) be the average number of vertices denoted as
inputs and outputs respectively used when generating proofs over graph.0.

e Starting from the baseline, use a mutator to introduce an increment into
one of the parameters and generate graph.i.

e Execute graph.i as follows. Randomly select up to AV(IN) vertices to be
inputs and up to AV(OUT) different vertices to be outputs. Call KB-
testability with those inputs and outputs.

For these experiments:

e Graph.0 was the and-or graph of the Smythe’89 qualitative theory of hu-
man glucose regulation [Smythe, 1989] (described in detail in [Menzies
& Compton, 1997]). In graph.0, AV(IN) was varied from 1 to 4 and
AV(OUT) was varied from 1 to 10 and



1500 T T T
1200 | E
7
;%, 900 R
Q
E
= 600 | E
3
x
300 —
O 1 1
0 250 500 750 1000
Number of vertices
Figure 1: KB-testability runtimes.
— 0.6=80

- S.b=3

554 verticies (V.b). Note that the number of vertices is greater than
(0.b*S.b). In a qualitative theory, a conjunction of two competing
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steadies.

— 1246 edges (E.b) so the fanout was 2.25.

e The instance generator mutator.1 was built which generated 257 graphs
with a constant fanout and with 400 to 850 vertices. These were executed
1991 times. For that study, some give up time had to be built into the
system to recognise non-terminating runs. We used a give up time of 14
minutes (840 seconds).

e Many of the sample sizes used in this study are not simple whole numbers.
For example, 257 is not 200, 250, or 300. The results reported here were
generated from thousands of runs generated from prototype mutators,
some of which crashed for random reasons. When we discarded the data
from the crashed runs, we were left with the sample sizes described here.

e Figure 1 shows the observed runtimes.

Note that an approximately linear increase in runtimes was noted up to 800
vertices. However, KB-testability did not terminate for theories with more than
850 vertices in under the give up time ( the vertical line in the results). We
conclude that the knee in the exponential runtime curve kicks-in at around 800
vertices.

The claim the NP-hard process called KB-testability is valid for a range of
real-world theories relies on the observation that a sample of real-world expert
systems have less than 850 verticies. This observation comes from the verifica-
tion community which collects the size of the dependency graph between literals
in fielded propositional expert systems [Preece & Shinghal, 1992] (see Table 1).

These results suggests that a practical KB-testability must work at least for
between 55 to 510 verticies and a fanout of 2 to 7. That is, KB-testability is
practical for real-world expert systems, despite being NP-hard.



Application | vertices | fanout
displan 55 2
mmu 65 7
tape 80 4
neuron 155 4
DMS-1 510 6

Table 1: Figures from a sample of fielded expert systems. From [Preece &
Shinghal, 1992].
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Figure 2: KB-testability explicables. From [Menzies, 1996b].

In other demonstrations of its practicality, KB-testability has been used to
detect faults in theories of neuroendocrinology published in international refer-
eed journals (neuroendocrinology is the study of nerves and glands). Feldman
and Compton [Feldman et al., 1989a], followed by Menzies and Compton [Men-
zies & Compton, 1997], have shown that KB-testability could detect previously
unseen errors in theories in neuroendocrinology published in international ref-
ereed journals. Interestingly, these faults were found using the data published
to support those theories.

3.3 Topological Limit Number 2: Connectivity

This section applies the KB-testability criteria to identify a connectivity restric-
tion to the topology of a KB search space.

In other studies with QCM, another instance generator (mutator.2) was built
for the Smythe ’89 theory which kept the number of vertices (roughly) constant
but added edges at random to produce new graphs of larger fanouts. Six graphs
were generated with (449, 480, 487, 494, 511, 535) vertices. Figure 2 shows the
results.

At low fanouts, many behaviours were inexplicable. However, after a fanout
of 4.4, most behaviours were explicable. Further, after a fanout of 6.8, nearly all
the behaviours were explicable [Menzies, 1996b]. Hence, another KB-testability
limit is that, after a certain level of inter-connectivity, a theory is able to re-
produce any input/output pairs; i.e. it is not adequately restrictive. An unre-
strctive inference procedure that condones any behaviour at all from a theory is
not a useful inference procedure. After the point where the percent explicable
approaches 100 percent, KB-testability becomes a useless evaluation tool.
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4  Expressibility or Topological Limits?

The previous section can be summarised as a pragmatic recommendation of re-
stricting KB topology to medium-sized theories which are not highly connected.
A drawback with applying these limits is the forbidden fruit problem (the for-
bidden fruit is always the sweetest and hence the most desirable). Suppose a
KE has invested considerable effort into certain assertions; e.g. they have de-
veloped them over a long period of time or have successfully defended them
from all critics. If we tell such a KE that some of these assertions are forbidden
due to their undesirable properties (e.g. possible exponential runtimes, phase
transition problems, limits-to-test problems), then the KE may still object to
their deletion.

More formally, Silverman notes that agents which criticise a KB can be
divided into influencers which block errors occurring and debiasers which fix
errors after they occur [Silverman & Wenig, 1993]. Silverman has experimental
results suggesting negative feedback (i.e. the use of a debiasers) is almost always
unsuitable, if only used without positive feedback (influencers). The limits of
the previous section would be classed as debiasers since they can only act after
the KE has created a problematic KB.

A representation language in which it is impossible to make pragmatically
problematic assertions would act as a very strong influencer to a KE. If a KE
can’t assert X, then they’ll never have a running example which is hindered
after X is removed. The rest of this article searches for any such pragmatic
expressibility restrictions within QCM.

Expressibility restrictions for KB-testability relate to the steady nodes in
QCM and asymmetrical causal connections. Asymmetric causal connections do
not comment on the connection of all upstream states to all downstream state.
Steady nodes are implemented via and-vertices that combine the influence of
two competing upstream parents down to a steady vertex. It will be found that
if we intend to use QCM for very long simulation runs, then we need to forbid
both these constructs.

Expressibility restrictions for KB-maintainability relate to temporal causal
connections. In a qualitative language, if we say that (e.g.) X encourages Y
(denoted X++7Y), it is under-specified how long it takes for the X influence to
effect Y. It will be found that different interpretations of this time delay have a
significant effect on maintainability.

4.1 KB-testability: Studies With Basic Conjunction

One observation made in the above changing fanout study was that runtimes
varied widely as the fanout was increased. To explore this further, we built
new instance generators (mutator.3, mutator.4a, mutator.4o) which kept the
number of vertices, AV(IN) and AV(OUT) constant while varying the fanout.
In all, 155 graphs were generated and executed 2513 times (see Table 2).
Mutator.3 worked as follows. Starting with the and-or graph from Smythe
’89, edges were added at random till some desired fanout was reached. The
runtimes of mutator.3 seemeded independent of fanout. It was hypothesised
that the observations of mutator.8 was displaying more than one effect. Hence,
two more studies were performed where (i) edges were only added upstream to
and-vertices (mutator.4a); (ii) edges were only added upstream to or-vertices

11



Generated graphs Number of runs
mutators: basic changing fanout study | 76 1597
mutatorse: changing fanout, ands only | 42 483
mutatorse: changing fanout, ors only | 37 433
Totals 155 2513

Table 2: Number of experiments with mutating fanout.
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times.

Figure 3: KB-testability runtimes.

(mutator.4o). Note that in both mutator.4a and mutator.4o, the number of
vertices, AV(IN) and AV(OUT) were kept constant. The runtimes of mutator.4a
were observed to always be less than or equal to mutator.4o (see Figure 3).

We hypothesis that adding edges upstream of an and vertex increases the
constraints on proof generation over that vertex (i.e. more pre-conditions need
to be satisfied). Roughly speaking, adding ands adds constraints making it more
likely that proof generation will terminate earlier.

We conclude that for KB-testability, conjunction adds constraints which
restricts inferencing and decreases the associated runtimes. Hence, for the pur-
poses of KB-testability, the creation of theories with numerous conjunctions
should be encouraged.
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Figure 4: A theory (left) renamed over 3 time intervals and connected using
IEDGE (time edges shown as dashed edges).

4.2 KB-testability: Studies With Conjunction and Long
Simulations

The study in the previous section assumed the basic KB-testability constraint;
i.e. no object can be assigned more than one state. In several commonly used
KBS representations, this assumption is not valid since objects can be assigned
several states of the lifetime of a simulation:

e Rule-bases that are processed via a standard match-select-act loop may
assert and retract facts many times during its processing;

e As the inference executes over loops in qualitative theories or topoi graphs
(topoi graphs depict statements of gradual knowledge such as the more
this, the less that [Dieng et al., 1995]), literals may be assigned different
belief values at different times.

We use the term KB-time-testability to denote the KB-testability variant in
which the belief values of literals can change during a simulation. The rest of
this section explores limits to KB-time-testability.

One approach to KB-time-testability would be to create one copy of the
search space for each time interval in the simulation. For example, consider the
theory A encourages B but B discourages A. In QCM, this is denoted A++B
and B-A where ++ and — are QCM causal connections. X++Y means that
Y being up or down could be explained by X being up or down respectively.
X-Y means that Y being up or down could be explained by X being down or
up respectively. If we executed A++B and B-A over three time ticks, we could
search the space shown in Figure 4.

Here we are connecting objects at different time intervals by an implicit time
edge linking or IEDGE policy: when i.e. X++Y implies that X at time T=i
also connects to Y at T=i+1 (see the dashed lines). Alternatives to IEDGE are
discussed later in the discussion on KB-maintainability.

The advantage of this approach is that we could use the QCM inference
procedures (e.g. KB-testability) for testing time-based simulations. The dis-
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Figure 5: A theory with asymmetric edges from a to d and from c to f.

A 5 B : C
aup bUp i cup —=dup < i eUp fUp
aDown — = bDown ! cDown — = dDown . eDown — = fDown

Figure 6: The graph within Figure 5.

advantage of this approach is that the graph size would increase linearly with
the number of copies. Recall that, experimentally, KB-testability has been ob-
served to exhibit the exponential runtimes. Hence, long simulation runs are not
KB-time-testability in this manner.

Note that each time copy repeats some structure for the known time intervals
in the simulation. A compelling intuition is that no explanation path can be
found through T+1 copies that can’t be found in T copies. If this were true, then
we could reduce the search space of KB-testability by not copying the structure
at all. Menzies amd Cohen [Menzies & Cohen, 1997] show that this optimisation
is not possible if we allow asymmetric edges in our theories. X++Y and X-Y are
examples of symmetric causal edges in that they make some statement about
every state of the downstream vertex Y. X+-+Yis an example of an asymmetric
causal edge: Y being up could be explained by X being up but not visa versa.

For example, Figure 5 contains two asymmetric causal edges ( A+-+D; C+-
+F) which expands into the graph of Figure 6. This figure duplicates the topol-
ogy of our above theory in the regions A,B,C with an extra link from the top-left
vertex of one region to the top-right vertex of the next region. A path from bUp
to eUp will take at 3 time intervals to cross from top-left to top-right in each
of the regions A,B,C. By repeating A,B,C more times, we can generate depen-
dency graphs which would require any number of intermediaries to traverse.
This example suggests that between each measured time interval we may need
many intermediary copies.

We have shown elsewhere [Menzies et al., 1997] that for theories whose vari-
ables take only S states and which lack asymmetric edges and which are con-
nected via IEDGE, then if we can’t generate a proof in S copies, then we will
never be able to generate a proof at all. Roughly speaking, if every edge offers
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Figure 7: An example graph. A minimum of three time intervals are required
to explain ¢Up in terms of set (aUp, zUp)

a comment on all the states of its downstream vertices (i.e. they are symmet-
ric), then the state space rapidly saturates and we can reduce the granularity of
the time axis to just under twice the granularity of the measurements of that
theory. We can use this proof as an optimisation technique as follows. Suppose,
for example, that:

e We had a S=2-state device with symmetric edges which has been running
for a million time steps.

e We only collected measurements at three time points (say, 1 and 500,000
and 1,000,000.

If we had not proved saturation for our device, then the search for these
proofs would have to explore 1,000,000 renamings. Given the exponential run-
times of KB-testability, this is clearly undesirable. However, since we have
proved saturation, then we know that if a proof cannot be found in two renam-
ings, then no such proof exists. Consider a proof from (e.g.) time 1 to time
500,000. If that proof cannot terminate in the space 1 and 500,000, then it will
never terminate. That is, when building this proof, we could ignore the search
space that used the renamings from 2 to 499,999. A similar argument could be
made for proofs from 500,000 to 1,000,000. In practice, we would only need to
search the space created for the three measured time points. That is, in this
example, this optimisation lets us reduce the search space to three-millionths
of the unoptimised version. More generally, if an S state device which supports
saturation is run for T time ticks, and if we only measure this theory at T2
time intervals, then we can reduce the search space by a factor of T2/T1. In the
case where T2 is very much smaller than 71, then this is a significant reduction
in the search space.

Recall that in QCM, conjunction is used to conceptualise explanations of
steady values (a conjunction of two competing upstream influences can cancel
each other out). We now demonstrate by counter-example that conjunction
blocks saturation. That is, if we add conjunction to bi-state devices connected
by symmetric edges, then we need an unbounded number of copies in order
to perform KB-time-testability. Note that this rejection of conjunction implies
that we can’t execute steadies in a QCM theory.

Consider the graph in Figure 7. Three time intervals are required to explain
¢Up in terms of (aUp,2Up). In the first time interval we explain (aUp,bUp,zUp).
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Figure 8: An example of the construction of our counter-example. In this
case, a minimum of 7 time intervals is required to explain “fUp” in terms of
“(aUp,zUp)”.

In the second time interval we explain (aDown,bUp,zUp). In the third time inter-
val we explain (bDown,zUp), and by conjunction, ¢Up. We create our counter-
example by connecting duplicates of this graph as demonstrated in Figure 8.

In this figure a minimum of 7 time intervals is required to explain fDown
in terms of (aUp,zUp). It is easy to show that in general, with D duplicates
connected in this manner, the maximum number of time intervals to perform
an explanation is at least 2D+1, which is not a constant. This contradicts our
previous result for the case of symmetric edges without conjunctions (i.e. 2 time
intervals were enough for explanation).

We conclude that long simulation runs is not KB-time-testability if the the-
ory includes conjunction. Note that short simulation runs of theories with con-
junction is still be KB-testability if we (i) ignoring the symmetric edges optimi-
sation; (ii) creating one copy for each time tick. However, for long simulation
runs, we recommend using a QCM variant formed by removing conjunction (and
hence steadies) and the asymmetric causal edges.

5 KB-maintainability

This section describe KB-maintainability, an extension to KB-testability.

Given we can test a theory, what kind of results assist in maintaining that
theory? One requirement would be the ability to check if some variation of a
theory is better than the original theory. We divide this requirement into two
parts. Firstly, we need a quick first-pass test that can clearly identify obviously
poor theories. Secondly, we need a more detailed view that can assess minor
variants on a theory. Given a range of theories which degrade from good to poor,
we like to see the maintenance success curve of Figure 9.

A good theory is permissive; i.e. it can explain known behaviour (the success
curve rises high on the left-had-side). However, we also need to test that the
permissiveness is not due to a poorly-constrained theory. A theory that con-
dones any conclusion is a poor theory. Hence, a theory must also be restrictive
(the success curve descents to a low value on the right-hand-side). Further, we
want the second derivative of this graph to be non-negative; e.g. the ski-slope
shape of success curve. With such a curve, we can quickly get feedback if some
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Figure 9: Visualising a maintainable representation language. The KB-
testability curve of a good representation should be both permissive to all good
theories (explains correct behaviour) and restrictive to all bad theories (prevent
poor theories explaining any behaviour).
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Figure 10: Figure 4 (left) renamed over 3 time intervals using different time
linking methods. Dashed lines indicate time edges.

change improves or degrades a theory.

We say that a representation is KB-maintainability if its KB-testability curve
for good to bad theories looks like the ski-slope of the success curve. We show
below that only some representations of time in QCM satisfy this definition
of KB-maintainability. Hence, in QCM, conceptual modeling should be re-
stricted to these representations of time. Note that KB-maintainability uses
KB-testability as a sub-routine; i.e. KB-maintainability is NP-hard since KB-
testability is also NP-hard.

How can time be represented in QCM? We saw above the use of IEDGE:
when X connects to Y, then we say that X at time T'=i also connects to Y at
T=i+1. IEDGE is only one of a family of temporal QCM languages. Firstly, we
can cross time over edges or over nodes. Secondly, we can cross time on all struc-
tures in the theory, or only on those explictedly mentioned by the user. Each
combination of these alternatives defines a new temporal modeling language,
illustrated in Figure 10. In this figure, in the explicit node linking language (or
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Figure 11: The fisheries model. Adapted from [Bossel, 1994] (pp135-141). Vari-
ables in italics were used in the XNODE study. Edges downstream of an XN-
ODE were used as the explicit time edges in the XEDGE language.

XNODE), we only cross time on the nodes explicitly denoted as time nodes by
the user (in this example, A). In the implicit node linking language (or INODE),
we cross time on all nodes. In the explicit edge linking language (or XEDGE),
we only cross time on the edges explicitly denoted as time edges by the user (in
this example, A to B). Lastly, in IEDGE, we cross time on all edges.

5.1 Testing KB-maintainability

To test KB-maintainability for these four temporal languages, we performed
the following experiment. First, we implemented a quantitative fisheries sim-
ulation model using the equations from [Bossel, 1994] (pages 135-141). Sec-
ondly, we built a qualitative form of the fisheries model as shown in Fig-
ure 11. The quantitative model was used to generate numeric test data which
was stored in the measure array. From each comparison of measure(i) with
measure(j), entries were written to an array of qualitative observations called
changes. Changes was used to generate the input/output needed for for KB-
testability. For example, if in comparison change(87), the fish density fdens
was increased and the fish catch fcatch was always seen to decrease at all time
steps, then change(37).in is (fdensUp) and change(37).out is (featch(t=1)Down,
featch(t=2)Down, featch(t=38)Down, fcatch(t=4)Down, featch(t=5)Down)
Next, we built mutator.5 as follows: the sign on a random sample of the
X statements in the qualitative theory were corrupted: i.e. flipped (++ to —
or visa versa). Given a model with F edges, then as we vary X from 0 to
E, we are moving from a good model to a poor model; i.e. the x-axis of our
maintenance success curve. This corrupted model was then copied to create a
set of time copies. These time copies were connected using one of our temporal
languages: IEDGE, INODE, XEDGE, XNODE. Change inputs were mapped
into copy(0). Change outputs were mapped into some copy(i) (i greater than
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T = MaxTime;
MO := fisheries; measure := run_quantitative_model(T,MO)
M1 := qualitativeVersionOf (MO); change := comparisons(measure)

for policy € (IEDGE, INODE, XNODE, XEDGE) begin
for corrupted:=0 to |E| begin
for r:=1 to 20 begin
M2 :=corruptSomeEdgesChoosenAtRandom(corrupted,M1)
for t:=0 to T  copy(t):= M2
for t:=0 to T-1 time_connect (copy(t),copy(t+1),policy)
for i:=1 to |change| begin
(In,O0ut(1..T)):= change(i)
Xplained(1..T):= run_qualitative_model (copy,In,0Out)
Xplicable(policy,r,corrupted,i) :=|Xplained(T) |*100/|0ut(T) |
end end end end

Figure 12: Experimental design for assessing linking options
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Figure 13: Graph of Xplicable from Figure 12.

zero). The success of each run was assessed by recording the percent of the
explicable outputs i.e. those outputs that the model could connect back to
inputs. The details of this experiment are shown in Figure 12.

5.2 Results

Figure 13 graphs the average values of Xplicable variable from the experimental
design. INODE was not sufficiently restrictive. Even with all edges corrupted,
INODE allowed theories to explain correct behaviour. Also, XEDGE was not
sufficient permissive. Even on correct theories, XEDGE could only explain half
the known behaviour. XNODE was the closest to the maintenance success
curve, followed by IEDGE. However, IEDGE was not as permissive as XNODE.
Hence, except in the case where we need to optimise long simulation runs, we
recommend XNODE. Otherwise, we recommend IEDGE.

Note that for XNODE and IEDGE, after only a third of the theory being
mutated, only half the outputs were inexplicable. This is a nice result: with
these modeling languages, we can get a clear and early indication if we are stray
from a good theory.

We conclude that, in terms of KB-maintainability, the four variants on the
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QCM conceptual modeling language are ranked: XNODE (best for short to
medium length simulation runs), then IEDGE (best for long simulation runs),
then XEDGE (poor: no permissive enough) and INODE (poor: not restrictive
enough).

6 Conclusion

If there are no blocks to structure preservation, then we our conceptual modeling
need not be restricted. Unrestricted conceptual modeling requires that we can
structurally preserve conceptual structures. If structure preservation is blocked
by certain features of a conceptual modeling language, then if we use those
features, our implementation may be compromised.

In order to identify such blocks to structure preservation, we need to first
identify pragmatic success criteria for our KBs. Such pragmatic success crite-
ria should reflect functionality that we will require, in the usual case. Worst-
case time complexity analysis is not such a pragmatic criteria. However, KB-
testability and KB-maintainability are pragmatic criteria since checking and
revising a theory is so important when performing KA (construction inaccurate
surrogates of reality). Topological restrictions were found via KB-testability:

e Size restrictions;
e Connectivity restrictions;

For none-time-based simulations, the use of conjunctions was observed to
improve KB-tesability. In the case where the conceptual model will be used for
time-based simulation runs, expressibility restrictions were found via KB-time-
testability and KB-maintainability:

e No conjunctions;

e No steadies;

e No asymmetric causal connections;

e Avoid XEDGE or INODE temporal connections.

We have hence shown that there are cases where it is necessary to restrict a
conceptual modeling language. That is, there exists conceptual knowledge that
we just should not add to our KBs. This belief runs counter to the standard
wisdom in the KA community; i.e. design and implementation considerations
should not contort the high-level descriptions of an expert’s conceptual knowl-
edge. The techniques we used (KB-testability, KB-maintainability, instance
generators, graph theory) represent a general evaluation methodology and could
be applied to many other theories and representations.
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