A Decision Support Tool for Tuning Parameters in a
Machine Learning Algorithm

Margot Postema! Tim Menzies, and Xindong Wu

Department of Software Development
Monash University
900 Dandenong Road
Melbourne, VIC 3145, Australia

Email: {margot,timm,xindong}@insect.sd.monash.edu.au

Abstract

Many machine learning algorithms require parameter tuning in order to adapt
them to the particulars of a training set. This tuning task can be an expert task
in its own right. Based on our observations of an expert tuning the HCV (Version
2.0) rule induction algorithm, we have built a simple decision support system (DSS)
to automate tuning for that algorithm. We found that HCV plus DSS produced
equal or better rule sets than standard HCV or C4.5. A surprising result from this
study is that a very simple approach to tuning worked very well. We speculate that
other research on machine learner tuning have indulged in complex solutions before
experimenting adequately with simpler alternatives.

Keywords: Decision support systems, machine learning, discretization, fine tuning

1 Introduction

The dream of machine learning is that we can automatically build specifications from
data without requiring tedious and time consuming human involvement. To date, this
dream has not been realised. A repeated experience in machine learning is that machine
learning algorithms require parameter tuning in order to adapt them to the particulars of
a training set. This tuning task can be an expert task in its own right. That is, machine
learning has not yet removed the need for experts. Rather, it has changed the focus of
the expertise required for building a specification.

In this study, we explore automating the machine learning tuning process. Based
on our observations of the third author’s use of a machine learning algorithm (HCV 2.0

*Thanks to Heinz Schmidt for suggestions and support with revisions.

Section 2) we developed a simple decision support system (DSS) for simplifying HCV
parameter tuning (Section 3.2). When applied to datasets from the UCI repository, we
find that HCV plus DSS produced equal or better rules sets than standard HCV or C4.5
in 9 of the 12 tested cases (Section 4). It is very simple to use our tuning DSS. So
simple, in fact, that we believe that we could convert the DSS into a fully automatic
expert system to handle the same task (Section 5). Hence, we speculate that parameter
tuning of machine learning algorithms could be automated, thus realizing the dream of
fully automated machine learning.

2 HCYV (version 2.0): An Example Machine Learning
Algorithm

The third author Wu, is the developer of the HCV rule induction algorithm [11]. This
project began an experiment in trying to capture Wu’s experience in tuning HCV. One
particular area of Wu’s expertise is in discretization of continuous variables. In the case
of learning from data sets that contain continuous values, the values must be discretized;
i.e. divided up into a finite set of contiguous ranges. Once divided up, then values for the
continuous variables can be renamed; e.g. high, low. The essential aspect of discretization
is to find the right places to set up interval borders.

In most machine learning algorithms discretization is an automatic process. In super-
vised discretization methods, such as the information gain based methods implemented
in C4.5 [9] and HCV (Version 2.0) [11], the class information of examples in a training
set is used. In unsupervised (or class-blind) discretization methods, such as equal-width
discretization and equal-frequency discretization [2], training examples are grouped into
intervals without taking into account the respective classes of the training examples. Dis-
cretization can be performed at induction time (such as in C4.5) or before induction takes
place (see [3] and [7]). Among various discretization methods, the information gain based
methods have been widely used and cited [3, 12]. C4.5 provides only binary discretization
at induction time based on an information gain approach for real-valued attributes.

In HCV (Version 2.0), an information gain based method is the default discretization
method for processing numerical attributes before induction takes place. This method is
described below (Section 2.1.1) after a description of the HCV algorithm (Section 2.1).

2.1 The HCV (Version 2.0) Algorithm

The HCV algorithm [10] is a representative of the extension matrix based family of
attribute-based induction algorithms, originating with J.R. Hong’s AE1 [6]. By dividing
the positive examples (PE) of a specific concept in a given example set into intersecting
groups and adopting a set of strategies to find a heuristic conjunctive rule in each group
which covers all the group’s positive examples and none of the negative examples (NE),
HCV can find a rule in the form of variable-valued logic for the concept in low-order
polynomial time. If there exists at least one conjunctive rule in a given training example
set for PE against NE, the rule produced by HCV must be a conjunctive one. The rules
in variable-valued logic generated by HCV have been shown [11] empirically to be more

compact than the decision trees or their equivalent decision rules produced by the 1D3
algorithm (the best-known induction algorithm to date) and its successors (e.g., C4.5) in
terms of the numbers of conjunctive rules and conjunctions.

The HCV (Version 2.0) software is a C4++ implementation of the HCV algorithm.
In this implementation, HCV can work with noisy and real-valued domains as well as
nominal and noise-free databases. It also provides a set of deduction facilities for the user
to test the accuracy of the produced rules on test examples. The detailed description of
the software is included in [11].

In addition to a set of discretization facilities, such as the information gain heuristic
outlined in the next section, HCV (Version 2.0) permits the user to specify their own
discretization of real-valued attributes by providing a set of intervals in the structure file,
which specifies the attributes (with their order and value domains) and classes used in
the data files. This is a very useful way for integrating domain specific information. The
tuning aid designed in Section 3.2 will start with this facility.

2.1.1 The Information Gain Heuristic for Discretization

When the examples in a training set have taken values of x4, ..., z,, in ascending order on a
continuous attribute, we can use the information gain heuristic adopted in ID3 [8] to find
a most informative border to split the value domain of the continuous attribute. Fayyad
and Irani [4] have shown that the maximum information gain by the heuristic is always
achieved at a cut point (say, the mid-point) between the values taken by two examples of
different classes.

The information gain heuristic is adopted in HCV (Version 2.0) in the following way.
Each z = (x;42:41)/2 (1 = 1,...,n—1) is a possible cut point if z; and z,;1 have been taken
by examples of different classes in the training set. Use the information gain heuristic to
check each of the possible cut points and find the best split point. Run the same process
on the left and right halves of the splitting to split them further. The number of intervals
produced this way may be very large if the attribute is not very informative. Catlett
[1] has proposed some criteria to stop the recursive splitting which have been adopted in

HCV (Version 2.0):
e Stop if the information gain on all cut points is the same,

e Stop if the number of examples to split is less than a certain number (e.g. fourteen

in HCV (Version 2.0)), and

e Limit the number of intervals to be produced to a certain number (e.g. eight in

HCV (Version 2.0)).

In C4.5 [9], the information gain approach is revised in the following ways. Firstly,
each of the possible cut points is not the midpoint between the two nearest values, but
rather the greatest value in the entire training set that does not exceed the midpoint. This
ensures that all border values occur in the training data. FEach border value in this case
is not necessarily the same as the lower of the two neighbouring values since all training
examples are examined for the selection. Secondly, C4.5 adopts the information gain ratio
rather than the information gain heuristic. Finally, C4.5 does binarization of continuous

attributes, which means only one interval border is found for each continuous attribute
at each decision node.

3 A Fine Tuning Aid to HCV (Version 2.0)

3.1 Related Work

The tuning aid that we present in Section 3.2 is similar to Adaptive Quantizers discussed
in Dougherty [3]. The Adaptive Quantizers method begins with a binary equal width
partitioning of the continuous feature. Induction is performed and tested for predictive
accuracy. The interval with the lowest predictive accuracy is split into two equal width
partitions. The induction and evaluation processes are then repeated until some per-
formance criteria is met. This method appears to overcome some of the limitations of
unsupervised discretization, but comes with a high computational cost. This is due to
numerous runs of the rule induction process. The method also assumes that a high level
of accuracy can be achieved.

The minimal entropy heuristic [1, 3] uses class information entropy of candidate par-
titions to select the intervals.

The method we present uses some of the above mentioned algorithms slightly differ-
ently. Based on the HCV (Version 2.0) facility for user-specified intervals (Section 2.1),
the tuning aid method for discretization is designed in Section 3.2.

3.2 Fine Tuning Design

We use an unsupervised learning method that firstly partitions the continuous attribute
into ten equal width intervals. We then find three intervals based on the data, not the
class distribution. These intervals are then incorporated into the induction algorithm. If
the performance decreases (compared to the default) we don’t do any further processing.
Whilst the computational cost increases (Section 4.2), this is marginal when compared to
the improvement of results. The hypothesis and tuning aid are presented in Sections 3.2.1
and 3.2.2 respectively.

3.2.1 Hypothesis

Initial experiments were devised based on the information available in the HCV dictionary
files. These dictionary files list the names of the attributes and notes if they are discrete
or continuous. From here a hypothesis was formed that the overall data distribution could
be analysed to determine intervals in the low, average and high range. This is achieved
by plotting a histogram of the data in the training files into ten equal intervals. These
intervals were then analysed to find the following three intervals:

e Low which contained approximately 25% of the data
e Average which contained approximately 50% of the data

e High which contained the remaining data

Since it is not possible to use this method when a large percentage (say 70%) of the
data lies at either extremes of the range of values, a second method is introduced which
includes overlapping class intervals. For example, if class 1 has values ranging 0-100 and
class 2 has values ranging 85-150, the intervals used are 0-100 and 85-150. This method
had limited use and success.

3.2.2 Tuning Aid

1. Run the HCV (Version 2.0) software on a database to obtain baseline results. The
database should consist of at least one continuous attribute.

2. Select a continuous attribute in the database.
3. Check the overall data distribution on the selected attribute.
4. Divide the continuous attribute into the following three intervals:

e low (approximately 25% of the data)
e average (approximately 50% of the data)
e high (approximately 25% of the data)

If the above fails (eg. 70% of data lies at one interval) attempt to determine over-
lapping class intervals (eg. 0-100, 85-150, as mentioned in Section 3.2.1).

5. If intervals were found in step 4, run the HCV (Version 2.0) software with these
intervals and obtain results, else go to step 7

6. If the results are improved or no worse than the baseline ones, keep them, else
discard these intervals.

7. If no more continuous attributes, STOP.
8. Select another continuous attribute.

9. Go to step 3.

The second method discussed in Section 3.2.1 and Step 4 above deals with domains
with some degree of fuzziness. For example, we could classify someone who is 170cm
in height as ‘Normal Height’ or ‘Tall Height’ depending on our outlook. Instead of dis-
cretizing the domain into fixed intervals, some sort of curve could be applied to give a
fuzzy border. Thus a value could belong to more than one interval at the same time.
Results can be classified in terms of degrees of membership in each interval. Discretizing
a continuous domain in this way is termed fuzzy matching [13]. Alternatively, the number
of intervals and their values could also be modified, which is the principle used in fuzzy
expert systems. This above method combines probabilistic analysis (refer to Step 4) and
fuzzy logic.

The method based on the information in the dictionary file and the data in the training
files can be related to the probability surveys between domain experts when designing a

fuzzy expert system [5]. A summary of the tuning aid method can be included into the
machine learner as shown by Figure 1, where the user can specify the intervals from the
training examples. Following the heavy arrowed lines, we can see:

1. Training and test data are fed into the machine learner as a baseline.

2. The user selects a continuous attribute from the database.

3. The user checks the data distribution and
4. specifies intervals.

5. Feed these intervals into the machine learner.

6. The deduction of induction results on test data are then compared to determine

which method gave the best results.

7. A continuous variable is either discretized by the user, or the default machine learner
intervals are selected. The dotted lines indicate the user decision.

7l4
2 : A

,,

Training
Data

MACHINE

Results

\

LEARNER
Test
Data

Figure 1: The Machine Learning Cycle

4 Experiments

The experiments were performed with data sets from the University of California at
Irvine Repository of Machine Learning Databases and Domain Theories. The inputs for
the machine learners include the dictionary, training and testing files, which describe the
attributes, and include training and testing examples respectively.

4.1 Baseline

The experimental results can be compared to those obtained by Wu et al. [14]. The best
results in terms of predictive accuracy for each problem is given in bold.

4.2 Results

Table 1: Success Analysis of Results

‘ Domain ‘ Success Analysis ‘
©O|lo|d
Wine - 5
Bupa - 142
Labor Neg - 14]2
Swiss 5 - 1311
Cleveland 2 - |- 11
Cleveland 5 1 -
Vah - - 11
Va 2 - |1 |-
Crx - |- 11
Imports 85 4 |18 |2
Pima 115 |1
Glass (without ID) |- |6 |-

Legend
© indicates the same accuracy (the intervals were included in the subsequent experiments).
© indicates decreased result (subsequently discarded).
¢ indicates improved result.

Table 1 analyses the success of using the data distribution method defined in Sec-
tion 3.2 to specify the intervals in continuous domains. The experimental results are sum-
marised for all the continuous attributes of each data set. One interesting observation is
that the probabilistic method is actually a search for attributes that can be discretized
usefully. In the twelve data sets, 16 of the 55 continuous attributes experimented with
give improved results, 34 give worse results and 5 make no difference.

The induction algorithm is run N + 1 times where N represents the number of con-
tinuous attributes, thereby increasing the computational cost by N times.

The experiments including the probabilistic method are recorded as HCV (Tuned) in
Table 2. The overall success in terms of accuracy is high if we consider that results from
HCV (Tuned) have the highest accuracy on 7 out of the 12 data sets tested, and matched
C4.5 in another two.

Table 2: Summary and Comparison of Results

Accuracy (%) ‘

‘ Domain ‘ C4.5 ‘ HCV (Ver2.0) ‘ HCV (Tuned) ‘
Bupa 73.7 | 57.6 65.3
Cleveland 5 47.3 | 56.0 56.0
Cleveland 2 68.4 | 78.0 82.4
Crx 79.5 | 82.5 85.0
Imports 85 64.4 | 62.7 66.1
Labor Neg 82.4 | 76.5 82.4
Pima 75.1 | 73.9 75.1
Swiss b 31.2 | 28.1 34.4
Va b 26.8 | 26.8 32.4
Va 2 66.7 | 78.9 70.4
Wine 90.4 | 904 98.1
Glass (without ID) | 64.6 | 72.3 69.2

5 Conclusion

We have described the construction of a simple decision support system for tuning the
discritization process of a rule induction algorithm. Users of this tool must view some
histograms and propose border values for creating discrete intervals. Experiments with
this tool and HCV (Version 2.0) show that learning + tuning out-performs (in the majority

of cases) learning alone.

This process is very quick and simple. The process is so simple that we could fully
automate the process thus turning a decision support system requiring human interaction

into a true expert system that required no expert input.

One interesting result from the above study is that a very simple approach to tuning
worked very well. We wonder if some of the discussions on learner tuning have indulged
in complex solutions before experimenting adequately with simpler alternatives.

Future work in this area includes:

e Exploring the use of such simple tuning tools to other learners like C4.5

e Exploring the utility of having more than 3 discrete division (e.g. 5).

References

[1] J. Catlett. On Changing Continuous Attributes into Ordered Discrete Attributes.
Proceedings of the 1991 Furopean Working Session on Learning, 1991.

[2] D. Chiu, A. Wong and B. Cheung. Information Discovery through Hierarchical Max-
imum Entropy Discretization and Synthesis. In Piatetsky-Shapiro, G., and W.J.
Frowley, editors, Knowledge Discovery in Databases. MIT Press, 1991.

3]

[10]

[11]
[12]

[13]

[14]

J. Dougherty, R. Kohavi and M. Sahami. Supervised and Unsupervised Discretization
of Continuous Features. Proceedings of the 12th International Conference on Machine

Learning, 194-202, 1995.

U.M. Fayyad and K.B. Irani. On the Handling of Continuous-Valued Attributes in
Decision Tree Generation. Machine Learning, 8,87-102, 1992.

L.O. Hall and A. Kandel. The Evolution of Expert Systems. In F. Aminzadeh and M.
Jamshidi, editors, Soft Computing: Fuzzy Logic, Neural Networks, and Distributed
Artificial Intelligence. Prentice Hall, New Jersey USA, 1994.

J.R. Hong. AEl: An Extension Matrix Approximate Method for the General Cov-
ering Problem. International Journal of Computer and Information Sciences, 4(6):

421-437, 1985.

B. Pfahringer. Compression-Based Discretization of Continuous Attributes, Proceed-
ings of the 12th International Conference on Machine Learning, 456-463, 1995.

J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1. 81-106, 1986.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
1993.

X. Wu. The HCV Induction Algorithm. In S.C. Kwasny and J.F. Buck, editors,
Proceedings of the 21st ACM Computer Science Conference,168-175. ACM Press,
USA, 1993.

X. Wu. Knowledge Acquisition from Databases. Ablex, USA, 1995.

X. Wu. A Bayesian Discretizer for Real-Valued Attributes. The Computer Journal.
39(1996).

X. Wu and P. Mahlén. Fuzzy Interpretation of Induction Results. Proc. of the 1995
International Conference on Knowledge Discovery and Data Mining (KDD-95), Mon-
treal, Canada, August 20-21, 1995, 325-330.

X. Wu, J. Krisar, and P. Mahlén. Noise Handling with Extension Matrices. In
International Journal of Artificial Intelligence Tools, 5(1996), 81-97.

