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Abstract

Knowledge-level (KL) modeling can be character-
ised as theory subset extraction where the extrac-
ted subset is consistent and relevant to some prob-
lem. Theory subset extraction is a synonym for
Newell’s principle of rationality, Clancey’s model
construction operators, and Breuker’s components
of expert solutions. In an abductive framework, a
PSM is the extraction controller and is represented
by a suite of BEST inference assessment operators.
Each BEST operator is a single-classification expert
system which accepts or culls a possible infer-
ence. PSMs can therefore be maintained by ripple-
down-rules, a technique for maintaining single-
classification expert systems.

1 Introduction

Newell’s knowledge-level (KL) approach modeled in-
telligence [37] as a search for appropriate operat-
ors that convert some current state to a goal state.
Domain-specific knowledge are used to select the
operators according to the principle of rationality;
an intelligent agent will select an operator
which its knowledge tells it will lead the achieve-
ment of some of its goals.

We can characterise expert systems maintenance
as the controlled revision of the state space and the
rationality operators. The state space is modeled as
a directed graph of literals. Inference is controlled
by an abductive (§2.1) inference engine which select
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portions of the graph which are relevant to a prob-
lem. Within the abductive inference engine are sets
of domain-specific BEST assessment operators which
implement the principle of rationality; i.e. they se-
lect the preferred inference(s) from the set of avail-
able inferences. In an abductive knowledge-level
framework, problems solving methods (PSMs) are
sets of BEST operators (§2.2). Such abductive PSMs
operationalise Clancey’s system model construction
operators which build a situation-specific model and
Breuker’s components of solutions (§2.2.8). On a
continuum between standard PSMs and systems
like SOAR, this abductive PSM approach is closer
to SOAR than (e.g.) KADS (§2.3).

The key observation which sparked this paper as
follows. Each such BEST operator is a single clas-
sification expert system which classifies proposed
inferences as cull or accept. Ripple-down-rules
(RDR) are a technique that works well for main-
taining single classification expert systems (§3.1).
While they are poor at representing KADS-style
PSMs (§3.2), they could be used in an abduct-
ive framework to maintain the BEST operators (§4).
That is, we could maintain abductive PSMs with
RDR. Two premises of this approach is that the
knowledge base includes inference preference cri-
teria (§4.1) and that we have some mechanism for
maintaining the functions used in the BEST operat-
ors (e.g. using ripple-down-functions or RDF, §4.2).
We call this combination of abduction and ripples
for XL modeling ripple-down-rationality or RD-RA.
RD-RA has several advantages over current PSM
technology including maintenance, the ability to
compare different expert system frameworks, and
support for conflict resolution in requirements mod-

eling (§5).



2 Abduction

This section gives our standard short overview on
abduction (§2.1); discusses its application to know-
ledge level modeling (§2.2); contrasts abductive
KL with standard KL approaches (§2.3); and com-
ments on the computational complexity of abduc-
tion (§2.4). This section summarises material from
other papers [33,34].

2.1 An Overview of Abduction

Elsewhere [34], we have given a detailed overview
of abductive research. Here, we offer an approx-
imate characterisation of abduction as the search
for consistent subsets of some background theory
that are relevant for achieving some goal. If mul-
tiple such subsets can be generated, then a BEST
assessment operator selects the preferred subset(s)
(or worlds, W). For example, consider our graph-

theoretic HT4 abductive inference engine [33,34,36].

HT4 determines what OUTput goals can be reached
from using the INputs shown in a knowledge base
like Figure 1. In that Figure, xﬂy denotes that y
being up or down can be explained by x being up or

down respectively and x =y denotes that y being up
or down could be explained by x being down or up
respectively. Observe the apparent conflict in the
middle of Figure 1 on the left-hand-side: author 1
believes a =5 ¢ while author 2 believes a 1§ ¢. We
will return to this apparent conflict later (§5).

HT4 can find the following proofs P connecting
0UTs to INs:
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IN ={aUp, bUp}
OUT={dUp, eUp, fDown}

Figure 1: A knowledge base. Edges are labeled
with the author of that edge; e.g. author 1 and 2.
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Figure 2: Two generated worlds from Figure 1.
Edges are labeled with the author of that edge; e.g.
author 1 and 2.

P[1] — aUp — xUp — yUp — dUp;
P[2] = aUp — cUp — gUp — dUp;
P[3] = aUp — cUp — gUp — eUp;
P[4] = bUp — cDown — gDown — fDown;

P[5] = bUp —
These proofs may contain assumptions, i.e. literals
that are not known FACTS. Continuing the example
of Figure 1, if FACTS is the union of IN and OUT,
then {xUp,yUp,cUp, cDown, gUp, gDown} are as-
sumptions. If we can’t believe that a variable can
go up and down simultaneously, then we can de-
clare {cUp, cDown, gUp, gDown} to be conflicting
(denoted A.c). Figure 1 shows us that g is fully
dependent on ¢. Hence the key conflicting assump-
tions are {cUp, cDown} (denoted base controversial
assumptions or A.b). We can used A.b to find con-
sistent belief sets called worlds W. A proof P[i] isin
W[j] if that proof does not conflict with the environ-
ment ENV[j] (an environment is a maximal consist-
ent subset of A.b). In our example, ENV[1]={cUp}
and ENV[2] ={cDown}'. Hence, W[11={P[1], P[2],
P[3],P[5]} and W[2]1={P[1] P[4] P[5]} (see Fig-
ure 2). Note that while inconsistencies may be de-
tectable within the knowledge base, each world is
guaranteed to be consistent.

fDown.

! The connection of HT4 to DeKleer's ATMS system [10]
is explored elsewhere [34]



2.2 Abduction and the Knowledge
Level

Abduction generates worlds. Which is the BEST
world? We have argued previously [34] that:

1. The answer is problem-specific.

2. KL modeling is a synonym for the careful selec-
tion of the BEST assessment operators.

To demonstrate these two points, consider an
agent watching the traversal of a search space rep-
resented as a directed graph connecting literals.
What information does our agent need to to de-
cide if a possible inference is BEST? We define five
levels of BEST:

Level 1 wvertex-level BEST: If our agent can only
“see” one edge ahead of the current search, then
they could make a verter-level BEST decision. For
example, if we are implementing a MYCIN-style
certainty factor kludge [3], then our agent could
decide to avoid all edges with a certainty factor of
less than 0.2. That is, those edges are culled since
they are not BEST.

Level 2 proof-level BEST: If our agent can
what the wvertez-level agent can see and can query

“See”

the current proof tree up to the current edge, then
it could make a proof-level choice. Our proof-level
agent could cull an edge in the following three
cases:

1. The new edge means that the proof would con-
tain “too many assumptions” (defined accord-
ing to some domain-specific criteria).

2. The edge contains a literal that is incompatible
with literals currently on the proof.

3. The edge would introduce a loop in the current
proof.

“See”

Level 3 proofs-level BEST: If our agent can
what the proof-level agent can see and can query
all the other proofs generated up until now, then
it could make a proofs-level choice. For example,
classic Al search algorithms such as best-first and

beam-first search? are proofs-level BEST operators.

2In best-first, the cost of traversal to this point is added
to a heuristic guess on what it would cost to use each possible
edge to continue on to some goal. The edges are then sorted
by increasing combined cost. The search then proceeds in
that order. In beam-first, after the sort, only the top N items
are explored where N is the “width” of the beam search [41].

Level 4 world-level BEST: Suppose our agent
“sees” that a generated world explains all of the
OUT set. It could declare this world to be BEST and
halt the generation of any other worlds.

Level 5 worlds-level BEST: When our agent can
“see” multiple worlds, it could make a comparative
evaluation of the different worlds.

A variety of knowledge-level tasks can be imple-
mented via an appropriate selection of BEST assess-
ment operators [34] and careful construction of the
INput and OUTput sets: prediction (§2.2.1), dia-
gnosis and probing (§2.2.2), classification (§2.2.3),
explanation and tutoring (§2.2.4), qualitative reas-
oning (§2.2.5), planning and monitoring (§2.2.6),
validation (§2.2.7), amongst other (§2.2.8).

2.2.1 Prediction

Prediction is the process of seeing what will follow
from some events IN. Given a theory represented
as a directed graph with vertices V, then we can
find all the non-input vertices reachable from IN by
making OUT C V — 1IN (note that IN and OUT
are just subsets of V). A efficient case for predic-
tion is when IN is smaller than all the roots of the
graph and some interesting subset of the vertices
have been identified as possible reportable outputs
(ie. OUT C V — IN).

2.2.2 Diagnosis and Probing

It is well-known that diagnosis is an abductive
process [8,48,52]. Parsimonious set-covering dia-
gnosis [51] uses a BEST that favors worlds that ex-
plain the most things, with the smallest number of
diseases (i.e. maximise W[x] N OUT and minimise
W[x] N IN).

The opposite of set-covering diagnosis is
consistency-based diagnosis [8,53] where all worlds
consistent with the current observations are gener-
ated. Computationally, this is equivalent to predic-
tion (§2.2.1), with OUT = V — IN.

In Reiter’s variant on consistency-based dia-
gnosis [53], all predicates relating to the behaviour
of a theory component V[x] assume a test that
V[x] in not acting ABnormally; i.e. —AB(V[x]).
BEST.REITER is to favour the worlds that contain
the least number of AB assumptions.

A related task to diagnosis is probing. When
exploring different diagnosis, an intelligent selec-



tion of tests (probes) can maximise the informa-
tion gain while reducing the testing cost [11]. In
this abductive framework, we would know to favor
probes of A.b over probes of A.c over probes of
non-controversial assumptions.

2.2.3 Classification

Classification 1s just a special case of prediction
with the interesting subset set to the vertices rep-
resenting the possible classifications. The and-
or graph of a classification theory would include
edges (i) from class attributes to the proposi-
tion that some class is true; and (ii) from sub-
classes to super-classes (e.g. if emu then bird).
BEST.CLASSIFICATION could favors the worlds that
include the most-specific classes [46] (e.g.
better than bird).

emu is

2.2.4 Explanation and Tutoring

If we have a profile of our users comprising ver-
tices familiar to the user and the edges repres-
enting processes that the user is aware of, then
we can build an ezplanation and tutoring system.
BEST.EXPLANATION could favors the worlds with the
largest intersection to this user profile. That is, we
return the world(s) that the user is most likely to
understand. We base this explanation proposal on
analogous work by Paris [43].

Further, suppose we can assess that the BEST ex-
plainable world was somehow sub-optimum. We
could then make a entry is some log of teaching
goals that we need to educate our user about the
edges which are not in their BEST explainable world
but are in other, more optimum, worlds.

2.2.5 Qualitative Reasoning

The above abductive inference engine was de-
veloped from a qualitative reasoning algorithm for
neuroendocrinology [17]. A fundamental property
of such systems is their indeterminacy which gen-
erate alternative values for variables. These altern-
atives and their consequences must be considered
separately. Abduction can maintain these alternat-
ives in separate worlds.

2.2.6 Planning and Monitoring

Planning is the search for a set of actions that con-
vert some current state into a goal state. Given a
set of actions, we could partially evaluate them into
the dependency graph they propose between liter-
als. BEST.PLANNING could favor the world(s) with
the least cost (the cost of a world is the maximum
cost of the proofs in that world). If we augment
each edge with the identifier of the action(s) that
generated it, then we could report the BEST worlds
as the union of the actions that generated the BEST
worlds.

Once generated, the BEST planning worlds could
be passed to a monitoring system. As new informa-
tion comes to light, some of these assumptions made
by our planner will prove to be invalid. Hence,
some of our worlds (a.k.a. plans) will also be in-
valid. The remaining plans represent the space of
possible ways to achieve the desired goals in the
current situation.

2.2.7 Validation

Validation: For example, let the cover of a world
be its overlap with the OUT set. The cover of
W[1] and OUT in Figure 2 is {dUp,eUp,fDown}
and the cover W[2] and OUT is {dUp,fDown}; i.e.
W[1].cover=3=100% and W[2].cover=2=67%.
The maximum cover is 100%; i.e. their exist a
set of assumptions ({cUp}) which let us explain all
of OUT. A worlds-level BEST operator that returns
the world with maximum cover is a validation pro-
cedure which answers the following question: “how
much of the known behaviour of X can be repro-
duced by out model of X?”. This abductive valida-
tion procedure has faulted theories published in the
international peer-reviewed literature. Interesting,
we have found these faults using the data published
to support those theories [36]. We have argued else-
where [33,34] that this is the non-naive implementa-
tion of KBS validation since it handles three certain
interesting cases:

1. If not all variables in the theory are measured,
then this procedure can still validate the the-
ory. The procedure will take the necessary as-
sumptions to prove some member of OUT and
mutually exclusive assumptions are managed
in separate worlds.



2. If a theory is globally inconsistent, but contains
local portions that are consistent and useful for
explaining some behaviour, we can find those
portions.

3. In the situation where no current theory ex-
plains all known behaviour, competing theor-
ies can be assessed by the extent to which they
cover known behaviour. Theory X is definitely
better than theory Y if theory X explains far
more behaviour than theory Y.

2.2.8 Others

We believe that abduction provides a comprehens-
ive picture of declarative knowledge-based systems
(KBS) inference. Apart from the problem solving
methods discussed here, we also believe that abduc-
tion is a useful framework for intelligent decision
support systems [29], diagrammatic reasoning [35],
single-user knowledge acquisition, and multiple-
expert knowledge acquisition [31]. Further, abduc-
tion could model certain interesting features of hu-
man cognition [32]. Others argue elsewhere that
abduction is also a framework for natural-language
processing [40], visual pattern recognition [47], ana-
logical reasoning [16], financial reasoning [21], ma-
chine learning [22] and case-based reasoning [25].
We have argued [34] that abduction is such a
general procedure since it operationalises the the-
ory subset ertraction process that Breuker [2] and
Clancey [5,6] argue is at the core of expert sys-
tems. Clancey offers a two-layered extraction pro-
cess (qualitative model to situation-specific model)
while Breuker offers a four-layered view of the com-
ponents of solutions in an expert system (generic
domain model to case model to conclusion to argu-
ment structure). Our approach is more general than
Clancey’s since it makes explicit certain assump-
tions which are only tacit in Clancey’s approach.
For example, Clancey assumes that the best world
uses the fewest number of INs [5, p331]. We have
shown above that this is not universally true. As
to Breuker’s proposal, his components of solutions
sounds to us like three recursive calls to a single
inference procedure. In his view, all expert system
tasks use an argument structure which is extracted
from a conclusion which is in turn extracted from
a case model which is in turn extracted from a gen-
eric domain model. Note that, in all cases, each

sub-component is generated by extracting a relev-
ant subset of some background theory to generate
a new theory (i.e. abduction).

2.3 KL-A and KL-B

This section discusses two variants on the KL ap-
proach: KL-A (e.g. SOAR) and KL-B (e.g. KADS).

Newell’s own exploration of the KL lead to a gen-
eral rule-based language called SOAR [56] which
was the basis for the problem-space computational
model (PSCM) [61]. Programming SOAR using
the PSCM involves the consideration of multiple,
nested problem spaces. Whenever a “don’t know
what to do” state is reached, a new problem space
is forked to solve that problem. Newell concluded
that the PSCM was the bridge between SOAR and
true KL modeling [38, 39].

We distinguish between PSCM (which we term
KL-A) and KL-B, a KL-modeling variant which
groups together a set of authors who argue for
basically the same technique; e.g.  Clancey’s
model construction operators [6], Steels’ com-
ponents of expertise [58], Chandrasekaran’s task
analysis, SPARK/ BURN/ FIREFIGHTER [27]
and KADS [60]*. The fundamental premise of
KL-B is that a knowledge base should be divided
into domain-specific facts and domain-independent
problem solving methods. Such problem-solving
strategies are implicit in KL-A. The observation that
a PSCM system is performing (e.g.) classification
is a user-interpretation of a single inference proced-
ure (operator selection over a problem space tra-
versal) [61].

Like all single-world logic devices, SOAR culls
possibilities at the local-choice level. By definition,
local-choice systems cannot delay their decisions on
options till later in the computation when more in-
formation is available. For example, experiments
with adding abductive inference to SOAR relied
on an interface to an external abductive theorem
prover. In Steier’s CYPRESS-SOAR/ RAINBOW
system, SOAR production rules modeled control de-
cisions, while the RAINBOW abductive inference
engine generated possible designs [59]. In our ap-
proach, a KL agent has the facility to delay choice
decisions till the path, paths, world, or worlds-level.

3See the Related Work section of [60] for a discussion of
the differences in these techniques



Our multiple worlds device can explicitly represent
all the options. Hence, a KL agent is free to reflect
more fully over the choices.

Our abductive PSM approach is clearer nearer to
KL-A than XL-B. Like SOAR, our framework uses a
single inference procedure (abduction). The con-
nection of our approach to KL-B in general and
KADS in particular is explored elsewhere [28,34].
In summary, KADS offers a variety of designs for a
range of inference devices (e.g. [1]) for expert sys-
tems. We prefer the use of a single inference device
(abduction).
tion of the minimal architecture necessary to KL ab-
duction; and (ii) a maintenance framework for that
minimal architecture.

Our research goal is (i) the descrip-

2.4 A Note on Complexity

One drawback with abduction is that it is slow. Sel-
man & Levesque show that even when only one
abductive explanation is required and the theory
is restricted to be acyclic, then abduction is NP-
hard [57]. Bylander ef. al. make a similar pess-
imistic conclusion [4]. Computationally tractable
abductive inference algorithms (e.g. [4,15]) typic-
ally make restrictive assumptions about the nature
of the theory or the available data. Such techniques
are not applicable to arbitrary theories. Therefore,
it is reasonable to question the practicality of ab-
duction for medium to large theories.

While the complexity of BEST is operator spe-
cific, we can make some general statements about
the computational cost of BEST. At a procedural
level, assessment operators at level i can be used
to restrict the search space for operators at level
i+1. Vertex or proof-level assessment reduce the
complexity of the search space traversal (since not
all paths are explored). Worlds-level assessment is
a search through the entire space that could be rel-
evant to a certain task. Hence, for fast runtimes,
do not use worlds-level assessment. However, for
some tasks (e.g. the validation task §2.2.7) worlds-
level assessment is unavoidable. Elsewhere we have
shown that level 5 (worlds-level) abduction is prac-
tical for the sizes of knowledge bases we see in
contemporary practice [33]. Hence, we are confid-
ent that an abductive system that uses some lower
level assessment operators will operate in accept-
able runtimes.

3 Ripple-Down-Rules

We argued above (§2.2) that a variety of knowledge
level tasks can be expressed a single abductive in-
ference procedure, plus some customisable BEST in-
We will argue be-
low (§4) that we can maintain PSMs by maintain-
ing the suite of BEST operators. That section will
use a technique called ripple-down-rules (or RDR).

ference assessment operators.

This section describes RDR. We focus only on single
classification RDR since that is all that is required
for RD-RA. Multiple classification RDR is discussed
elsewhere [24].

3.1 An Overview of Single Classific-

ation RDR

Standard software engineering and knowledge en-
gineering typically assumes that prior to building
a system, an extensive analysis stage develops a
design for the system. Compton reports experi-
ments with a completely reversed approach. In
RDR, there is no analysis period. KA in an RDR
system consists only of fixing faulty rules using an
unless patch attached at the end of a rule condi-
tion. Patches are themselves rules which can be
recursively patched. Experts can never re-organise
the tree; they can only continue to patch their
patches. If a new case motivates a new patch, that
this case is stored with the new patch. Such cases
are called cornerstone cases. Compton argues that
these (RDR) trees model the context of knowledge
acquisition. When a case is processed by an RDR
tree, its context is the set of cases in the patches
exercised by the new case. When looking for new
patches, experts can only choose from the difference
of the attributes in the current case and the attrib-
ute value tests (called features) exercised down to
the current faulty rule.

For example, Figure 3 shows the rule if a&b
then x1 patched several times. At runtime, the fi-
nal conclusion is the conclusion of the last satisfied
At maintenance time, when fixing deficient
knowledge, an unless patch is added beneath the
incorrectly last-satisfied rule. Only the logic delta

rule.

is added in the new rule since the system cannot get
to this rule without first satisfying the logic from the
root to this rule. So, in Figure 3, if x2 is the correct
conclusion when a&b&c is true, but incorrect when
c is false, we add the logic delta ¢ to a patch rule



rule if then
| a&b | x1
/\JE
ruIe if
2] ¢ Ix2 |
after else unless
rule if then
EERES (il

Figure 3: A RDR knowledge base

RDR rule If Then
1 a & b & not ¢ x1
2 a& b & c x2
3 a& b& notc& d x3

Figure 4: The flattened rule set of Figure 3.

in the unless branch beneath rdri.

RDR applies the maxim si¢ fractum non sit, noli id
reficere* and “freezes” knowledge that has proven
satisfactory in the past. Logic deltas are only ad-
ded to new knowledge. This frozen knowledge prin-
ctple simplifies maintenance. To see this, consider
the flattened rule set we can generate from Fig-
ure 3 in Figure 4. In the flattened rule set, one
rule is generated for each RDR path. Most rule-
based expert systems would maintain their know-
ledge in flattened rule sets such as Figure 4. In such
a conventional rule-based expert system, a patch
can extend over many rules. Repeating our above
example, the patch on the x1 error requires an edit
to one RDR rule rdr1 and the creation of another
RDR rule rdr2. Further, the new logic refers to ¢
which is a new concept that must be propagated
down to all related rules (e.g. rdr3). The more re-
lated rules, the more edits. As the knowledge base
grows, so to does the number of related rules and
the number of rules that may require editing after
a change [20]. By contrast, in RDR, existing know-
ledge is frozen and we only extend the knowledge
base.

41f it ain’t broke, don’t fix it.

RDR := RDRnode | RDFnode
RDRnode := rdr _id
[after RDR]
if Condition
then _conclusion
since Cornerstone
[unless RDR]
[else RDR]
Condition = [not] Feature {and Condition}+
| [not] Feature {or Condition}+
Feature = Oracle says Comp than _value
Oracle := NamedOracle(_argument {,_argument})
NamedOracle ::= _namedOracle
Function = toCall Oracle
perform [cache] _body
Comp = >=|>|<>| =LKL=
Cornerstone ::= Feature {and Feature}

Figure 5: BNF for RDR. RDFnodes are discussed
later (§4.2).

The BNF of an RDR is shown in Figure 5°. After,
unless and else links are optional. Only patched
RDRrules will get else and unless links. If an
RDRnode points to another RDRnode, then we may
optionally store a after link as a back pointer (for
efficiency reasons). Note a Function is a pair of
<Oracle, body> where the body is called as a side
effect of passing arguments to a NamedOracle. If
the keyword cache is included in the Function
definition, then the results of calling the body the
first time is simply returned if ever it is called again.

RDR trees are a very low-level representation. RDR
rules cannot assert facts that other RDR rules can
In no way can a RDR tree be called a model
in a KL sense. Further, the RDR formalism makes
no commitment to tree structures that are optimal.
An RDR tree can contain repeat tests, redundant
knowledge, and its sub-trees can overlap each other
semantically. Despite these apparent drawbacks,
RDR has produced large working expert systems in
routine daily use. In practice the RDR trees are only

use.

5In the BNF variant used here, words starting in lower
case represent terminals. Terminals that are variables start
with an underscore; e.g. if is a non-variable terminal while
_name is a variable storing some string entered by the user.
Words starting with upper case are nonterminals. Nonter-
minals are expanded with the form NonTerm ::= Rhs. A Rhs
can use the following symbols. Square brackets [] surround
optional items; a vertical line (| ) separates alternatives; curly
brackets {} surround items that can repeat many zero or
more times; and curly brackets followed by a plus {}+ sur-
round items that can repeat one or more times.




twice as big as the optimum tree [19] and runtimes
have never been an issue. It may be somewhat mis-
guided to attempt to optimise an RDR tree to (e.g.)
remove the redundancies or separate the overlaps.
The important feature of an RDR tree is that is it
optimised for maintenance. Alternative representa-
tions may run faster, but incurs the penalty of more
complicated maintenance.

In practice, RDR appears to work very well, at
least for single classification problems. For ex-
ample, the PIERS system at St. Vincent’s Hos-
pital, Sydney, models 20% of human biochem-
istry sufficiently well to make diagnoses that are
99% accurate [50]. RDR has succeeded in domains
where previous attempts, based on much higher-
level constructs, never made it out of the proto-
type stage [44]. Further, while large expert systems
are notoriously hard to maintain [9], the no-model
approach of RDR has never encountered mainten-
ance problems. System development blends seam-
lessly with system maintenance since the only activ-
ity that the RDR interface permits is patching faulty
For a 2000-

rule RDR system, maintenance is very simple (a total

rules in the context of the last error.

of a few minutes each day). Compton argues that
his process of “patching in the context of error” is
a more realistic KA approach than assuming that
a human analyst will behave in a perfectly rational
way to create some initial correct design [7].

3.2 Limits to RDR

This section argues that, in terms of RD-RA, RDR
has two significant limits: representing functions
performing the feature extraction and representing
PSMs.

Representing feature ertractors: An RDR rule
queries values extracted from the functions per-
forming the feature extraction which summarise the
environment. For example, an RDR rule might say
if age=old then... where age is a Function that
assigns labels such as old to continuous values such
as age. The change control for these functions is
not controlled by logic patches in a RDR tree; i.e.
RDR does not address the issue of maintaining func-
tions (though see Preston’s work [49] for an inter-
esting approach to customising feature extraction
functions).

Representing PSMs: Before a RDR tree executes,
the feature extractor Functions find all the fea-

tures in a case. The delta logic is constructed via
computing the difference between the case features
and the features found in the rules along the path
to the faulty rule. Consequently, RDR is focused
on the details of the specific case at hand. PSMs
may not be expressible with respect to the spe-
cific problem at hand. For example, consider an
RDR tree maintaining taxi driver knowledge. Our
student taxi driver may learn many tricks about
navigating from Sydney to Canberra through spe-
cific streets. However, in an RDR framework, she
may never learn the generalised PSM: “open the
map, find your current location, find your destina-
tion, compute the shortest distance path from here
to there”. More generally, to date, the Functions
called in RDR Conditions do not access the meta-
level reasoning used in problem solving.

These representational problems are a particu-
lar drawback for RD-RA. The abductive PSMs de-
scribed in §2.2 are not defined with respect to the
particulars of the problem at hand. Rather, the
BEST operators are defined with respect to meta-
level reflection on the current status of the inference.
To resolve these problems, we will need a library of
feature extractor Functions that can access the in-
ternal data structures of the inference engine. Fur-
ther, we will need to offer a maintenance strategy
for those Functions. We return to this point below
when we discuss ripple-down-function (§4.2).

4 An Architecture for Ripple-
Down-Rationality

This section RD-RA, our marriage of abduction to
ripples to KL modeling. After considering an ex-
tended example of our framework (§4.1), we will
see that we need some tool for maintaining the rule
conditions (§4.2).

4.1 RD-RA: An Example

Suppose we are maintaining some version of a
knowledge base KB such as Figure 6. This know-
ledge base contains a set of statements, each tagged
with their author.

KB
Statement

_version contains {Statement}+
-id : _author says _contents



sydneyDiseases contains 1,2.

1 : timm says

if suburb="bondi” and

temperature > 40 and

pain.location = “tummy’ and

observed = “sand rash on tummy”

conclusion = “sand allergy secondary to
too much surfing”.

then

2 : ashesh says

if temperature > 40 and
pain.location = “tummy’ and
observed = “sand rash on tummy~”

then conclusion = “too much groveling”.
Figure 6: A knowledge base.

Theory ::= _version contains Graph
for {Goall}+ using PSM

PSM = RDR

Goal = input {Vertex}+ output {Vertex}+

Graph = {Vertex}+ {Edge}

Edge = from Vertex to Vertex

Vertex = And | Or

Or = from Vertex Feature

And = from Vertex {and Vertex}
type AndType

AndType = full | partial

Figure 7: BNF for RD-RA

We make no commitment to the form of the
contents. However, we do require that some
compiler() can convert that KB into a Theory6
comprising:

e A directed graph connecting Features.

e A library of known/desired behaviour (called
the Goals);

e Preference criteria for deciding between dif-
ferent goals;

The BNF of a Theory is shown in Figure 7. The
PSM is modeled as an RDR tree controlling the BEST
operators. The INput and OUTput sets are generated
from the Goals. An Or Vertex can be traversed if
any of its parents can be traversed. As we cross
an Or Vertex, its Feature test is applied which,

bi.e. Theory=compile(KB)

andel N2
( suburb="bondi’ .
conclusion=
( temperature > 40 a |"too much groveling’
(pai n.location="tummy’
observed= ;
, | conclusion=
[ sand rash on tummy t i\t [’sandallergy...‘ j
t
partial /t
and34

Figure 8: A search space generated from Figure 6.
Edges are labeled with their authors; e.g. f=timm
and a=ashesh.

in turn, may executes a Function body (recall Fig-
ure 5). That is, procedural side-effects can be coded
into Or Vertex traversal. An And Vertex can only
be traversed if some its parents can all be traversed.
There are two AndTypes. A full And requires all
its parents to be traversable. A partial And will
try all its parents but only strictly needs one parent
to be traversable.

The BNF of Figure 7 is compatible with at least
with two common styles of expert systems: frames
and rules. Frame systems can be implemented us-
ing Partial Ands connecting slots to frame names.
That is, if we can match slot contents, then we can
reason back to a frame. Rules can be compiled into
an and-or graph connecting rule left-hand-sides to
rule right-had-sides. For example, the rules of Fig-
ure 6 could be compiled into the graph of Figure 8.
Note that:

e If the rule right-hand-sides are used in other
rules, then these connect to other rule left-
hand-sides; i.e. graphs like Figure 6 would be
deeper that just 1 edge.

e Observe the use of PartialAnds in Figure 6.
If we have only some of the evidence contrib-
uting to (e.g.) tooMuchGroveling, then with
PartialAnds we can still explore this potential
conclusion.

Figure 9 shows some Preference criteria ex-
pressed in RDR format (recall Figure 5). The
Worlds,World,Proofs,Proof ,Edgel,Edge2 vari-
ables are generated from the Graph search space



prefer(Worlds,World,Proofs,Proof,Edgel,EdgeQ);

rdr O
if true
then true;

rdr 11 after O

if previouslySeenEdges(Worldi,X1) and
previouslySeenEdges(World2,X2) and
bigger1(X1,X2)

then cull(World?2);

rdr 34 after O

if seenBefore(Edgel) and
not seenBefore(Edge2)
then cull(Edge2);

biggeri(Big, Small) :- Big > Small.

Figure 9: Preference criteria.

and are passed in at runtime by the abductive in-
ference engine when it has some choices to evalu-
ate. Suppose we were implementing an explanation
system (§2.2.4). Rdro0 is the obligatory RDR root
node where RDR inference begins. Rdrii prefers
worlds containing edges which have appeared in
previous explanations; i.e. this system seeks to ex-
plain OUTputs using concepts the user is already fa-
miliar with. Note that rdr11 is a worlds-level BEST
and can be optimised using rdr34, a vertex-level
BEST (§2.4). Rdr34 performs a local cull of edges
which have never been seen before.

Suppose our knowledge engineer enters Figure 9
and Figure 6 into the RD-RA environment, ran
some cases, and found the conclusions unacceptable.
Patches were then made to the PSM to generate Fig-
ure 10. Rdr34 was been patched by another vertex-
level BEST in rdr67. In the case where we have seen
both Edgel and Edge2, but have seen Edge2 twice
as often as Edgel, then we cull Edgel. Lastly, in
rdr99, it was decided that if a PhD graduate wrote
Edge1l, then it must be true! Hence, in the case of
all the conditions of rulel and rule2 being true in
Figure 6, then we would conclude that surfing was
the problem.

The example of Figure 9 illustrates some inter-
esting points. Firstly, the flattened rule set from
Figure 9 and Figure 10 would contain conditions
containing combinations of BEST operators at dif-
ferent levels (in the case above: worlds and vertex-

prefer(Worlds,World,Proofs,Proof,Edgel,Edge2);

rdr 67 after 34

if timesSeen(Edgel,X1) and
timesSeen(Edge2,X2) and
bigger2(X1,X2)

then cull(Edgel) ;

rdr 99 after 67

if fromDoctor(Edgel) and
fromMister(Edge2)
then cull(Edge2).

bigger2(Big, Small) :- Big > 2%Small

% ashesh is slow at writing up his phd
mister(ashesh).

% timm teases ashesh about this
doctor(timm) .

Figure 10: Refined Preference criteria. Figure 9 is
included into line 2 of this figure.

level). At the lowest-level of an abductive inference
engine, the above preference criteria must be ex-
ecuted at every inference step. Clearly, we need an
optimiser lest our abductive inference crawls to a
halt. While clever optimisations are possible, we
are currently exploring the following simple optim-
isation strategy. In the case of flattened prefer-
ence rules containing a mix of operators at differ-
ent levels, then the BEST operator is assigned to
the highest level. This optimisation strategy should
work well in the special case where the operators are
all at the same low-level. In our example above, we
would have vertex-level BESTs appearing in separate
flattened rules to the worlds-level BESTs. The op-
timiser would assign the vertex-level BESTs to the
local propagation level of the abductive inference
engine and the worlds-level BESTs to the subsequent
worlds assessment.

Secondly, note the changing of the definition
of bigger/2. Rdril defines bigger to be a
straight numerical comparison while rdr67 defines
bigger to be twice as big as the “big” defined
in rdrii.
bigger/2 (and indeed, previouslySeenEdges/2,

Feature extractor Functions like
seenBefore/2, timesSeen/2, fromDoctor/1,
fromMister/i) need to be maintained. RDR has

no mechanism for maintaining functions used in
conditions. Hence ripple-down-functions (§4.2).



4.2 Ripple-Down-Functions

This section describes ripple-down-functions
(RDF) [30], an extension to RDR. RDF enforces the
disciplined evolution of Functions that perform
feature extractors. Using an RDRtree the scope
of change of a Function is limited to the RDR
rules written after the revision of a construct at a
particular time. The definition of the Function in
existing knowledge does not change.

If we adopt the RDR frozen knowledge prin-
ciple (§3.1) for condition Functions, then if follows
that the definition of a function should be split each
time an Function refinement is made. In terms of
RDR, we should add a FunctionFrame stack which
stores the order in which new RDR rules were ad-
ded to the RDR tree. Each entry is this list con-
tains a FunctionFrame which stores the definitions
of Functions. When an RDR rule needs a definition
of a procedure, it finds its own reference in the func-
tion stack and searches back towards frameO. At
each FunctionFrame, it checks for a definition of
the required procedure. If found, the search stops
and the found Function is executed.

We can optimise this representation. We need
only add a new FunctionFrame when a Function
definition changes. Whenever a new RDR rule is
created, a pointer could be added from this RDR
rule to the FunctionFrame. The lookup of all the
Function definitions in the new RDR rule could be
done at RDR rule creation time thus avoiding having
to do this lookup at runtime.

Continuing the RDR example of Figure 3, suppose
the Function b is found to be faulty in the case of
a&b&e. A new RDR rule rdr4 is added to our RDR
tree. The resultant tree (and the pointers into the
function stack) is shown in Figure 11.

In terms of BNF, RDF is only a small extension to
RDR. An RDFnode is an RDRnode, plus a pointer into
a FunctionFrame. FEach FunctionFrame stores a
pointer to a parent FunctionFrame (see Figure 12).
A FunctionFrame stores Oracles (recall Figure 5).
Within a FunctionFrame, no Oracle name is re-
peated. However, Oracle names can repeat in dif-
ferent FunctionFrames. For example, in Figure 11,

b/0 was defined in two FunctionFrames.

SR

Figure 11: RDF= RDR plus a FunctionFrame stack
(top right).

RDFnode
FunctionFrame ::

RDRnode thatUses FunctionFrame
{parent FunctionFrame} {Feature}+

Figure 12: BNF for RDF.

5 Discussion

Our approach has several advantages over con-
ventional knowledge engineering methodologies.
Firstly, this framework is stronger on maintenance
than other approaches. We have defined a main-
tenance regime which integrates into our single ab-
ductive KL device. Maintaining a range of different
inference devices (e.g. like those used in KADS) is
inherently more complicated.

Secondly, in our framework, we can perform com-
parative evaluations of different approaches. Con-
sider two interesting comparisons:

e RD-RA vs RDR: Our framework lets knowledge
engineers work at the level of specific data
items or at a more general PSM level (contrast
rdr99 in Figure 10 with rdri1 in Figure 9).



When offered that choice, if knowledge engin-
eers only ever work at the specific example level
(e.g. using BESTs like rdr99), then that would
make us suspect that RDR is more useful than
RD-RA.

e RD-RA vs KL-A: Our framework lets know-
ledge engineers work at the single-world level
or the multiple world level (contrast rdrii
with rdr34 in Figure 9). When offered that
choice, if knowledge engineers only ever work
at the single-world level (e.g. using BESTs like
rdr34), then that would make us suspect that
KL-A is more useful than RD-RA.

Thirdly, RD-RA addresses a known problem with
RDR. The RDR representation is optimised for main-
tenance, not human reflection. Consequently, they
are hard to read. Various techniques have been ex-
plored for reverse engineering a browsable model
from an RDR tree. Lee extracts casual mod-
els from RDRs [26]; Richards extracts exception
graphs [55]; and Edwards explores reflection tools
for RDR trees [14]. None of these approaches allow
the knowledge engineer to initialise the RDR trees
with existing knowledge. In our approach, know-
ledge engineers can write text files like Figure 6
and Figure 10 and then check them into the main-
tenance environment. Further, they can then check
the knowledge out of the maintenance environment
in which case new text files in the format of Figure 6
and Figure 10 are written. That is, while standard
RDR is a replacement of existing knowledge engin-
eering approaches, our approach can usefully aug-
ment existing knowledge engineering approaches.

Fourthly, the abductive approach described here
can be extended from maintenance to conflict resol-
ution in requirements analysis. Requirements mod-
elling (RM) researchers such as Easterbrook [13],
Finkelstein et. al. [18], and Nuseibeh [42] argue
that we should routinely expect specifications to
reflect different and inconsistent viewpoints. The
software specification problem then becomes one
of managing these different viewpoints. In cur-
rent methodologies, handling and resolving different
viewpoints is a time-consuming and costly process.
If these different viewpoints are poorly managed,
the specifications have to be repeatedly reworked or
the runtime system has to be extensively modified.

Our approach could be used for conflict resol-
ution. Let us reconsider Figure 1 and the author

labeling on the edges of that graph. Recall the ap-
parent conflict in the middle of Figure 1 on the left-
hand-side: author 1 believes a = ¢ while author 2
believes a ¥ ¢. Tn terms of conflict resolution, the
worlds in Figure 2 tell us several things. Firstly,
author 1’s edges can be found in two worlds; i.e.
with respect to the task IN= {aUp, bUp} and OUT=
{dUp, eUp, fDown}, a single author’s opinions are
inconsistent. Secondly, both author 1 and author
2’s edges exist in the same consistent world (W[1]);
i.e. the apparent conflict of authors 1 & 2 did not
matter for this task. Thirdly, author 1 should re-

view their opinion that a — ¢ since that proved to
explain less of the required behaviour that author

2’s option that a e

This abductive approach has technical advant-
ages over other conflict resolution approaches. One
striking feature of other systems that support
multiple-worlds (e.g. Cake [54],Telos [45]) is their
implementation complexity” We have found that it
easier to build efficient implementations [33, 34]
using the above graph-theoretic approach than us-
ing purely logical approaches (e.g. [23]). Easter-
brook’s Synoptic tool only permits comparisons of
two viewpoints [13, p113]. Abduction can compare
N viewpoints. Also, Easterbrook [13] lets users
enter their requirements into an explicitly labeled
viewpoints which he assumes are internally con-
sistent. We have no need for this restrictive (and
possibly overly-optimistic) assumption. Abduction
can handle inconsistencies within the opinions of a
single user.

Further, our multiple-worlds reasoner is not the
JTMS-style [12] approach used in other conflict re-
cognition and management systems (e.g. [54]). A
JTMS searches for a single set of beliefs. Hence, by
definition, a JTMS can only represent a single view-
point. Our approach is more like the ATMS [10]
than a JTMS. An ATMS maintains all consistent
belief sets. We believe that an ATMS approach is
better suited to RM conflict management since the
different belief sets are available for reflection.

"Rich & Waters especially comment on the complexity of
their hetrogenous architecture [54].



6 Conclusion

We have characterised knowledge level modeling as
an abductive process and PSMs as suites of BEST
operators to operationalise the principle of ration-
ality. We have further characterised PSM mainten-
ance as the controlled evolution of the BEST operat-
ors via ripple-down-functions. That is:

PSM maintenance = abduction + RDR + RDF.

This abductive approach to PSMs is closer to the
KL-4 view of knowledge level modeling than the
KL-B approach of (e.g.) KADS and, apart from
its maintenance advantages, permits comparative
analysis of expert systems approaches and conflict
resolution in requirements modeling.
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