10

20

25

30

Applications of Abduction: A Unified Framework
for Software and Knowledge Engineering

Tim Menzies!

Artificial Intelligence Department, School of Computer Science & Engineering,
University of NSW Sydney, Australia, 2052;
Email: timm@cse.unsw.edu.au; Url: www.cse.unsw.edu.au/~timm

Abstract. A new framework is proposed in which software engineer-
ing (SE) is the construction of a search space and knowledge engineer-
ing (KE) is the constructing the intelligence to control the traversal of
that space. Conventional information systems and object-oriented nota-
tions can specify the search space. An abductive inference engine can
implement the intelligent control. This unified framework supports con-
ventional SE/KE approaches, plus automatic screen generation, conflict
resolution in requirements capture, code library management, optimised
code generation, and automatic testing tools.

5000 words. Submitted to the 10th European Workshop on Knowledge Ac-
quisition, Modeling, and Management Sant Feliu de Guizols, Catalonia, Spain
October 15 - 18, 1997

1 Introduction

Conventional software descriptions can be divided into several perspectives that
include the events and activities in which data is processed (§2.2). Knowledge-
level modeling [20,21] adds an extra perspective; i.e. the goal of the program
and the options which must be reflected on while exploring that goal.

This article argues that these perspectives can be connected as follows. Roughly
speaking, conventional software notations will be used to define some “road map”
and knowledge engineering tools will be used to control how we drive over that
road map. More precisely:

— Conventional software engineering perspectives will define a search space. We
will model this search space as a directed graph.

— Knowledge-level tools will define the search space traversal control know-
ledge. We will model this search space traversal control using a graph-
theoretic abduction inference engine (§2.1) which processing graphs gener-
ated from information systems (IS) process models (§2.2) and object mod-

els (§2.3).

Such a single framework would be useful for many applications since they
are often a mixture of SE and KE. For example, consider the following MIS
application:

35

40

45

50

55

60

65

~

0

Menzies; page 2 of 18

We want a few screens to let students enroll themselves into their tutori-
als. If they can’t get the tutorials they want, we can offer them next-best
options. Lecturers should be able to check the current enrollments.

The case to be made here is that a single framework can offer a non-trivial level
of support for the following SE/KE tasks associated with the processing of these
requirements:

— Object modelling (§2.3): For RAM-based constructs, an OO notation might
be more succinct for modelling purposes. OO also allows us to model pro-
cedures along with their associated data structures.

— Business process modelling (§2.2, §3.1): The requirements beg the question
“what does the lecturer do once they have checked the enrollments?”. They
might realise they need to hire more tutors or even abandon the subject due
to low enrollments. An analysis of the business processing might detect new
requirements (e.g. an email button to let the lecturer forward the current
enrollment figures to the head of school).

— Data modelling (§3.2): Assuming the use of a relational persistence mechan-
ism, the student records must be mapped to disc in a normalised form.

— Requirements modelling (83.3): The problem owners (students, lecturers de-
velopers) must be consulted with a view to creating a consistent specification.
Note that the requirements of different owners may conflict.

— Dialogue modelling (§3.4): The mental model of the users must be mapped
into the screen design. Related and common actions must be mapped into
the same screen.

— Planning (§3.5): In the case of students not being able to get their desired
tutorial, they may need to either get another time slot or drop the sub-
ject. An intelligent planning system could assist in the search through these
options, if it had knowledge of course structures (including prerequisites),
student goals, and known constraints. Planning is one example of the kind
of knowledge-level tasks which may extend a standard software engineering
implementation.

— Code Library Management (§3.6): Developers building this system would like
an intelligent assistant to propose what existing software modules may be
relevant to the current problem.

— Testing (§3.7).

— Code generation (§3.8): Ideally, the final system executes quickly.

— Maintenance. We have discuss maintenance in this abductive framework else-

where [17].

Note that the view of knowledge-level modeling taken in this paper is closer
to Newell’s SOAR approach than the KADS problem-solving methods approach
[26]. For more on this approach to knowledge-level modeling, see [15].

75

80

85

90

95

100

105

Menzies; page 3 of 18

2 The Framework

This framework is based around the HT4 graph-theoretic abduction engine (§2.1).
HT4 searches for consistent portions of some background theory which are relev-
ant to some task. The approach to abduction was originally defined for the valida-
tion of qualitative neuroendocrinological theories [16] (§3.7). Once developed, it
was noted that the internal data structures of the algorithm made little commit-
ment to qualitative reasoning. Indeed, the algorithm could execute over any rep-

resentation reduced to a directed graph of literals; e.g. business process graphs (§2.

connecting objects (§2.3).

2.1 Graph-Theoretic Abduction

Abduction is the search for assumptions .4 which, when combined with some
theory T achieves some set of goals OUT without causing some contradiction [4].
That is:

- EQi: TUAF OUT;
- EQy: TUAVWL.

HT4 caches the proof trees used to satisfy £Q¢ and E@s. These are then sorted
into worlds WW: maximal consistent subsets (maximal with respect to size). Each
world condones a set of inferences. A world’s cover is the size of the overlap
between OUT and that world. In the case of multiple worlds being generated, a
customisable assessment operator is used to select the preferred world(s). The
“best” assessment operator is domain dependent. We return to this point be-
low (§3.5).

For example, consider the task of achieving certain OU7T puts using some
I Nputs across the knowledge shown in Figure 1. In that figure:

-x y denotes that y being up or down can be explained by x being up or
down respectively;

— x — y denotes that y being up or down could be explained by x being down
or up respectively.

Each edge in Figure 1 is augmented with two pieces of meta-information
which are explored subsequently. However, the notation is introduced now:

1. Each edge is annotated with a heuristic weight representing how expens-
ive it is to make that inference. Most edges have cost 10, but the edge

corporateSpendingﬁ investorConfidence requires a large amount of
book-keeping by associate accountancy packages to measure the subjective
measure investorConfidence. Hence, this edge has a weight of 100, We
will discuss the use of this edge weight in §3.8.

' Tt is easier to measure publicConfidence via simple telephone surveys. Hence, the
cost of its input-edge is only 10.

Menzies; page 4 of 18

2. Figure 1 is a combination of the opinions of two authors: Dr. Thick (whose
contribution is drawn with thick lines) and Dr. Thin (whose contribution is
110 drawn with thin lines). Observe the apparent conflict in the middle of Fig-
ure 1 on the left-hand-side. Dr. Thick believes foriegnSales H companyProfits
while Dr. Thin believes foriegnSales — companyProfits. We will discuss
the resolution of this conflict in §3.3.

current

account
balance
investor
foriegn = confidence
QI €s ++
10

__++ compay 10_ corporate _ ~
domestic. —75= profits ++ spending T restraint

sales
++
10

public inflation
confidence 10

Fig. 1. Some economics knowledge.

P[1]: domesticSalesDown, inflationDown
P[2]: foriegnSalesUp, publicConfidenceUp, inflationDown
P[3]: domesticSalesDown, companyProfitsDown, corporateSpendingDown,

wagesRestraintUp
P[4]: domesticSalesDown, inflationDown, wagesRestraintUp
P[5]: foriegnSalesUp, publicConfidenceUp, inflationDown, wagesRestraintUp
P[6]: foriegnSalesUp, companyProfitsUp, corporateSpendingUp,

investorConfidenceUp

Fig.2. Proofs from Figure 1 connecting OUT= {investorConfidenceUp,
wagesRestraintUp, inflationDown} back to ZAN'puts= {foriegnSalesUp,
domesticSalesDown}.

Menzies; page 5 of 18

*
* investor

fori confidence
oriegn
sdes ++ /100
: 4
* company 19 corporate * wages
profits 44+ spending restraint
10
++ --
’ 4
public - inflation
confidence 10

Fig. 3. World #1 is generated from Figure 1 by combining P[2], P[5], and P[6]. World
#1 assumes companyProfitsUp and covers 100% of the known OU T puts.

foriegn *

sdles
++ company 10 corporate - wages
domestlc 10 profits ++ spending 10 restraint

saes
- \ /
10
publlc inflation
confidence 10

Fig.4. World #2 is generated from Figure 1 by combining P[1], P[2], P[3], and P[4].
World #2 assumes companyProfitsDown and covers 67% of the known OU T puts.

In the case of the observed OUT puts being {investorConfidenceUp, wagesRestraintUp,

us inflationDown},and the observed ZA puts being {foriegnSalesUp, domesticSalesDown},

HT4 can connect OUT puts back to ZA puts using the proofs of Figure 2. These

proofs may contain controversial assumptions; i.e. if we can’t believe that a

variable can go up and down simultaneously, then we can declare the known

values for companyProfits and corporateSpending to be controversial. Since
120 corporateSpending is fully dependent on companyProfits (see Figure 1), the

key conflicting assumptions are {companyProfitsUp, companyProfitsDown} (de-

125

130

135

145

150

155

160

Menzies; page 6 of 18

noted base controversial assumptions or Ap). We can used Ay to find consistent
belief sets called worlds W using an approach inspired by the ATMS [2]. A proof
P[i] is in W[j] if that proof does not conflict with the environment EA'V[j]. In our
example, EN'V[1]={companyProfitsUp} and EANV[2]={companyProfitsDown}.
Hence, W[1]={P[2], P[5], P[6]} and W[2]={P[1] P[2] P[3], P[4]} (see Figure 3
and Figure 4). Note that while the background theory (Figure 1) may be incon-
sistent, the generated worlds are guaranteed to be consistent.

H'T4 places few restrictions on the representations it can process. The above
process is defined for any representation that can be mapped into a directed
graph of literals (the internal data structure of HT4). Many common knowledge
representations can be mapped into such graphs. Propositional rule bases can
be viewed as graphs connecting literals from the rule left-hand-side to the rule
right-hand-side. Horn clauses can be viewed as a graph where the conjunction
of sub-goals leads to the head goal. In the special (but common) case where
the range of all variables is known (e.g. propositional rule bases, strongly-typed
variables), this graph can be converted into a ground form where each vertex is
a literal. We describe below (§2.2, §2.3) translators for knowledge expressed in
standard information systems (IS) notations.

2.2 Process Modelling

The “Olle-126” is a review of common IS notations. T.W. Olle chaired the
“Design and Evaluation of Information Systems” technical committee (TC8.1)
of the International Federation of Information Processing [22]. This committee
offers a coherent overview of 33 commercial methodologies for planning, business
analysis, and design of information systems. Their report was developed via an
extensive committee evaluation process, plus a special workshop to discuss and
review its framework. That report found that beneath the studied methodologies
are 126 common components divided into three categories: data, process, and
behaviour. The data perspective describes the entities connected up by the other
two perspectives. Processes connect activities which users may perform for some
time. Behaviours connect instantaneous events.

For our purposes, we make certain changes to the “Olle-126” (see Figure 5).
The Olle IS methodologies were developed before the wide-spread use of ob-
ject technology. Therefore, we replace the Olle data perspective with an object
perspective (§2.3). The Olle-process and behaviour perspectives have a similar
meta-level structure (e.g. pre-conditions to activities/events). Hence, we will use
the term Process to denote the representations of the Scenarios elicited during re-
quirements capture [25]. A Process is a Graph containing Flows between Actions
(which may be either Activities or Events). Flows have pre Conditions and post
Conditions (which must just be True). All components of a Process are Concepts
(recall Figure 7) and may use services defined in BusinessClasses; i.e. the object
perspective.

Note the Concept abstract superclass at top of Figure 5. This will be explained
later (§3.4).

170

175

Menzies; page 7 of 18

= < can contain

? S
= | Vertex

Action
*

. transfers *
post pre *
| Condition | Service
* A *

*

*

*
IBusi nessCl

Fig. 5. Business process graphs (drawn using the notation of §5). See Figure 8 for more
details on the region above the dotted line.

2.3 Object Modelling

The object perspective of this framework (Figure 6) is constrained by what struc-
tures can be converted into the directed graphs of HT4. Hence, it is much simpler
than some OO meta-models (e.g. UML [1]). However, within those limits, we can
still represent many common OO constructs. Each BusinessClass handles a set
of Responsibilities which are managed by a set of Attributes and Operations, both
of which are defined by their returnType. Operations may be defined by some
Pseudo-code. Responsibilities may Collaborate with other BusinessClasses. Each
Collaboration (be it an Association or an Aggregation) is a named Relationship spe-
cifying Cardinality ranges (e.g. 1 to 1, 1 to many, 2 to 4, etc). Note that apart from
IS business process modeling, Figure 5 could also be used as a meta-model for
other common flow types such as Harel statecharts [9] and KADS interpretation
models [26].

The key feature of Figure 6 is the usedValues of the Attributes. This is gen-
erated by an analysis of the Process graphs. If we only ever test or set (e.g.)
1:weekDay=monday, 2:weekDay=tuesday, then we need not define seven ver-
tices for weekday in the graph (two will suffice). Similarly, if we only ever test or
set temperature>7, temperature=23, then we only need temperature vertices
for 1:temperature<7, 2:temperature=7, 3: 7<temperature<23,

195

Menzies; page 8 of 18

*
~BusnessClass | subclass
name ~| Concept
description O has
/>has\ *
b Collaberation
Responsibility __* [referential IntegrityHol ds?
description | requires has
2@
ol has Relationship
g = Association name
o £
WE ; .
dass| Signature Aggregation S ?%
\name name 8)
o
/ \ 5@% S
T c
Attribute CardinalityRange
derived? index? max min
nullsAllowed?
key? unique? -
/4 \ PsuedoCode
_ _ used values Boundary
Discrete Continuous * value
Valued inclusive?
$infinifty

Fig. 6. The object perspective (drawn using the notation of §5).

4:temperature=23, 5:temperature>23; i.e we can divide continuous variables
into a finite number of discrete ranges. A test in the code for (e.g.) temperature>7
translates into a test for graph vertices 3 or 4 or 5.

An argument could be made that Process Graphs are not necessary since
these connections could be deduced from the Collaborations and the Operation
source code of BusinessClasses. We do not take this approach for two reasons.
Firstly, while OO Collaborations describe how a class can traverse to another
class, they do not say which traversals are made in the context of a particular
business goal. That is, Process Graphs give an extra level of information above
that of a Collaboration. Secondly, it is a difficult task to automatically infer calling
graphs between Operation source code. Haynes & Menzies [13] had to use an
approximate method for an untyped OO language (Smalltalk). Murphy shows
that call graphs from different generators can vary widely [19]. Hence, we prefer
explicit connection knowledge to be provided in the conceptual modelling.

200

205

220

230

Menzies; page 9 of 18

3 Using the Framework

This section argues that the above framework could handle the SE and KE tasks
listed in the introduction.

3.1 Software Engineering Modelling

The base notations of this framework are deliberately reversed-engineered from
standard OO and IS methodologies (§2.2,§2.3). This allows us to argue that a tool
based on this framework could process much of standard software engineering.
For example, the business process modelling of our tutorial assignment program
could be performed using IS notations (recall Figure 5).

3.2 Data Modeling

The attributes of Attribute (Figure 6), plus the Collaboration.referentiallntegrityHolds?

provides enough information to support an auto-conversion of our system into
an underlying relational engine. The conversion of OO models to a relational
schema is not a research issue for this project. Commercial tools already exist
that can automate this task (e.g. [23]). Lastly, we see no conflict of the concep-
tual model offered here (Figures 5&6) and common OO models. Process Graphs,
for example, are a subset of the statecharts of UML [1].

3.3 Requirements Modelling

Requirements modeling (RM) is the process of assisting a community of busi-
ness users to move to a common position. Qur worlds-generation approach of-
fers RM support. Recall the apparent conflict between Dr. Thick and Dr. Thin
in Figure 1. The worlds of Figure 3 and Figure 4 tell us:

— Dr. Thin’s contributions can be found in two worlds; i.e. with respect to
the problem of OUT puts= {investorConfidenceUp, wagesRestraintUp,
inflationDown}, and ZA puts= {foriegnSalesUp, domesticSalesDown},
a single author’s opinions are inconsistent.

— Both authors contributions exist in the same consistent world (W[1]); i.e. the
apparent conflict of Dr. Thick and Dr. Thin did not matter for the analysed
problem. If this was true for all the analysed problems, then we could de-
clare that for all practical purposed, Dr. Thin and Dr. Thick are not really
disagreeing.

— Dr. Thin may wish to review their opinion that foriegnSales — companyProfits

since, in terms of the studied problem, this proved to explain less of the re-

quired behaviour that Dr. Thick’s option that foriegnSales t companyProfits.

HT4 has technical advantages over other conflict resolution approaches:

240

245

Menzies; page 10 of 18

Easterbrook [3] lets users enter their requirements into an explicitly labeled
viewpoints. He makes the simplifying assumption that all such viewpoints are
internally consistent. HT4 has no need for this, potentially, overly-restrictive
assumption. HT4 can handle inconsistencies within the opinions of a single
user. That is, HT4 can analyse conflicts at a finer granularity than approaches
based on manually-entered viewpoints (e.g Easterbrook or Finkelstein et. al.

[5])-

Easterbrook’s Synoptic tool only permits comparisons of two viewpoints [3,
pl13]. HT4 can compare N viewpoints.

We have found that it easier to build efficient implementations [14, 15]
using the above graph-theoretic approach that using purely logical approaches
(e.g. [10]).

HT4 places few restrictions on the representations it can process (§2.1).

- can offer x| Service
View] menuPrompt —
help, prompt | tag operation
preferredWidth | selects
maxWidth

canCompile |can contain Viewer

compile tempValue,tempString,
valid warnings, errors, get,
A contain set, cancelled?, active?
sceen position
speufy, edit

Viewltems -3
dynamic?movable? g
order lookup o 2
preferredHeight 5 o
maxHeight % g
ViewString =
ViewNum
ViewNof max, min
options Inc \
maxSelections $infinity i
% Concept
ViewOneOf |<+—{ViewBoolean view

Fig. 7. The View hierarchy (drawn using the notation of §5).

250

255

260

265

270

275

280

285

Menzies; page 11 of 18

3.4 Dialogue Modelling

Menzies and Spurret discuss the MYLE prototype for automating the generation
of the interface [18] for object-oriented systems. In MYLE, each business ob-
Ject reported its contents and editing rules as an aggregation of View instances
(see Figure 7). For example, a Date instance could report itself as a Viewltems
instance containing a ViewNum instance for the number of the day in the month,
a ViewOneOf instance for the name of the month, and a ViewNum instance for
the year. When interacting with the user, a Viewer instance handles the screen
activity; e.g. screenPosition and temporary copies of the current value and the
string on the screen. When the user entered a string, a quick peek at the string
(View.canCompile) looked for any gross errors before View.compile converted the
string into an internal value. This value was then checked by View.valid without
errors and warnings being stored back in the Viewer. A View can also offer a
set of Services back to the user; i.e. actions that the user can initiate from the
screen. These Services are implemented by the instance from which the screen is
generated.

MYLE auto-generated one window for each business object. Each window
displayed the Views from that object and was controlled by Viewers. The resulting
screens were cluttered with numerous small editors. This was inappropriate for
many users since they were always switching from window to window to perform
common tasks. A better style of interface would be to auto-generate screens
which clump together related processing on the same screen. Given that (i) we
have knowledge of the business processes that use objects and (ii) each object
can offer a set of View objects, then, we could auto-configure the dialogue layer
in a superior manner to MYLE. The knowledge for this clumping can come from
the Process Graphs.

3.5 Planning and Knowledge-Level Tasks

We have argued elsewhere [15] that a wide-range of knowledge-level tasks map
into a variant of HT4 that supports customisable inference assessment operators
called best. For example:

— Single fault diagnosis favours favours worlds with only one input and greatest
number of outputs.

— Ezplanation can be characterised as the process of favouring the Worlds which
contain the most number of things that the user has seen before.

— Tutoring is an extension to explanation. If the best explainable Worlds were
somehow sub-optimum, then we could then make a entry is some log of teach-
ing goals that we need to educate our user about the Edges which are not in
their best explainable Worlds but are in other, more optimum, Worlds.

— Planning is the search for a set of operators that convert some current state
into a goal state. Given a set of operators, we could partially evaluate them
into an and-or Graph they propose between literals. For planning, we could
favour the World with the simplest Proofs. One application of least-cost plan-
ning is optimised code generation (§3.8).

Menzies; page 12 of 18

can contain

to

And

|nput‘? output?
culled?
Jassumption? .

forbidsl/controversial?
prove

prove

*
*[% * \ * *
g e
uses £ g ﬁag a g
cl=| =
S EEINE
Conflict 3
Resolver

*
COﬂtaI ns Wor |

consi
NodeCR
Proof CR cugéedgeﬁl)
cull(proofsl) ges2
proofs2 WorldCR F
4 L Planning
: cull(worldsl); pre-
BestFirst o] prookssor

distance

: > {eioring

BEMEIrst | prip || validation| [Explanation

Fig.8. HT4 (drawn using the notation of §5).

290

295

300

305

Menzies; page 13 of 18

— Once generated, the best planning Worlds could be passed to a monitoring
system. As new information comes to light, we could reject the plans (Worlds)
which contradict the new information.

— Validation. See §3.7.

The ConflictResolver (CR) hierarchy of Figure 8 characterises bests into the
information they require before they can run:

— Vertex-level NodeCR assessment operators can execute at the local-propagation
level; e.g. use the edges with the highest probability.

— Proof-level ProofCR assessment operators can execute when some proofs or
partial proofs are known; e.g. BestFirst, BeamSearch, and DFID (depth-first
iterative deepening).

— Worlds-level WorldCR assessment operators can execute when the worlds are
known; e.g. Validation (§3.7), Planning, Monitoring, and Explanation.

proof (2,
% assumes
[publicConfidenceUp],
% causes
[foriegnSalesUp],
% inputs
[foriegnSalesUp],
% path
[foriegnSalesUp, publicConfidenceUp,inflationDown],
% forbids
[foriegnSalesDown, publicConfidenceDown,inflationUp],
% outputs
[inflationDown],
% covers
[inflationDown]

).

Fig. 9. An instance of Proof (Figure 8) for P[2] of Figure 2.

An example of a Proof instance is shown in Figure 9. Proofs store where they
start (Proof.inputs) and where they finish (Proof.outputs), and the path taken
between them. For reasons of efficiency, a forbids set is maintained showing what
is blocked by a Proof. Proofs also store what was assumed along the path.

3.6 Code Library Management

Given that we can support an explanation strategy (§3.5), we should also be
able to support intelligent browsing of source code libraries. When faced with a

310

315

325

330

335

340

345

Menzies; page 14 of 18

new problem, and a source code library that the programmer has only limited
experience with, the programmer could ask the source code library to offer ex-
planations of how it might achieve the programmer’s goals. If the source code was
available as a directed graph connecting functions and the programmer’s goals
were ZN put, OUT put pairs, then the “explanation” would be a list of modules
within the library that were relevant to the programmer’s current project.

3.7 Testing

Verification is the detection of syntactic anomalies in the structure of a pro-
gram [24]. Validation is the testing of a program with reference to some external
semantic criteria [29]. Some kinds of validation can be automated (e.g. test suite
coverage) while others require extensive user involvement (e.g. assessments of
screen “usability”).

Our approach could be used to automatically perform certain automatic veri-
fication tests. For example:

— Circularities could be detected by computing the transitive closure of the
and-or graph. If a vertex can be found in its own transitive closure, then it
is in a loop.

— Ambivalence (a.k.a. inconsistency) could be reported if more than one world
can be generated. That is, given a set of ZA puts, mutually exclusive conclu-
sions can be made.

— Un-usable rules could be detected if the edges from the same part of the
conceptual model touch vertices that are incompatible (defined by 7).

Given a library of known behaviours (i.e. a set of pairs <ZN,OUT >),
this approach could perform an automatic validation check. Abductive valid-
ation uses a World assessment operator that favours the Worlds with largest
number of covered outputs. For example, returning to the worlds shown in Fig-
ure 3 and Figure 4, the validation algorithm would note that the overlap of W[1]
and OUT is all of OUT and the overlap W[2] and OUT does not include
investorConfidenceUp; i.e. W[1] explains 100% of the desired OUT puts while
WI[2] only explains 67%. The maximum cover is 100%; i.e. (i) their exist a set
of assumptions ({cUp}) which let us explain all of OUT; and (ii) this model has
based abductive validation.

Note that this process can be summarised as: “can a model of X explain
known behaviour of X?”. We have argued elsewhere [16] that this is the non-
naive implementation of KBS validation since it handles certain interesting cases:

— If a model is globally inconsistent, but contains local portions that are con-
sistent and useful for explaining some behaviour, HT4 will find those por-
tions.

— In the situation where no current model explains all known behaviour, com-
peting models can be assessed by the extent to which they cover known
behaviour. Model X is definitely better than model Y if model X explains far
more behaviour than model Y.

355

360

365

370

375

380

385

390

Menzies; page 15 of 18

Elsewhere, we have shown examples where this validation approach has faul-
ted theories published in the international peer-reviewed neuroendocrinological
literature. Interesting, the detected faults were found using the data published to
support those theories [16].

An interesting variant on our validation approach are the automatic test suite
generation procedures offered by the dependency-network approaches of Gins-
berg [7,8] and Zlatereva [27,28]. The dependencies between rules/conclusions
are computed and divided into mutually consistent subsets. The root depend-
encies of these subsets represent the space of all reasonable tests. If these root
dependencies are not represented as inputs within a test suite, then the test suite
is incomplete. Test cases can then be automatically proposed to fill any gaps.
Such test cases can be generated in H'T4 be setting ZN to the roots of the graphs
within HT4 and OUT to be all the graph vertices that are not ZA puts (but this
will be a slow inference process).

3.8 Optimised Code Generation

Let the cost of a world be the maximum cost of the proofs within it. Consider
a best assessment operator which maximises the covered? inputs while minim-
ising the cost of the Worlds. A world so-generated would be a least-cost plan for
achieving the maximum desired goals in the least time. If this least-cost plan was
reported in (e.g.) C code, then this “plan” would be become an automatically
generated optimised program.

Kanovich [11] uses exactly this scheme to to optimise functional evaluation.
Kanovich’s implementation of his approach runs over Pascal source code to ex-
tract the headers of each source procedure. The inputs and outputs of the pro-
cedures are studied and each procedure header is added to a dependency network
that is an and-or graph. Pre-conditions to executing the procedure are stored as
conjunctions upstream of proposition representing the procedure call. Possible
outputs from each procedure are out-edges from the procedure proposition. Kan-
ovich’s planner runs over this network to return the world with minimum cost.
This world is then compiled into the main procedure of a Pascal program which
calls the procedures in the original source code.

In a similar approach, Freeman-Benson et. al. [6] discuss code extraction
from a constraint solver. Such a “solution” is a directed acyclic data-flow graph
(which is very similar to an HT4 World) whose nodes are constraint methods.
Optimised code-generation is just a depth-first traversal of this network and the
printing of the method calls in each node.

Returning to our example (Figure 1), the maximum cost of a proof in W[1] is
120 (from P[6]) and the maximum cost of a proof in W[2] is 30. Hence, we may
prefer to generate code from W[2] (Figure 4) since this will run significantly faster
than W[1]. However, this fastest program would not be able to achieve all the
program goals (the OUT put set) of a program generated from W[1]; i.e. in this
example, we have have to make a choice between runtime speed and completeness.
Note that our approach supplies the information required to intelligently make
this choice.

395

400

405

410

415

420

425

430

Menzies; page 16 of 18

4 Conclusion

We have offered a unified abductive architecture for unifying software engineer-
ing and knowledge engineering approaches. Conventional SE notations define a
search space which we can intelligently search using KE tools. One interesting
feature of this architecture is the application of a knowledge engineering technique
(abduction) to standard SE. The advantages of this approach is that a range of
tasks can be implemented in the single framework: requirements modelling; busi-
ness process modelling; OO modelling; data modelling; dialogue modelling and
automatic screen generation; various knowledge-level tasks including planning;
code library management (which we view as a synonym for explanation); test-
ing; and optimised code generation (which we view as a synonym for least-cost
planning).

Currently, HT4 is operational and the translator between the Process Graphs
and the BusinessClasses is being implemented. Once implemented, we hope to
have an SE/KE tool that covers nearly the whole life cycle of MIS applications
from requirements capture during analysis, through to screen generation, coding,
and testing. To cover the whole life cycle, this abductive framework would have
to be extended to maintenance (and this is discussed elsewhere [12,17]).

5 Appendix: OO Notation

This section describes our OO notation. In diagrams like Figure 5, boxes de-
note classes and contain class name (top), attributes (middle, optionally) and
operations (bottom, optional). Boolean attributes are followed by a “?”. Arrows
denote relationships: diamonds denote aggregation relationship; triangles denote
inheritance; otherwise it is a general association. Boxes on the sides of classes
denote qualified associations; i.e. lookup tables on some field, e.g. View.tag. Re-
lationships can be augmented with multiplicities: “*” means “many”; default is
1 to 1. In the text, X denotes a class and X.y denotes the operation/attribute
y of class X. Class names are always shown with a Leading capital letter while
operation/attribute names have a leading lowerCase letter. A leading “/” before
an attribute or a relationship denotes an attribute or relationship that can be
derived from other attributes or relationships.

References

1. G. Booch, 1. Jacobsen, and J. Rumbaugh. Version 1.0 of the Unified Modeling
Language. Rational, 1997. http://www.rational.com/ot/uml/1.0/index.html.

2. J. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163-196, 1986.

3. S. Easterbrook. FElicitation of Requirements from Multiple Perspectives. PhD
thesis, Imperial College of Science Technology and Medicine, University of London,
1991. Available from http://research.ivv.nasa.gov/ ~steve/papers/index.himnl.

435

440

445

450

455

460

465

480

Menzies; page 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

K. Eshghi. A Tractable Class of Abductive Problems. In [JCA[I ’93, volume 1,
pages 3-8, 1993.

. A. Finkelstein, D). Gabbay, A. Hunter, J. Kramer, and B. Nuseibe. Inconsistency

Handling In Multi-Perspective Specification. IEEE Transactions on Software En-
gineering, 20(8):569-578, 1994.

. B.N. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Constraint

Solver. Communications of the ACM, 33:54-63, 1 1990.

. A. Ginsberg. A new Approach to Checking Knowledge Bases for Inconsistentcy

and Redundancy. In Proc. 8rd Annual Expert Systems in Government Conference,
pages 102-111, 1987.

. A. Ginsberg. Theory Reduction, Theory Revision, and Retranslation. In AAA/[

’90, pages 777-782, 1990.

. D. Harel. On Visual Formalisms. In J. Glasgow and B. Chandrasekaran

N.H. Narayanan, editors, Diagrammatic Reasoning, pages 235-271. The AAAI
Press, 1995.

A. Hunter and B. Nuseibeh. Analysing Inconsistent Specifications. In Interna-
tional Symposium on Requirements Engineering, pages 78-86, 1997.

M.1. Kanovich. Effecient Program Synthesis: Semantics, Logic, Complexity. In
Theoretical Aspects of Comptuer Software, September, 1991, Sendai, Japan, 1991.
T. Menzies and D. Fensel. 42 Kinds of Knowledge Mainteance, 1997. In prepera-
tion.

T. Menzies and P. Haynes. Empirical Observations of Class-level Encapsulation
and Inheritance. Technical report, Department of Software Development, Monash
University, 1996.

T.J. Menzies. On the Practicality of Abductive Validation. In FCAT ’96, 1996.
T.J. Menzies. Applications of Abduction: Knowledge Level Modeling. International
Journal of Human Computer Studies, 45:305-355, September, 1996.

T.J. Menzies and P. Compton. Applications of Abduction: Hypothesis Testing of
Neuroendocrinological Qualitative Compartmental Models. Artificial Intelligence
in Medicine, 1997. To appear.

T.J. Menzies and A. Mahidadia. Ripple-Down Rationality: A Framework for Main-
taining PSMs. In Workshop on Problem-Solving Methods for Knowledge-based Sys-
tems, 1JCAT ’97, August 23., 1997.

T.J Menzies and R Spurret. How to Edit it? or a Black-Box Constraint Based
Framework for User Interaction with Arbitrary Structures. In Tools Pacific 12,
pages 213-224. Prentice Hall, 1993.

G.C. Murphy, D. Notkin, and E.S.C. Lan. An Empirical Study of Static Call
Graph Extractors. Technical Report TR95-8-01, Department of Computer Science
& Engineering, University of Washington, 1995.

A. Newell. The Knowledge Level. Artificial Intelligence, 18:87-127, 1982.

A. Newell. Reflections on the Knowledge Level. Artificial Intelligence, 59:31-38,
Feburary 1993.

T.W. Olle, J. Hagelstein, I.G. MacDonald, C. Rolland, H.K. Sol, F.J.M. Van As-
sche, and A.A. Verrijn-Stuart. Information Systems Methodologies: A Framework
for Understanding. Addison-Wesley, 1991.

Persistence Software Inc., http://www.persistence.com/. Persistence: A Relational
Mapping and Caching Tool.

A.D. Preece. Principles and Practice in Verifying Rule-based Systems. The Know-
ledge Engineering Review, 7:115-141, 2 1992.

J. Rumbaugh. Getting Started: Using Use Cases to Capture Requirements. JOOP,

485

490

495

Menzies; page 18 of 18

pages 8-23, 1994.

26. B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: a Modeling Approach to
Knowledge Engineering. Knowledge Acquisition, 4:1-162, 1 1992.

27. N. Zlatareva. CTMS: A General Framework for Plausible Reasoning. International
Journal of FExpert Systems, 5:229-247, 3 1992.

28. N. Zlatareva. Distributed Verification and Automated Generation of Test Cases.
In IJCAT ’93 workshop on Validation, Verification and Test of KBs Chambery,
France, pages 67-77, 1993.

29. N. Zlatereva and A. Preece. State of the Art in Automated Validation of
Knowledge-Based Systems. Ezpert Systems with Applications, 7:151-167, 2 1994.

Some of the Menzies papers can be found at http:// www.cse.unsw.edu.au/ ~timm/pub/
docs/papersonly.html.

This article was processed using the I#TEX macro package with LLNCS style

