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Abstract

Branching of behaviours is a major drawback for qualitative reason-
ing (QR). Intractable branching (chatter) due to irrelevant distinctions is
one of the major factors hindering the application of qualitative reason-
ing techniques to large real-world problems. We should hence seek QR
systems that avoid chatter. QCM models (Qualitative Compartmental
Modelling) chatter very little and certain variants of QCM hardly chatter
at all. We describe the special features of QCM which reduce chatter;
i.e. relevant envisionments, explicit temporal linking, and domain data
measurement policies.

1 Introduction

Is chatter (intractable branching of behaviours) a fundamental property of quali-
tative reasoners (QR)? Or is it some side-effect of current QR strategies? Clancy
and Kuipers observe that... Intractable branching due to irrelevant distinctions
is one of the major factors hindering the application of qualitative reasoning
techniques to large real-world problems [5]. The problem of chatter is widely
discussed and is yet to be resolved. Meta-knowledge can be used to partially
tame chatter. For example, the Waltz filtering of the QSIM QR system [14]
rules-out a transition of the first derivative of a variable from increasing to de-
creasing without first going through a zero state (more complex examples are
offered in [15]). In practice however, chatter is often observed [11] and must be
somehow handled by the program calling the qualitative simulator (e.g. impose
sub-divisions on the model to contain the effect of chatter [5]).

In contrast to other QR systems, we observe that models in our QCM sys-
tem (Qualitative Compartmental Modelling [23]) chatter very little and certain



variants of QCM hardly chatter at all. This is a surprising observation since our
reading of the literature indicates that chatter is a fundamental property of QR
systems. This paper examines why chatter is rare in certain QCM variants. It
will be shown that chatter can be reduced via certain implementation options;
i.e. explicit temporal linking; data-rich or data-poor domain measurement poli-
cies; and relevant envisionments (these terms will be explained below). This
last implementation option, relevant envisionments, is what distinguishes QCM
from other QR systems such as QSIM.

We will proceed as follows. First, we introduce qualitative reasoning, the
problem of chatter, and the QCM system. Next, we describe an experiment
where we ran the QCM reasoner over a million times looking for variants on
QCM problems where chatter is reduced. Lastly, we discuss how relevant envi-
sionments can explain the lack-of-chatter in certain QCM variants.

2 QR: An Overview

The QR community focuses mainly on the processing of systems called quali-
tative differential equations (QDE) which are (i) piece-wise well-approximated
by low-order linear equations or by first-order non-linear differential equations;
(ii) whose numeric values are replaced by one of three qualitative states: up,
down, or steady [12]. QSIM [14] is a theorem prover for QDEs and can be used
to implement a range of QR systems (e.g. QPT [6]).

(Not all QR is based directly on QDEs. For example, Yip [31] discusses the
qualitative dynamics of hamiltonians. Bratko et. al. [2] generate a rule-base
for heart disease via a machine learning program that condenses the output
from an indeterminate qualitative model of heart disease. In the bond graph
approach [29], models are built out of components representing abstract energy
sources, sinks, storage, and dissipater devices. However, QCM is based on
influence statements extracted from QDEs. Hence, for the rest of this paper,
we will assume QR means the processing of QDEs.)

A commonly observed property of QDEs is their indeterminacy [5]. Consider
two competing influences on a variable. That variable may go up, down, or, if
the influences cancel each other out, remain steady. One branch of the reasoning
must be forked for each possibility. This forking process may recur downstream
of the branch; i.e. the branch may generate sub-branches and sub-sub-branches
and so on.

If a QR is simulating a known system, then observations of that system can
constrain branching. For example, if the QR system tries to branch on wind
speed at time 5, and it is known that wind speed at time 5 did not decrease,
then we can cull the down branch. In general, less data means more branching.
If measurements are available for all variables for all time points, then a QR
system would become deterministic since only one branch could grow. Note
that it would be naive to attempt to tame chatter by insisting that QR executes
only when all variables are measured. The costs of making measurements in
many domains can prohibit extensive observations. For example, the Smythe’89
compartmental model of glucose regulation [27] is a typical model from the
domain of experimental neuroendocrinology. (Compartmental models utilise the
principal of conservation of mass and assume that the sum of flows of substance
in and out of a compartment must equal zero. Flows are typically modelled using
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Figure 1: The Smythe’87 model. Adapted in [18] from [26].

a time-dependent exponential function since the rate of flow is often proportional
to the amount of stuff in the compartment [17]). The Smythe’89 model contains
27 compartments linked by 82 flows. The model is a summary model generated
for six other journal articles. On average, only 5.2 of the compartments are
measured in any one experiment.

3 QCM: An Abductive Qualitative Reasoner

This section describes QCM, a qualitative compartmental modeling system. The
next section describes experiments with QCM variants for handling temporal
reasoning.

QCM is a generalisation of QMOD: Feldman and Compton’s work [8,9] on
QR. A QCM theory contains a set of influence statements extracted either from
known equations about the domain or from intuitions offered by experts. For ex-
ample, the Smythe’87 model of human stress responses [26] studied the relations
between serum adrenocorticotropin (acth), serum corticosterone (cortico), and
neuro-noradrenergic activity (nna). The model is shown in Figure 1. Nna was
measured as the ratio of noradrenaline to its post-cursor, 3,4-dihydroxphenyl-
ethethyleneglycol. This theory was studied via two treatments: (1) dez i.e. an
injection of dexamethasone at 100 mg per kg; (2) coldSwim i.e. a two minute
swim in a bath of ice cold water. A temp variable was used to denote that dex
has the same effects as cortico. In QCM, one would represent the Smythe’87
influences on nna as follows:

direct(coldSwim,nna).
inverse(temp,nna).

These influence statements may be generated from equations. For example,
A=8B*2C-5D would generate influences from right-hand-side variables to the
left-hand-side-variables (and also for all valid rearrangements of the equation
such as D=(3B*2C-A)/5). Direct influences would be generated from B to A
and from C to A. Inverse influences would be generated from D to A.

QCM executes its models by first compiling them down to a directed graph.
For example, the above nna influences would generate the following directed
graph (shown in Prolog format: e(Id, Varl, Statel, Var2, State2)):

e( 1, coldSwim, up, nna, up) .
e( 2, coldSwim, down, nna, down) .
e( 3, temp, up, nna, down) .
e( 4, temp, down, nna, up) .
e( 5, coldSwim, up, and004, up).
e( 6, temp, up, and004, up).
e( 7, coldSwim, down, and005, up).
e( 8, temp, down, and005, up).



e( 9, and004, up, nna, steady) .
e(10, and005, up, nna, steady) .

Edges 1, 2, 3, and 4 were generated via expanding the direct and inverse
influences. The direct connection between coldSwim and temp means that nna
being up or down could be explained by coldSwim being up or down respectively.
The inverse connection between temp and nna means that nna being up or down
could be explained by temp being down or up respectively. Edges 5, 6, 7, 8,9, and
10 were generated via the QCM steady rule: i.e. competing upstream influences
can cancel out. There are two upstream influences to nna. In the case of (e.g.)
both coldSwim and temp going up, then we could explain nna=steady via the
conjunction of upstream influences (connected using the conjunction and004).
For full details on the QCM-compiler expansion process, see [23].

Once the model has been converted to a graph, it is executed via abduction.
Roughly speaking, abduction is a search over some existing theory for consistent
subsets that are relevant for achieving some goal. When contradictions can
occur, abduction must create worlds: maximal consistent relevant subsets. If
multiple such worlds can be generated, then a BEST assessment operator selects
the preferred world(s). For more details on abduction, see [4,13,21]. The
QCM abductive engine executes across a the and-or graph generated above
to find consistent pathways (ordered sets of edges) between output goals back
to known inputs to the system. Pathways that cross unmeasured variables
must make assumptions. Worlds are generated by collecting maximal subset of
these pathways with compatible assumptions. Abductive world generation is a
synonym for QR branching. Incompatible state assignments to a single variable
(e.g. up and down) can be stored in different worlds. Chatter in QCM would
result in an explosion in the number of generated worlds.

QCM is much simpler QR language than other approaches: e.g. time av-
eraging [16], consolidation [3], first-order logic qualitative modelling [2], non-
linear QR [31] or the other QDE processors such as QSIM [14]. Despite be-
ing NP-hard [4,22,25], QCM is a practical tool for validating many real-world
theories such as certain fielded expert systems and scientific theories from neu-
roendocrinology [20]. Given a library of known behaviour (expressed as input,
output pairs), a qualitative theory can be faulted via QCM if it cannot cre-
ate worlds containing all the outputs connected back to the inputs. In this
manner, QCM has found faults in theories of neuroendocrinology published in
international refereed journals [8,9,20,23]. Interestingly, the faults were found
using data taken from the papers that proposed those theories. Also, the faults
had never been detected before, even by the reviewers of those journals. Fur-
ther, when experts reviewed the detected faults, they found them exciting and
insightful to their domain [28].

4 QCM Temporal Variants

In standard QR, time landmarks are created by the reasoner when it realises that
the sign of some variable has changed state. In QCM, time is taken explicitly
from the domain where the model is executed. QCM, variables are renamed
once for each time step in the simulation; e.g. population could be renamed to
populationl, population2 ... populationT where T is some time point. (In this
article, we will not defend the QCM approach to time except to say that some
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Figure 2: Direct(A,B) and inverse(B,A) renamed over 3 time intervals using
different time linking policies. Dashed lines indicate time traversal edges.

classes of QCM models do not chatter.) Once the renamings are done, then
QCM connects variables at time 7 to variables at time i+1 via some temporal
linking policy. Consider the theory direct(A,B) and inverse(B,A). If we execute
this theory over three time steps, we could search one of the spaces illustrated
in Figure 2. In the explicit node linking language (or XNODE), we only cross
time on the nodes explicitly denoted as time nodes by the user (in this example,
A). In the implicit edge linking language (or IEDGE), we cross time on all
edges. Elsewhere, we have shown that both XNODE and IEDGE are adequate
temporal linking policies for reproducing the known correct behaviour of real-
world models [30]. Many other such temporal linking policies can be defined
(see [19,30]), but for the purposes of this discussion, two will suffice.

The key observation of this paper is that these temporal linking policies
exhibit different amounts of chatter. To show these, we need to examine the
behaviour of these linking policies over a wide range of models. To do this, we
took a quantitative real-world model of a fisheries system using the equations
from [1] (pages 135-141). Second, we built a QCM form of the fisheries model as
shown in Figure 3. Note that this fisheries model is ambiguous concerning how
to handle time. We must add in a temporal causal interpretation (e.g. XNODE
or IEDGE) in order to handle the feedback loops. When using XNODE, we must
somehow assign our explicit time traversal nodes. One candidate are the first
derivative variables which show time rate of change. Example first derivative
variables in the fisheries models are fish population change and change in boat
numbers.

Third, we exercised this qualitative theory in a variety of ways using five
problem generators. Generatorl and generator2 mutated the model by corrupt-
ing edges or adding edges respectively. Generatorl flipped between 0 to 17 edges
edges in fisheries (inverse to direct, or visa versa), chosen at random. Genera-
tor2 added in 0, 5, 10, 15, 20, 25 or 30 new edges at random (checking all the
time that the added edges did not exist already in the theory). Once the model
was mutated, it was then copied over T time steps and connected via one of the
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Figure 3: The fisheries model. Adapted from [1] (pp135-141). Variables in
italics are the first derivative variables used in the XNODE study.

XNODE or IEDGE temporal linking policies.

Generators 3,4, and 5 built input and output data sets for the mutated
model. inputs were always observations found in the first copy of the model.
Outputs were always observations not found in this first copy. Generator3 ran
the quantitative fisheries model. Generator4 created random numeric observa-
tions. Generator 3 and 4 produce 105 qualitative data sets (input and output
sets comprising ups and downs) each for testing these models (there are 105
comparisons between the 15 runs of the model used in this study).

Generatorb simulated a poorly measured domain. U percent of the output
from generator3 and generator4 are discarded. Generator5 produces 10 variants
for U at 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 percent unmeasured.

5 Results

This section shows the number of worlds generated via a combination of the
above problem generators. The generators were combined in an arbitrary man-
ner to ensure the creation of a wide range of QR problems.

In the first experiment, generators 1,3 and 5 were combined to run QCM
over variants of the fisheries model with different numbers of corrupted edges.
Between 0 to 17 edges were corrupted using generatorl 20 times to create 360
new models. These were further mutated 10 times each when generator5 was
called (i.e. resulting in 3600 models). These were exercised for both XN-
ODE and IEDGE using the qualitative 105 data sets created by generator3;
i.e. 3600*105*2="756,000 runs. The results are shown in Figure 4.

In the second experiment, generators 2,4 and 5 were combined to run IEDGE
and XNODE over the fisheries model. Between 0 to 30 edges were added to the
fisheries model using generator2 20 times to create 140 new models. These were
further mutated 10 times each when generatorb was called (i.e. resulting in
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Figure 4: Corrupting 0 to 15 edges with IEDGE (solid lines); XNODE (dashed
lines).

1400 models). These were exercised for both XNODE and IEDGE using the
qualitative 105 data sets created by generator3; i.e. 1400¥105%*2=294,000 runs.
The results are shown in Figure 5.

Two effects are clear. Firstly, over a wide range of models, the implicit link-
ing policy generates far more worlds/branches than the explicit linking policy
(compare the solid lines of IEDGE with the dashed lines of XNODE in both sets
of results). There is nothing surprising in this result: implicit linking policies
offer more connections of variables across time. The greater the number of time
edges, the less restricted the temporal search space and the greater likelihood
of chatter from conflicting assumptions.

The second effect is the remarkable similarity in the shape all the output
graphs. Over a wide range of models, the same hump shape can be seen. When
nothing is unmeasured, only one world is created. As more and more is un-
measured, the number of worlds created increases. This is consistent with the
argument above that less data means more worlds. Then a previously unre-
ported effect in the QR literature is seen. As the percent unmeasured increases
even further, the number of created worlds drops back to nearly one; i.e. even
less data means even less worlds. This appears to be a robust effect since it
is seen in different linking policies (XNODE, IEDGE) over a range of different
problems (corrupting existing edges or adding new edges).
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6 Discussion

This section argues that we can explain the less data means less worlds effects
via the relevant envisionment policy of the abductive procedure called by QCM.

The behaviours generated by a qualitative reasoning system are called the
envisionments of that system. Total envisionments are those behaviours which
are possible, given some fixed collection of objects in some configuration. Exten-
sion generation in default logic [24] systems or the ATMS [7] produce total en-
visionments. For example, consider the influences around nna in the Smythe’87
model. Suppose our inputs were (coldSwim=up, dex=up) and our outputs were
nne=up. Total envisionment would build three worlds for nna going up, down,
and remaining steady.

A reasonable restriction on the total envisionments are the attainable envi-
sionments; i.e. all behaviours possible from some given initial state [10]. QSIM
using attainable envisionments. However, note that attainable envisionments,
even with its restricted search space, would still include three worlds.

In essence, total and attainable envisionments are asking what follows from
certain state assignments. Relevant envisionments answers another question:
Given some behaviour of interest can these behaviours be reached given certain
state assignments? To answer this question with total or attainable envision-
ments, one must compute the total or attainable envisionments, then search
them for the required behaviour. This approach runs the risk of generating
many behaviours that are irrelevant to the process of finding what percent-
age of known behaviours can be explained by a hypothetical model. Relevant



envisionment moves the goal of the simulation into the inference procedure.
Relevant envisionments only generate the behaviour possible from some given
initial state (the inputs) and which can lead to some desired final state (the
outputs). Continuing with the nna example, nna=down and nna=steady would
not be found in a relevant envisionment since those assumptions do not generate
a proof of nna=up.

To perform relevant envisionments, QCM restricts the search to the down-
stream transitive closure of the inputs and the upstream transitive closure of
the outputs. For more details, see [23].

These three envisionment policies result in different percentages of the search
space being explored: total explores more than attainable which explores more
than relevant. Consequently, these envisionment policies make differing amounts
of assumptions about state variables: total assumes more than attainable which
assumes more than relevant.

We can now offer an explanation for the hump shape. Initially, as the per-
cent unmeasured decreases, the less data means more worlds effect dominants.
However, after some point (around 50 percent unmeasured), another effect dom-
inants. Branching is a function of the number of conflicting assumptions made
by the qualitative reasoner. As the percentage of unmeasured variables in-
creases, the size of the input and output sets decreases. In total envisionments,
this has no effect on the number of assumptions made since total envisionments
offers assumptions for all variables. However, attainable envisionments make
less assumptions while relevant envisionments make even less. Hence, for low-
assumption envisionment policies (e.g. relevant envisionments), branching is
reduced when the amount of data from the domain is reduced. We conjec-
ture that since the QSIM literature is full of debates on taming chatter, that
attainable envisionments still makes excessive state variable assumptions.

7  Conclusion

A general tool for reducing chatter is relevant envisionments. Relevant envi-
sionments produce fewer assumptions and hence a reduced chance of conflicting
assumptions. To use relevant envisionments, the knowledge engineer must iden-
tify some small subset of variables that are of critical importance to the decision
making process which prompted the creation of the model. For example, if you
are using QR to test if some disaster conditions could occur, then model that
disaster condition. Identify a conjunction of state assignments which can cre-
ate the disaster. Add these to the output set. Use a relevant envisionment
algorithm to see if this conjunction is possible.

Apart from relevant envisionments, other modelling tools which reduce chat-
ter in a QCM framework are:

e Don’t just model some physical situation, measure it as well. Somehow
find constraining values for either most of the data or a small portion
of the data. However, avoid measuring half the data since this seems to
generate the most worlds. We suspect this advice is general to any relevant
envisionment QR system. To test this, we would need to repeat the above
study on (e.g.) a QSIM system modified for relevant envisionments.

e Use XNODE. This advice implies adding first derivative variables (e.g. fish



population change) to QCM models. Jumps between time steps will only
occur on these first derivative variables. However, when using XNODE,
use the first derivative variables sparingly since all first derivative vari-
ables increases the number of time edges. Time edges can create chatter
since the greater the number of time edges, the less restricted the tem-
poral search space and the greater likelihood of chatter from conflicting
assumptions.

In summary, chatter is a fundamental property of qualitative reasoning.

However it can be significantly reduced via the appropriate selection of strategies

for

QR systems.
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