More Results on the Practical Lower Limits of
Test Set Size

Tim Menzies', Sam Waugh?

! Artificial Intelligence Department,

School of Computer Science and Engineering,
University of NSW, Australia, 2052
?Defence Science and Technology Organisation,
Air Operations Division, Melbourne, Australia, 3001
tim@menzies.com
sam.waugh@dsto.defence.gov.au

http://www.cse.unsw.edu.au/~timm

August 4, 1998

Abstract

A general experimental rig is described for detecting where validation
fails. This rig can offer precise domain-specific recommendations regard-
ing minimum test set size. In the best case found to date, as few as 13
tests were sufficient to demonstrate the competency of a KBS. Further,
the size of each test was very small: they ignored ninety percent of the
KBS. Submitted to the Pacific Knowledge Acquisition Workshop, PKAW
’98, Singapore, November, 1998.

1 Introduction

Modern knowledge acquisition views knowledge-based system (KBS) construc-
tion as the construction of inaccurate surrogates models of reality [8,40]. Agnew,
Ford and Hayes [1] comment that ezpert-knowledge is comprised of context-
dependent, personally constructed, highly functional but fallible abstractions.
Practioners confirm just how inaccurate systems can be:

e Silverman [35] cautions that systematic biases in expert preferences may
result in incorrect/incomplete knowledge bases.

e Compton [6] reports expert systems in which there was always one further
important addition, one more significant and essential change.

e Working systems can contain multiple undetected errors. Preece and
Shinghal [31] document five fielded expert systems that contain numerous
logical anomalies. Myers [27] reports that 51 experienced programmers
could only ever find 5 of the 15 errors in a simple 63 line program, even
given unlimited time and access to the source code and the executable.

Potentially inaccurate and evolving theories must be validated, lest they gen-
erate inappropriate output for certain circumstances. Testing can only demon-
strate the presence of bugs (never their absence) and so must be repeated when-
ever new data is available or a program has changed. That is, testing is an
essential, on-going process through-out the lifetime of a knowledge base.

Testing a theory should be impossible. A theory with N variables with §
states (on average) may require up to SV tests. In practice, this number is
impossibly large. For example, one sample of fielded expert systems contained
between 55 and 510 literals [31]. Literals offer two states for each proposition:
true or false (i.e. S=2and N is half the number of literals). Assuming that (i) it
takes one minute to consider each test result (which is a gross under-estimate)
and (ii) an effective working day of six hours a day and 225 days a year, then
a test of those sampled systems would take between 29 years and 1070 years (a
time longer than the age of this universe).

The above analysis must be somehow naive. Most test regimes are defined
using far less than SV tests:

e Caraca-Valente et.al. [3] report that many expert system writers recom-
mended small test sets of between five to fifty items.

e Menzies has described a detailed evaluation of a process control expert
system for a petrochemical plant with many thousands of variables. That
evaluation included a comparative analysis of the expert system with a
human expert. The evaluation required only 40 tests [21].

¢ Object-oriented analysts and designers recommend specifying an their sys-
tems with between 10 to 100 short, specific examples of system operation
(the use case) [14].

e Usability engineers have explored the ideal number of testers for an inter-
face. This cost-benefit curve plateaus at two to four users: a remarkably
small number [29].

If SV is naive, how many tests would a smart analysis propose? Can we say,
practically speaking, what are the minimum number of tests for a system? This
is an important practical problem for KBS developers. In many domains, it is
difficult and expensive to find or build test sets. For example:

e The (in)famous Limits to Growth study attempted to predict the interna-
tional effects of continued economic growth [17]. Less than 0.1 percent of
the data required for the theories was available [5].

e Data collections in neuroendocrinology (the study of nerves and glands)
can be just as sparse since data collection in that domain is very expensive.
In one extreme example, 300,000 sheeps brains had to be filtered to extract
1.0 milligrams of purified thyroptin-releasing hormone [16].

e Techniques exist for automatically generating test sets. For example, the
dependency network of a system can be used to determine inputs that
will exercise all branches of the system. Sophisticated non-monotonic
techniques can be used to separate inputs into sensible subsets [11,41].
However, once an input suite is inferred, an expert still has to decide what
are the appropriate outputs for those inputs. This may be a significant
analysis task and, in practice, may only be practical for small systems.

Given the practical problems associated with data collection, practioners
often need to rationalise the process of building test sets. The value of building
bigger test sets must be weighed up against the cost of their construction. To
avoid wasting money, practioners must build test sets big enough to be useful,
but no bigger. This paper explores how big is big enough?. Assuming that the
goal of each test will to be reach some outputs out.i from some inputs in.i, then
we define test set size and test item size as follows:

e TEST SET SIZE: The size of a test set N will be number of pairs:
((in.1,0ut.1), (in.2,0ut.2), ..., (in.N,out.N)).

o TEST ITEM SIZE: The size of a single test item will be computed from
(in.i,0ut.i) and denoted U: the percentage of theory variables not refer-
enced in in.i and out.i. At U=0, no variable is Unmeasured. At U=100,
everything is unmeasured (i.e. in.i and out.i are empty). As U decreases,
more data has to be collected and the cost of the test increases. As U
increases the test is cheaper but it is less likely that the test will detect
anything.

This article is structured as follows. We begin with some preliminary notes.
Based on a literature review, it will be argued that the lower useful bound
on test set size is 13 to 30 [3,4,7,37]. Experiments with a general validation
engine will show that the practical limits on the size of single test item are quite
variable. Prior work identified classes of theories where testing was practical
for U=0..70 [25] (see below). This study reports another class of theories where
testing is practical for U=0..90.

1.1 Preliminary Notes

The terminology of this paper supersedes previous publications in this area
[18-20,23-25,39).

While this paper is written in the context of knowledge engineering, there
is nothing in principle stopping the application of these results to standard
software engineering.

A knowledge base, as viewed by most of this article, is either (i) a black-
box with inputs and outputs or (i) a directed graph connecting knowledge-
base literals. This view is orthogonal to the standard view of a knowledge
base as domain knowledge plus ontology plus problem solving method (PSMs);
e.g. [12,34]. The analysis of this article could be applied to PSMs and ontologies
if some partial evaluation system (e.g. [33]) converted them to ground horn
clauses (ground horn clauses can be viewed as a directed graphs with sub-goals
connected via an AND-node to the head).

This works assumes a model of testing of the following form: can a theory
of X reproduce known or desired behaviour of X? (where the known or desired
behaviour of X is stored in a test set). Other models of testing exist (e.g. the
syntactic anomaly detection work of Preece [30]). There are at least two ad-
vantages of the testing model used in this paper. Firstly, precise limits to this
model of testing can be determined (see below). Limits to test in other mod-
els of testing is an open issue and, to the best of our knowledge, not actively
researched Secondly, if a system fails our model of testing then (assuming the
test set is correct), then something must be wrong. The same cannot be said

for other testing models. For example, Preece stresses that his work does not
detect errors; rather it only detect anomalies which require further human in-
vestigation. That is, if a system fails a Preece-style check, it is still possible that
nothing is really wrong.

Machine learning researchers may be surprised at this article’s endorsement
of small test sets. Much of machine learning research is focused on a summary
of large amounts of examples (e.g. [26,32]). A truism in that field is that the
more data, the better. However, the goal of this research is the assessment of an
existing theory, not the creation of a new theory. Theory creation may require
far more data than 13 to 30 examples.

The paradigm of this article is exactly the kind of thinking rejected by
Newell [28]. Reacting to an excess of experimental zeal in cognitive psychol-
ogy, Newell argued forcibly against conducting experimental programmes that
offered single answers to yes-no questions. Rather, said Newell, we should per-
form multiple studies of complex systems, collect large amounts of data, and
unify those results into some rich theoretical structure. Such large simulations,
he argued, are far more insightful than (e.g.) twenty yes-no questions. Indeed,
we will show below cases were far more than twenty questions are be required
(e.g. when errors are detected, or when more than one conclusion is required).
However, Newell’s comments are not fatal to this research. For many applica-
tions, we seek not to learn new laws about the universe. Rather, we only seek
to certify the competency of a particular device. Our lower bounds on test sets
argument applies only to the certification problem. Also, Cohen (personal com-
munication, 1998) argues that Newell confused the specifics of an observation
with the generality of the implication of that observation. For example, consider
the question do heavy objects fall faster in vacuum than light objects?. The yes
answer would have enormous implications for our vision of the universe since it
would challenge base assumptions about gravity.

2 Lower Bounds on Size of Test Set

The next section argues that, in the best case, the size of a single test item
may be quite small (i.e. it can ignore up to ninety percent of the theory). This
section reviews mathematical arguments that the number of tests can be very
low. First, an optimistic argument will be presented that the number of tests
can be 30 or less. Next, some cautionary remarks are offered to balance this
optimism.

More Than 50 is Too Much: Various researchers report that a large test set
size can confuse, not clarify. Courtney and Gustafson [7] warn that numerous
spurious correlations can be found in large sample sizes. Cohen notes that the
standard error on the mean degrades steeply up to around 30 samples, and
degrades very slowly after 50 samples [4]. That is, the benefit of performing
more than 50 tests is dubious.

20 to 30 Tests are Enough: A normal distribution is a well studied curve
in statistics. It can be fully characterised by the mean and spread (variance)
of this bell-shaped curved. Once a distribution is characterised as being nor-
mal, then values can be predicted with well-defined degrees of confidence. Not
all distributions are normal. However, the central limit theorem shows that if
30 random samples are taken from any distribution, then that sample can be

approximated using the normal distribution [37]. While 30 is desirable, this
approximation is serviceable after 20 samples. That is, test sets larger than 30
items can be approximated by 30 or less randomly generated test sets.

13 Tests Are Often Enough: Caraca-Valente et.al. [3] studied the margin of
errors found when testing expert systems for the physically handicapped. Those
systems handled a variety of tasks including homeopathic treatment, adapting
jobs and vocational guidance, and physiotherapeutic diagnosis. Empirically,
they noted an exponential decay relationship between the number of test cases
and the maximum error from each test. As the number of tests decreased, the
maximum error increased rapidly until the knee of the curve. After the knee,
the maximum error grew much slower; that is, after some point, there was less
and less benefit in increasing the test set size. Caraca-Valente et.al. explored
if this was a quirk of their application domain. Like the central limit theorem,
they assumed random samples. They offer five results:

1. A theoretical relationship between the number of tests made and the er-
ror on the results of those tests. This relationship includes three special
parameters.

2. A method of deriving the domain special parameters used in that rela-
tionship using a least-squares estimation.

3. Using these first two results, it was shown that their empirical data can
be reproduced from their theoretical analysis.

4. A set of sample curves for that relationship.

5. A second relationship showing the theoretical ideal number of tests.

A common feature of results three, four, and five was that for a variety of
systems (including their actual expert systems), the knee in all the curves was
never more than 13 tests (and sometimes went down as low as five). Caraca-
Valente et.al. offer guidelines for determining when some application will require
more than 13 tests, but offer no example of such systems.

Cautionary Remarks: The above analysis has certain limitations:

e The above results only comment on how many tests are required to check
if a system passes some criteria. If a system was to fail that check, then
many more tests may be required to diagnosis the fault (for more on fault
localisation, see [13]).

e The above tests may have to be repeated for each conclusion required.
For example, 40 tests are required for a comparative evaluation of human
operators vs an expert system for a large petrochemical plant [21]: 20 for
the expert system and 20 for the human operators.

e The above analysis comments on the number of tests. That analysis is
silent on how big each single test item should be. This issue will be
addressed below.

Ranking

High Ranking curve #2
Good=bad

Ranking curve #1
Good > bad

Low

none lots

Errorsin theories

Figure 1: Two ranking curves.

3 Lower Bounds on the Size of a Single Test
Item

The last section discussed how many tests to run. It was silent on the size of
a single test item. Intuitively, larger theories require larger tests than smaller
theories. This section explores and confirms that intuition. In the best case, an
individual test case can ignore up to 90 percent of a theory.

At some critical value of U (the U-limit), there is not enough information in
the test to check the theory. Elsewhere, we have defined a general experimental
framework for finding the U-limit [20,25,39]. In that framework, a validation
engine is executed over millions of variants to some representative theory and
different values for U. The U-limit is the U value at which that validation engine
cannot distinguish between good and bad theories. The U-limit can be visualised
using a 2-D plot showing theory errors on the x-axis and theory score on the
y-axis as in Figure 1. This visualisation is explained as follows. Suppose we can
rank a theory. Intuitively, a good theory should be ranked higher than a bad
theory. Ideally, if we decay from good theories to worse and worse theories, the
ranking should also decay. For many applications (e.g. learning) it is also useful
if:

e The ranking curve has no discontinuities.

e The ranking curve gives strong feedback if we are getting close to some
ideal theory; e.g. the curve is much steeper around the good theories than
bad theories.

Ranking curve 1 has the above properties. Ranking curve 2 has none of
the above properties: it is perfectly flat. Ranking curve 2 cannot discriminate
between good and bad theories. Ranking curve 1 has been observed when test-
ing fully measured theories (U=0), see below. However, as the percentage of
unmeasured variables (U) increases, the ranking curve moves towards ranking
curve 2. The U-limit can hence be determined by noting at what U value does
the ranking curve become unacceptably flat.

Since the U-limit will be defined experimentally, the reported limit will be a
domain-specific conclusion. That is, the U-limit suffers from a lack of theoretical
generality. To compensate for this, a general experimental rig is described below
for finding the U-limit.

--> happy=false<t--------- motivated=false << --
happy=true motivated=true— :

rulel if happy
then motivated.

rule2 if happy and well-feed - well-feed=true = andg7l

then lazy. well-feed=false < . e
rule3 if motivated : e lazy=true << {-.
then not lazy. e -+ lazy=fal

rule4 if not lazy
then vigilant.
vigilant=true
vigilant=false ----- '

Figure 2: An example of generating T (right) from some rules (left). Modus tollens links
shown as dashed lines.

3.1 Ranking A Theory

To draw the ranking curves, we need a validation device. This section describes
HT4, the graph-based abductive validation device used in our experiments. HT4
is a generalisation and optimisation of the hypothesis testing environments of
Feldman and Compton [10].

Abduction is a general framework for testing a theory [18-20,23-25,39]. Ab-
duction is a demonstration that a theory, plus some assumptions, can reach some
goal without causing contradictions [15]. If contradictions can occur, abduction
must create multiple explanations. Each explanation is a maximal consistent
set, of beliefs which contradicts some other set of explanations. If multiple such
explanations can be generated, then a BEST assessment operator selects the
preferred explanation(s). HT4 uses a BEST operator that favours explanations
that contain the greatest number of desired outputs. In essence, abductive val-
idation performs the following procedure: make whatever assumptions you can
to explain the greatest number of outputs.

HT4 assumes that some other program has taken some domain-specific
representation and converted that into a directed and-or graph of the form
T=(V,Ed,I):

e Fach vertex V.1i represents the assignment of a value to a variable. V.1
can be an AND-node or an OR-node. If an AND-node appears in a proof,
then all its parents must also appear in that proof. If an OR-node appears
in a proof, then one of its parents must also appear in that proof.

e Each directed edge Ed. i represents a statement of the possibility that the
variable-value assignment in the originating node may lead to the variable-
value assignment in the terminating node.

e An integrity constraint I complains if an illegal combination of value as-
signments are being made to variables. For example, I could complain if
we tried to assign two mutually incompatible values to a variable.

e T is some theory generated from the user’s assertion about their domain.

Examples of this T generation process are shown in Figure 2 and in Figure 3.
For an example of abductive validation, consider an economics theory writ-
ten in our QCM language [24,38]. The model is shown in Figure 4. In QCM,

acth = temp
++ \l/ / /I\++
cortico <~ *t* dex

=
nna=steady

andos3 <7 N&=up

cortico=up

cortico=down

— coldSwim=up

coldSwim=down

ando61

/ \ dex=up
and065 and066 <——dex=down
¢\ temp=steady <

Figure 3: The Smythe’87 [36] model of stress regulation (left) and its associated theory T
(right). In the language of the Smythe’87 theory, variables have three states: up, down or
steady. Competing influences can cancel out to explain a steady. For example, note that
there are two upstream influences to nna. Therefore, nna being steady can be explained
by a conjunction of (e.g.) coldSwim=up and temp=down.

current trade

deficit
++

++

account
balance

investor

foreign confidence

+ company

+
A
domestic profits

sales

corporate

wages
— "
++ Spending

restraint

/

h = inflation

++ ++

public
confidence

Figure 4: An economics model.

P.1 foreignSales=up, companyProfits=up, corporateSpending=up,
investorConfidence=up.

P.2 domesticSales=down, companyProfits=down, corporateSpending=down
wageRestraint=up.

P.3 domesticSales=down, companyProfits=down, inflation=down.

P.4 domesticSales=down, companyProfits=down, inflation=down,
wagesRestraint=up.

P.5 foreignSales=up, publicConfidence=up, inflation=down.

P.6 foreignSales=up, publicConfidence=up, inflation=down,
wageRestraint=up.

Table 1: Pathways that explain outputs in the economics model.

¢A
* investor

:‘ " :.S an B . confidence forign *
* sdes
v v 4

company corporate wages -
L= " X ++ company corporate -~ wages
rofits i ng restraint i = N >
’ e e domestic profits 4y spending restraint
sales
++ — ~
++
++
public * - inflation . * *
ublic - —
confidence P) - inflation
confidence

Figure 5: Explanation E. 1, left; Explanation E.2, right.

theory variables have three values: up, down or steady. The direct connection
between foreignSales and companyProfits (denoted with plus signs) means that
companyProfits being up or down should be connected back to foreignSales be-
ing up or down respectively. The inverse connection between publicConfidence
and inflation (denoted with minus signs) means that inflation being up or down
should be connected back to publicConfidence being down or up respectively. In
the case where the inputs are (foreignSales=up, domesticSales=down) and the
output goals are (investorConfidence=up, inflation=down, wageRestraint=up),
then pathways can be generated to explain the outputs. as shown in Table 1.
Note that some of these pathways make contradictory assumptions; e.g. cor-
porateSpending=up in P.1 and corporateSpending=down in P.2. That is, we
cannot believe in P.1 and P.2 at the same time. If we sort these pathways into
the biggest possible sets that can be believed at the same time, we arrive at the
two consistent sets of explanations shown in Figure 5. Explanation E. 1 contains
3 pathways that can be believed at the same time; i.e. (P.1, P.5, P.6) while
explanation E. 2 contains 4 pathways that can be believed at the same time; i.e.
(P.2, P.3, P.4, P.6).

We can rank theories according to the explanations they generate. A good
theory generates explanations that cover all known or desired behaviour. A
bad theory cannot explain known or desired behaviour. More generally, the
rank of a theory is taken from the maximum size of the intersection between its
explanations and the output goals. E.1 contains all the output goals (percent
explicable=100 percent) while E.2 contains only two of the three output goals
(percent explicable=67 percent). The maximum percent explicable (a.k.a. rank)
of our economics theory is the max of 100 and 67; i.e. 100 percent. It has

++ fish growth

—= rate
++ /-
fish population
change \
++
- 7 fish density
fishcatch = **
++ ++ boat
++ net 44 investment
catch potential catch — = INCOMe —= fraction
proceeds
’ boat T+
mil Etenance j -
1
hoat
decomissions <—*—— change <, — boat
++ h
- in boat purchases
numbers

Figure 6: The fisheries model with 17 edges.

been shown that abductive validation can find bad theories (i.e. rank under
100) for many real world examples [22]. Feldman and Compton [9], followed by
Menzies [24], have used this process to detect previously unseen errors in theories
in neuroendocrinology published in international refereed journals. Surprisingly,
these faults were found using the data published to support those theories

3.2 Introducing Errors into a Theory

The previous section lets us generate the y co-ordinates of our U-limit visual-
isation. This section lets us generate the x co-ordinates. Consider the QCM
theory of fish growing in a fishery shown in Figure 6. Quantitative equations
are available for this theory (see [2], pp135-141). We can run those equations to
generate the correct data for the fisheries system. Once this data is available, we
can generate a test with increasing U values by throwing away some percentage
of the data, chosen at random.

Note that the fisheries theory has 17 edges and each edge has two possible
annotations. We can generate theories with errors by choosing X percent of
those edges and corrupting them; i.e. flipping those annotation. As X is in-
creased from 0 to 100 percent, theories can be generated along the x axis of the
U-limit visualisation.

To apply this procedure to fisheries, three of the variables were selected
as inputs and 100-U percent of the remaining variables were used as outputs.
105 sets of correct data were taken from the fisheries equations. To ensure
statistical validity, between 0 and 17 randomly selected edges were corrupted
20 times (recall the above discussion on the central limit theorem). This whole
process was repeated for U set to 0, 10, 20, ..., 90. In all, HT4 was called
105*%18*20*10=378,000 times. The results are shown in Figure 7. Note that the
ranking curves flatten out as we test with less and less data (e.g. the U=90
curve is flatter than the U=10 curve). However, even at U=90, the curve is far
from flat. The difference between the rank given the best and worst theories

10

U% unmeasured
100

90
80
70 fge),

oo [k
50
40
30
20
10

ccccc
TSI

% explicable

0 5 10 1517
Number of corrupted edges; max=17

Figure 7: Looking for the “U”-limit in fisheries.

was 35 percent; i.e. it was possible to distinguish good from bad theories with
up to 90 percent of the variables in fisheries ignored. Hence, no U-limit was
found in the above experiment and theories like fisheries can be validated in
the range U=0..90. The U-limit has been see in dynamic theories (described
below). Experimentally, we know that validation for dynamic theories is defined
for (best case) U=0..70.

3.3 Dynamic Theories

The above use of fisheries assumed a static interpretation of fisheries; i.e. we
only generate value assignments at a single time step. A dynamic interpreta-
tion of fisheries allows us to generate value assignments at different time steps.
To implement the dynamic interpretation, new literals are created for theory
variables at time step 1, time step 2, etc. For example, population could spawn
population@1, population@2 ... population@T where T is some time step. The
invariant predicate I is extended to say that variables can have two values, but
only if they assigned at different time steps.

How are we to connect literals at time [to literals at time J? Depending on
how we answer this question, we can define variants on a qualitative simulation
language. Eight such variants are discussed in [39], two of which are relevant
to our discussion here. Consider the theory containing two edges: direct(A,B)
and inverse(B,A). If we execute this theory over three time steps, we could
search one of the spaces illustrated in Figure 8. In the explicit node linking
language (or XNODE), we only cross time on the nodes explicitly denoted as
time nodes by the user (in this example, A). In the implicit edge linking language
(or IEDGE), we cross time on every edge. For the fisheries theory, we use the
first derivative variables of fish population change and change in boat numbers.
Once the search space has been defined, it can be compiled into the dependency
graphs and tested using graph-based abductive validation as above.

To find the U-limit for IEDGE and XNODE, the ranking curves were gen-
erated as above; i.e. increasing values of U while corrupting 0 to 17 edges. This
resulted in 105*18%20*10 calls to HT4 for XNODE, then for IEDGE (756,000
calls all together). The results are shown in Figure 9. Subjectively, we declare
that:

e IEDGE becomes unacceptably flat above U=40; i.e. in the range U=50..90:

11

alﬁ-H- b1l

I \“/

7
/
1
1
/

++) S+t
|) \ \§
xnode: y ++ iedge: ++ b2
explicit node Q2——="h2 implicit edge /a2 —
linking "\“/ linking Ir .
| -7
o ¥ b Lt
++ | @3———= b3
B8——= b3 | N
________ I
++

Figure 8: Direct(A,B) and inverse(B,A) renamed over 3 time intervals using the XNODE
and IEDGE time linking policies. Dashed lines indicate time traversal edges.

IEDGE (U% unmeasured) XNODE (U% unmeasured)
100 4= 100 §
U=90 -2-- U=90 -2--
80 U=80 -»--- | U=80 -»-- |
U=70 -8-- U=70 -8--
@ U=60 -+-- @ U=60 -+--
| 60 U=50 -o-- 4 < U=50 -o-- 4
S U=40 -— S U=40 -—
53 U=30 ~— 53 U=30 ~—
© 40 U=20 &— A o U=20 &— A
R U=10 —+— R U=10 —+—
U= 0 -— x U= 0 -—
20 g g i
O 1 1 1 1 O 1 1 1 1
0 5 10 1517 0 5 10 1517
Number of corrupted edges; max=17 Number of corrupted edges; max=17

Figure 9: Looking for the U-limit with dynamic theories.

12

4

— It becomes very hard to distinguish good theories from bad theories.

— Testing is not practical.

e XNODE is better at large U. The XNODE ranking curve does not flatten
out till above U=70. Note that this is still 20 percent worse than the
U=90 limit seen in the static fisheries experiments described above.

Conclusion

Testing is an important part of systems development. Humans are not perfect
and neither are their artifacts. One style of testing checks if some theory can
reproduce known or desired behaviour of the thing being modeled by that theory.
Limits to testing can be found by considering at the limits to that style of
checking. Based on that analysis, two conclusions are offered here:

e The lower practical bound on the test set size is theory independent. For
each conclusion required from the system, 20 to 30 tests will suffice. Fur-
ther, the work of Caraca-Valente et.al. suggests that for many systems,
13 tests are enough.

e The lower practical bound on the size of each test depends on the domain.
The best case seen to date has been:
— Static theories: validation is practical for U=0..90.

— Dynamic theories: U=(0..70 and this is dependent on how time is
interpreted within the system.

References

(1]

=

N.M. Agnew, K.M. Ford, and P.J. Hayes. Expertise in Context: Personally Constructed,
Socially elected, and Reality-Relevant? International Journal of Expert Systems, 7, 1
1993.

H. Bossel. Modeling and Simulations. A.K. Peters Ltd, 1994. ISBN 1-56881-033-4.

J.P. Caraca-Valente, L. Gonzalez, J.L. Morant, and J. Pozas. Knowledge-based Sys-
tems Validation: When to Stop Running Test Cases. International Journal of Human-
Computer Studies, 1999. To appear.

P.R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.

H. S. Coles. Thinking About the Future: A Critique of the Limits to Growth. Sussex
University Press, 1974.

P. Compton, K. Horn, J.R. Quinlan, and L. Lazarus. Maintaining an Expert System. In
J.R. Quinlan, editor, Applications of Ezpert Systems, pages 366—-385. Addison Wesley,
1989.

R.E. Courtney and D.A. Gustafson. Shotgun Correlations in Software Measures. Software
Engineering Journal, pages 5-11, January 1983.

R. Davis, H. Shrobe, and P. Szolovits. What is a Knowledge Representation? Al
Magazine, pages 17-33, Spring 1993.

B. Feldman, P. Compton, and G. Smythe. Hypothesis Testing: an Appropriate Task
for Knowledge-Based Systems. In jth AAAI-Sponsored Knowledge Acquisition for
Knowledge-based Systems Workshop Banff, Canada, 1989.

B. Feldman, P. Compton, and G. Smythe. Towards Hypothesis Testing: JUSTIN, Pro-

totype System Using Justification in Context. In Proceedings of the Joint Australian
Conference on Artificial Intelligence, AI ’89, pages 319-331, 1989.

13

[11]

[12]
[13]
[14]

(15]

(19]
[20]
(21]

(22]

(23]

[24]

A. Ginsberg. A new Approach to Checking Knowledge Bases for Inconsistency and
Redundancy. In Proc. 3rd Annual Ezpert Systems in Government Conference, pages
102-111, 1987.

T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199-220, 1993.

W. Hamscher, L. Console, and J. DeKleer. Readings in Model-Based Diagnosis. Morgan
Kaufmann, 1992.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.
A.C. Kakas, R.A. Kowalski, and F. Toni. The Role of Abduction in Logic Programming.

In C.J. Hogger D.M. Gabbay and J.A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming 5, pages 235-324. Oxford University Press, 1998.

D.T. Krieger. The Hypothalmus and Neuroendocrinology. In D.T. Krieger and J.C.
Hughes, editors, Neuroendocrinology, pages 3—122. Sinauer Associates, Inc., 1980.

D.H. Meadows, D.L. Meadows, J. Randers, and W.W. Behrens. The Limits to Growth.
Potomac Associates, 1972.

T.J. Menzies. Principles for Generalised Testing of Knowledge Bases. PhD thesis,
University of New South Wales. Avaliable from http://www.cse.unsw.edu.au/~timm/
pub/docs/95thesis.ps.gz, 1995.

T.J. Menzies. On the Practicality of Abductive Validation. In ECAI ’96, 1996. Available
from http://www.cse.unsw.edu.au/ timm/pub/docs/96abvalid.ps.gz.

T.J. Menzies. Evaluation Issues for Problem Solving Methods, 1998. Banff KA workshop,
1998. Available from http://www.cse.unsw.edu.au/~timm/pub/docs/97eval.

T.J. Menzies. Evaluation Issues with Critical Success Metrics. In Banff KA ’98 work-
shop., 1998. Available from http://www.cse.unsw.EDU.AU/"timm/pub/docs/97evalcsm.

T.J. Menzies. Applications of Abduction: Knowledge Level Modeling. International
Journal of Human Computer Studies, 45:305-355, September, 1996. Available from
http://www.cse.unsw.edu.au/"timm/pub/docs/96abkll.ps.gz.

T.J. Menzies and R.E. Cohen. A Graph-Theoretic Optimisation of Temporal Abductive
Validation. In Furopean Symposium on the Validation and Verification of Knowledge
Based Systems, Leuven, Belgium, 1997. Available from http://www.cse.unsw.edu.au/
“timm/pub/docs/97eurovav.ps.gz.

T.J. Menzies and P. Compton. Applications of Abduction: Hypothesis Testing of
Neuroendocrinological Qualitative Compartmental Models. Artificial Intelligence in
Medicine, 10:145-175, 1997. Available from http://www.cse.unsw.edu.au/~timm/pub/
docs/96aim.ps.gz.

T.J. Menzies and S. Waugh. Lower Limits on the Size of Test Data Sets. In Proceedings
of the Australian Al ’98 conference. World-Scientific, 1998.

S. Muggleton. Inductive Logic Programming. New Generation Computing, 8:295-318,
1991.

G.J. Myers. A Controlled Experiment in Program Testing and Code Walk-
throughs/Inspections. Communications of the ACM, 21:760-768, 9, September 1977.

A. Newell. You can’t play 20 Questions with Nature, and Win. In W.G. Chase, editor,
Visual Information Processing, pages 283—-308. New York: Academic Press, 1972.

J. Nielson. Usability Engineering. Academic Press, 1993.

A.D. Preece. Principles and Practice in Verifying Rule-based Systems. The Knowledge
Engineering Review, 7:115-141, 2 1992.

A.D. Preece and R. Shinghal. Verifying Knowledge Bases by Anomaly Detection: An
Experience Report. In ECAT 92, 1992.

J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81-106, 1986.

D. Sahlin. An Automatic Partial Evaluator for Full Prolog. PhD thesis, The Royal
Institute of Technology (KTH), Stockholm, Sweden, May 1991. Available from file:
//sics.se/pub/isl/papers/dan-sahlin-thesis.ps.gz.

14

(34]

(35]

(36]

(37]
(38]

(39]

A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and R. de Hoog.
CommonKADS. A Comprehensive Methodology for KBS Development. IEEE Ezpert,
9(6):28-37, 1994.

B.G. Silverman. Survey of Expert Critiquing Systems: Practical and Theoretical Fron-
tiers. Communications of the ACM, 35:106-127, 4 1992.

G.A. Smythe. Hypothalamic noradrenergic activation of stress-induced adrenocorti-
cotropin (ACTH) release: Effects of acute and chronic dexamethasone pre-treatment
in the rat. Ezp. Clin. Endocrinol. (Life Sci. Adv.), pages 141-144, 6 1987.

R.E. Walpole and R.H. Myers. Probability and Statistics for Engineers ad Scientists.
Collier Macmillion, 2 edition, 1972.

S. Waugh, J. Blogs, and T. Menzies. The Temporal Qualitative Compartmental Modeling
Language. In Proceedings of the Australain AI ’98 conference, 1998.

S. Waugh, T.J. Menuzies, and S. Goss. Evaluating a Qualitative Reasoner. In Abdul Sat-
tar, editor, Advanced Topics in Artificial Intelligence: 10th Austrelian Joint Conference
on Al Springer-Verlag, 1997.

B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: a Modeling Approach to Knowl-
edge Engineering. Knowledge Acquisition, 4:1-162, 1 1992.

N. Zlatereva. Truth Mainteance Systems and Their Application for Verifying Expert
System Knowledge Bases. Artificial Intelligence Review, 6, 1992.

15

