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Abstract. Requirements engineering is often characterised as the man-
agement of conflicts between the viewpoints of different stakeholders.
This approach is only useful if there is some benefit in moving a specifi-
cation from one viewpoint to another. In this study, the value of different
viewpoints was assessed using a range of different models (ranging from
correct to very incorrect), different fanouts, different amounts of data
available from the domain, and different temporal linking policies. In all
those models, no significant difference was observed between viewpoints.

1 Introduction

Acquiring and consolidating software requirements from different stakeholders
is a time-consuming and costly process. If these different viewpoints are poorly
managed, the specifications have to be repeatedly reworked or the runtime sys-
tem has to be extensively modified [9]. Viewpoint-based requirements engineer-
ing researchers characterise this process as the management of conflicts between
the viewpoints of different stakeholders (e.g. [7,9,18]). Viewpoint-based require-
ments engineering (hereafter V-RE) assumes that there is some benefit in man-
aging more than one viewpoint. Can we check that assumption?

A core function in viewpoint management is assessing the relative merits of
different positions. The limits to this assessment process are the limits to V-RE.
One framework for assessing competing options is abduction. Informally, abduc-
tion is the inference to the best explanation [19]. More precisely, abduction makes
assumptions in order to complete some inference. Mutually exclusive assump-
tions are managed in separate worlds [17]. That is, given a theory containing
contradictions, abduction sorts those contradictions into consistent portions. If
the theory is the union of the ideas from different stakeholders, then abduction
becomes an V-RE tool. Queries can be written to assess the different worlds.
V-RE negotiation then becomes a discussion of the trade-offs between different
worlds (an example of this process is given below). Once V-RE has been mapped
into abduction, then the limits to V-RE can be found by exploring the limits
to abduction. This article will explore those limits as follows. Firstly, an exam-
ple will show the mapping from V-RE to abduction. Hence, we can show that
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Fig. 1. A model from two experts.

V-RE is NP-hard. Secondly, an experiment will be defined to find the limits to
that abductive process. Thirdly, the results of that experiment will show that,
at least in the domain studied, different viewpoints are rare and that there is
little benefit in moving between them.

2 Example of Abduction

This section offers an example of abductive-based V-RE. Consider the theory
shown in Figure 1

This figure is written in the QCM language [17] by two economists: Dr. Thick
and Dr. Thin. In QCM, theory variables have three states: up, down or steady.
These values model the sign of the first derivative of these variables and model
the rate of change in each value. Dependencies between them can be created
as follows. The direct connection between foreignSales and companyProfits (de-
noted with plus signs) means that companyProfits being up or down should be
connected back to foreignSales being up or down respectively. The inverse connec-
tion between publicConfidence and inflation (denoted with minus signs) means
that inflation being up or down should be connected back to publicConfidence
being down or up respectively. We assume that, somehow, we have knowledge of
the relative costs of each inference step in the model: each edge is the model is
annotated with its numeric weight. Dr. Thick’s and Dr. Thin’s ideas are shown
in thick and thin lines respectively. Note that our doctors disagree on the con-
nection between inflation and wagesRestraint.

How can we test if Dr. Thick or Dr. Thin are saying anything sensible?
One method is to use a library of known or desired behaviour. Dr. Thick or
Dr. Thin’s ideas are sensible if they can reproduce that behaviour. Further, one
expert’s theory is better than the other theory if that if that theory can explain
more known behaviour than its competitors.



This method has at least two problems. Firstly, it may be artificial to de-
mand that (e.g.) Dr. Thick is totally correct and Dr. Thin is totally wrong. A
more sensible approach may be to combine portions of Dr. Thick and Dr. Thin’s
knowledge in order to perform some useful task. Secondly, V-RE researchers
such as Easterbrook [6], Finkelstein [9], and Nuseibeh [18] argue that we should
routinely expect specifications to reflect different and inconsistent viewpoints. In
classical deductive logic, if we can prove a contradiction in a theory, then that
theory becomes useless since anything at all can be inferred from that contradic-
tion. Consider the case of (foreignSales=up, domesticSales=down) being inputs
to the above economics theory. We can now infer two contradictory conclusions:
companyProfits=up and companyProfits=down. In classical deductive logic, we
would have to declare our economics theory useless.

A better approach for checking on Dr. Thick and Dr. Thin is graph-based
abductive validation [15,17]. Graph-based abductive validation builds explana-
tions (worlds) for each pair of inputs-outputs in the library of known behaviour.
Worlds are built by finding all possible proofs from outputs back to inputs across
a directed graph like our economics model. Each maximal consistent subset of
those proofs is a world. Worlds are internally consistent. Contradictory assump-
tions are stored in separate worlds. Each world is scored via its intersection with
the total number of outputs we are trying to explain. A theory is then assessed
by computing the largest score of its worlds.

This approach to testing was first proposed by Feldman and Compton [8],
then generalised and optimised by Menzies [15,17]. Abductive validation has
found a large number of previously unseen errors in models taken from inter-
national refereed scientific publications. The errors had not previously been de-
tected and has escaped international peer review prior to publication. To see
how graph-based abductive validation contributes to V-RE, consider our eco-
nomics theory and the case where the inputs are (foreignSales=up, domestic-
Sales=down) and the outputs are (investorConfidence=up, inflation=down, wa-
geRestraint=up). The six proofs P which can connect inputs to outputs are:

— P.1: foreignSales=up, companyProfits=up, corporateSpending=up, investor-
Confidence=up.

— P.2: domesticSales=down, companyProfits=down, corporateSpending=down

wageRestraint=up.

P.3: domesticSales=down, companyProfits=down,inflation=down.

— P.4: domesticSales=down, companyProfits=down, inflation=down, wages-
Restraint=up.

— P.5: foreignSales=up, publicConfidence=up, inflation=down.

Note that these proofs contain contradictory assumptions; e.g. corporateSpend-
ing=up, in P.1 and corporateSpending=down in P.2. When we sort these proofs
into maximal subsets that contain no contradictory assumptions, we arrive at
the worlds shown in Figure 2.

Note that world one covers all our output goals while world two only covers
two-thirds of our outputs.

P.6: foreignSales=up, publicConfidence=up, inflation=down, wageRestraint=up.
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Fig. 2. Worlds from Figure 1.

V-RE is about facilitating a discussion, not automatically jumping to the
next version of the specification. Hence, this abductive approach to V-RE does
not offer automatic support for combining the ideas of different experts. How-
ever, it does support the automatic generation of reports describing the relative
merits of the ideas of Dr. Thick and Dr. Thin. For example, if we combine por-
tions of the ideas from Dr. Thick and Dr. Thin, then we can explain all known
behaviour (see world one). Also, Dr. Thin’s edges can be found in two worlds; i.e.
with respect to the task of inputs (foreignSales=up, domesticSales=down) and
outputs (investorConfidence=up, inflation=down, wageRestraint=up), a single
author’s opinions are inconsistent. That is, there is some reason for doubting the
view of Dr. Thin. Lastly, we have some evidence that we should endorse the views
of Dr. Thin over Dr. Thick since Dr. Thin’s ideas are cheaper than Dr. Thick.
Consider the cost of world one which can support investorConfidence=up. This
world contains the very expensive inference proposed by Dr. Thick. If we endorse
only Dr. Thin, we get cheaper worlds but lose coverage of all outputs. Such a
pragmatic trade off between cost and coverage could inform many debates over
conflict resolution.

This abductive approach has technical advantages over other approaches to
conflict detection and resolution. Firstly, Easterbrook [6] and Finkelstein [9]
require that users enter their requirements into explicitly labeled separate view-
points. Each viewpoint are assumed to be internally consistent. We have no
need for this restrictive (and possibly overly-optimistic) assumption. Recalling
the above example, abduction can handle inconsistencies within the opinions of
a single user. Further, this approach can check if the explicitly labelled view-
points are really different: if they don’t generate different worlds when they are
combined, then they are not truly different.

Secondly, this approach does not demand that we declare (e.g.) Dr. Thick is
totally correct and Dr. Thin is totally wrong. This approach can find composite
consistent statements that use portions of each expert’s knowledge to solve some
task (see world one, above).

Thirdly, graph-based abductive validation is not the JTMS-style [5] approach



used in other conflict recognition and management systems (e.g. [23]). A JTMS
searches for a single set of beliefs. Hence, by definition, a JTMS can only repre-
sent a single viewpoint at any one time. This approach is more like the ATMS [4]
than a JTMS. An ATMS maintains all consistent belief sets. We believe that an
ATMS approach is better suited to V-RE conflict management since the different
belief sets are available for reflection.

Fourthly, one striking feature of other systems that support multiple-worlds
(e.g. CAKE [23],TELOS [20]) is their implementation complexity. Rich and
Waters especially comment on the complexity of their heterogenous architec-
ture [23]. We have found that it is easier to build efficient implementations [15,16]
using the above graph-based approach than using purely logical approaches
(e.g. [11]). These tools do not suffer from the restrictions of other tools. For
example, while Easterbrook’s SYNOPTIC tool only permits comparisons of two
viewpoints [6] (p113), our approach can compare N viewpoints.

Fifthly, the inference procedure described here avoids spurious state assign-
ments. The state assignments proposed by a reasoner are its envisionments. Total
envisionments are those behaviours which are possible, given some fixed collec-
tion of objects in some configuration. Extension generation in default logic [22]
systems or the ATMS [4] produce total envisionments. A reasonable restriction
on the total envisionments are the attainable envisionments; i.e. all behaviours
possible from some given initial state. The QSIM qualitative reasoner uses at-
tainable envisionments [13]. Graph-based abductive validation only finds the
relevant envisionments; i.e. state assignments which can lead from inputs to
outputs. Relevant envisionments answers the question: Given some behaviour
of interest can these behaviours be reached given certain state assignments? To
answer this question with total or attainable envisionments, one must compute
the total or attainable envisionments, then search them for the required be-
haviour. This approach runs the risk of generating many behaviours that are
irrelevant to the process of finding what percentage of known behaviours can
be explained by a hypothetical model. For example, given the inputs and out-
puts of our above example, total envisionments would propose state assignments
to crimeRate and attainable envisionments would propose state assignments to
savings, even though these assignments are not relevant to reaching our output
goals. To perform relevant envisionments, we restrict the search to the down-
stream transitive closure of the inputs and the upstream transitive closure of the
outputs. For more details, see [17].

Sixthly, the simplicity of this approach can simplify an analysis of the limi-
tations of V-RE (see below).

3 Limits to Abduction

The previous section argued that V-RE can be usefully expressed in an abductive
framework. This section explores the computational limits of that abductive
framework.



3.1 V-RE is NP-Hard

V-RE can be simply mapped into abduction and abduction is NP-hard. Selman
and Levesque show that even when only one abductive explanation is required
and the theory is restricted to be acyclic, then abduction is NP-hard [24]. By-
lander et.al. make a similar pessimistic conclusion [2].

The specific graph-based abduction validation procedure discussed above is
also NP-hard. That procedure grows proofs up from outputs back to inputs.
As the proof grows, state assignments (e.g. domesticSales=up) is added to the
proof. A proof must be consistent; i.e. it must not contain items that contradict
other items in the proof. This proof invariant makes this procedure NP-hard.
Gabow et.al. [10] showed that finding a directed path across a directed graph
that has at most one of a set of forbidden pairs is NP-hard. Our forbidden
pairs are assignments of different values to the same variable; e.g. the pairs
domesticSales=up and domesticSales=down.

Pragmatic software engineers often build practical systems for problems that
are theoretically NP-hard problems. Hence, merely showing that V-RE is NP-
hard is not sufficient reason to abandon that approach. However, the experimen-
tal results discussed below are of more practical concern.

3.2 Looking for Multiple Viewpoints

A premise for V-RE is that different viewpoints exist. At first glance, this seems
very likely. V-RE is abduction and Kakas et.al. [12] remark that a distinguishing
feature of abduction is the generation of multiple explanations (a.k.a. worlds).
Researchers into qualitative models (e.g. our economics theory) often comment
on the indeterminacy of such models (the generation of too many worlds). Clancy
and Kuipers say that qualitative indeterminacy is the major restriction to the
widespread adoption of qualitative reasoners [3].

Curiously, and contrary to the experience of Clancy, Kuipers, Kakas, et.al,
graph-based abductive validation exhibits very little indeterminacy [14]. That
is, when we checked for multiple worlds (a.k.a. viewpoints), we could not find
them. This was such a surprising observation that the following experiment
was conducted. The aim of the experiment was to try and force graph-based
abductive validation to generate numerous worlds.

Firstly, some quantitative equations of a fisheries system was taken from
Bossel [1] (pages 135-141) and converted into the QCM-style diagram in Figure 3.
Note the two variables change in boatNumbers and change in fishPopulation.
These change variables explicitly model the time rate of change of variables.
The simulation data from the quantitative equations offered state assignments
at every year. To handle such temporal simulations, the qualitative model was
copied, once for every time tick in the simulation. That is, variables like fishCatch
were copied to become fishCatch@1, fishCatch@2, etc. Variables at time ¢ were
connected to variables at time i+1 using a temporal linking policy (discussed
below).



Once fisheries was copied, graph-based abductive validation was used to try
and reproduce data sets generated from the quantitative equations. Fisheries
is only one model. Conclusions drawn from the behaviour of one model are
hardly general. Hence, we built several mutators to generate 100,000s of prob-
lems. The generated problems contained (i) a range of different models (ranging
from correct to very incorrect); (ii) models with different fanouts, (iii) different
amounts of data available from the domain; (iv) different temporal linking poli-
cies.

One mutator added edges _
++ fish growth

to fisheries. Basic fisheries raie
has 12 nodes and 17 edges changein ’Z it /-
(fanout=17/12=1.4). This mu-  fig population

tator added 0, 5, 10, 15, 20, ¢N

25 or 30 new edges at random

fish densit

(checking all the time that the fish catch e /
added edges did not exist al- ++/‘\ ++ boat
ready in the theory). That is, ++ net 4+ investment
the model fanout was mutated  catch potential Calcge? Income —= fraction
from 1.4 to (17+30/12=3.9). proceeds

A second mutator cor- maintena?]%aetj . +
rupted the edges on the orig- boat ias |
inal fisheries model. This mu- decomissions <—+*—— _change <, bodt
tator select N links at ran- - in boat purchases

dom in the fisheries model and numbers

flipped the annotation (++ to
- and visa versa). There are . .
17 edges in the fisheries model. Fig. 3. The fisheries model. Adapted from [1]
Note that as the number of (pp135-141).

edges mutated increases from 0

to 17, the mutated model be-

comes less and less like the orig-

inal model. That is: at mutations=0we are processing the correct fisheries model;
at mutations=17 we are processing a very incorrect fisheries model; at muta-
tions=2..16 we are processing progressively worse fisheries models.

A third mutator changed the amount data available to graph-based abduc-
tive validation. The Bossel equations offered values for all variables at all time
points. The third mutator threw away some of that data to produce data sets
with 0,10,..,90 percent of the variables unmeasured (denoted as U percent un-
measured).

A fourth mutator changed how the variables were connected across time. The
XNODE temporal linking policy connects all the explictedly-marked temporal
variables from time i to time i+1; e.g. change in boatNumbers=up@1 to change in
boatNumbers=up@2. Note that there are only two explicit time variables in fish-
eries. It was thought that, since the number of connections were so few, this could



artificially restrict world generation. Hence, another time linking policy was de-
fined which made many cross-time links. The IEDGE temporal linking policy
took all edges from A to B in the fisheries model and connected A@ito B@i+1.
XNODE and IEDGE are compared in the following example. Consider the the-
ory direct(A,B) and inverse(B,A). If we execute this theory over three time
steps, then XNODE and IEDGE describe the search space illustrated in Figure 4.

The above mutators were combined as
follows. The Bossel equations were used to T

generate 105 pairs of inputs and outputs. For i Y ! ++ |
statistical validity, the following procedure ?lv : J \__/ bl
was repeated 20 times for each of IEDGE ++'| : N N
and XNODE: Vo, Y \t:
— 0 to 17 edges were corrupted, once for |\__/ b2 /az%/bz
each value of U (0,10,..,90). This lead to 'l 7
7200 models (20*2*10*18) executed over oy -7

756,000 runs). ~o

|
|
the 105 input-output pairs (7200%¥105=  a3———== b3 [ ++
|
|
-0, 5, 10, 15, 20, 25 or 30 edges were I

added, once for each value of U leading ++
to 20*2*10=400 models being executed ’ggﬁgt node iedge:
i ol
105 times (42,000 runs) linking :mﬁllr%t edge

The results are shown in Figure 5.

Note the low number of worlds gener- Fig.4. Direct(A,B) and in-
ated. Our reading of the literature (e.g. wverse(B,A) renamed over 3 time
[3,12]) lead us the expect far more worlds intervals using different time
than those observed here (maximum=5) linking policies. Dashed lines in-
Also, note the hump shape in all the results dicate time traversal edges.
graphs. As we decrease the amount of data
available, there is less information available
to constrain indeterminacy. Hence, initially,
less data means more worlds. However, after
some point (around 50 percent unmeasured), another effect dominants and the
number of worlds decreases. We conjecture that relevant envisionments are the
cause of the low number of worlds. World-generation is a function of the number
of conflicting assumptions made by the reasoner. As the percentage of unmea-
sured variables increases, the size of the input and output sets decreases. In
total envisionments, this has no effect on the number of assumptions made since
total envisionments offers assumptions for all variables. However, attainable en-
visionments make less assumptions while relevant envisionments make even less.
Hence, for low-assumption envisionment policies (e.g. relevant envisionments),
world-generation is reduced when the amount of data from the domain is re-
duced.

In summary. only certain interpretations of time (e.g. IEDGE) generate the
multiple viewpoints needed for V-RE. How important are those worlds? In the
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Fig. 5. IEDGE (solid lines), XNODE (dashed lines),

next experiment, we crippled the graph-based abductive validation device. In-
stead of returning the world(s) that explained the most number of outputs,
we returned any single world, chosen at random. The results of that one-world
abduction run was compared to the results gained from full multiple-world ab-
duction. The test rig was the same as the edge corruption experiment described
above; i.e. another 756,000 runs. A sample of those results are shown in Figure 6.

In these graphs, the percentage of outputs found in the worlds is shown
on the y-axis (labelled percent explicable). For multiple-world abduction, the
maximum percentage is shown; i.e. this is the most explanations that the theory
can support. For one-world abduction, the percent of the one-world (chosen at
random) is shown. Note that, at most, many-world reasoning was ten percent
better than one-world reasoning (in the IEDGE graph for U=40 and 10 edges
corrupted). The average improvement of many-world reasoning over one-world
reasoning was 5.6 percent. That is, in millions of runs over thousands of models,
there was very little difference seen in the worlds generated using one-world and
multiple-world abduction.

4 Discussion

There are at least three limits to the above analysis. Firstly, it assumes a def-
inition of the worth of a viewpoint along the lines of what percent of known or
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Fig. 6. Multiple-world abduction (solid line) vs one-world abduction (dashed line).

desired behaviour is found in that viewpoint?. Other definitions of testing exist;
e.g. the syntactic anomaly detection work of Preece [21]. There is at least one
advantage of our approach. If a theory cannot fully reproduce known or desired
behaviour, then something must be wrong. The same cannot be said for other
testing models. For example, Preece stresses that his work does not detect er-
rors; rather it only detect anomalies which require further human investigation.
That is, if a system fails a Preece-style check, it is still possible that nothing is
really wrong.

Secondly, our scoring system for the worth of each viewpoint assigns the
same score to a viewpoint explaining (e.g.) a,b as it does to a viewpoint explain-
ing (e.g.) ¢,d. That is, the analysis here assumes a uniform distribution of goal
utilities This is an incorrect assumption in domains where certain goals have
very high utilities (compared to other goals). For example, two goals might be
healthy and well-dressed and healthy might be more crucial than well-dressed. We
considered experimenting with the effects of different utility distributions. How-
ever, that experiment was not conducted since we could not find guidance in the
literature on what are reasonable utility distributions in real-world applications.

Thirdly, our analysis is based on mutations to fisheries: a single small the-
ory. Perhaps an analysis of larger, more intricate theories, would offer different
conclusions? While we acknowledge this possibility, we note fisheries was just
the initial theory that seeded our mutators. Thousands of variants on fisheries



were constructed, many of which were more complicated than fisheries (recall
the first mutator added edges into the theory). As to larger theories, we showed
above that V-RE is NP-hard; i.e. requirements engineering is necessarily limited
to small theories. Our analysis of RE hence shares a size restriction with all
other RE approaches. In support of this, we note that all the RE models we
have ever seen have been small (but we have no data to support this informal
observation).

Within the above limitations, we can make the following conclusions. V-RE
is can only useful if (i) the viewpoints are truly different and (ii) there is some
value in moving a specification from one viewpoint to another. After mapping
V-RE to abduction, we have explored these two issues. Abduction can check
if some explicitly named viewpoints are truly different: if they don’t generate
different worlds when they are combined, then they are not truly different. Also,
by comparing one-world abductive validation to multiple-world abductive vali-
dation, we can assess the merit of exploring multiple viewpoints. Experimentally,
we have shown here that for a range of problems (different models ranging from
correct to very incorrect, different fanouts, different amounts of data available
from the domain, different temporal linking policies) multiple-world reasoning
can only generated marginally better results than one-world reasoning (ten per-
cent or less). Hence, the domain explored by these experiments, there is no value
in V-RE.

Should we then abandon V-RE? No: V-RE is useful in domains where truly
different viewpoints (of significantly different value) can be generated. Alterna-
tively, V-RE may also be of value in domains where increasing the value of a
viewpoint by a few extra percent is of vital importance to the application. For
example, in a medical domain, a few percent could imply saving thousands of
deaths. However, what these results show is that even though a domain may
seem to generate significantly different viewpoints, on average, these different
viewpoints may not be worth considering. Multiple-world reasoners are hard
to build and understand. Requirements engineers should carefully explore their
domains before leaping to the complexity of multiple-world/viewpoint reasoners.
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