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Abstract

If we lack an objective human expert oracle which can assess
a system, and if we lack a library of known or desired be-
haviour, how can we assess an expert system? One method
for doing so is acritical success metric(CSM). A CSM is an
assessment of a running program which reflects the business
concerns that prompted the creation of that program. Given
pre-disasterknowledge, a CSM can be used while the expert
system is in routine use, without compromising the operation
of the system. A general CSM experiment is defined using
pre-disaster points which can compare (e.g.) human to ex-
pert system performance. Examples of using CSMs are given
from the domains of farm management and process control.

Introduction
Experts can often disagree about what constitutes a compe-
tent system ([Shaw 1988, Gaschnig, Klahr, Pople, Shortliffe
& Terry 1983]). Even if these authors are expert in their
fields, they may still be unable to perform objective expert
evaluations. Thehalo effectprevents a developer for look-
ing at a program and assessing its value. Cohen likens the
halo effect to a parent gushing over the achievements of their
children and comments that...

What we need is not opinions or impressions, but rel-
atively objective measures of performance.[Cohen
1995], p74.

The method for objective assessment explored in this ar-
ticle is critical success metrics(CSMs); i.e. some number
inferred from the system which, if it passes some value,
demonstrates conclusively that the system is a success. If
such a critical measurement is observed, then the system
will be deemed to be a success, regardless of other less crit-
ical measures (e.g. slow runtimes). While this paper will
focus on CSMs for knowledge engineering, there is nothing
stopping software engineers from using the same principles
in their work (e.g. [Reel 1999]).

For example, consider the PIGE farm management expert
system [Menzies, Black, Fleming & Dean 1992]. PIGE ad-
vised on diets and genotypes for pigs growing in a piggery.
Given a particular configuration of the livestock, an opti-
mization model could infer the annual profit of the farm. Al-
ternate configurations could be explored using a simulation

model. A user can choose some settings, then run the sim-
ulation model to see if the system’s performance improved.
The CSM for PIGE wascan the system improve farm prof-
itability as well as a pig nutrition expert?If this could be
demonstrated, then the tool could be sold as a kind of auto-
matic pig growth specialist. To collect this CSM, at the end
of a three month prototyping stage, we compared the per-
formance of the pig nutritionist who wrote the PIGE rules
against PIGE. We observed that, measured in purely eco-
nomic terms, this expert system out-performed its human
author (!!). The CSM study results for PIGE are shown in
Figure 1.

This single CSM study changed the direction of the
project. The graph of the CSM study became a succinct
argument for collecting further funding. It was also very
useful in sales work. PIGE became Australia’s first exported
expert system and was used on a routine daily basis in Amer-
ica, Holland, Belgium, France, Spain and Australia. In part,
the success of the system was due to its ability to demon-
strate its utility via a CSM.

Nevertheless, the CSM study of PIGE is a poor evaluation
study. A good experiment is run multiple times with some
variation between each trial [Cohen 1995]. CSMs should
be viewed as the inner measurement process within a well-
defined experiment. A general class of such experiments
are described below, along with an example in a process
control domain. This example will use a technique called
a pre-disaster point(defined below). Our example will be
preceded by general notes on CSMs and their advantages.

About CSMs
This section offers some basic notes on CSMs: their defini-
tion, some pragmatic issues, their advantages and disadvan-
tages.

Definition
CSMs are a reflection of:
� the contribution of the behaviour of the software

� in a particular business context.

Hence:
� They are very domain-specific. However this does not

mean they are can’t be analyzed. This article concerns
itself with the general themes of CSMs.
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Figure 1: Critical success metrics for PIGE. From [Menzies et al. 1992].

� They typically do not refer to internal properties of a pro-
gram. In the language of software metrics, a CSM is some
survey onexternal attributesreflecting the context of a
system [Fenton & Pfleeger 1997, p78]. In this regard,
CSMs are very different to the syntactic anomaly detec-
tion systems (internal attributes) of the KBS verification
community [Preece 1992].

� They cannot be developed by programmers without exten-
sive input from business users. Programmers developing
CSMs without business user involvement typically focus
on internal attributes; e.g. lines of code per function, bugs
fixed per day, etc. Such internal attributes may not con-
nect to the business case which motivated the program’s
development.

� They can only be collected once the program is running
in its target context.

Pragmatic Issues
Even if can’t collect CSMs until an expert system is de-
ployed, we should still define them at a very early stage.
Evaluation should be considered as early as possible when
building a system [Gaschnig et al. 1983]. The incremental
application of a pre-defined success criteria can be a power-
ful tool for managing evolving systems [Booch 1996]. Of-
ten, the evaluation criteria imposes extra requirements on
the implementation. We may need to build a very simple ini-
tial system that collects baseline measurements which reflect
current practice. For example, once I identifiedincreases
sales per dayas the CSM for a dealing room expert system.
However, this number was not currently being collected in
the current software. Sales per day could be estimated from
the quarterly statements, but no finer grain data collection
was performed at that site. Hence, prior to building the ex-
pert system, a database system had to be built to collect the
baseline data.

While CSMs are obvious in retrospect, they can take
weeks of analysis to uncover. For example:
� It took two weeks full time analysis on the domain before

the above dealing room CSM was uncovered.

� In the process control system discussed below, the CSMs
were only isolated once a prototype expert system system
was developed.

� In the PIGE system, nutrition experts argued for weeks
about the merits of different protein utilization models.
Then the marketing people commented that such consid-
erations were irrelevant if it could not be demonstrated
that the systems recommendations improved the overall
profitability of a farm. Hence, the evaluation focus moved
from the protein utilization models to issues of modeling
the farm economics. The results, shown above, were an
impressive demonstration of the marketability of the sys-
tem.

The observation that CSMs can take some time to isolate
would not surprise software engineering metrics researchers.
Basili [1992], characterizes software evaluation as agoal-
question-metrictriad. Beginners to experimentation report
whatever numbers they can collect without considering the
goal of the research project, what questions relate to that
goal, and what measurements could be made to address
those questions. Before goal-question-metric there must be
an analysis involving the stake holders of the project to es-
tablish the appropriate goals. Offen & Jeffery [1997] offer
the appropriate caution that this important task can take a
non-trivial amount of time.

Advantages
CSMs have business-level advantages as well as technical
advantages as an assessment tool. For many business situa-
tions, CSMs are useful:

� A sales situation where it must be demonstrated to a client
that some software system is better than (e.g.) manual
methods; e.g. the PIGE example given above.

� Any audit situation where is must be demonstrated that
the cost of a new application was worthwhile; e.g. the
dealing room system described above.

� Engineering applications where controlling software must
be evaluated; e.g. the process control example given be-
low.

� A negotiation situation where a cautious user group must
be convinced of the merits of some software system

� Any software situation where software must be contin-
ually monitored; e.g. air-traffic control; legal systems;
evidence-based medical applications.
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As an evaluation tool, CSMs have advantages over other
evaluation tools for expert systems. Expert systems are usu-
ally evaluated via panels of experts or some database of
known or desired behaviour. Such evaluations can report the
accuracy of those system to an enviable degree of accuracy.
For example:

� Hayes [1997] can demonstrate that her expert system de-
veloped in two years performs as well as someone with
five years experience in that field.

� Preston, Edwards & Compton [1993] report a biochemi-
cal interpretation system that is 95 percent accurate on the
cases it analyzes.

� Yu, Fagan, Wraith, Clancey, Scott, Hanigan, Blum,
Buchanan & Cohen [1979] reports that MYCIN, an expert
system for prescribing antibiotics, clearly out-performs
senior medical personnel.

� Menzies & Compton [1997] have defined a precise vali-
dation system which can show exactly what percentage of
known behaviour cannot be explained by some model.

Using CSMs, we are placing an external business-level
success criteria on a running system. Hence, we can evaluate
a system even when:

� No objective source of expertise is available; i.e. expert
panel members are unavailable.

� There exists no representative library of the
known/desired behaviour of the system; i.e. we
have yet to have enough experience with the domain to
record all the possible things which can happen.

Also, the evaluation will be abusiness-levelevaluation.
Business users may demand objective evidence as to the
business value of some program before allowing it to con-
trol some critical business process. This evaluation may
not comprise developer-level concerns such as runtimes or
(in the case of PIGE) current fashions in theories of pro-
tein utilization. In the PIGE and dealing room examples, the
CSMs had to reflect the fundamental business case which
motivated the project: increased profitability.

Further, given apre-disaster point, we can do this while
the system is in routine operation. A pre-disaster point refers
to a state of the system that is less-than-optimum, but not yet
critically under-performing. As we shall see below, CSMs
plus pre-disaster knowledge allows us to assess a running
system without compromising its operation.

Disadvantages
CSMs are business-level tools for assessing a system and can
provide a yes-no assessment of a system. This is their main
strength, and their failing. Evaluation can have many aims,
not all of which are served by CSMs. For example, as argued
below, CSMs are not a tool formodel-based evaluationor
for makingexternally valid conclusions.

Model-Based Evaluations Model-based evaluation was
described by Newell [1972] in his famous argument “Why
you can’t play 20 questions with Nature, and win”. React-
ing to an excess of experimental zeal in cognitive psychol-

ogy, Newell argued forcibly against conducting experimen-
tal programmes that offered single answers to yes-no ques-
tions. Rather, said Newell, we should:

� Perform multiple studies of complex systems.

� Collect large amounts of data.

� Unify those results into some rich theoretical structure de-
scribing some process of interest.

Newell argued that large simulations to incremental explore
parts of some rich theoretical structure are far more insight-
ful than (e.g.) twenty yes-no questions.

CSMs encourage yes-no answers and so run foul of
Newell’s objection. To see this, suppose the CSM for PIGE
had yielded a negative result. In that circumstance, note that
no information is available from the CSM to help us repair
PIGE. CSMs are a behaviour summary tool: all manner of
complex internal interactions are condensed down to a sin-
gle number.

Now contrast this CSM-evaluation with a data-rich
Newell-style evaluation. Once a problem has been detected,
then an experimenter has access to a large data base of infor-
mation. This database can be used to find and fix the error.

The data-poor nature of CSM-evaluations is not a fatal
flaw with the CSM paradigm. Clearly, if the aim of the
evaluation is not “assess this system” but “assess and re-
pair”, then other data must be collected to support that re-
pair. However, within that larger scaler data collection, we
would strongly urge that CSMs be included. To see this,
consider the developer who has graphed (e.g.) lines of code
per method for the 4100 methods in her system. What does
such data collection mean if not correlated against some
business concern (e.g. time to implement the next business
change request)?

Also, I pursued the idea of CSMs since, in my experi-
ence, precise data collection was always expensive. In con-
trolled laboratory conditions (Newell’s home ground), it is
very easy to collect highly reliable numbers. However, out
in the field, the situation is very different. Even when rich
models are available to describe some phenomena, the data
is not available to populate that model (for theoretical tech-
niques for performing model-based evaluations in data-poor
domains, see [Menzies & Compton 1997]). In many do-
mains, it is difficult and expensive to find or build sets of
observations. For example:

� The (in)famousLimits to Growth study attempted to
predict the international effects of continued economic
growth [Meadows, Meadows, Randers & Behrens 1972].
Less than 0.1 percent of the data required for the theories
was available [Coles 1974].

� Data collections in neuroendocrinology (the study of
nerves and glands) can be just as sparse since data col-
lection in that domain is very expensive. In one extreme
example, 300,000 sheeps brains had to be filtered to ex-
tract 1.0 milligrams of purified thyroptin-releasing hor-
mone [Krieger 1980].

External Validity Another issue is theexternal validityof
a CSM experiment. External validity is concerned with what
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can be generalized from one experiment to other situations.
Current research in knowledge engineering tries to evaluate
classes of systems in order to make predictions about best
techniques for future problems. CSMs are tightly focused
on a single system. Hence, it would be hard to use them
for some externally valid conclusion. While CSMs can give
yes-no answers about one system, they cannot offer details
conclusions about classes of systems. Suppose a range of
systems were being assessed, and the systems differed on
some internal feature of the tools used: (e.g.) multiple vs
single parent inheritance. The summation within the CSM
measure may blur or ignore this tool distinction.

On the other hand, CSMs are not the only evaluation
tool with external validity issues. The Sisyphus project is
an international consortium of knowledge engineering re-
searchers who build different systems from the same spec-
ification using different tools [Linster 1992, Schreiber &
Birmingham 1996, Shadbolt, O’Hara & Crow 2000]. Sisy-
phus was intended to define an evaluation study for certain
techniques in knowledge engineering. While the Sisyphus
project has unified a diverse range of researchers, the results
to date are inconclusive. Shadbolt et al. [2000] lists all the
problems associated with the labors of Sisyphus and con-
cludes:

... none of the Sisyphus experiments have yielded much
evaluation information (though at the time of writing
Sisyphus-III) is not yet complete).

Nevertheless, the Sisyphus researchers remain optimistic
and the project continues.

In summary, practioners should collect all the data they
can about the behavior of their systems. Further, they should
always consider what general statement can be made from
their observations. However, they should also acknowledge
that data collection and generalization is a resource bound
activity. In resource-bound environments, the very least that
should be attempted are CSM data collections and an assess-
ment of the system at hand.

CSM Evaluation Using Pre-Disaster Points
This section offers a general design for an evaluation exper-
iment using CSMs and apre-disasterpoint. The aim of this
evaluation is to check if the program is dumber than than
some human, with respect to some chosen CSMs. In the
experiment, the human or expert system is trying to control
some aspects of the environment; e.g. make a diagnosis, pre-
scribe medicines which reduce fever, improve profitability,
etc.

Trials would alternate between the human and computer
experts. A trial would begin when the system is in some
steady state; i.e. there appears to be no currently active
problems. During the course of each trial, the expert un-
der trial would have sole authority to order adjustments to
the environment. The trial would terminate whenever the
pre-disaster point was reached. Authority to adjust the en-
vironment would then pass to the human experts. At the
conclusion of each trial, a CSM is applied to assess the en-
vironment during the trial period.

At the end of a statistically significant number of trials
(say, 20 for each population of experts), the mean perfor-
mance of the two populations of experts would be compared
using a t-test as follows. Letm andn be the number of trials
of expert system and the human experts respectively. Each
trial generates a performance score:X1 . . .Xm with mean
�x for the humans; and performance scoresY1 . . .Yn with
mean�y for the expert system. We need to find aZ value as
follows:
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Let a be the degrees of freedom. Ifn = m = 20, the
a = n+m � 2 = 38. We reject the hypothesis that expert
system is worse than the human (i.e.�x < �y) with 95%
confidence ifZ is less than (�t38;0:95 = �1:645).

Note that this human/expert system comparison could
also be used to assess different expert systems.

An Example: Process Control CSMs

This section offers a detailed example of the above experi-
ment. In the summer of 1986/87, I implemented QUENCH,
an expert system computer program for the control of the
quench oil tower at ICI Australia’s Olefines petrochemical
plant in Sydney [Menzies & Markey 1987]. Once the system
was built, I offered to management the experimental design
discussed below. The evaluation experiment was approved
but, due to a change in management, never performed. Nev-
ertheless, the experiment is relevant here since it illustrates
many of the practical issues associated with CSM evalua-
tions. For example:

� A simple rule-based system written in two weeks would
take nearly a year to evaluate.

� The evaluation criteria chosen made no reference to the
internal structure of the rule base.

� The CSMs described below were slow to develop. In fact,
only once a working knowledge base was developed could
we reverse engineer a success criteria for the system.

� CSMs cannot be generated via mereprogram watching.
A detailed analysis is offered below of the drawbacks of
letting experts subjectively evaluate an expert system (see
below, the discussion on instrumentation and testing in
Assessing the Obvious Method).

� The CSM collection implies only small changes to the
running of the system. Further, using a pre-disaster point,
the evaluation can occur without losing profit from the
system. That is, evaluation may be practical even for sys-
tems as complicated as a large petrochemical plant.
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Background to the QUENCH System

The Olefines petrochemical plant produces 240,000 tonnes
of ethylene per year. It is a highly complex plant consist-
ing in part of some 125 km of piping connecting numer-
ous chemical processes. A unit of this plant is the quench
oil tower. Inside the tower, hot cracked gases are cooled
from around 400C to around 100C by mixing with oil. Cer-
tain gases are extracted at the top of the tower and the used
quench oil, containing variable amounts of dissolved gases,
is removed from the bottom. These dissolved gases effect
the density of the removed oil. If the quench oil density
moves outside of a certain narrow range, it can not be sold.
In this case, ICI loses the revenue that would have come
from its sale. Further, it must pay for the reprocessing or the
disposal of the bad oil.

In order to keep the density on specification, the temper-
ature at the bottom and the top of the tower must be main-
tained within one half of a degree of a target temperature.
This is accomplished by altering the flow rates though the
piping that surrounds the tower and/or by adjusting the heat
exchange units attached to this piping. In practice, this is a
non-trivial task. There have been cases when the operators
of the tower have spent days attempting to return the density
to an acceptable value. This process is directed by the the
supervising engineers who communicate their instructions
to the operators using heuristics similar to production rules.
For example, to correct a very high quench oil density, an
engineer could say to an operator:

if the target(temps)=correct and
the bottom(tower(temps))=high

then bring the bottom of the tower
back on target by increasing
the quench oil recycle flow
rate by 20 tonnes per hour.

QUENCH contained 104 such rules.

Features of Large Petrochemical Plants

This section describes the features of large petrochemical
plants that complicate the process of evaluation. Safety
is a paramount consideration. Unsafe operating conditions
could cost the lives of the workers in these plants.

Large petrochemical plants produce hundreds of millions
of dollars worth of chemicals each year. The loss of a single
day’s revenue can cost a company hundreds of thousands
of dollars. These economic imperatives are so pressing that
the prolonged operation of these plants at less-than-optimum
performance can not be tolerated.

There are major difficulties associated with deriving pre-
cise formalizations of these complex systems. For example,
a mathematical model of the quench oil system would re-
quire the solutions of hundreds of simultaneous equations.
Certain parameters required in these equations require un-
certain physical properties data; i.e. these parameters are
not known. Consequently it is possible that after months
of development work, a mathematical model of the quench
oil system may be grossly inaccurate. Without precise for-
malizations, the only way to accurately predict the effects

of certain changes to the plant is to make those changes and
observe the effects.

The design of these large plants is typically customized
to meet local requirements. Hence, the experience gained
in (e.g.) controlling quench oil towers in other plants may
not be relevant to this quench oil tower. In fact, the two su-
pervising engineers who helped write QUENCH’s rules are
the only authorities on the control of the Olefines’ quench
oil tower. In the jargon of the psychologist or the statisti-
cian, there is no control group available for experiments on
the tower. Further, there is no objective expertise that can
be called upon to accurately assess the suggestions made by
quench oil tower experts (be they computers or human be-
ings).

The Obvious Evaluation Method
One method for assessing the expertise of the program is
to run it in parallel with the existing system. The supervis-
ing engineers could compare QUENCH’s suggestions with
their own advice for problem situations. This method will
be referred to as theobvious methodand (the pre-disaster
CSM evaluation described below will be calledthe preferred
method). The obvious method has several advantages:

� It does not upset the normal operations of the plant.

� The plant remains under the control of the experts with
the most experience on controlling the plant; i.e. the su-
pervising engineers.

� It requires no control group.

� The computer and the human experts are being tested un-
der identical plant conditions.

Experimental Design Theory
Regrettably, there are glaring design faults in the obvious
method. These faults are described below after an introduc-
tion to experimental design theory.

Campbell and Stanley [Campbell & Stanley 1970] assess
experimental designs in terms of theirinternal andexternal
validity.

Internal validity is the basic minimum without which
any experiment is uninterpretable: Did in fact the ex-
perimental methods make a difference in this specific
experimental instance?External validityasks the ques-
tion of generalizability: To what populations, settings,
treatment variables, and measurement variables can
this effect be generalized? [Campbell & Stanley 1970]
(p4).

As to external validity, the claim of this paper is that the
preferred method can be generalized to other expert system
evaluations. For more comments on external validity, see the
discussion above inDisadvantages.

As to internal validity, if we can not interpret the results of
our experiment, then the experiment would have been point-
less. Campbell and Stanley list several factors that could
jeopardize internal validity. These factors have one feature
in common: they could result in the effect of an experimen-
tal variable under study being confused with other factors.
Each represents the effects of:
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� Selection: i.e. if a test group was selected based upon
their score on a certain measure, then this score could
bias the behaviour of the test group in a certain way. Se-
lection problems have been observed in the knowledge
engineering literature. A bayesian system for medical di-
agnosis in a Leeds hospital apparently out-performed se-
nior clinicians. However, a subsequent evaluation by an-
other team in Copenhagen identified that the first study
artificially restricted the number of possible diagnosis.
When this restriction was removed, the performance of
the bayesian system fell to 65 percent of that of human
doctors [Gaschnig et al. 1983] (p250–251). Also, Gashing
et.al. report that a preliminary evaluation of the XCON
system [McDermott 1993] failed to detect flaws in XCON
since it only studied a tiny fraction of the set of possible
XCON inputs [Gaschnig et al. 1983] (p270–271).

� Maturation: i.e. changes over time in the test subjects.
For example, the subject in an experiment may grow
bored, tired, hungry, etc. and their reactions to various ex-
perimental variables may alter for reasons that are not un-
der study. Maturation is a common problem with knowl-
edge engineering research. Researchers often report im-
provement in some process when they use their own tools
for a period of time (e.g [Runkel 1995]). Such results
hence conflate the effect of the tool with the effect of the
developer learning how to best apply their own tool.

� Instrumentation: i.e. the calibration of the testing de-
vice changes. The springs of a weight scale may wear
out, observers may change, or the reports of the same ob-
server may alter as they gain experience with the exper-
iment. Instrumentation is a common problem in many
knowledge engineering studies. Knowledge engineering
researchers rarely calibrate their measurements against
some gold standard orstraw man- an obviously inferior
method [Menzies 1998a] (but some exceptions exist as
noted below in the related work section). Without such a
calibration, most knowledge engineering researchers can
only saysoftware technology X lets me do task Y. This is a
less convincing statement thansoftware technology X lets
me do task Y better than software technology Z.

� Statistical Regression: i.e. the items/ people/ events in a
test group are selected according to some extreme charac-
teristic possessed by those items/ people/ events. Camp-
bell and Stanley note thatthe more deviant the score,
the larger the error of measurement it probably contains
[Campbell & Stanley 1970], (p11). They observe that test
results from such extreme test groups tend to revert to the
mean behaviour. For example, in an experiment testing
some skill, observations could show that the dull could
become brighter and the bright duller.

� History: i.e. events occurring between observations other
those under study. The variable of history is relevant to
the feature ofexperimental isolation. If the effect under
study can not be isolated from other effects, then it is hard
to distinguish the results of known influences from un-
known influences.

� Testing: i.e. the act of making an initial observation may

somehow alter subsequent observations.

� Mortality: i.e. mortality refers to the changes to groups
under comparison resulting from drop outs from the
groups.

Assessing the Obvious Method
On several of the above points, the obvious method ranks
quite well.

� Maturation: Maturation is not a problem since the test
is not lengthy. The obvious method is an evaluation of
expertise at a particular point in time.

� Selection, and statistical regression: The expert system is
tested against whatever changes occur to the plant. Since
there is no choice involved in selecting these test cases,
these factors are not issues for this experimental design.

� Mortality: Mortality is only a issue to be considered for
tests that take an appreciable period of time. Hence, it is
not an issue with the obvious method.

However, the effects of history, instrumentation and testing
are majors flaw in the obvious method.

� History: The suggestions of the supervising engineers are
not always followed faithfully by the plant room opera-
tors. It is not uncommon for evening shift and night shift
operators to ignore expert advice and apply their own con-
trol protocols. It is possible that these operators would
tend to ignore a computer’s advice even more than those
of a human being. Having documented this problem, it
will not be discussed further. The resolution of this prob-
lem is an administrative problem that will be crucial to
the process of evaluation. For example, some monitor
must be added to the experimental design such that we
can check that if QUENCH recommendsX, then the op-
erators performedX. However, the nature of that monitor
is a workplace relations issue that is beyond the scope of
this researcher.

� Instrumentation and Testing: The program’s expertise
will be assessed by the supervising engineers. It is pos-
sible that their own perceptions of the program could al-
ter with time. These engineers have been intimately con-
nected with the program for several months. Human fac-
tors such as the halo effect (discussed above), egotistical
considerations, disappointment or elation at their percep-
tions of the program’s performance, etc., may distort their
evaluation.

Hence, we reject the obvious method and move to the pre-
ferred method.

Defining CSMs for QUENCH
The preferred method requires CSMs and a pre-disaster
point. This section offers CSMs. The next section offers
a pre-disaster point.

There are three possibles CSMs for QUENCH:

1. A poll of all the electronic surveillance equipment that
monitors the plant. This possibility is really a whole host
of possibilities. There are many ways that the plant’s
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surveillance equipment could be summed together into a
single performance figure. Such a summation would be a
whole research topic in itself. Fortunately, there are easier
methods.

2. The time to failure. (a method proposed by Kehoe, per-
sonal communication). The time between the starting the
trial and reaching the pre-disaster point could be the per-
formance figure. The longer this time, the better the per-
formance.

3. Revenue from quench oil (a method proposed by Dr.
Michael Brisk, ICI, personal communication). The sum
of revenues gained from processing the quench oil could
be the performance measure. If the density goes off speci-
fication, and money must be spent to reprocess or dispose
of the bad oil, then this amount should be deducted from
the sum. Like the time to failure, the greater this figure,
the better the performance.

Methods two and three are not exclusive. The system
could be studied using both criteria.

Defining the Pre-Disaster Point for QUENCH

We define the QUENCH pre-disaster point as follows: the
point at which the supervising engineers realize that, despite
their best efforts, the plant is defying their control strategies.
If the plant reaches this pre-disaster point, then the control
of the plant should be transferred to the best possible con-
trol system. In the case of testing QUENCH, the best possi-
ble control system is the supervising engineers. In the other
case, when it is the engineers controlling the plant, the engi-
neers would retain their authority to order alterations to the
plant. They would then continue in their attempts to regain
control over the plant processes.

Pre-disaster for QUENCH could be defined as a bad
quench oil density that was not improving, for (say) two
days in succession. The time delay of two days allows for
the expert time to recognize a problem, give advice for that
problem, and for the tower to react to the expert’s advice.
If the at end of this time the density was still bad and not
improving, then the expert would be deemed to have lost
control of the tower.

The termsbad and not improvingcould be defined us-
ing the ranges developed during the implementation of
QUENCH. The expert system has the ability to assignssym-
bolic tagsto numeric ranges. The ranges for the quench oil
density (expressed in kilograms per cubic meter) are shown
in Figure 2. The time rate of change in the density (ex-
pressed in change in density per 24 hours) has the symbolic
tags shown in Figure 3.

Using these tags, we can define the pre-disaster point as a
quench oil density that is either:

� moderately high or very high density and not falling
quickly or falling slowly OR

� moderately low or very low density and not rising quickly
or rising slowly.

Tag Range
very high > 1070

moderately high > 1060

ok > 1050

moderately low > 1040

very low <= 1040

Figure 2: Assessing quench oil density in QUENCH.
From [Menzies & Markey 1987].

Tag Range
rising quickly > 7

rising slowly > 2

steady > �2

falling slowly > �7

falling quickly <= �7

Figure 3: Definingchangesin QUENCH. From [Menzies &
Markey 1987].

Maturation and the Preferred Method
While the preferred method addresses the problem of objec-
tivity seen with the obvious method, it will be effected by
maturation. Consider the following:

� During stable operating periods, an evaluation of
QUENCH’s expertise in bringing the quench oil density
back on specification is meaningless. Any test of this ex-
pertise must wait for periods of operational instability.

� The response time of the quench oil tower to changes in
low rates and heat-exchangers can be as much as several
days. Hence, once unstable conditions are encountered,
an evaluation of the effectiveness of QUENCH’s sugges-
tions may have to wait for as much as a week.

� If we assume twenty trials for each population, and that
each trial takes at least a week, then the total experiment
time will be at least 40 weeks.

� The current version of the QUENCH rule set was devel-
oped in two weeks. As a result of assessing the current
version of the program, the system developers would gain
months of experience with the system. This experience
could be used to modify and improve the program. There-
fore...

� The evaluation process could result in substantial modifi-
cations to QUENCH’s rule set.

Another way of expressing the above could be to say that
the experiment is testing the expertise of a system that is
learning. The evaluation experiment is to be attempted for
an expert system who is in the shallow end of a learning
curve. As a result of the experience gained during the evalu-
ation process, the rule set would be improved and the expert
system will move rapidly up the learning curve. The prob-
lem is that this improvement would occur concurrently with
the experiment.

Kehoe (personal communication) offers an interesting
resolution to the maturation problem. He argues that another
CSM could be added to the system. LetF be the number of

7



times the system is executed divided by the number of times
the knowledge base is edited:

� If F tends to zero, the system is not being used.

� If F is less than one, then each run of the program is
prompting a revision; i.e. there is something seriously
wrong with QUENCH.

� If F is much greater than one, then the system is being
run much more than it is being changed. Such an obser-
vation would suggest that some community finds using
QUENCH to be of value.

Another response to this maturation problem would be to
to forbid the modification of the rules during the evaluation
period; i.e. stop the system moving along the learning curve.
This is an undesirable solution. It is highly probable that
the existing rule set could be vastly improved. It was devel-
oped in a fortnight and this is a surprisingly short time for an
expert system. Human cognitive processes are notoriously
hard to formalize. The experience of expert systems devel-
opers is that any current specification of an expert solution
to a problem is incomplete [Menzies 1998b]. As experience
with an expert system accumulates, inadequacies in the sys-
tem’s reasoning will always be detected. To correct these in-
adequacies, the system’s knowledge based (e.g. QUENCH’s
rule set) must be modified. This cycle of flaw detection fol-
lowed by knowledge base modification can continue indef-
initely but concludes when the user is satisfied that the sys-
tem can provide adequate performance in an adequate num-
ber of cases. Depending on the expert system application,
this refinement process can continue for many years. Comp-
ton reports one case where the modification process seemed
linear; i.e. it may never stop [Compton 1994].

This is not to say that the existing rule set lacks any
utility for controlling the tower. The problem of assess-
ing QUENCH only arose since the supervising engineers
reported that they are satisfied with the output of the pro-
gram. The short development time might have resulted from
the choice of problem. QUENCH was ICI Australia’s first
direct experience with expert systems. The quench oil tower
problem was selected as a comparatively simple first test
case for the expert system methodology. One of the factors
that made the problem simple was the Olefines’ supervis-
ing engineers. These people spend significant amounts of
their time explaining the workings of the Olefines plant to
the control room operators. Hence, they have had consider-
able experience in expressing their knowledge in a concise
manner.

Nevertheless, it is the author’s belief that the program’s
rule set would benefit from further modification. It would be
foolish to believe that QUENCH had somehow avoided the
need for the long term knowledge base refinement process
found to be necessary in other expert system application.
Further, ICI would prefer the best possible control system
for their tower. They may be less than enthusiastic about
an experiment that inhibits the development of an optimum
rule set. Hence, except for the Kehoe extension, I offer no
revision to the preferred method to handle maturation.

Related Work
At the time of creating the QUENCH system, there was
nothing in the petrochemical literature about empirical eval-
uation of expert systems. For example, in [Morari &
McAvoy 1986] and [Ctc 1986] we can read hundreds of
pages on American and Japanese expert systems and never
read anything about evaluation. Perhaps the reason for this
curious omission is the difficulties inherent in the task. As
seen above, a whole host of factors threaten the internal va-
lidity of evaluating experiments in such plants.

More generally, business-level empirical KBS evalua-
tion is rarely performed in the knowledge engineering field
(but some exceptions were noted in the introduction). By
business-level, I mean measures of a running expert system
which relate to the business case which motivated the devel-
opment of that expert system. A CSM is a business-level
evaluation measure. Elsewhere, I have criticized this lack
of evaluations in the knowledge engineering field [Menzies
1998b, Menzies 1998a]. This critique was motivated by the
work of Feldman, Compton & Smythe [1989], followed by
myself and Compton [Menzies & Compton 1997]. Feld-
man, Compton, and myself devised, refined, and optimized
a general graph-based abductive framework for assessing a
KBS. That framework used a library of known or desired
behaviour [Menzies 1995]. An example of using this frame-
work is given in [Menzies & Compton 1997]. One advan-
tage of that framework over standard verification and valida-
tion is that the computational limits of the technique can be
studied viamutatorswhich auto-generate variants of known
graphs [Menzies 1996, Waugh, Menzies & Goss 1997, Men-
zies, Cohen & Waugh 1998].

General principles for evaluation of knowledge engi-
neering methods are discussed in [Cohen 1995, Shadbolt
et al. 2000, Hori 2000]. General principles for comparative
empirical evaluation of knowledge engineering methods are
discussed in [Menzies 1998a]. Such comparative evalua-
tions can take the form of:

� Analyzing program vs expert performance; e.g. [Hayes
1997, Menzies et al. 1992, Yu et al. 1979]. In general,
only these program vs expert performance evaluations
yield results relevant to the business case that motivated
the construction of the expert system.

� Analyzing expert vs expert performance using different
tools (e.g. [Corbridge, Major & Shadbolt 1995]) or
records of their knowledge (e.g. [Shaw 1988]);

� Analyzing the performance of variants within some pro-
gram either via an empirical average case analysis (e.g.
[Waugh et al. 1997, Menzies et al. 1998]) or a theo-
retical analysis such as graph theory (e.g. [Menzies
& Cohen 1997]) or a worst-case time complexity anal-
ysis (e.g. [Tambe & Rosenbloom 1994, Levesque &
Brachman 1985]).

The verification and validation community offer test pro-
cedures for KBS:

� The verification community typically focuses on syntactic
anomalies within a KBS (e.g. circularities, tautologies)
[Preece 1992].
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� The validation community focuses on the connection of
the program to its environment. However, a typical vali-
dation paper focuses on (e.g.) automatic test case gener-
ation from an analysis of the dependency network within
a program (e.g. [Ginsberg 1990, Zlatareva 1993]). The
advantage of this technique is that it can be guaranteed
that test cases can exercise all branches of a knowledge
base. The disadvantage of this technique is that, for each
proposed new input, an expert must still decide what con-
stitutes a valid output. This decision requires knowledge
external to the model, least we introduce a circularity in
the test procedure (i.e. we test the a KBS using test cases
derived from the structure of that KBS). Further, auto-
test-generation focuses on incorrect features in the current
model. I prefer to use some criteria from a totally external
source since such external test cases can highlight

� Usually, publications from verification or validation com-
munity do not discuss how to assess a KBS with respect
to the business case.

After evaluation, comes maintenance. KBS maintenance
is a large field, discussed elsewhere [Menzies 1999].

Conclusion
CSMs let us evaluate a system without requiring a panel of
experts of a database of known or desired behaviour. A be-
havioral success criteria is derived from the business case
that motivated the construction of the expert system. The
system is then executed and measurements are made which
inform the success criteria. Coupled with apre-disaster
point, CSMs let us statistically evaluate a system in oper-
ation, without compromising that operation.

The general themes of CSMs presented here are as fol-
lows. CSMs are usually very domain-specific since they re-
flect the contribution of the behaviour of the software in a
particular business context. Hence, they typically do not
refer to internal properties of a program and they cannot
be developed by programmers without extensive input from
business users. CSMs are usually obvious, but only in ret-
rospect: a CSMs can take weeks of analysis to uncover.
CSMs are useful for assessing a particular system, but are
a poor method for making general conclusions about a class
of tools. CSMs may only be collectable from the working
system. However, CSMs should be explored very early in
the life cycle of an expert system since CSM collection may
imply the extension of the system’s design to collect the re-
quired data.
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