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Abstract

Previous attempts to evaluate different KEng techniques have labored under at least four difficulties:
(1) lack of objective measures of success; (2) lack of success measures that are meaningful to the KBS
user community; (3) lack of baseline values to make measurements meaningful; and (4) certain restric-
tions in the range of technologies assessed. In this paper, an accessible theory of knowledge engineering
is presented: a good KEng-product offers high quality support for a design&learn loop. The high quality
knowledge base initiative (hQkb) operationalizes that theory, plus some objective measures of system
quality. ThehQkb evaluation will be focused on external quality attributes (e.g. predictability, surviv-
ability, adaptability) of a wide range of techniques. To ensure objectivity, these quality attributes would
be evaluated using specially hired verification and validation consultants.

1 Introduction

Figure 1: The
hQkb logo: any
software system should
clearly record its perfor-
mance.

The goal of much of automated software and knowledge engineering is the opti-
mization of code generation. For example, one of the goals of NASA’sIntelligent
Systems initiative1 is the creation of tools that can generate millions of lines of
codes in tens of seconds. To achieve this goal, current best practice must be iden-
tified and automated. But what shall we automate? To put this another way, what
represents current best practice in software and knowledge engineering (hereafter
SEng and KEng)? Where can we look to find descriptions of demonstrably best
practice?

One place we can look should be comparative evaluation experiments. Sev-
eral exist in the KEng literature:

The Oak Ridge Study: Oak Ridge set a challenge problem (inland oil and haz-
ardous chemical spills) and had a group of knowledge engineering re-
searchers implement solutions [Barstow, Aiello, Duda, Erman, Forgy,
Gorlin, Greiner, Lenat, London, McDermott, Nii, Politakis, Reboh,
Rosenchein, Scott, van Melle & Weiss 1983].

DARPA’s high performance knowledge base initiative (HPKB). HPKB aims at improving the rates we
can build KBs by one to two orders of magnitude. For notes on HPKB, see Figure 3.

The Sisyphus project of the Banff community: Sisyphus is a range of projects, three of which took the
form of the Oak Ridge study. For notes on Sisyphus, see Figure 4.

1http://actuva-www.larc.nasa.gov/techplan/4.0/#4.2
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DESIGN
PARADIGM 

decomposition 
and synthesis 

situated 

search

negotiation 
and conflicts

FOCUS 
math,  dat,   proc,  oo,    ifa,   ona,   kla,   klab,  klb

most of  
Sisyphus 

most of 
HPKB 

Yost [1994]:
Sisyphus-II 

Richards, Menzies
[1998]: Sisyphus-III

math: Modeling using equations.

dat: Data modeling; generates database tables.

proc,oo: Modeling for procedural or OO languages.

ifa: Inference plus axiom modeling; generates ax-
ioms for a general inference engine.

ona: Ontological and axiom modeling: generates
possibly non-executing ontological descrip-
tions of domains.

kla : Knowledge level modeling, type A: problem
solving using one inference procedure.

klb : Knowledge level modeling, type B; problem
solving using multiple PSM descriptions.

klab : Hybrid KLA/KLB approaches.

Figure 2: A KEng-methodology is a combination of design paradigm, focus, (shown here) plus tools and
resources (not shown). Focus types are defined on the right-hand-side and discussed further around Figure 6.
For more information on design paradigms, see Figure 5. The standard HPKB or Sisyphus project sampled
only a small subset of the design paradigm vs focus space (exceptions: [Richards & Menzies 1998, Yost
1994]).

I argue that none of these evaluations let us find best practice. Consider the case of a NASA software
manager asking thelaunch question; i.e. “can I entrust my satellite to a knowledge base system (KBS)?”.
Nowhere in the Oak Ridge, HPKB, or Sisyphus evaluation results is aquality statementof the form “we can
certify that this KBS will work, given the known operational conditions seen in the mission profile”. More
generally, the evaluation criteria used in the Oak Ridge, HPKB, and Sisyphus studies address the concerns
of the KBS developer community.These studies do not address the concerns of the KBS user communities.
For example, much of Sisyphus work is based around a technology calledproblem solving methods(PSMs)
which we define below. One conclusion from the Sisyphus studies is that PSMs are a rich engineering
framework for discussing and implementing KBS. Note that this conclusion deals solely with the concerns
of the system development community. This conclusion says nothing about the reliability or quality of the
generated systems. Such quality statements are required if we are to answer user concerns such as the launch
question.

The aim of the high quality knowledge base initiative (hQkb) is to address this lack of quality-based
evaluation results. InhQkb, an international consortium of knowledge engineering (KEng) researchers
would take some specification and use different techniques to develop a working system. The different prod-
ucts would then be comparatively assessed based on external quality attributes; e.g. system maintainability,
adaptability, reusability, testability, controlability, etc. The “Q” in hQkb is capitalized to remind us that
the stand-out feature of hQkb is a focus on quality measures. hQkb will use three methods for this quality
assessment:

Wide range of systems:One method of assessing a methodologyM is to:

1. Clearly distinguish it from a competing methodology:M .

2. Comparatively assessM by measuring variables collected from bothM and:M .

Much of HPKB and Sisyphus comes from only a small region in the space of known approaches; see
Figure 2. That is, HPKB and Sisyphus did not define:M nor collected comparative results from a
:M approach.

Process-based assessment:All hQkb implementations will instantiate the same software process (theDe-
sign&Learn loop described below). We will say that the higher the quality of an hQkb offering, the
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Goal: To foster the development of technologies that can increase the rate at which we can write knowledge bases.

Baseline: Current KB authoring rates average at 5 axioms per hour, 10,000 axioms per year.

Aim: To increase the baseline by one to two orders of magnitude.

Organization: DARPA funds bi-annual meetings and two “intergration teams” (SAIC and Teknowledge) whose role is to
build unified workbenches from the contributions of HPKB participants.

Participants: HPKB participants come, for the most part, from the United States. These participants, and the principle
investigators, include CYCORP:Lenat; Stanford: Fikes, Koller, McCarthy, Wiederhold, Musen; George Mason
University: Tecuci; Carnegie Mellon University: Mitchell; University of Massachusetts: Cohen; ISI: MacGregor,
Patil, Swartout, Gil; SRI: Lowrance, desJardins, Goldszmidt; Kestrel: Espinosa; MIT: Doyle, Katz; Northwestern
University: Forbus; AIAI at Uni. Edinburgh: Kingston, Tate; TextWise: Liddy, Hendler.

Biases: HPKB ignored, for the most part, the problem solving methods (PSMs) research (see the discussion below in
the section: The Range of Treatments). PSMs are a major focus of the Sisyphus project(Figure 4).

Results: 1. In HPKB year one, the George Mason team generated the most new axioms added per day (787 bi-
nary predicates) using DISCIPLE: an incremental knowledge acquisition tool [Tecuci 1998]. DISCIPLE
includes machine learning tools for abstracting learnt rules which makes them more generally applicable.
As DISCIPLE runs, its builds and updates the meta-knowledge used for the purposes of abstraction.

2. Cohen, Chaudhri, Pease & Schrag [1999] studied how much ontologies supported the development of
HPKB applications. The recent terms addded to an ontology offer more support than words added previ-
ously by other authors. My reading of this result is that it does not support the current efforts in building
supposedly reusable ontologies.

For more information: See http://www.teknowledge.com/HPKB/ and [Cohen, Schrag, Jones, Pease, Lin, Starr,
Gunning & Burke 1998].

Figure 3: DARPA’s high-performance KB (HPKB) initiative: notes

more support it brings toDesign&Learn.

Centralized independent assessment:Developers would not assess system quality. Repeated empirical
studies show that the developer of programX is the worst audience to assess that programX [Jones
1998, p558]. All HQkb products will be assessed at NASA’s independent verification and validation
facility2.

Search-based assessment: I have been developing a theory of search-based agents for automatically as-
sessing KBS quality. Part of the hQkb project is an exploration of this theory.

The rest of this article explores the following three facets ofhQkb, in the order listed below. In any
experiment, arange of treatmentsare applied to asystemand someeffectis measured:

The range of treatments: hQkb will encourage developers to implement a system using a wide range of
techniques.

The system: Design&Learn is my generalization of Josephson, Chandrasekaran, Carroll, Iyer, Wasacz &
Rizzoni’s [1998] abstract model of design.Design&Learn will be the meta-framework within which
thehQkb members will work.

The measured effects:The differentDesign&Learn implementations will be assessed via their external
quality attributes.

2Note: funding to hire this evaluation team is being applied for and, if approved, would not be available till mid-2000, at the
earliest.
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The Sisyphus projects are a series of challenge problems in which a knowledge acquisition problem was defined and
tool developers were challenged to solve it with their tools. Unlike HPKB, Sisyphus was run by a loose consortium of
international KEng researchers on a shoestring budget. Sisyphus began in 1990 and continues to this day. Communi-
cation is mostly via email and status reports at the semi-annual Banff KA workshops. Sisyphus is mostly populated via
Europeans but some cross-over with the HPKB community exists (i.e. Musen, Gil).
A significant biases in the Sisyphus projects was towards problem solving methods (PSMs) research (exceptions:
[Richards & Menzies 1998, Yost 1994]). In this regard, Sisyphus is very different to HPKB (Figure 3).
There have been four Sisyphus projects defined:

Sisyphus-I: Room Allocation A number of people with differing requirements have to be allocated appropriate rooms
with differing characteristics. It was based on an ESPRIT study at the GMD in Germany and was aimed at KEng
tasks not focused heuristic classification [Linster 1992, Clancey 1985].

Sisyphus-II: Elevator Configuration The room allocation problem proved to relatively simple and the second Sisyphus
project attempted to provide a realistic knowledge-engineering problem based on the VT system [Schreiber &
Birmingham 1996, Marcus, Stout & McDermott 1987].

Sisyphus-III: Lunar Igneous Rock Classification The principal objectives of the Sisyphus III project were:

� To provide for better quantitative comparison of KB systems and the methodologies employed to build
them, through use of a set of achievement metrics

� To provide more realistic access to actual KA material in a staged series of releases

� To obtain more complete records (or knowledge engineering meta-protocols) concerning the processes
that the knowledge engineer goes through in the KBS construction process [Shadbolt, O’Hara & Crow
2000].

Sisyphus-IV: Integration over the Web Sisyphus-IV is a project to encourage projects collaborative use of tools through
the net and web and by the integration of web tools at different sites through the net.

While Sisyphus has unified a diverse range of researchers, and hundreds of publications have been generated, the
objective evaluation results to date are inconclusive:

... none of the Sisyphus experiments have yielded much evaluation information (though at the time of this
writing Sisyphus-III is not yet complete) [Shadbolt et al. 2000].

Nevertheless, the Sisyphus researchers remain optimistic and the project continues.

Figure 4: Notes on the Sisyphus initiatives. Extended from notes athttp://ksi.cpsc.ucalgary.
ca/KAW/Sisyphus/ .

2 The Range of Treatments

hQkb’s treatments will be the different methodologies used to create some KEng-product. This section
describes those methodologies. The methodologies surveyed byhQkb will be very wide. There are two
motivations for this:

Technology biases in existing studies:Figure 2 claimed that HPKB and Sisyphus only sampled a small
portion of the space of KEng methodologies. For more notes on that claim, see the end of this section.

Baselines: Recalling the introduction, it is very useful to callibrate measurements from sophisticated tech-
niques with measurements from not-so-sophisticated techniques (but be aware that sometimes, the
“straw-man” will not burn).

Software construction techniques can be characterized by the process used to create it; the interim and
final products; and the resources used to create it [Fenton & Pfleeger 1997, chpt3]. A detailed characteriza-
tion of software process, product, and resources is still an open research issue.hQkb will focus on the parts
of process-product-resources which can be reasonably well defined; i.e. tool, resources, design paradigm,
and focus.

Resources and tool:hQkb members would have to describe the tools used to develop their system, the
time taken, and make some indication about the skill of the developer(s).
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Design
paradigm:

Decomposition and
synthesis

Search Negotiation and
deliberation

Situated

Driver: Reuse libraries Heuristics Conflicts Errors
Early
work:

[Alexander 1964,
Alexander, Ishikawa,
Silverstein, Jacob-
sen, Fiksdahl-King &
Angel 1977]

[Simon 1969] [Webber 1973, Finkel-
stein, Gabbay,
Hunter, Kramer &
Nuseibeh 1994]

[Schon 1983, Shalin,
Geddes, Bertram,
Szczepkowski &
Dubois 1997]

Current
work:

OO design pat-
terns [Menzies 1997],
KADS [Wielinga,
Schreiber &
Breuker 1992]

SOAR [Rosenbloom,
Laird & Newell 1993],
HT4 [Menzies 1998b],
SVF [Josephson
et al. 1998]

Viewpoints in re-
quirements engi-
neering [Finkelstein
et al. 1994]

RDR [Compton &
Jansen 1990, Pre-
ston, Edwards &
Compton 1993]

Example: Build the house using
parts found when the
last house was built.

Build the house via a
search of the space of
what is known of bricks,
tiles, and wood.

Let each stakeholder
design their preferred
house, then lets dis-
cuss it.

Build the house, find
out that the living room
gets too hot in sum-
mer, plant fruit trees for
shade, make and sell
the jam from the fruit.
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Figure 5: Buidling a house using four different paradigms of design

Design paradigm: In general, process is hard to characterize. How do we know (e.g.) if a devel-
oper says they use Booch’s [1996] OO development method, that they are really following that recipe?
However, Moran & Carroll [1996, p3] argue that four broad descriptions of design paradigms exist in the
literature (Figure 5). Notes on these paradigms follow:

Design as decomposition and synthesis:A proponent of design as decomposition and synthesis might
predict that using well-developed software libraries will mean fewer loops ofDesign&Learn than
working everything out from scratch. This paradigm dates back at least to 1964 with Alexander’s
work on architecture [Alexander 1964, Alexander et al. 1977]. Design is taken to be the re-shuffling
of components developed previously, then abstracted into a reusable form. Modern expressions of
this approach include object-oriented design patterns [Buschmann, Meunier, Rohnert, Sommerlad &
Stal 1996, Menzies 1997], and the knowledge engineering research into ontologies [Gruber 1993, van
Heust, Schreiber & Wielinga 1997] and problem solving methods [Chandrasekaran 1983, Clancey
1985, Schreiber, Wielinga, Akkermans, Velde & de Hoog 1994]. Our reading of the literature is
that this approach is the dominant paradigm in contemporary knowledge and software engineering.
Elsewhere, I have discussed limitations to this paradigm [Menzies 1998b, Menzies 1998a].

Design as search:A proponent of design as search might predict that structuringDesign&Learn around
search primitives will result in an adaptableDesign&Learn system faster than other approaches. This
paradigm dates back at least to 1969 with Simon’s work on artificial intelligence [Simon 1969]. Design
is taken to be the traversal of a space of possibilities, looking for pathways to goals. Modern expres-
sions of this approach includes most of the AI search literature [Pearl & Korf 1987] and the SOAR
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knowledge-level(KL) search [Newell 1982, Newell 1993]. In a KL search, intelligence is modeled
as a search for appropriate operators that convert some current state to a goal state. Domain-specific
knowledge is used to select the operators according tothe principle of rationality; i.e. an intelligent
agent will select an operator which its knowledge tells it will lead the achievement of some of its goals.
Note that the problem solving methods/ontology community also calls its approach “knowledge-level
modeling”. However, that community and Newell implemented very different architectures. We will
call Newell-style knowledge-level modeling KLA and the other kind of knowledge-level modeling
KLB.

Design as deliberation and negotiation:A proponent of design as deliberation and negotiation might pre-
dict that the better theDesign&Learn debate module, the better theDesign&Learn system. This
paradigm dates back to at least 1972 with Ritell’s work onwicked problems[Rittel 1972]. Wicked
problems have many features, the most important being that no objective measure of success exists.
Designing solutions for wicked problems cannot aim to produce some perfectly correct answer since
no such definition ofcorrectexists. Hence, this approach to design tries to support effective debates
by a community over a range of possible answers. Modern expressions of this approach includes the
requirements engineering (RE) community. Requirements engineering is usually complicated by the
incompleteness of the specification being developed: while a specification should be consistent, re-
quirements are often very inconsistent. RE researchers such as Easterbrook [1991], Finkelstein et al.
[1994], and [Nuseibeh 1997] argue that we should routinely expect specifications to reflect different
and inconsistent viewpoints. Note that this paradigm requires more than one expert to be part of the
knowledge acquisition process.

Situated Design: Proponents of situated design might predict that minimal modeling should be performed
in Design&Learn prior to running specific examples. This paradigm dates back to at least 1983
with Schon’s work on thereflective practioner[Schon 1983]. In this approach, design mostly happens
when some concrete artifacttalks backto the designer- typically by failing in some important situation.
That is, reflective design is less concerned with the creation of some initial artifact than the on-going
re-interpretation and adjustment of that artifact. Modern expressions of this approach include the
situated cognition community [Suchman 1993, Clancey 1989], certain approaches to design rationale
[Fischer, Lemke, McCall & Morch 1996, Casady 1996], and knowledge engineering techniques that
focus on maintenance rather than initial design [Compton & Jansen 1990, Menzies 1998b, Menzies &
Clancey 1998]. In the design as reflection paradigm, testing for model failure is an essential, on-going
process.

Another paradigm: The design paradigms surveyed by Moran & Carroll do not explicitly mention a fifth
design paradigm: the development of new components. However, we could infer that the generation
of new components arises out of design as search, design as deliberation and negotiation, and situated
design.

Focus:After resources, tool, and design paradigm, the otherhQkb treatment characterization is thepri-
mary modeling focus. Figure 6 shows this dimension of KEng-methodologies. Each point in this dimension
(MATH, DAT, PROC, OO, IFA, ONA, KLA, KLAB, KLB) uses some different combination of primary
modeling constructs, as described in Appendix A:

MATH: MATHematical modeling.Impressive and intuitive visual programming environments exist that
allow end-users to model complex systems, then execute them using some equation solver [Inc. 1994,
Gautier & Gruber 1993]. One advantage of the MATHs-based approach is that certain quality factors
(stability, observability, controlability) can be rigorously determined [Ishida 1989].
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Ontologies Libraries
of

PSMs

General
Inference
Engine

AxiomsLibraries 
of

Procedures

OO IFA KLBKLA KLABPROC
1 1 2

Libraries 
of

Objects

Data
Modeling

DAT ONA

Standard realm of 
software engineering

Standard realm of 
knowledge engineering

Mathematical
Modeling

MATH

Standard realm of
 mathematical modeling  

Figure 6: Soft construction techniques can be divided on what combinations of primary modeling construct
they use. The terms in the last row are defined in Appendix A. “1” denotes that the single inference engine
is customizable; e.g. the knowledge engineer can provide operator selection rules to customize the problem
space traversal [Laird & Newell 1983]. “2” denotes that PSMs in KLAB are used only in an initial analysis
stage.

DAT: DATa modeling.The data modeling group who target relational databases. Theoretically, there is
nothing stopping data modeling workers from developing KBS [Ullman 1988]. However, in practice,
conventional database manipulation languages are much stronger on IO functions and disc storage
than intricate RAM-based manipulation of data.

PROC, OO: PROCedural, Object Oriented modeling.Rejects the declarative representations used in the
other approaches. In the 70s, this was a large research area. Proponents of frame representations
(e.g. [Winograd 1975, Minsky 1975]) argued that part of human expertise was “know-how” and
these recipes of “how” to solve a problem were best modeled as (e.g.) Lisp procedures attached to
frame slots. The debate continues to this day [Nilsson 1991, Birnbaum 1991] but the complexity of
reasoning about procedures (e.g. [Etherington & Reiter 1983]) drove most researchers to declarative
characterizations of their frame-based knowledge (e.g. [Brachman, Gilbert & Levesque 1989]). Pure
PROC/OO KEng researchers are rare these days, but some still keep the faith (e.g. [Birnbaum 1991,
Brooks 1991]). Few PROC/OO researchers are known amongst the HPKB and Sisyphus communities.

IFA: InFerence + Axioms.No explicit representation meta-knowledge when modeling KBS and a single
inference procedure. Crudely expressed, in the IFA approach, KEng is just a matter of stuffing axioms
into an inference engine and letting the inference engine work it all out. Successful IFA variants
provide rigid control on how new axioms are asserted; e.g. [Compton & Jansen 1990].

ONA: ONtologies + Axioms.Active focus on ontology creation. Ontologies may never execute- rather
they may be an analysis tool for a domain. Software engineers who develop architectures or design
patterns, but do not execute these abstractions directly, are ONA (e.g. [Gamma, Helm, Johnson &
Vlissides 1995]).

KLA: Knowledge-Level modeling type B- Newell-style.A strong commitment to a single inference proce-
dure, which can be customized. This inference procedure features predominantly when modeling a
system; e.g. [Yost & Newell 1989, Laird & Newell 1983, Menzies & Mahidadia 1997]. To the best of
my knowledge, all the known KLA developers use design-as-search.

KLAB: A hybrid KLA/KLB approach in which PSMs are used to structure the analysis discussions, but
then converted by the knowledge engineer at design time to KLA [Chandrasekaran, Johnson & Smith
1992].
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KLB: Knowledge-Level modeling type A- non-Newell style.Catalogues libraries of PSMs [Wielinga et al.
1992] or explores a single PSM within such a library [Marcus & McDermott 1989]. Extensive use
of ontologies. At runtime, KLB may use a general inference engine to execute their systems (e.g.
older versions of PROTEGE-II [Eriksson, Shahar, Tu, Puerta & Musen 1995] compiled down to
CLIPS [NASA 1991]) but this inference engine does not feature in the design discussions.

While generalizations are hard to form from the diverse international KEng research community, it is
roughly true that HPKB focused on IFA and ONA while Sisyphus focuses on KLB. Roughly speaking, in
the HPKB view, PSMs are ignorable and axioms/ontologies are all; e.g. [Lenat & Gutha 1990]. One of the
reason for this difference in the two communities is geography. Most of the Sisyphus researchers came from
Europe where the KADS-PSM project [Wielinga et al. 1992] was very influential. On the other hand, most
of the HPKB researchers came from the United States where the CYC project has a high profile [Lenat &
Gutha 1990]. The CYC project focuses on ontologies, not PSMs.

Curiously, even though this international division exists in the KEng community, comparative data on
the merits of the different focuses are very few. These data points come from the Sisyphus project:

� In the Sisyphus-II initiative, Yost [1994] built a KLA elevator configuration system using design-as-
search while the other teams used KLB [Schreiber & Birmingham 1996]. Yost’s reported development
times were much less than any of the other teams.

� In the Sisyphus-III initiative, Richards & Menzies [1998], used a IFA/situated approach (Ripple-down-
rules) to produce a working system before the other KLB teams.

These two data points are hardly conclusive. For example, Yost had analysed the domain extensively
prior to system construction. That is, it is possible that Yost’s extra experience with the domain gave him
an advantage. Nevertheless, the one general conclusion we would offer is that more data points should be
collected. HencehQkb.

3 The System

The previous section defined the hQkb treatments; i.e. the different ways we can build systems. This section
addresses the next logical question: what specific system will be built?

This section describesDesign&Learn: a meta-level description of system design and assessment. It
is processed that hQkb participants structure their implementations aroundDesign&Learn. We focus on
Design&Learn for three reasons:

1. NASA may choose to fund hQkb, but only if it impacts on current NASA projects. Two such current
projects are the Intelligent Synthesis Environment (ISE)3 and the Independent Verification and Vali-
dation (IV&V) facility4. ISE aims to support distributed design of NASA systems. IV&V seeks to
find errors in NASA software. Hence, we focus hQkb on the creation and assessment of designs.

2. Quality assessment measures require some definition of the purpose of a system.Design&Learn of-
fers one generic description of such a purpose: the development and evaluation of software designs.

3. The discussion at the end of this section will argue thatDesign&Learn is general enough to accom-
modate KEngs from different design paradigms.

3http://actuva-www.larc.nasa.gov/techplan/4.0/#4.6
4http://www.ivv.nasa.gov/
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To defineDesign&Learn, we begin with the generic statement from Simon [1969]; i.e.

design = generate+ test

Tacit in that characterization is at least following structures:

Ideas: Concepts that collectively create the space searched during design. For example, we might be work-
ing with a list of car parts.

Constraints: Knowledge of legal combinations of those ideas. For example, the marketing department
might have told us to not make cars with red doors.

Assessment:Dimensions on which we can assess a design. For example, we may know that our customers
care about how many miles per gallon our cars will use during city driving. Assessments may be sim-
ple dimensions or some combination of dimensions. For example, we might know that our customers
would prefer a car that uses little gasoline over one that goes very fast.

Also tacit in Simon’s characterization are the following issues:

Debates: The arguments humans have around the design process. Such debates can mature the assessment
criteria.

Iteration: Design is a looping process that repeats every time a designer says “I’ll just change this and see
what I get”.

Pragmatics: Design is a resource bound activity which stops when the designers run out of time or find a
satisfactory solution.

Learning: We would hope that lessons learnt in one pass of the design cycle are used to improve the next
pass of the design cycle. That is, after each loop of an interative design process, it should be possible
to speed-up the next loop. The classic optimization technique is to move the test criteria into the
generate process; i.e. don’t waste time generating what will be culled anyway by the test criteria. In
this framework, that would mean changing the ideas, constraints, and assessment criteria.

procedureDesign&Learn(
ideas; fe.g. list of car partsg
constraints; fe.g. no red doorsg
assessment; fe.g. city mph,top speed, fuel economy

more important than speedg
):best

1. while not outOfTime
2. do options test(generate(ideas;constraints))
3. assessment debate(assessment;options)
4. best top(rank(options; assessment))
5a. if ok(best)
5b. thenreturn best

else< ideas; constraints; assessment > 
5c. learn(assessment;options)

fi
done

6. return best

end Design&Learn

Figure 7: Design&Learn

Figure 7 shows how the above ideas
interact. This characterization con-
tains two extensions to the standard
design-as-search paradigm (e.g. [Motta
& Zdrahal 1998]). A large class of de-
sign systems leave the user out of the
loop and assume static design assess-
ment knowledge. In this characteriza-
tion:

� The human-in-the-loop appears as
thedebate function.

� The loop allows for the evolution
of design knowledge. Two arti-
facts are created: the best option
design and better design knowl-
edge in the form of matured as-
sessment criteria. Such revised
assessment criteria could be used
for future applications.
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An important premise inhQkb is that Design&Learn offers enough engineering options to support
researchers from different design paradigms. To test this premise, we explore how the different paradigms
would tackle the implementation issues ofDesign&Learn.

Designers using deliberation and negotiation might focus on thedebate function. Their rationale might
be that the key issue is encouraging community buy-in to the next version of the design.

Designers using decomposition and synthesis might implementDesign&Learn via pre-defining a rich
ontology of design and assessment. Such an ontology, they might argue, represents the total space of design
and assessment options. Editors based on that ontology could support a wide range oflearning. That is,
decomposition and synthesis designers would focus on the initialization of theideas passed into the initial
loop ofDesign&Learn.

Alternatively, designers using situated design might focus on thelearn function. In direct contrast to the
above decomposition-and-synthesis design, situated designers might minimize the ontological commitments
of the whole system in order to increase thelearn flexibility.

Lastly, designers using search techniques might have another focus. They might argue that the key
issue is covering the range of design options. Their focus might hence be in thetest andgenerate part of
Design&Learn.

4 The Measurement of Effects

Previously we have defined a system (Design&Learn) and some treatments for that system (constructing
applications using different design paradigms and focus). When the treatment is applied, anhQkb member
will use some KEng-tool to generate a KEng-product. In this section we discuss how we will assess those
KEng-tools and KEng-products.

The assessment scheme is as follows:

1. KEng-products will all be built from the same specification. That specification must refer to some
domain that is both broadly understood and of interest to potential hQkb funding bodies. We are
currently exploring aspects of Micro-Satellite design.

2. All KEng-products will be assessed by a panel of IEEE-certified university mechanical engineering
lecturers. This panel will declare a “best” and “second-based” and “most-doubtful” design. Their eval-
uations will be subjective: we only perform this part of the evaluation to ensure thathQkb members
spend some non-trivial effort in exploring domain knowledge and improving their KEng-products.

3. Funding permitting, we will use trained independent software verification and validation professionals
from NASA’s IV&V facility to assess the KEng-products.

4. External quality attributes will be used to assess the KEng-tool used and the KEng-product, as detailed
below.

hQkb seeks to make definitive statements about what is knowable, rather than not make statements about
what is unknowable. Hence, in order to produce objective quality assessments, certain quality attributes will
be ignored. For example, under-defined quality attributes such as explainability, reliability, securability
(integrity plus confidentiality), availability (of the system when required) will not be used. Further, quality
attributes that require extensive human involvement (e.g. user usability) will be ignored. For more on quality
attributes, see [Fenton & Pfleeger 1997,x9.1].

hQkb’s objective quality metrics will be restricted to that that can be determined using theDesign&Learn fraem-
work (seex4.1) or some automatic tool (seex4.2).
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4.1 Quality Assessment viaDesign&Learn

GivenDesign&Learn and a working hQkb system, quality measures can be determined for adaptability and
resuability.

4.1.1 Adapatability

Adaption means changes to the system when requirements change. In the case ofDesign&Learn, such
requirements would change our ideas, constraints, or assessment knowledge. That is, the more automatic
support for thelearn function withinDesign&Learn, the more adaptable the KEng-tool. Further, the more
extensible the ideas, constraints, and assessment criteria withinDesign&Learn, the more adaptable it is.

4.1.2 Reusability

Three reuse measures follow fromDesign&Learn:

%-reused verbatim Suppose we access some supposedly reusable artifact before we start theDesign&Learn loop.
The modifications made to that artifact before we exitDesign&Learn is a measure of the reusableness
of that artifact. Note that if we can reduce the artifact to some abstract search spaceA, then computing
%-reused is easier. Within the portions built from reuse components, there should be a low ratio of
new edges/old edges).

%-new construction: Decomposition and synthesis proponents might argue that a significant portion of the
system would be based on reused components (i.e. a high ratio of edges from reused components/new
edges).

Number of loops: Thirdly, a strong proponent of reuse might argue that ifDesign&Learn is initialized
properly, the the first generated designs will be satisfying. That is, if we reuse the right knowledge,
then we need only a few (1?) loops ofDesign&Learn.

4.2 Quality Assessment via Automatic Agents

This section describes some new research: automatic agents for quality attributes of discrete systems. It will
be argued that such automatic agents may be able to infer many KBS quality metrics including:

� Predictability

� Maintainability

� Testability

� Controlability

� Observability

� Survivability

A pre-condition for many of these tests is that the testing agent can accessG, a directed and-or graph rep-
resenting the connections between literals in the knowledge base. This is not an unreasonable requirement.
Many KEng tools already support some type of access toG (see the discussion ofsearch space reflectionat
the end of [Menzies 1999]).

11



4.2.1 Maintainability and Testability

Maintainability: Maintenance means changes to the system when requirements are constant and the oper-
ating environment changes (or bugs appear). One measure of maintainability is, when considering changing
“X”, can we find zones “Y” which are dependent on “X”? If we can, then after any change we can check
what impact that change has on the rest of the system. This definition can be mapped into a search acrossG.
UsingG, we can compute points downstream of each test. Now, if we change some point within the system,
we can limit our regression testing to only those tests which cross the effected regions. These points must
be found within the intersection of the zone downstream of the change point and downstream of each test.

Testability: In conventional software engineering, an average definition of testability is the ability of the
system’s interface to see errors. The more testable a KEng-tool, the more automatic support it offered for
assessing testability. Several models of testability are computational; i.e. can be automatically assessed. For
example:

Test suite generation: Zlatareva [1993] and Ginsberg [1987] discuss non-monotonic techniques for auto-
matically generating test suites that cover all parts of a declarative KBS.G is sorted into consistent
subsets. Each root of a subset is test case.

Mutation analysis: A mutationis a syntactically valid variant of a program. Mutations are random probes
into the program space. Using large scale probing, it is possible to find sensitive spots where small
changes have a major effect on the output of the program. Also, mutation analysis can be used to
assess a test suite: it a test suite cannot detect the mutation, then it must be extended. Mutations can
be done procedurally [Voas 1992] or declaratively [Menzies & Michael 1999] via structural alterations
toG.

Minimizing test suite size: A repeated observation is that test suites often contain redundancies. That is,
a test suite can be reduced without losing effectiveness. In one case study with program inputs, the
reduction was down to 30% of the original size [Rothermel, Harrold, Ostrin & Hong 1998]. Several
studies with program mutations report that a small number of mutants yield as much information as a
large number (see the discussion in [Menzies & Michael 1999]).

Reproducability: Menzies & Compton [1997] offer a model-based version of testability: the ability for a
software model of “X” to reproduce known or desired behaviour of “X”. This definition may require
a non-trivial extension to a KEng-tool. For example, this definition requires a library of known or de-
sired behaviour. Special tools are required to store, generate, and execute such a library. For example,
to generate this library from system invariants written in a first-order language, partially evaluate the
invariants to generate instances. Each such instance is a test case. Also, ifG is indeterminate, then a
search acrossG implies making assumptions and keeping mutually exclusive assumptions in separate
worlds of belief.

Distinguishability: Waugh, Menzies & Goss [1997] offers another specialization of testability: a system
is distinguishable if the test results can distinguish a theory “X” from a revision to theory “X”.
Distinguishable is slow to assess since it requires running thousands to millions of variations of “X”.
However, it is automatable and, hence, is a candidatehQkb quality attribute.

4.2.2 Controlability, Observability, Survivability

Control theory discusses automatic agents for assessing continuous systems [Paulo & Arbib 1974]. The
roots of an eigenvector of a system of equations can be queried to precisely determine the following quality
attributes:
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Controlability: A system is controllable if the system interfaces can be used to drive the system into a
desired state.

Observability: A system is observable if the system interface can deduce what state the system is in.

Survivability: A system is survivable if, in any error state, the system can reach some safe state. That is,
given meta-knowledge of what represents safe and unsafe operation, pathways exists from all unsafe
states to safe states.

Analogous definitions can be offered for logical theories. Such an analysis would require:

� Access toG.

� Knowledge of which KBS literals come from system interfaces.

� Knowledge of what KBS states represent dangerous and safe situations.

� Fast theorem provers.

With these preconditions, then the following quality attributes can be defined for logical theories:

Logical observability: Any KBS state can be used to infer a unique set of interface literals.

Logical controlability: For all states, there exists a valid combinations of interface literals which can be
used to infer that state,

Logical survivability: For all dangerous states, there exists a conjunction of a dangerous state and a valid
combinations of interface literals which can be used to infer a safe state.

4.2.3 Predictability

Predictability is the ability to predict output states, given input states. A special type of predictability is
stability : the ability to guarantee that all future states of the system will all be safe. Indeterminate AI
algorithms are notoriously unpredictable. Predictability is an open research issue in KBS [Ishida 1989, Yip
1991], but of vital importance to organizations using autonomous, indeterminate, adaptive devices (such as
NASA).

5 Conclusion

This document has:

� Briefly surveyed existing KEng methodologies and KEng evaluation projects. It was argued that prior
KEng evaluation studies lacked quality measures that would be of interest to the KBS user community.

� Defined a new evaluation project with less technical biases than previous projects.

� Offered computational external quality attributes as a success measure.

hQkb is still in its formative stages. The purpose of this document is to form a community of KEng
researchers interested inhQkb. This document is a success if it prompts extensive discussions amongst
KEng researchers that significantly refinehQkb. Hence, further elaboration by this author is pointless. The
real issue now is whether or not the international KEng community will endorse thehQkb project via any
of:

� Discussions to refine thehQkb definition.

� Participation in the refinedhQkb project.

Time will tell.
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A Primary Modeling Constructs

This section lists the primary modeling constructs seen in the software engineering and knowledge engineer-
ing literature.

complaint

select

decompose

observable hypothesis specify

select

finding compare norm

system model

difference

Figure 8: A PSM for diagnosis; ovals=functions,
rectangles=data types.

Axioms: Assertions about a particular domain;

Single general-purpose inference engines5

PSMs: Libraries of declarative representations of infer-
encing cliches6; e.g. the diagnosis PSM in Fig-
ure 8.

Ontologies: Libraries of abstracted data types seen in
different domains7. Ontologies model the back-
ground data within a domain and have been
called“an explicit specification of a conceptuali-
sation” [Gruber 1993]. PSMs and ontologies are
linked: ontologies define the data types required
by a PSM to execute in a domain. For example,
the diagnosis PSM of Figure 8 needs (e.g.)com-
plaints andobservables to execute.

The following three constructs are defined for com-
pleteness sake. While exceptions exists, they are not the
usual modeling construct in KEng:

Maths: A non-trivial range of systems can be modeled as quantitative or qualitative equations [McIntosh &
McIntosh 1980, Williams & DeKleer 1991].

Data Modeling: A modeling approach whose target is a set of relational database tables [Date 1995].

Procedures: Libraries storing know-how represented as procedural code.

Objects: Combinations of data with the functions that process that data into one encapsulated unit. Units
may exist in a hierarchy and sub-units inherit functions and data definitions from super-units. Pro-
ponents of objects modeling use objects as a tool to specify higher-order structures such as black-
boards [Buschmann et al. 1996]. However, as a knowledge representation tool, standard object-
oriented languages have major restrictions [Menzies 1991].

5E.G. Prolog [Kowalski 1988], OPS5 [Forgy 1982], SOAR [Laird & Newell 1983, Rosenbloom et al. 1993], PSCM [Yost &
Newell 1989], GSAT [Selman, Levesque & Mitchell 1992], ISAMP [Crawford & Baker 1994],...

6SPARK/BURN/FIREFIGHTER (SBF) [Marques, Dallemagne, Kliner, McDermott & Tung 1992]; generic
tasks [Chandrasekaran et al. 1992]; configurable role-limiting methods [Swartout & Gill 1996, Gil & Melz 1996]; model construc-
tion operators [Clancey 1992]; CommonKADS [Wielinga et al. 1992, Schreiber et al. 1994]; the PROTEGE approach [Eriksson
et al. 1995]; components of expertise [Steels 1990]; MIKE [Angele, Fensel & Studer 1996]; TINA [Benjamins 1995].

7E.G. [Lenat & Gutha 1990, Gruber 1993, Neches, Fikes, Finin, Gruber, Patil, Senator & Swartout. 1991, Uschold & Gruninger
1996, Noy & Hafner 1997]. In recent years, ontologies have also appeared in research into software architectures and design
patterns [Menzies 1997].
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