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Abstract

A repeated observation is that test probesrapidly sat-
uratethe search space within software: i.e. many probes
of software yield only slightly more information than a few
probes. HT0 is a software test engine that assumes rapid
saturation. Instead of exploring all probes, randomly dif-
ferent probes are explored one at a time. Probe explo-
ration halts when randomly generated probeJ yields little
more information than randomly generated probes1; 2; ::I ,
(I < J). The runtimes of HT0 were observed to beO(N2),
at least for the theories studies here.

1 Introduction

Consider a pie that may contain interesting nuggets of
information. How should we slice the pie in order to find
those nuggets? If the pie is software, then one method for
“slicing” is the mutation assessmentperformed by the PIE
system [17,21,22] and others [1,4,24]. In thepropagation
analysisof PIE, random inputs are selected from some from
known distributionsD (D represents known values from the
domain of the program). When a programP runs using this
input, certain data values are set. Conceptually, some of
these values at locationl are perturbed and the program is
executed again (though, if the mutator has low-level access
to the programP , then the perturbation can be interleaved
with the original execution run). The difference in the be-
haviour between the initial run and the runs with perturbed
values is a measure of the sensitivity of the program to er-
rors aroundl. In practice, mutation analysis techniques like
PIE have found faults in many systems including a medi-
cal imaging system, a train control system, a nuclear power
plant, and the lethal errors that killed the Ariane 5 space
rocket as well as human users of the Therac-25 radiother-
apy unit [21, Cpt.7].

If the pie is big and our knife is very thin or very short,
then it may take a while before we find useful nuggets of
information. As with baking, so to with software. The com-
putational cost of performing software mutation assessment

is one of the major restrictions to its use [24]. For exam-
ple, a sample PIE-based study would require 200,000,000
executions of the program (a number too large to be practi-
cal) [21, p126].

This article proposes a optimization to mutation testing
based on the following curious observation. When cutting
up pies, it makes little sense to slice in the same place twice.
Strangely, it is hard to find a fresh place to slice a pro-
gram. A repeated observation is that probes into software
rapidly saturate; i.e. after a small number of probes, no
new information is gained. For example, despite numer-
ous perturbations on data values using PIE, Michael found
that in 80 to 90% of cases, there were no changes in the
behaviour of a range of programs [17]. Another study com-
pared results using X% of a library of mutators, randomly
selected (X2 f10,15,. . . 40,100g). Most of what could be
learnt from the program could be learnt using only X=10%
of the mutators; i.e. after a very small number of mutators,
new mutators acted in the same manner as previously used
mutators [24]. The same observation has been made else-
where [1,4].

This article explores HT0, an optimization of mutation-
based testing. HT0 terminates when it detects saturation;
i.e. when new probes tells us little more than old probes.
Experience with HT0 suggests that (e.g.) the 200,000,000
executions required above by PIE are excessive. That is, a
saturation-aware mutation analysis should terminate much
faster.

The rest of this article is structured as follows. HT0 is
introduced in the next section and is mapped into PIE. In-
stead of exploring all probes, HT0 performs randomly dif-
ferent probes, one at a time. Probe exploration halts when
randomly generated probeJ yields little more information
than randomly generated probes1; 2; ::I , (I < J). Experi-
mental results follow. HT0 terminated very rapdily (I < 6)
and runs very fast (O(N2))- at least for the theories stud-
ied here. A literature review shows that rapid saturation has
been observed often in the SE/KE literature. That is, HT0 is
widely-applicable since rapid saturation is a common phe-
nomena.
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Pr.1 foreignSales=up, ?companyProfits=up!, ?corporateSpending=up!, investorConfidence=up.
Pr.2 domesticSales=down, ?companyProfits=down!, ?corporateSpending=down!, wageRestraint=up.
Pr.3 domesticSales=down, ?companyProfits=down!, inflation=down.
Pr.4 domesticSales=down, ?companyProfits=down!, ?inflation=down!, wagesRestraint=up.
Pr.5 foreignSales=up, ?publicConfidence=up, inflation=down.
Pr.6 foreignSales=up, ?publicConfidence=up, inflation=down, wageRestraint=up.

Figure 1. Connections inputs to outputs: ?X=assumption; ?X!=controversial assumptions.

2 HT0

HT0 is an adaption of HT4, anabductive validationde-
vice. While HT4 performs an exhaustive search, HT0 is
saturation-aware. Before describing HT0, we must first de-
scribe abduction, HT4, abductive validation, and its connec-
tion to PIE. For a more general discussion on abduction and
its applications, see [10,13]).

Informally, abduction is inference to the best explana-
tion. More precisely, abduction makes whatever assump-
tionsA that are required to reach goalsG across a theory
T from some inputsIns. G may contain desired goals we
wish to reach (G+), or error cases we which to avoid (G�).
Either way, the role of a test engine is to attempt to reach as
many members ofG as possible.

In the general case, only some subset of the
theory T 0, inputs Ins0, and goals G0 are usable
(T 0�T; Ins0�Ins;G`�G). Abduction searches for consis-
tent assumptions which are relevant to reaching the goals;
i.e.

T 0 [ A0 [ Ins0[ 6`? (1)

T 0 [ A0 [ Ins0 ` G0 (2)

If contradictory assumptions are generated, these are main-
tained in separate worlds of beliefW1;W2; :::. Each world
holds the subsets ofT 0 that can be consistently believed,
given the inputs and goals. HT4’s abductive validation pro-
cedure searches for the world(s) with the largest intersection
with G. That is, HT4 searches for the assumptions that lead
to greatest coverage ofG.

As an example of abductive validation, consider the hy-
pothetical economics theory in Figure 2 (left). In the
language of this theory, all theory variables have three
states:up, down or steady . These values model the
sign of the first derivative of these variables (i.e. the rate

of change in each value).X
++
! Y denotes thatY be-

ing up or down could be explained byX being up or

down respectively. Also,X
��

! Y denotes thatY be-
ing up or down could be explained byX being down
or up respectively. Our theory can generate inconsisten-
cies. Consider the case where the inputsIns are (for-
eignSales=up, domesticSales=down) and the
goals G are (investorConfidence=up, infla-
tion=down, wageRestraint=up) . We can infer

the following inconsistency:companyProfits=down
andcompanyProfits=up . Classical deduction would
declare then that all variable assignments follow. Abduction
is smarter: it searches for consistent subsets of the glob-
ally inconsistent theory. HT4 does this as follows. There
are six proofs that connectIns to G (see Figure 1). These
proofs contain assumptions (variable assignments not found
in Ins [G). Some of these proofs make contradictory as-
sumptionsA; e.g. corporateSpending=up in Pr.1
andcorporateSpending=down in Pr.2 . That is, we
cannot believe inPr.1 andPr.2 at the same time. If we
sort these proofs into the subsets which we can believe at
one time, we get worldsW1 (Figure 2, middle) andW2

(Figure 2, right) (in Figure 2 middle and right, ellipses are
inputs, squares are outputs, and all other nodes are assump-
tions).W1 is a maximal consistent subset of pathways that
can be believed at the same time; i.e. (Pr.1, Pr.5,
Pr.6 ). W2 is another maximal consistent subset: (Pr.2,
Pr.3, Pr.4, Pr.6 ). HT4 scores a theory by itsmaxi-
mum cover; i.e. the largest percentage of goals found in any
world.W1 contains all the outputs so our economics theory
gets full marks: 100%.

HT4 and PIE perform the same task. Both explore the
sensitivity of program output to changes in data values at
certain locations. Whereas PIE perturbs values atl, HT4
makes assumptionsA at l. However, there are differences
between the approaches. Firstly, to date, PIE has focused
on imperative languages while HT4 has focused on logic
programs. However, since imperative programs can be at
least partially expressed as theorems or regular expressions
(e.g. [18] and Figure 4), this is not a significant difference in
the two techniques. Secondly, PIE has no knowledge of out-
put goalsG. That is, PIE’sD contains only< Ins;A >. G
can be initialized in many ways. For example, there may ex-
ist a database of known or desired behaviour. Alternatively,
in the case of specification-based testing, TheG needed for
HT4 can be initialized from some other theory describing
desired behaviours. Also, a human could inspect each input
Ins and record what outputG is valid (though this will be
time-consuming). Further, in the case ofG�, system con-
straints can be used to define error cases. Lastly, another
option would be to setG+ to all data points downstream
of some mutationl (but heed this warning: this last option
would be very slow to execute).

2



A hypothetical economics theory world W.1 world W.2
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Figure 2. Two worlds from one theory.

HT4 is practical for many real-world theories [7,15] and
has found previously unseen errors in theories in neuroen-
docrinology published in international refereed journals.
Also, it has been shown that one implementation of HT4
was fast enough to manage at least one published sample
of real-world expert systems [14]. Nevertheless, the upper
bound on HT4-style inferencing is exponential. Selman and
Levesque show that even when only one abductive explana-
tion is required and the model is restricted to be acyclic,
then abduction is NP-hard [19]. In the specific case of HT4,
as it grows proof trees between inputs and goals, no new
assignment can be added to a proof that contradicts assign-
ments already in that proof. Finding a directed path across
a directed graph that has at most one of a set of forbidden
pairs is NP-hard [9] (our forbidden pairs are assignments of
different values to the same variable; e.g. the pairscom-
panyProfits=up, companyProfits=down ).

This worst-case behaviour of HT4 motivated experi-
ments in heuristic optimization. HT4 is an exhaustive
search through all explanations. The cost of this exhaustive
search is exponential runtimes. What are the comparative
benefits of such a search vs a partial exploration of some
worlds? To answer this question, HT0 was built. Instead of
building all worlds, it builds them one at a time. HT0 tries to
force worldWj to be different toW1::Wi (i < j). Further,
when little extra is learnt byWj , HT0 can terminate.

HT0 executes over horn-clauses like Figure 4. The HT0
algorithm is shown in Figure 5. In that figure, square brack-
ets denote ordered sets and thePermute function ran-
domly shuffles set order. A persistent store of old runs
is maintained inFile . If File already exists, then the
best assumptions found to date are retrieved; else they are
initialized (line 3). N1, N2, N3 control the number of
searches performed (the variableNall will be used to de-

Figure 3. A state transition chart.

% Transition #1:
% when working with open documents
% (i.e. window open) and cancelling,
% then goto "saving".
t(saving,t) :-

t(working,t), t(event,cancel),
t(window,open).

% Transition #2:
% if working, but no documents open,
% then a cancel takes you straight to "end" .
t(end,t) :-

t(working,t), t(event,cancel),
t(window,closed).

% Side effects of entering a state.
t(timer,on) :- t(working,t).
t(timer,off) :- t(saving,t).

Figure 4. Figure 3 as horn clauses.
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1 INPUT: T,Ins, G, File, N1,N2,N3
2 OUTPUT: File
3 (<A,Max>:=readBest(File)) or (A:=[];Max:=0)
4 Facts := Ins + G;
5 N1 times repeat
6 f N2 times repeat
7 f Covered := [];
8 T1 := burn(Facts,copy(T))
9 for Gi in G do

10 f if <T2,A1>:=thrashBurn(Gi,Ins,T1,A)
11 then fadd Gi to Covered
12 A:= A1; T1:= T2;
13 g g
14 if size(Covered) > Max
15 then fMax := size(Covered);
16 append(File,<A,Max,Covered>)
17 if Max=100% then goto :stop g
18 G:=permute(G-Covered)+permute(Covered)
19 A:=change(first(N3,mostUsed(A)));
20 g
21 A := []; G := permute(G);
22 g :stop

Figure 5. HT0

note N1+N2+N3). N1-1 times, HT0 clears any old as-
sumptions and randomly permutes the order of the goals
(line 21). Then,N2 times, HT0 tries to prove each goal
in order (line 10). ThrashBurn is a depth-first search
fromGi to any member ofIns acrossT1. T1 is generated
(at line 8) fromT by burn ing away all variable assign-
ments inconsistent with knownFacts (technically, this
is node consistency [11]). AsthrashBurn searches, if
new assumptions are found, they are added toA1. When
a horn clause is accessed, its sub-goals arethrashed; i.e.
re-arranged randomly. This randomizes the direction of the
depth first search from this point on. Also, when a new
assumption is made, contradictory assumptions areburnt
away (i.e. removed via node consistency). The burning and
the discovery of new assumptions createsT2 andA1 respec-
tively. Lines 11,12 arrange that ifGi is explained,T2 and
A1 are used for the subsequent searches forGj (i < j).
That is, searches forGj explore a smaller space thanGi.
Note that ifGi is explained andGj is not, then the system
does not backtrack to retryGi. However, we may get an-
other chance to explainGj since the next time through lines
7-19, we permute the order in which we explore the goals
(see line 18). Note, in line 18, when we reset the goal order,
we move the uncovered goals to the front of the goal list;
i.e. next time through we give priority to things we could
not prove this time through. The only other feature of note
is line 19. TheN3-th most used assumptions are changed so
that the next time through lines 7-19, the proofs forG are
forced into other parts of the theory.

HT0 can be used as an anytime validation algorithm. As-
suming that each explanation gives diminishingly less in-
formation that the one before, HT0 could run while the pro-
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Theory Clauses Literals sub�goals
clause

clauses
literals

Figure 4 4 8 2 2
T1 [20] 558 273 1.6 2
Random 1 2390 688 1.6 3.5
Random 2 6961 1540 1.7 4.5
Random 3 18803 3394 1.7 5.5

Figure 7. Some theories processed by HT0

grammer traced theMax covered value. At anytime, the
bestMax found to date would be available. Also, at any-
time, running the system for longer would explore different
parts of the theory and (potentially) could find better expla-
nations.

Real world and artificially generated theories were used
to test HT0. A real-world theory of neuroendocrinol-
ogy [20] with 558 clauses containing 91 variables with 3
values each (273 literals) was copied X times. Next, Y%
of the variables in one copy were connected at random to
variables in other copies. In this way, the theories Ran-
dom1, Randon2, and Random3 (see Figure 7) were built
usingY=40. When executed withNall varied from 1 to
50, theO(N2) curve of Figure 6 was generated. We con-
clude that HT0 wasO(N2) in these experiments since the
R2 for anO(N2) curve fit to the HT0 data was 0.98 while
theR2 for O(N), O(N3),O(eN ) were all< 0.82.

In a result consistent with rapid saturation, no increase in
cover was detected aboveNall=5 . That is, (1) the anytime
nature of HT0 may not be required since (2) what explana-
tions HT0 can find, it seems to find very quickly.

3 Discussion

HT0 assumes that a small number of random searches
performs nearly as well as a thorough search through all
combinations of options. This section discusses the gener-
ality of that assumption. From many sources, we will con-
clude that the average size and complexity of the used por-
tions of our programs is much smaller than we might think;
i.e. the HT0 assumption is widely applicable.
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Menzies and Waugh compared millions of runs of HT4
with HT4-dumb: an HT4 variant that returned any world
chosen at random. HT4 out-peformed HT0 by a mere
5.6% (average difference in coverage) [16]. Other exper-
iments show that multiple-world reasoners perform little
better than reasoners that reasoners that return one world
chosen at random (with some locally guided intelligence re-
garding what assumptions to make next) [23].

Two studies sampled the operational distribution of one
years input to different expert systems. Colomb reports
that only a small fraction of the possible state combinations
inside his expert system (10�11) was ever executed [5].
Avritzer et.al. found that 99.9% of their 721 input vectors
for their system could be represented by a core set of 53
inputs vectors [2].

In a scheduling domain, Crawford and Baker compared
inference engines that carefully explored the search space
vs theorem provers which lurch across some randomly cho-
sen portion of the space. The random search found more
solutions sooner than the careful search [6].

Many running programs only exercise a small portion
of their potential total space. Even when we try to ex-
plore the entire space of a program, average reachable “ob-
jects” (paths, linearly independent paths, edges, statements)
is only 40% (and even lower for branch coverage) [8, p302]

Theoretically, there are an exponential number of du-
paths: pathways which link where a variable is set to where
it is used. However, in practice, a surprisingly small number
of program pathways covers all the du-paths [3].

These results, plus the success of HT0, has prompted
a mathematical analysis of the odds of reaching a random
node across an and-or graph from randomly chosen in-
puts. Preliminary results suggest that the average reachabil-
ity odds are very high; e.g. a small number of probes (< 10)
has a 99% chance of reaching all that can be reached [12].
Hence, our belief is that saturation-aware inference engines
are widely applicable and can optimise testing procedures
such as PIE.
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