
Knowledge Maintenance Heresies:
Meta-Knowledge Complicates KM

Tim Menzies
NASA/WVU Software Research Lab, 100 University Drive, Fairmont WV 26554

<tim@menzies.com>

Figure 1. Researchers discussing knowledge
maintenance with the author.

The role of a discussion paper is to provoke discussion.
Hence, my comments will be heretical rather than theoreti-
cal. For the theory, see [19].

Today I want to say two things. Firstly, the knowl-
edge maintenance (KM) problem is our next big chal-
lenge. A common method for tackling the KM problem
is to use some type of meta-knowledge to represent ex-
pected/unexpected or good/bad knowledge. This meta-
knowledge takes many forms including architectures [26],
patterns [12], problem solving methods (PSMs) [29, 31], or
ontologies [13]. Elsewhere [20], I have argued that patterns
of design and architecture are very similar to PSMs and on-
tologies:

� Both represent abstract descriptions of supposedly
common parts of many designs.

� OO patterns are typically structural; exceptions: some
of the patterns in [10]

� PSMs patterns are typically functional and represent
cliches in inferencing.

� Ontologies are very compatible with the patterns liter-
ature.

The second thing I want to say is that, contrary to a
widespread belief in the field, I believe that meta-knowledge
complicates, not clarifies, KM.

Before discussing any supposed failings with knowl-
edge maintenance, I should balance my remarks with some
success stories. My own interest with knowledge engi-
neering stems from a strong belief in the practicality of
the technology. Many commercially useful systems have
been developed including XCON [18], VT [16], SBF [17],
and PIERS [22]. Successful systems must be maintained.
XCON grew very large and turned from a knowledge engi-
neering success story into a knowledge maintenance night-
mare. However [2] found that if a rule editor was given
meta-knowledge of inference cliches within XCON, then
very large rules could be quickly built from very small spec-
ifications. More generally, given knowledge of the intended
inferencing tasks, a KB editor can be productively con-
strained to only collect knowledge required for those tasks.
This approach proved fruitful in many other applications
(e.g. SBF,VT).

Nevertheless, the knowledge maintenance problem is far
from solved. The XCON, SBF, and VT knowledge edi-
tors need meta-knowledge of inference cliches. Such meta-
knowledge can be problematic (see below).

I begin my critique with a statement of something I no
longer believe is true: “the explicit and high-level expres-
sion of knowledge in a KBS makes them easy to maintain”.
There is just too much experiential evidence suggesting that
even with high-level expressions, maintaining knowledge is
hard. For example, half of XCON’s thousands of rules are
changed every year [28]. To some extent, this might be due
to its changing operational requirements (XCON configured

A. Originally

RULE(22310.01) IF (bhthy or
utsh_bhft4 or
vhthy) and not on_t4

and not surgery
and (antithyroid or

hyperthyroid)
THEN DIAGNOSIS("...thyrotoxicosis")

B. Same rule, 3 years later

RULE(22310.01) IF ((((T3 is missing)
or (T3 is low and

T3_BORD is low))
and TSH is missing
and vhthy
and not (query_t4 or on_t4 or

or surgery or tumour
or antithyroid
or hypothyroid
or hyperthyroid))

or ((((utsh_bhft4 or
(Hythe and T4 is missing

and TSH is missing))
and (antithyroid or

hyperthyroid))
or utsh_bhft4
or ((Hythe or borthy)

and T3 is missing
and (TSH is undetect

or TSH is low)))
and not on_t4 and not

(tumour or surgery)))
and (TT4 isnt low or T4U isnt low)

THEN DIAGNOSIS("...thyrotoxicosis")

Figure 2. A rule maintained for 3 years.

computers for DEC and DEC keeps releasing new comput-
ers). However, even in supposedly stable domains, knowl-
edge keeps being patched. Garvin ES-1 [7] offered inter-
pretations of biochemical results. Over its lifetime, the bio-
chemical assay hardware remained constant and, presum-
ably, humans did not evolve significantly. Yet KB mainte-
nance was on-going. The kind of changes seen within that
KB are shown in Figure 2.

The change in KB size of Gavrin ES-1 is shown in Fig-
ure 3. Note that the rate of change within this system was
linear; i.e. even in a stable domain, knowledge kept chang-
ing1. What could cause such a constant change? Well, ex-
pert systems store the views of experts and, experimentally,
we know that experts disagree- even with themselves. Shaw
used a terminology checking tool called repertory grids to
compare the meaning of terms used by three geology ex-
perts on a common problem [27]. Two experiments were
performed. In the calibrating experiment, experts reviewed
their own knowledge, 12 weeks after they created it. This
first experiment gives baseline expected agreement figures
for a repertory grid analysis (see Figure 4). In the second
experiment, inter-expert agreement was analyzed (see Fig-
ure 5). Note (e.g.)E1,E3: the results were much lower
than in the calibration experiment suggesting that these ex-
perts held very different views about a supposedly standard
problem in their field.

Worse than experts disagreeing is when experts agree,
and they are wrong. The widespread reuse of incorrect
knowledge adds significantly to the maintenance problem.
We already have one example from the KE literature in
which many people working over many months built mod-
els that contained bugs. In the Sisyphus-II experiments, var-
ious research groups re-implemented part of the VT eleva-

1Technically, the Garvin ES-1 size changes are also consistent with a
logarithmic curve; i.e. maintenance effort should decrease to zero over
time. However, a visual inspection of the plot strongly suggests a linear fit.

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

K
ilo

by
te

s

Months in maintenance

Observed
Linear fit; r^2=0.91

Logarithmic fit; r^2=0.89

Figure 3. KB changes in Garvin ES-1.

Expert %understands %agrees
E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

Figure 4. Self-agreement, 12 weeks later

Expertpairs %understands %agrees
E1,E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3,E1 42.9 33.3
E2,E3 44.4 20.0
E3,E2 71.4 33.3

Figure 5. Inter-expert agreement

tor configuration system [15]. All the groups implemented
a PSM with the same error [32]. The Sisyphus-II propose-
and-revise PSM was a local greedy search. Local hill-
climbing may ignore solutions which are initially unpromis-
ing, but lead later on to better solutions. In one experi-
ment, this local greedy search algorithm failed to configure
13/25 elevator configurations: see Figure 6. What is disturb-
ing about this result was that only one of the Sisyphus-II
groups reported this error. Apparently, the rest trusted their
reusable PSM so much, that they did not perform detailed
validation studies.

KM is here to stay, I argue, since human knowledge
rarely stabilizes. New experience always gives new in-
sights which significantly change old knowledge. As evi-
dence for this, consider the following case study from the
machine learning community. Catlett [3] used C4.5 [23]
to learn decision trees for 20 problems using either all the
N=3000..5000 training cases or half the cases (randomly se-
lected). The change in tree size and error rates are shown
in Figure 7. In all but 1 case (demon, first row), more
experience meant significantly less errors, but larger theo-
ries. This result is consistent with thesituated cognition
phenomena which, crudely speaking, can be summarized as

ft=min
Capacity (lbs) 200 250 300 350 400

2000
p p � p p

2500 � � p p p

3000 � p p p p

3500
p � � � �

4000 � � � � �

Figure 6. PSMs succeeding (
p

) or failing (�)
to configure an elevator.

domain � tree size � error
demon 0.97 0.51
wave 1.91 0.95
diff 1.46 0.69

othello 1.68 0.8
heart 1.61 0.65
sleep 1.73 0.91
hyper 1.74 0.83
hypo 1.45 0.85

binding 1.51 0.82
replace 1.38 0.8
euthy 1.33 0.61
mean 1.52 0.77

Figure 7. Impact of more examples.

follows: using knowledge changes knowledge [21]. For ex-
ample, Shalin et.al. [25] tried to find “accepted practice”;
i.e. reused knowledge within expert communities. They
found that experts do modify their behaviour according to
community standards of “accepted practice”. However, it is
only novices who slavishly re-apply that accepted practice.
Experts adapt accepted practice when they apply it. That is,
experts:

� Partially match current problem to libraries of accepted
practice.

� Implement an acceptance test for their adaptation.

� Modify the accepted practice library if acceptance fail-
ure.

This lack of stability in human knowledge is not good
news for fans of supposedly reusable meta-knowledge.
Three studies suggest that it is at least an open question if
adapting abstracted forms of previous knowledge (e.g. ar-
chitectures, patterns, PSMs, ontologies) are a productivity
tool in new situations. In the first study, international KA
experts used some background knowledge to guide their
analysis of a transcript of a patient talking to a doctor [9].
One group used an abstract model of diagnosis matured
over many years; another used an abstract model invented
very quickly (the “straw man”); and the rest used no model
at all. The results are shown in Figure 8. The “mature
model” group performed as well as the “straw man” group.

Reuse Model % disorders
identified

% knowledge
fragments
identified

Straw man: invented very quickly 50 28
Mature model: decades of work 55 34

No model 75 41

Figure 8. Productivity using different models.

Further, the “no model” group out-performed the groups us-
ing the models!

The second study [20] describes eight different suppos-
edly reusable models of diagnosis (four from the PSM com-
munity, four from elsewhere). While some of these views
on diagnosis share some common features, they reflect fun-
damentally divergent views on how to perform diagnosis. I
therefore believe that, at least in the case of diagnosis, the
consensus view has yet to stabilized and may not do so in
the near future. More generally, I’m not sure that a con-
sensus view on any of the PSMs has been reached, despite
decades of research. There are significant differences be-
tween the list of PSM primitives offered by Clancey [4],
KADS [30], and SBF. Also, the number and nature of the
inference knowledge is not fixed. Often when a domain is
analysed, a new PSM is induced [14].

The third study I want to mention documents the ex-
tent to which an ontologysupportedapplication develop-
ment within DARPA’s High Performance Knowledge Based
Systems (HPKB) initiative [5].Supportwas measured in
terms of the words that appeared in some new application:
if 2/3 of those words came from an ontology, then that ontol-
ogy offered a 67% support for that application. Two teams
were involved: one at SRI and one from Teknowledge who
used the Cycorp knowledge base (hereafter CYC/Tek). The
teams built applications using an upper ontology (UO) re-
leased by Cycorp. Along with the UO, CYC/Tek and SRI
made their own local extensions. Both teams built and de-
bugged their ontology using a set of sample questions (SQ)
issued by the HPKB evaluation team. At a pre-announced
date, 110 test questions (TQA) were issued and the appli-
cations were scored. After a brief respite, a scope change
was announced, followed (several days later) by test ques-
tions for the new scope (TQC). The SRI system analyzed
by Cohenet.al could only handle 40 of the 110 questions
so the CYC/Tek results are divided into CYC/Tek(110) and
CYC/Tek(40) where the latter is the subset of the CYC/Tek
system relevant to the questions that SRI could handle. The
results are shown in Figure 9. The main results are: the lo-
cal ontological extensions supported new applications 3-4
times more than the UO terms; as the scope change (TQA-
TQC) the UO offered less and less support; and CYC/Tek’s
reuse of the UO was greater than that of SRI. These results

0

20

40

60

80

100

Aerospace Manufacturing Software Telecoms Other

%
 r

eu
se

d

Industry

requirements
design

code
test plan

test cases
user documentation

Figure 10. 95% confidence intervals for reuse levels in different industries.

0.25

0.5

0.75

1

SQ TQA TQC

su
pp

or
t

cyc/tex(40)-all
cyc/tex(110)-all

sri sq&tqa
cyc/tex(40)-uo

cyc/tex(110)-uo
sri-uo

Figure 9. Resue of ontologies

suggested that the recent words you added yourself to an on-
tology offer more support than words added previously by
other authors. This reflects somewhat badly on the ontology
construction exercise since the CYC ontologies represent
the planet’s most serious effort to produce truly reusable
ontologies.

There are at least two counter arguments to the above
pessimism about reuse. Firstly, my arguments must be
flawed since reuse already is widespread in the software
engineering field. I would deny the premise of that ar-
gument: reuse levels in software engineering are low and
seem to be uncorrelated to technologies such as reusable
components. Frakes & Fox surveyed 100s of European
and North American IT professionals to conclude that reuse
levels were low (20% or less). Further, it was not corre-
lated to technology (e.g. use of COBOL, C++, case tools,
reuse libraries...) [11]. Reuse seemed to be correlated to
non-software technology issues; e.g. hardware standards
enabled high levels of reuse in the telecommunications in-
dustry (see Figure 10).

A second counter argument to the above reuse-
pessimism is as follows. While we may use little of an on-
tology or a PSM, it may still be useful as a “pointer tool”.
That is, the ontology/PSM could be used as a structuring
tool for exploring a new domain. Roughly speaking, reusing
abstracted forms of old knowledge is pointing the way say-

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
co

st
s

Amount modified

Figure 11. COCOMO-II, the cost of reuse with
X% changes

ing “these kinds of things are important, even if these partic-
ular things are not”. In this approach, developers kick-start
the development with an ontology/PSM. However, develop-
ers may extensively modify (or even discard) the ontology
as their understanding of a domain increases. Further ex-
perimentation is required to demonstrate the value of this
method. In the meantime, we can offer one caution. The
COCOMO-II software cost estimation model offers an esti-
mate of the cost of adapting reusable sub-routines for a new
project [1, p21]. A learning curve must be traversed before
a module can be adapted. By the time you know enough
to change a little of that module, you may as well have re-
written 60% of it from scratch; see Figure 11. That is, if
you plan to use meta-knowledge (e.g. inference patterns
or ontologies) as a “pointer tool”, then if the re-structuring
exceeds some small amount, you have lost much of the eco-
nomic benefit of that meta-knowledge.

Having rejected meta-knowledge as the basis for suc-
cessful KM, I should now describe alternative KM strate-
gies. Space restrictions prevent a detailed account. Instead,
I direct the reader to the ripple-down-rules work of Comp-
ton, Richards, Preston, et.al. [6, 8, 22, 24] where patch his-
tories to the knowledge base are maintained. Candidates
for new patches are inferred by an analysis of the paths
taken through the KB and the patches found on those paths.
Patch histories are low-level syntactic knowledge yet cap-

ture the context of change of an expert system. Very large
expert systems have been built and maintained in this man-
ner, without needing knowledge engineers.

Acknowledgements

This work was partially supported by NASA through co-
operative agreement #NCC 2-979.

References

[1] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy,
D. Reifer, R. Selby, and B. Steece. Cocomo ii model defini-
tion manual. Technical report, Center for Software Engineer-
ing, USC,, 1998. http://sunset.usc.edu/COCOMOII/
cocomox.html#downloads .

[2] J. Bachant and J. McDermott. R1 Revisited: Four Years in the
Trenches.AI Magazine, pages 21–32, Fall 1984.

[3] J. Catlett. Inductive learning from subsets or disposal of excess train-
ing data considered harmful. InAustralian Workshop on Knowledge
Acqusition for Knowledge-Based Systems, Pokolbin, pages 53–67,
1991.

[4] W.J. Clancey. Model Construction Operators.Artificial Intelligence,
53:1–115, 1992.

[5] P. Cohen, V. Chaudhri, A. Pease, and R. Schrag. Does prior knowl-
edge facilitate the development of knowledge-based systems? In
AAAI’99, 1999.

[6] P. Compton, G. Edwards, A. Srinivasan, P. Malor, P. Preston,
B. Kang, and L. Lazarus. Ripple-down-rules: Turning knowledge
acquisition into knowledge maintenance.Artificial Intelligence in
Medicine, 4:47–59, 1992.

[7] P. Compton, K. Horn, J.R. Quinlan, and L. Lazarus. Maintaining
an expert system. In J.R. Quinlan, editor,Applications of Expert
Systems, pages 366–385. Addison Wesley, 1989.

[8] P.J. Compton and R. Jansen. A Philosophical Basis for Knowledge
Acquisition. Knowledge Acquisition, 2:241–257, 1990.

[9] C. Corbridge, N.P. Major, and N.R. Shadbolt. Models Exposed: An
Empirical Study. InProceedings of the 9thAAAI-Sponsored Banff
Knowledge Acquisition for Knowledge Based Systems, 1995.

[10] M. Fowler. Analysis Patterns: Reusable Object Models. Addison
Wesley, 1997.

[11] W.B. Frakes and C.J. Fox. Sixteen questions about software reuse.
Communications of the ACM, 38(6):75–87, June 1995.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[13] T.R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

[14] M. Linster and M. Musen. Use of KADS to Create a Conceptual
Model of the ONCOCIN task.Knowledge Acquisition, 4:55–88, 1
1992.

[15] S. Marcus and J. McDermott. SALT: A Knowledge Acquisition Lan-
guage for Propose-and-Revise Systems.Artificial Intelligence, 39:1–
37, 1 1989.

[16] S. Marcus, J. Stout, and J. McDermott. VT: An Expert Elevator
Designer That Uses Knowledge-Based Backtracking.AI Magazine,
pages 41–58, Winter 1987.

[17] D. Marques, G. Dallemagne, G. Kliner, J. McDermott, and D. Tung.
Easy Programming: Empowering People to Build Their own Appli-
cations.IEEE Expert, pages 16–29, June 1992.

[18] J. McDermott. R1 (”xcon”) at age 12: lessons from an elementary
school achiever.Artificial Intelligence, 59:241–247, 1993.

[19] T. Menzies. Knowledge maintenance: The state of the art.
In The Knowledge Engineering Review, number 1, pages 1–
46, 1999. Available fromhttp://www.cse.unsw.EDU.AU/
˜timm/pub/docs/97kmall.ps.gz .

[20] T.J. Menzies. OO patterns: Lessons from expert systems.
Software Practice & Experience, 1998. In press. Available
from http://www.cse.unsw.edu.au/˜timm/pub/docs/
97probspatt.ps.gz .

[21] T.J. Menzies and B. Clancey. Editorial, special issue on situated cog-
nition, international journal of human-computer studies, 1998.

[22] P. Preston, G. Edwards, and P. Compton. A 1600 Rule Expert System
Without Knowledge Engineers. In J. Leibowitz, editor,Second World
Congress on Expert Systems, 1993.

[23] J.R. Quinlan. Induction of decision trees.Machine Learning, 1:81–
106, 1986.

[24] D. Richards and P. Compton. Combining formal concept analysis
and ripple down rules to support the reuse of knowledge. InSEKE
’97: Proceedings of 1997 Conf. on Software Eng. & Knowledge Eng,
Madrid, 1997.

[25] V.L. Shalin, N.D. Geddes, D. Bertram, M.A. Szczepkowski, and
D. Dubois. Expertise in dynamic, physical task domains. In P.J. Fel-
tovich, K.M. Ford, and R.R. Hoffman, editors,Expertise in Context,
chapter 9, pages 195–217. MIT PRess, 1997.

[26] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[27] M.L.G. Shaw. Validation in a knowledge acquisition system with
multiple experts. InProceedings of the International Conference on
Fifth Generation Computer Systems, pages 1259–1266, 1988.

[28] E. Soloway, J. Bachant, and K. Jensen. Assessing the maintainability
of xcon-in-rime: Coping with the problems of a very large rule-base.
In AAAI ’87, pages 824–829, 1987.

[29] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: a Modeling
Approach to Knowledge Engineering.Knowledge Acquisition, 4:1–
162, 1 1992.

[30] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: a Modeling
Approach to Knowledge Engineering.Knowledge Acquisition, 4:1–
162, 1 1992.

[31] G.R. Yost. Acquiring knowledge in soar.IEEE Expert, pages 26–34,
June 1993.

[32] Z. Zdrahal and E. Motta. Improving conpetence by intergrating case-
based reasoning and heuristic search. In10th Banff Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, November 9-14,
1996, Banff, Canada, 1996.

