
D
R

A
FT

Notes for Chris Welty on Ontologies Cost-Benefits of Ontology. ? for inclusion to a journal

submission on ontologies. WP:b/99/seke/abouton(August 7, 1999).

Cost-Benefits of Ontologies

Tim Menzies
NASA/WVU Software Research Lab, 100 University Drive, Fairmont WV 26554

<tim@menzies.com>

What are the benefits and what are the costs of using
ontologies? Using ontologies can have several benefits:

Interoperability: When interfacing two components, ac-
cess the ontology of each component to design a map-
ping between different concepts in different compo-
nents.

Browsing/searching: The meta-knowledge within an on-
tology can assist an intelligent search engine with pro-
cessing your query. For example, if a query returns
no results, then the ontology could be used to auto-
matically generalize the query to find nearest partial
matches.

Reuse: Why waste time and money rebuilding component
X when X already exists in someone else’s library?

Structuring: It may be faster to build new systems via “on-
tological bootstrapping”; i.e. use the conceptualiza-
tions in ontologies to assist you with structuring the
knowledge in a new domain.

Certain results from the software engineering and knowl-
edge engineering literature suggest that the benefits from
reuse and structuring may come at a considerable cost.
These results are presented below. To the best of our knowl-
edge, there are no counter results doubting the utility of on-
tologies for interoperability and searching/browsing.

1 Reusing Ontologies

Given the state-of-the-art in ontological engineering, we
still lack costing models for software projects that adopt
reusable ontological libraries. However, we can find such
costing models in the standard software engineering litera-
ture. The COCOMO-II software cost estimation model of-
fers an estimate of the cost of adapting reusable sub-routines
for a new project [Abts, Clark, Devnani-Chulani, Horowitz,
Madachy, Reifer, Selby & Steece 1998, p21]. A learning
curve must be traversed before a module can be adapted. By
the time you know enough to change a little of that module,

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
co

st
s

Amount modified

Figure 1. COCOMO-II, the cost of reuse with X%
changes. The Y axis shows the costs of reuse divided
by the cost of rebuilding from scratch.

you may as well have re-written 60% of it from scratch; see
Figure 1.

The COCOMO-II results relate to the adaption cost of
procedural systems. Hence, they may not apply to declara-
tive descriptions of system terminology (i.e. an ontology).
However, at the very least, these results caution us that just
because we can access an ontology, this does not necessarily
mean that we can use it as a tool to improve our productiv-
ity. Ontologies must be learnt prior to use and this learning
time may have a non-trivial impact on the overall cost.

2 Ontology-Based Domain Structuring

2.1 Benefits of Structuring

Chris: this is a stand-alone section which you may wish
to move out of this section into the general introduction of
the article. However, these words will be required as a in-
troduction tox2.2.

Before raising issues with the costs of ontological struc-
turing, we pause to describe some of its benefits. Structur-
ing via ontologies can be manual or automatic. As an exam-
ple of manual structuring, suppose a requirements engineer
sees “sale” as part of the requirements document. If she
was an experienced analyst in this domain, she might then
apply her background knowledge of this domain to check
the current specification. For example, a general ontology
for financial transaction (Figure 2) includes a “subsequent
transaction” term. This alerts our requirements engineer to

D
R

A
FT

Actor

Participant Transaction Subsequent
Transaction

Place

Specific
Item

Transaction
Line Item Subsequent

Transaction
Line Item

Item

X Y Many Xs are used by one Y

X Y Many Xs are part of one Y

KEY

Figure 2. Part of Coad et al.’s [1997] definition of a
financial transaction.

ask questions such as “are the sold items ever returned to the
store?”. That is, manual ontological structuring can assist in
auditing the current version of a system description.

Three examples of automatic ontological structuring are:

RIME: RIME was an intelligent editor for simplifying
the maintenance of DEC’s XCON automatic computer
configuration system. Bachant & McDermott [1984]
found that if a rule editor was given meta-knowledge
of the ontology of the problem solving methods within
XCON, then very large rules could be quickly built
from very small specifications. Similar results were
seen in the SALT and SBF systems.

SALT: Marcus & McDermott’s [1989] SALT system re-
stricted its knowledge editors to only those terms rel-
evant for the propose-and-revise problem solving used
in the VT elevator configuration system [Marcus,
Stout & McDermott 1987].2130=3062� 70% of VT’s
rules could be auto-generated by SALT.

SBF: In Marques, Dallemagne, Kliner, McDermott &
Tung’s [1992] SBF study, nine applications of intelli-
gent computer hardware configuration were built with
and without the SBF toolkit. SBF auto-configured an
expert system case tool via an automatic exploration of
a library of problem solving methods. The ontological
commitments of each method were then translated into
data collection screens. Development times dropped

from 63 to 250 days (without SBF) to 1 to 17 days
(with SBF).

The general conclusion from all this work is that, given
knowledge of the ontology of the intended inferencing
tasks, a KB editor can be productively constrained to only
collect knowledge required for those tasks. This is a clear
benefit of ontologies.

2.2 Costs of Structuring

The benefits of ontology-based structuring come at a
cost. Recall that systems like RIME, SBF, and SALT
achieved productivity benefits via editors specialized for the
ontology. This process of specialization can be expensive.
While SALT’s was successful in assisting users acquiring
their knowledge, the ontological commitments of that en-
vironment were very hard to change. Hence, that editor
could not be easily adapted to other expert systems. Some
general principles exist for such customization (e.g. [Gil
& Tallis 1997]) but is an open issue if the customization
costs are outweighed by the productivity benefits. Swartout
& Gill [1996] offer a general discussion of this area and a
succinct comparison of different research directions. Note
that ontology-based structuring tools must be customized in
two ways. Firstly, as discussed above, they must be cus-
tomized for any new ontologies. Secondly, they must be re-
customized if the ontology changes. If ontologies are unsta-
ble (prone to large change over time), then we would doubt
the overall benefits of automatic structuring tools based on
ontologies.

Such instability would mean that along with the cost of
constructing an ontology, there are two other costs:

� Ontology maintenance

� Maintenance of the software systems built using the
(now changed) ontology.

How common is ontological instability? We don’t know
since we have very little experience with the long-term use
of large ontologies. However, many researchers argue that
in many cases, experts disagree about even well-established
features of their domain; e.g. [Finkelstein, Gabbay, Hunter,
Kramer & Nuseibeh 1994, Menzies, Easterbrook, Nuseibeh
& Waugh 1999, Gaines & Shaw 1989]. If this is a widely
applicable result, then we should routinely expect onto-
logical instability. For example, Shaw [1988] used a ter-
minology checking tool called repertory grids to compare
the meaning of terms used by three geology experts on a
common problem [Shaw 1988] (a sample repertory grid
is shown in Figure 3). Two experiments were performed.
In the calibrating experiment, experts reviewed their own
knowledge, 12 weeks after they created it. This first experi-
ment gives baseline expected agreement figures for a reper-
tory grid analysis (see Figure 4). In the second experiment,

2

D
R

A
FT

Figure 3. A web-based repertory grid tool. Dimensions are the rows in the table. Examples are shown bottom right.
Example rankings are shown inside the table. these rankings are used to generate distances between dimensions
and examples. For example, the dimensions “strong sequential to weak sequential” is very close to the dimension
“procedural to non-procedural”.

Expert %understands %agrees
E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

Figure 4. Self-agreement, 12 weeks later

inter-expert agreement was analyzed (see Figure 5). Note
(e.g.)E1,E3 results (line 4): expertE1’s terminology was
compatible with the terminology of expertE3 8.3% of the
time (!!). These figures are much lower than in the cali-
bration experiment suggesting that these experts held very
different views about a supposedly standard terminology in
their field.

Expertpairs %understands %agrees
E1,E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3,E1 42.9 33.3
E2,E3 44.4 20.0
E3,E2 71.4 33.3

Figure 5. Inter-expert agreement

2.2.1 Other Examples of Knowledge Instability

Chris: This is another stand-alone section could be culled
without damage to my overall argument. However, if it in-
terests you, I can easily double the size of this section.

We should expect ontological instability in domains
where experts do not agree on widely used terms from that
domain, or in domains where terms are evolving. There is

3

D
R

A
FT

domain Change in tree size Change in error
demon 0.97 0.51
wave 1.91 0.95
diff 1.46 0.69

othello 1.68 0.8
heart 1.61 0.65
sleep 1.73 0.91
hyper 1.74 0.83
hypo 1.45 0.85

binding 1.51 0.82
replace 1.38 0.8
euthy 1.33 0.61
mean 1.52 0.77

Figure 6. Impact of more examples.

some evidence to suggest that we should routinely expect
such evolution. Agnew, Ford & Hayes [Agnew, Ford &
Hayes 1993] comment that “expert-knowledge is comprised
of context-dependent, personally constructed, highly func-
tional but fallible abstractions”. That is, we may always be
patching up our expert knowledge. Maintaining an expert
system can be a perpetual process [Compton, Horn, Quin-
lan & Lazarus 1989, Soloway, Bachant & Jensen 1987].
Knowledge bases may evolve for two reasons:

� To remove bugs. Systematic biases in expert prefer-
ences may result in incorrect/incomplete knowledge
bases [Silverman 1992]. Working systems often con-
tain multiple undetected errors [Preece & Shinghal
1992].

� To add enhancements. Experiments from machine
learning suggest that there may be no end to the useful
enhancements that can be made to a knowledge base.
Catlett [1991] used a machine learner [Quinlan 1986]
to automatically build decision trees for 20 problems
using either all the N=3000..5000 training cases or half
the cases (randomly selected). The change in tree size
and error rates are shown in Figure 6. In all but 1
case (demon, first row), more experience meant sig-
nificantly less errors, but larger theories.

Catlett’s machine learning experiments are consistent
with the situated cognitionphenomena which, crudely
speaking, can be summarized as follows: using knowledge
changes knowledge [Menzies & Clancey 1998]. For ex-
ample, Shalin, Geddes, Bertram, Szczepkowski & Dubois
[1997] tried to find “accepted practice”; i.e. reused knowl-
edge within expert communities (pilots, doctors, and army
personnel performing troop maneuvers). They found that
experts do modify their behaviour according to commu-
nity standards of “accepted practice”. However, it is only
novices who slavishly re-apply that accepted practice. Ex-
perts adapt accepted practice when they apply it. That is,
experts:

� Partially match current problem to libraries of accepted
practice.

� Implement an acceptance test for their adaptation.

� Modify the accepted practice library if acceptance fail-
ure.

In summary, experts often want to change knowledge af-
ter they have created some explicit record of it. Hence, as
argued above, an on-going cost with ontologies maybe on-
tological maintenance and the revision of devices created
using that ontology.

3 Discussion

The science of ontologies is too young to include de-
tailed cost-benefit analyzes. In theory, using ontologies can
have many benefits. However, certain software engineering
and knowledge engineering results suggest that reusing old
ideas like ontologies incurs several extra costs. Evaluation
programs for ontologies should include checks that these
costs do not out-weight the benefits of using ontologies.

Acknowledgements

This work was partially supported by NASA through co-
operative agreement #NCC 2-979.

References

Abts, C., Clark, B., Devnani-Chulani, S., Horowitz, E., Madachy, R.,
Reifer, D., Selby, R. & Steece, B. [1998], Cocomo ii model def-
inition manual, Technical report, Center for Software Engineering,
USC,. http://sunset.usc.edu/COCOMOII/cocomox.
html#downloads .

Agnew, N., Ford, K. & Hayes, P. [1993], ‘Expertise in context: Per-
sonally constructed, socially elected, and reality-relevant?’,Interna-
tional Journal of Expert Systems7.

Bachant, J. & McDermott, J. [1984], ‘R1 Revisited: Four Years in the
Trenches’,AI Magazinepp. 21–32.

Catlett, J. [1991], Inductive learning from subsets or disposal of ex-
cess training data considered harmful.,in ‘Australian Workshop on
Knowledge Acqusition for Knowledge-Based Systems, Pokolbin’,
pp. 53–67.

Coad, P., North, D. & Mayfield, M. [1997],Object Models: Strategies,
Patterns, and Applications, Prentice Hall.

Compton, P., Horn, K., Quinlan, J. & Lazarus, L. [1989], Maintaining an
expert system,in J. Quinlan, ed., ‘Applications of Expert Systems’,
Addison Wesley, pp. 366–385.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J. & Nuseibeh, B. [1994],
‘Inconsistency handling in multi-perspective specification’,IEEE
Transactions on Software Engineering20(8), 569–578.

Gaines, B. & Shaw, M. [1989], Comparing the conceptual systems of ex-
perts,in ‘IJCAI ’89’, pp. 633–638.

4

D
R

A
FT

Gil, Y. & Tallis, M. [1997], A script-based approach to modifying knowl-
edge bases,in ‘Proceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI-97)’.

Marcus, S. & McDermott, J. [1989], ‘SALT: A Knowledge Acquisition
Language for Propose-and-Revise Systems’,Artificial Intelligence
39, 1–37.

Marcus, S., Stout, J. & McDermott, J. [1987], ‘VT: An Expert Elevator
Designer That Uses Knowledge-Based Backtracking’,AI Magazine
pp. 41–58.

Marques, D., Dallemagne, G., Kliner, G., McDermott, J. & Tung, D.
[1992], ‘Easy Programming: Empowering People to Build Their own
Applications’, IEEE Expertpp. 16–29.

Menzies, T. & Clancey, B. [1998], Editorial, special issue on situated cog-
nition, international journal of human-computer studies, Vol. 49.

Menzies, T., Easterbrook, S., Nuseibeh, B. & Waugh, S. [1999],
An empirical investigation of multiple viewpoint reason-
ing in requirements engineering,in ‘RE ’99’. Avail-
able from http://research.ivv.nasa.gov/docs/
techreports/1999/NASA-IVV-99-009.pdf .

Preece, A. & Shinghal, R. [1992], Verifying knowledge bases by anomaly
detection: An experience report,in ‘ECAI ’92’.

Quinlan, J. [1986], ‘Induction of decision trees’,Machine Learning1, 81–
106.

Shalin, V., Geddes, N., Bertram, D., Szczepkowski, M. & Dubois, D.
[1997], Expertise in dynamic, physical task domains,in P. Feltovich,
K. Ford & R. Hoffman, eds, ‘Expertise in Context’, MIT PRess,
chapter 9, pp. 195–217.

Shaw, M. [1988], Validation in a knowledge acquisition system with multi-
ple experts,in ‘Proceedings of the International Conference on Fifth
Generation Computer Systems’, pp. 1259–1266.

Silverman, B. [1992], ‘Survey of expert critiquing systems: Practical and
theoretical frontiers’,Communications of the ACM35, 106–127.

Soloway, E., Bachant, J. & Jensen, K. [1987], Assessing the maintain-
ability of xcon-in-rime: Coping with the problems of a very large
rule-base,in ‘AAAI ’87’, pp. 824–829.

Swartout, B. & Gill, Y. [1996], Flexible knowledge acquisition through
explicit representation of knowledge roles,in ‘1996 AAAI Spring
Symposium on Acquisition, Learning, and Demonstration: Automat-
ing Tasks for Users’.

5

