
Data Discretization Simplified:
Randomized Binary Search Trees for Data Preprocessing

Donald Joseph Boland Jr.

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Tim Menzies, Ph.D, Chair
Roy S. Nutter, Jr., Ph.D
Cynthia Tanner, M.S.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2007

Keywords: Data Mining, Discretization, Randomized Binary Search Trees

Copyright c©2007 Donald Joseph Boland Jr.

Abstract

Data Discretization Simplified:
Randomized Binary Search Trees for Preprocessing

Donald Joseph Boland Jr.

Data discretization is a commonly used preprocessing method in data mining. Several authors have
put forth claims that a particular method they have written performs better than other competing
methods in this field. Examining these methods we have found that they rely upon unnecessarily
complex data structures and techniques in order to perform their preprocessing. They also typically
involve sorting each new record to determine its location in the preceding data. We describe what
we consider to be a simple discretization method based upon a randomized binary search tree
that provides the sorting routine as one of the properties of inserting into the data structure. We
then provide an experimental design to compare our simple discretization method against common
methods used prior to learning with Naı̈ve Bayes Classifiers. We find very little variation between
the performance of commonly used methods for discretization. Our findings lead us to believe that
while there is no single best method of discretization for Naı̈ve Bayes Classifiers, simple methods
perform as well or nearly as well as complex methods and are thus viable methods for future use.

Dedication

To My Wife Kelly

To My Family

i

Acknowledgments

I would like to first express my truest and sincerest thanks to Dr. Tim Menzies. Over the past year

and a half of working together, he has provided me with the guidance and support necessary to

complete this project and grow as a student, researcher, and computer scientist. He has provided

the inspiration to approach problems in computer science with a degree of curiosity which I had

not previously experienced and taught me a variety of useful skills that I do not think I would have

adopted otherwise, most specifically SWP: Script When Possible, which made completing this

thesis bearable and easily changeable and repeatable when new ideas or wrinkles were introduced.

My life is now encapsulated in a Subversion Repository where nothing can be easily lost and

many things can travel easily, and I would not have adopted such a lifestyle without having the

opportunity to work with Dr. Menzies. His interest in his student’s success, his dedication to

research and teaching, and his faith in my abilities have been a great inspiration in allowing me to

complete this work. It has been a great honor and privilege to know and work with him.

I would also like to thank the other members of my committee, Dr. Roy Nutter and Professor

Cindy Tanner for their support both in this project and working with me during my tenure at

West Virginia University. Dr. Nutter’s vast interests, from computer forensics to electric cars and

everything in between has only helped to increase my interest in studying a variety of fields and

not just isolating myself in one particular interest or field. His willingness to serve as an advisor

while I searched for an area of interest at West Virginia University allowed me to reach this point.

Professor Tanner, my first supervisor as a teaching assistant at West Virginia University, afforded

me the opportunity to work with students as an instructor and mentor in her CS 111 labs. It is

an opportunity that has allowed me to get a taste of what being a college instructor could be like

and also has afforded me skills like being able to speak comfortably in front of groups, answer

ii

questions on the fly, and quickly adopt and understand programming languages well enough to

instruct on them. I appreciate her willingness to work with me and provide me with the latitude to

learn these skills is greatly appreciated.

I would like to thank Lane Department of Computer Science and specifically Dr. John Atkins

for expressing an interest in having me attend West Virginia University and for providing a variety

of opportunities over the last few years so that I could pursue this graduate education. I have had

the opportunity to study and work with so many great professors only because of the opportunities

that were created by the teaching and research assistantships made available by West Virginia

University.

I would like to thank my family for their continuing support and encouragement. Without their

interest in my continuing success, their help in keeping me motivated, and their good humor when

I my mood needed lightened, I would not have been able to achieve any of the successes involved

with completing this document nor been able to stand finishing it.

Last, but far from least, I would like to thank my wife, Kelly. Her continuing love, patience,

and willingness to play our lives by ear, along with the her unending support, made it possible to

complete this project while getting married in the middle of it. I greatly appreciate her support in

help me to maintain my sanity and other interests in the process. I look forward to spending more

time with her and less time in front of my computer as this project comes to a close and our life

together really begins.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Statement of Thesis . 3
1.3 Contributions . 3
1.4 About This Document . 4

2 Background: Data and Learners 5
2.1 Data and Data Mining . 5

2.1.1 Data . 5
2.1.2 Data Mining . 7

2.2 Classification . 8
2.2.1 Decision Tree Learners . 9
2.2.2 Naive Bayes . 13
2.2.3 Other Classification Methods . 16

2.3 Summary . 21
2.3.1 Data Mining and Classification . 21
2.3.2 Classifier Selection . 22

3 Discretization 24
3.1 General Discretization . 24
3.2 Equal Width Discretization (EWD) . 28
3.3 Equal Frequency Discretization(EFD) . 29
3.4 Bin Logging . 30
3.5 Entropy-based Discretization . 30
3.6 Proportional k-Interval Discretization . 32
3.7 Weighted Proportional k-Interval Discretization (WPKID) 35
3.8 Non-Disjoint Discretization (NDD) . 35
3.9 Weighted Non-Disjoint Discretization (WNDD) 36
3.10 Other Methods . 37
3.11 DiscTree Algorithm . 37

3.11.1 Trees . 38
3.11.2 Binary Trees . 40
3.11.3 Binary Search Trees . 42

iv

3.11.4 Randomized Binary Search Trees . 45
3.11.5 DiscTree . 46

4 Experiment 51
4.1 Test Data . 51
4.2 Cross-Validation . 53
4.3 Classifier Performance Measurement . 54
4.4 Mann-Whitney . 56

5 Experimental Results 60
5.1 DiscTree Variant Selection . 60

5.1.1 Accuracy Results . 61
5.1.2 Balance Results . 67
5.1.3 Precision Results . 73
5.1.4 Probability of Detection Results . 79
5.1.5 Probability of Not False Alarm . 85
5.1.6 Decision Tree Method Selection . 91

5.2 Discretization Method Comparison . 91
5.2.1 Accuracy Results . 91
5.2.2 Balance Results . 98
5.2.3 Precision Results . 105
5.2.4 Probability of Detection Results . 112
5.2.5 Probability of Not False Alarm . 119

5.3 Summary . 126

6 Conclusion 127
6.1 Overview . 127
6.2 Conclusions . 128
6.3 Future Work . 129

A disctree Source Code 132

B crossval Source Code 141

C tenbins Source Code 143

D Script for PKID 144

E Entropy-Minimization Method Script 145

F Performance Measure U-test Tables 146
F.1 Accuracy U-test By Data Set . 146
F.2 Balance U-test by Data Set . 151
F.3 Precision U-test by Data Set . 156

v

F.4 Probability of Detection U-test by Data Set . 161
F.5 Probability of Not False Alarm U-test by Data Set 166

vi

List of Figures

2.1 The WEATHER data set, with both nominal and continuous values 7
2.2 A Sample Decision Tree . 9
2.3 1-R Pseudo-Code . 17
2.4 PRISM pseudo-code. 18

3.1 The Continuous Attribute Values, Unsorted, of the WEATHER Data Set 25
3.2 The ”temperature” Attribute Values, Sorted, of the WEATHER Data Set 28
3.3 A Sample of EWD as Run on the ”temperature” Attribute of the WEATHER Data

Set with k=5 . 29
3.4 A Sample of EFD as Run on the ”temperature” Attribute of the WEATHER Data

Set with k=5 . 30
3.5 A Sample of PKID as Run on the ”temperature” Attribute of the WEATHER Data

Set . 34
3.6 A Simple Tree . 38
3.7 A Rooted Tree . 39
3.8 Illustrations of a Binary Tree. 41
3.9 Illustration of a Binary Search Trees . 42
3.10 In-Order Walk Pseudo Code . 43
3.11 BST Search Pseudo Code . 43
3.12 BST INSERT Pseudo Code . 44
3.13 BST DELETE Pseudo Code . 45
3.14 RBST INSERT Functions Pseudo Code . 47
3.15 DiscTree Algorithm Pseudo Code . 50
3.16 A Sample of the DiscTree Algorithm as Run on the ”temperature” Attribute of the

WEATHER Data Set . 50

4.1 Data Sets Used for Discretization Method Comparison. The attributes column
refers to the number of non-class attributes that exist in the data set; the data set
would have one more nominal attribute if the class were counted. 52

4.2 A Tabular Explanation of A, B, C, & D . 54
4.3 Sorted Values of Method A and Method B . 57
4.4 Sorted, Ranked Values of Method A and Method B 57
4.5 An example of the Mann-Whitney U test. 59

vii

5.1 overall for acc . 61
5.2 Plots of the Accuracy Scores, Sorted by Value . 63
5.3 Plots of the Accuracy Scores, Sorted by Value . 64
5.4 Plots of the Accuracy Scores, Sorted by Value . 65
5.5 Plots of the Accuracy Scores, Sorted by Value . 66
5.6 overall for bal . 67
5.7 Plots of Balance Scores, Sorted by Value . 69
5.8 Plots of Balance Scores, Sorted by Value . 70
5.9 Plots of Balance Scores, Sorted by Value . 71
5.10 Plots of Balance Scores, Sorted by Value . 72
5.11 overall for prec . 73
5.12 Plots of Precision Scores, Sorted by Value . 75
5.13 Plots of Precision Scores, Sorted by Value . 76
5.14 Plots of Precision Scores, Sorted by Value . 77
5.15 Plots of Precision Scores, Sorted by Value . 78
5.16 overall for pd . 79
5.17 Plots of Probability of Detection Scores, Sorted by Value 81
5.18 Plots of Probability of Detection Scores, Sorted by Value 82
5.19 Plots of Probability of Detection Scores, Sorted by Value 83
5.20 Plots of Probability of Detection Scores, Sorted by Value 84
5.21 overall for npf . 85
5.22 Plots of Probability of not False Alarm Scores, Sorted by Value 87
5.23 Plots of Probability of not False Alarm Scores, Sorted by Value 88
5.24 Plots of Probability of not False Alarm Scores, Sorted by Value 89
5.25 Plots of Probability of not False Alarm Scores, Sorted by Value 90
5.26 overall for acc . 91
5.27 These data sets had a particular winner(s) for their Accuracy comparison. In all

cases, degree measures the number of wins over the next closest method. In the
event that disctree3 did not win, the number in parenthesis represents its win dif-
ference from the lead method. 93

5.28 Total Wins Per Method Based on Mann-Whitney U-Test Wins on each Data Set’s
Accuracy Scores . 93

5.29 Plots of Accuracy Scores, Sorted by Value . 94
5.30 Plots of Accuracy Scores, Sorted by Value . 95
5.31 Plots of Accuracy Scores, Sorted by Value . 96
5.32 Plots of Accuracy Scores, Sorted by Value . 97
5.33 overall for bal . 98
5.34 These data sets had a particular winner(s) for their Balance comparison. In all

cases, degree measures the number of wins over the next closest method. In the
event that disctree3 did not win, the number in parenthesis represents its win dif-
ference from the lead method. 99

viii

5.35 Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s
Balance Scores . 100

5.36 Plots of Balance Scores, Sorted by Value . 101
5.37 Plots of Balance Scores, Sorted by Value . 102
5.38 Plots of Balance Scores, Sorted by Value . 103
5.39 Plots of Balance Scores, Sorted by Value . 104
5.40 overall for prec . 105
5.41 These data sets had a particular winner(s) for their Precision comparison. In all

cases, degree measures the number of wins over the next closest method. In the
event that disctree3 did not win, the number in parenthesis represents its win dif-
ference from the lead method. 106

5.42 Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s
Precision Scores . 107

5.43 Plots of Precision Scores, Sorted by Value . 108
5.44 Plots of Precision Scores, Sorted by Value . 109
5.45 Plots of Precision Scores, Sorted by Value . 110
5.46 Plots of Precision Scores, Sorted by Value . 111
5.47 overall for pd . 112
5.48 These data sets had a particular winner(s) for their Probability of Detection com-

parison. In all cases, degree measures the number of wins over the next closest
method. In the event that disctree3 did not win, the number in parenthesis repre-
sents its win difference from the lead method. 113

5.49 Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s
Probability of Detection Scores . 114

5.50 Plots of Probability of Detection Scores, Sorted by Value 115
5.51 Plots of Probability of Detection Scores, Sorted by Value 116
5.52 Plots of Probability of Detection Scores, Sorted by Value 117
5.53 Plots of Probability of Detection Scores, Sorted by Value 118
5.54 overall for npf . 119
5.55 These data sets had a particular winner(s) for their not Probability of Failure com-

parison. In all cases, degree measures the number of wins over the next closest
method. In the event that disctree3 did not win, the number in parenthesis repre-
sents its win difference from the lead method. 120

5.56 Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s
not Probability of Failure Scores . 121

5.57 Plots of Probability of not False Alarm Scores, Sorted by Value 122
5.58 Plots of Probability of not False Alarm Scores, Sorted by Value 123
5.59 Plots of Probability of not False Alarm Scores, Sorted by Value 124
5.60 Plots of Probability of not False Alarm Scores, Sorted by Value 125
5.61 Data Set Information for auto-mpg . 126

F.1 audiology for acc . 146
F.2 auto-mpg for acc . 146

ix

F.3 breast-cancer for acc . 146
F.4 breast-cancer-wisconsin for acc . 147
F.5 credit-a for acc . 147
F.6 diabetes for acc . 147
F.7 ecoli for acc . 147
F.8 flag for acc . 147
F.9 hayes-roth for acc . 148
F.10 heart-c for acc . 148
F.11 heart-h for acc . 148
F.12 hepatitis for acc . 148
F.13 imports-85 for acc . 148
F.14 iris for acc . 149
F.15 kr-vs-kp for acc . 149
F.16 letter for acc . 149
F.17 mushroom for acc . 149
F.18 segment for acc . 149
F.19 soybean for acc . 150
F.20 splice for acc . 150
F.21 vowel for acc . 150
F.22 waveform-5000 for acc . 150
F.23 wdbc for acc . 150
F.24 wine for acc . 151
F.25 audiology for bal . 151
F.26 auto-mpg for bal . 151
F.27 breast-cancer for bal . 151
F.28 breast-cancer-wisconsin for bal . 152
F.29 credit-a for bal . 152
F.30 diabetes for bal . 152
F.31 ecoli for bal . 152
F.32 flag for bal . 152
F.33 hayes-roth for bal . 153
F.34 heart-c for bal . 153
F.35 heart-h for bal . 153
F.36 hepatitis for bal . 153
F.37 imports-85 for bal . 153
F.38 iris for bal . 154
F.39 kr-vs-kp for bal . 154
F.40 letter for bal . 154
F.41 mushroom for bal . 154
F.42 segment for bal . 154
F.43 soybean for bal . 155
F.44 splice for bal . 155

x

F.45 vowel for bal . 155
F.46 waveform-5000 for bal . 155
F.47 wdbc for bal . 155
F.48 wine for bal . 156
F.49 audiology for prec . 156
F.50 auto-mpg for prec . 156
F.51 breast-cancer for prec . 156
F.52 breast-cancer-wisconsin for prec . 157
F.53 credit-a for prec . 157
F.54 diabetes for prec . 157
F.55 ecoli for prec . 157
F.56 flag for prec . 157
F.57 hayes-roth for prec . 158
F.58 heart-c for prec . 158
F.59 heart-h for prec . 158
F.60 hepatitis for prec . 158
F.61 imports-85 for prec . 158
F.62 iris for prec . 159
F.63 kr-vs-kp for prec . 159
F.64 letter for prec . 159
F.65 mushroom for prec . 159
F.66 segment for prec . 159
F.67 soybean for prec . 160
F.68 splice for prec . 160
F.69 vowel for prec . 160
F.70 waveform-5000 for prec . 160
F.71 wdbc for prec . 160
F.72 wine for prec . 161
F.73 audiology for pd . 161
F.74 auto-mpg for pd . 161
F.75 breast-cancer for pd . 161
F.76 breast-cancer-wisconsin for pd . 162
F.77 credit-a for pd . 162
F.78 diabetes for pd . 162
F.79 ecoli for pd . 162
F.80 flag for pd . 162
F.81 hayes-roth for pd . 163
F.82 heart-c for pd . 163
F.83 heart-h for pd . 163
F.84 hepatitis for pd . 163
F.85 imports-85 for pd . 163
F.86 iris for pd . 164

xi

F.87 kr-vs-kp for pd . 164
F.88 letter for pd . 164
F.89 mushroom for pd . 164
F.90 segment for pd . 164
F.91 soybean for pd . 165
F.92 splice for pd . 165
F.93 vowel for pd . 165
F.94 waveform-5000 for pd . 165
F.95 wdbc for pd . 165
F.96 wine for pd . 166
F.97 audiology for npf . 166
F.98 auto-mpg for npf . 166
F.99 breast-cancer for npf . 166
F.100breast-cancer-wisconsin for npf . 167
F.101credit-a for npf . 167
F.102diabetes for npf . 167
F.103ecoli for npf . 167
F.104flag for npf . 167
F.105hayes-roth for npf . 168
F.106heart-c for npf . 168
F.107heart-h for npf . 168
F.108hepatitis for npf . 168
F.109imports-85 for npf . 168
F.110iris for npf . 169
F.111kr-vs-kp for npf . 169
F.112letter for npf . 169
F.113mushroom for npf . 169
F.114segment for npf . 169
F.115soybean for npf . 170
F.116splice for npf . 170
F.117vowel for npf . 170
F.118waveform-5000 for npf . 170
F.119wdbc for npf . 170
F.120wine for npf . 171

xii

Chapter 1

Introduction

Today’s modern societies are built on information. Computers and the Internet can make infor-

mation available quickly to anyone looking for it. More importantly, computers can process that

information more quickly than many humans. They can also provide information about how best to

make a decision that normally would have been made previously by a human being with imperfect

knowledge built on their individual education and experience but not necessarily the best informa-

tion. Computer can thus aid us in making the right decisions at the right moment using the best

information available. This thesis deals with helping to refine the way computers decide which

information is most pertinent and make, or help their human users make, decisions based upon

it. We will discuss methods of automatically extracting patterns from large amounts of data, and

methods by which we can improve the ways in which they perform. Specifically, we will explore

a novel discretization method for continuous data. Such discretization is a common preprocessing

method that is known to improve various data mining approaches. We will offer a new method

based upon the randomized binary search tree data structure and compare its performance with

existing state of the art discretization methods.

Chapter 1 provides background information about this thesis, specifically discussing the mo-

tivation behind the research herein, the purpose of this thesis, contributions that this thesis makes

to the field of computer science and more specifically the topic area of data mining. Finally, this

chapter explains the layout for the rest of this document.

Section 1.1 describes the problem that motivated this thesis, specifically discretization and the

search for a simple solution that performs at about the same level as existing methods.

1

Section 1.2 states the purpose of the research of this thesis.

Section 1.3 states the contributions of this thesis to related research.

Section 1.4 explains the layout of the rest of this document and what can be expected in the

following chapters.

1.1 Motivation

Data mining is the process of analyzing data in order to find undiscovered patterns in the data and

solve real world problems [22]. It may be data about historic trends in beach erosion to help a

local community determine how much sand needs dredged and replaced each year, or survey data

about when people begin their Christmas shopping in order to help retailers determine the best

time of year to begin setting up Christmas displays and ordering seasonal merchandise. Data about

a set of tests that identify cancer might be analyzed to determine which tests are most capable of

identifying the cancer and allow doctors to use these tests earlier in the cancer screening process,

or data about fuel purchases or consumption analyzed and used as a basis for vendors to know

how much fuel they should have on hand at a particular time of year, how often they should be

restocked, and specific amounts of each fuel grade or type might be needed. Data mining can be

used to analyze a vast variety of data in order to solve the problems faced by our society or provide

more information to help people make the best decisions.

Real world data such as that collected for the problems above can provide a variety of issues

for data miners, but one of the chief problems involved in preparing data for the learner is ensuring

that data can be easily read and manipulated by the learner. One of the most common difficulties

that learners have is dealing with numeric values. Most learners require data to take on a value

belonging to a small, fixed set, which is often unobtainable with raw numeric values that can fall

in large or infinite ranges and take on many possible values even when constrained by a range.

The process of transitioning raw numeric values to a form that can be easily read and manipulated

by learners is called discretization [22]. Numerous researchers report that discretization leads to

better, more accurate learning, especially in Naı̈ve Bayes Classifiers. However, they very often

disagree about which method of discretization works best. Because of how useful discretization

2

can be for classification, yet because questions remain about whether there is one best method to

use, discretization will be the subject of this thesis.

1.2 Statement of Thesis

While data discretization is an important topic in data mining, it is one burdened with a vast variety

of methods, most of which take on complex data structures and require a search over the entire

data set to determine how a value should be discretized. We believe that there should be a simpler

approach that works similarly to these methods. To that end, we have implemented a discretization

method based on a randomized binary search tree as the underlying storage data structure. We

contend that this method uses the properties of randomized binary search trees to avoid a search

over the entire data set performing discretization and do so with a simple structure that can be

understood by most.

1.3 Contributions

The contributions of this thesis are:

• The DiscTree algorithm that is implemented to create the DiscTree discretization method;

• A review of a variety of currently existing discretization methods; and,

• An experimental comparison of some common discretization methods against the imple-

mented DiscTree discretization method.

A surprise finding of this comparison is that many discretization methods perform at very similar

levels.

The results of the comparison leads us to the belief that discretization is a simpler task than it is

made out to be in some of the literature. The DiscTree algorithm is simple in comparison to many

of the state-of-the-art methods and performs just as well as some methods that claim superiority in

the field of discretization. We believe that while various methods exist for discretization and some

may perform better on a specific data sets than others, that in general simple methods perform well

and can be just as useful as and used in place of complex methods.

3

1.4 About This Document

The rest of the chapters of this thesis are laid out as follows:

Chapter 2 provides an explanation of the premise of data and how it is used in data mining.

It also provides a review of various learners in data mining. It examines several possible learning

methods and explains why we have chosen to use the Naı̈ve Bayes Classifier for our experimenta-

tion with discretization methods.

Chapter 3 provides a review of common data mining discretization methods. It highlights the

methods commonly found in the literature on discretization and specifically reviews the methods

we will compare in our experiment.

Chapter 4 explains the experimental design used to test the variety of data discretization tech-

niques described in Chapter 3. It also explains our methods for generating and comparing results.

Chapter 5 contains the results of the experiment, relevant tables and data plots, and a explana-

tion of those results.

Chapter 6 explains conclusions derived from the results of the experiment. It discusses the key

findings and areas of future work that could expand upon this thesis. It also provides a summary

of this document.

4

Chapter 2

Background: Data and Learners

Chapter 2 provides background information on data mining, specifically the topics of data and clas-

sification. It provides information about some of the common classification methods and explains

our selection of the Naı̈ve Bayes classifier as a test platform for discretization.

Section 2.1 describes the use of data in data mining, including types of data and a basic ex-

planation of the format of the data used in this thesis. Section 2.2 describes the machine learning

process of classification and discusses a sampling of various classifiers, including decision tree and

Naı̈ve Bayes classifiers. Section 2.3 explains the usefulness of the information of this Chapter and

how it leads to our selection of a classification method for the experiments in this document and

the justification for that selection.

2.1 Data and Data Mining

2.1.1 Data

In this modern age, almost everything we do is a source of data. Prompt payment of bills is

recorded by credit agencies to maintain or increase a credit score or credit limit, while late pay-

ments may decrease it or decrease future credit opportunities. Purchases from websites are recorded

to determine other items or services that the company or its business partners might offer or to send

reminders when a service needs renewed or an item replaced. Grades, standardized test scores,

extra-curricular involvement, and student personal information are all collected by colleges and

universities to be analyzed for admission and scholarships. Almost any imaginable piece of in-

5

formation is useful to someone, and most of it can and does get recorded as data in electronic

databases.

Data captured from the real world comes in a variety of forms. Values may arrive as a series

of selections, such as a choice of favorite color from the set blue, red, green, yellow, orange,

pink, purple, or a choice of marital status from the set single, married, divorced, widowed. Such

qualitative data, where the values are chosen from a finite set of distinct possible values, is called

nominal or categorical data. Ordinal data, where the fixed categories have some sort of relation

to each other, such as age ranges 0 to 9, 10 to 19, ... ,110 to 120 where ”older” and ”younger”

ranges can be discussed, may also be referred to as discrete data [22]. However, because there

exists no concept of distance between ordinal data values - that is, you can not add two of such

values to obtain a third or subtract one from another and be left with a third - they are often treated

like nominal values. Other data may arrive as measurements, such as the monthly rainfall of a city,

the average rushing yards per touch of a football player, or a person’s average weekly spending

at the grocery store. These measurements, which make take on an almost unlimited number of

quantitative values, are called numeric or continuous data, and may includes both real (decimal)

and integer values [22].

Data is most often stored in files or databases. The basic unit of these storage structures is the

record, or one data instance. Each instance can be considered to be a line in a data file or a row in a

database table. Each instance is made up of values for the various attributes that comprise it. The

attributes or features of each instance, the columns of our database table or file, are the information

we wish to know for each instance. From the previous example about student admissions and

financial aid data, a student instance might be comprised of a SAT score attribute, an ACT score

attribute, a class ranking attribute, a GPA attribute, a graduation year attribute, and an attribute that

denotes whether the college or university collecting that information gave that student financial

aid. Instances often consist of mixed format data; that is, an instance will often have some nominal

or discrete attributes and some continuous attributes [12]. Another example of a set of instances

can be found in Figure 2.1. Each record or instance is a row in the table and is labeled here with

a number that is not part of the data set for reference purposes. Each column has the name of the

6

attribute that it represents at the top.

Instance Attributes Class
outlook temperature humidity windy play

1 sunny 85 85 false no
2 sunny 80 90 true no
3 overcast 83 86 false yes
4 rainy 70 96 false yes
5 rainy 68 80 false yes
6 rainy 65 70 true no
7 overcast 64 65 true yes
8 sunny 72 95 false no
9 sunny 69 70 false yes

10 rainy 75 80 false yes
11 sunny 75 70 true yes
12 overcast 72 90 true yes
13 overcast 81 75 false yes
14 rainy 71 91 true no

Figure 2.1: The WEATHER data set, with both nominal and continuous values

While advances in storage technology have allowed the collection and storage of the vast

amount of data now available, the explosion of available data does not always mean that the col-

lected data is being used to its full potential. Often, the pure massiveness of the data collected can

overwhelm those who have requested it be stored. They may find themselves staring at a moun-

tain of data that they didn’t expect and don’t know how they will ever analyze. Even if they do

manage to view it all, they may only see the facts that are obvious in the data, and sometimes may

even miss these. Fortunately, the same computers that are storing the collected data can aid these

data-swamped users in their analysis.

2.1.2 Data Mining

Data analysis may seem trivial when data sets consist of a few records consisting of few attributes.

However, human analysis quickly becomes impossible when datasets become large and complex,

consisting of thousands of records with possibly hundreds of attributes. Instead, computers can be

used to process all of these records quickly and with very little human interaction. The process

of using computers to extract needed, useful, or interesting information from the often large pool

7

of available data is called data mining. More precisely, data mining is the extraction of implicit,

previously unknown, and potentially useful information about data [22].

The technical basis of data mining is called machine learning [22]. A field within artificial

intelligence, it provides many of the algorithms and tools used to prepare data for use, examine that

data for patterns, and provide a theory based on that data by which to either explain previous results

or predicting future ones [17,22]. These tools provide the information they gather to analysts, who

can then use the results to make decisions based on the data patterns, anticipate future results, or

refine their own models. Data mining thus becomes a tool for descriptive prediction, explanation,

and understanding of data that might otherwise be lost within the ever growing sea of information

[22].

2.2 Classification

Classification, also referred to as classification learning, is a type of data mining whereby a com-

puter program called a learner is provided with a set of pre-classified example instances from

which it is expected to learn a way to classify future, unseen, unclassified instances [22]. Most

often, the pre-classified examples are prepared by experts or are real, past examples which are

supposed to represent the known or accepted rules about the data. The learner is provided with

these in order to then form its own rules for how to treat future instances. It does this, in general,

by examining the attributes of the example instances to determine how they are related to that in-

stances class. The class of an instance is an attribute which denotes the outcome for the instance.

From the previous student financial aid example, if we were using a classifier to determine whether

students should receive student aid, this class attribute would be the attribute denoting whether the

student received financial aid or not. In the data set in Figure 2.1, the class attribute, play, takes

on the values of yes and no, denoting a decision as to whether some decision is made based on the

weather. The learner would examine the set of example instances and build a concept by which

it relates the other attributes to the class attribute to make a set of rule for how to decide which

class future instances will be assigned [22]. The method by which the learner determines the con-

cept it will use on future examples differs based upon the type of classification learner used. A

8

wide variety of classification learners exist, but among the most popular are decision tree learners,

rule-generating learners, and Naı̈ve Bayes classifiers.

2.2.1 Decision Tree Learners

Decision tree learners use a method called decision tree induction in order to construct its concept

for classification. In decision tree induction, an attribute is placed at the root of the tree (see

Section 3.11.1) being created and a branch from that root is created for each value of that attribute.

This process is then repeated recursively for each branch, using only the instances that are present

in the created branch [17, 22]. The process stops when either too few examples fall into a created

branch to justify splitting it further or when the branch contains a pure set of instances (i.e. the

class of each example in the branch is the same). Once a decision tree has been built using training

examples, test examples can be classified by starting at the root of the tree and using the attribute

and conditional tests at each internal node and branch to reach a leaf node that provides a class

for examples that reach the given leaf. Decision trees are thus trees whose leaf nodes provide

classifications to examples who reach those leaves by meeting the conditional statements of the

preceding branches of the tree. Figure 2.2 provides an example of a decision tree.

Figure 2.2: A Sample Decision Tree

9

An example of a decision tree learner is J48. J48 is a JAVA implementation of Quinlan’s C4.5

(version 8) algorithm [18]. J48/C4.5 treat numeric attributes using a binary-chop at any level,

splitting the attribute into two parts that can later be chopped again if necessary (i.e. in this case an

attribute may be reused). C4.5/J48 uses information theory to assess candidate attributes in each

tree level: the attribute that causes the best split is the one that most simplifies the target concept.

Concept simplicity is measured using information theory and the results are measured in bits. It

does this using the following equations:

entropy(p1, p2, ..., pn) =−p1log(p1)− p2log(p2)− ...− pn log(pn) (2.1)

or

entropy(p1, p2, ..., pn) =−
n

∑
i=1

pi log pi

in f o([x,y,z]) = entropy(
x

x+ y+ z
,

y
x+ y+ z

,
z

x+ y+ z
) (2.2)

gain(attribute) = in f o(current)−avg. in f o(proposed) (2.3)

A good split is defined as one most decreases the number of classes contained in each branch.

This helps to ensure that each subsequent tree split results in smaller trees requiring fewer subse-

quent splits.

Equation 2.1 defines the entropy - the degree of randomness of classes in a split. The smaller

the entropy is - the closer it is to zero - the less even the class distribution in the split; the larger the

entropy - the closer it is to one - the more evenly divided the classes in the split.

Information, measured in bits, specifies the purity of a branch in the decision tree. The infor-

mation measure of a given leaf node of a decision tree specifies how much information would be

necessary to specify how a new example should be classified at the should the given example reach

the given leaf node in the tree. Equation 2.2 allows the calculation of that amount of information.

For example, if the leaf node contained 5 example instances, 3 of class yes and 2 of class no, then

10

the information needed to specify the class of a new example that reached that leaf node would be:

in f o([3,2]) = entropy(
3
5
,
2
5
) =−3

5
log

3
5
− 2

5
log

2
5
≈ 0.971 bits

The information gain, defined in Equation 2.3, of a split is the decrease of information needed

to specify the class in a branch of the tree after a proposed split is implemented. For example,

consider a tree with twenty(20) training instances with an original class distribution of thirteen(13)

yes instances and seven no instances. A proposed attribute value test would split the instances into

three branches; one containing only seven yes instances and one noinstances, the second five yes

and one no, and the third the remaining instances. The information of the original split is calcu-

lated, in f o([13,7]) ≈ 0.934 bits. Each of the information measures for the splits that would be

created are also generated, and an average value derived. This average value is the class informa-

tion entropy of the attribute, a formula for which an be found in Equation 2.4:

E(attribute) =
|S1|
|S| entropy(S1)+ ...+

|Sn|
|S| entropy(Sn) (2.4)

Where S1 through Sn are the subsets created when attribute takes on n unique values and thus

creates n branches if used as the split point in the tree; S is the original distribution of classes for

this split; and |Si| is the size - number of instances - in Si. Applying this formula to our previous

example, we get:

in f o([7,1])≈ 0.544 bits

in f o([5,1])≈ 0.650 bits

in f o([1,5])≈ 0.650 bits

E([7,1], [5,1], [1,5]) =
8

20
∗ .544+

6
20
∗ .650+

6
20
∗ .650≈ 0.413 bits

Then the information gain for the proposed split would be:

gain(attribute) = in f o([13,7])−E([7,1], [5,1], [1,5]) = 0.934 bits − 0.413 bits = 0.521 bits

The gain for each attribute that might be used as the splitting attribute at this level of the tree

would be compared and the one that maximizes this gain would be used as the split; in the case

11

of a tie an arbitrary choice could be made. However, simply using gain can present an issue in

the case of highly branching attributes, such as an unique ID code assigned to each instance. Such

an attribute would create a separate branch for each attribute and have an extremely small (zero)

information score that would result in a very high gain. While such a split attribute would be

desired using just the gain measure, it would not be desired in a tree split because it would lead

to an issue of over-fitting. Over-fitting occurs when a few, very specific values are used in the

creation of a classification concept, that results in a concept that always or most often will result

in a misclassification during testing. The ID code attribute would cause such a problem to occur,

most likely never predicting instances incorrect that did not appear in the training set. In order to

avoid this, another measure is used that takes into account both the number and size of child nodes

of a proposed split. This measure is called the gain ratio [22]. To calculate gain ratio, we start with

the gain calculated previously, and divide it by the information that is derived from the number

of instances (the sum of the number of instances of each class) in each split. From the previous

example, we could calculate the gain ratio as follows:

gain(attribute) = 0.521 bits

in f o([8,6,6]) = entropy([
8

20
,

6
20

,
6

20
])

= − 8
20

log
8

20
− 6

20
log

6
20

− 6
20

log
6
20

in f o([8,6,6]) ≈ 1.571 bits

gain ratio =
gain((attribute))

in f o([8,6,6])
=

0.521 bits
1.571 bits

≈ 0.332 bits

(2.5)

The attribute with the highest gain ration is then used as the split point. Additionally, certain

other tests may be included in some decision tree induction schemes to ensure that the highly

branching attribute described previously is not even considered as a possible splitting attribute.

As described previously, the splitting process in decision tree induction continues in each of the

created branches until some stopping criterion is reached, be it too few instances left in a branch

to justify splitting, a pure branch, or some other test.

12

Trees created by C4.5/J48 are pruned back after they are completely built in order to avoid over-

fitting error, where a specific branch of the tree is too specific to one or a few training examples that

might cause an error when used against the testing data. This methodology uses a greedy approach,

setting some threshold by which the accuracy of the tree in making classifications is allowed to

degrade and removing the branches in reverse order until that threshold is met. This ensures that

branches do not become over-fitted for a specific instance, which could decrease the accuracy of

the tree - especially if the one training instance that fell into that branch was an extreme outlier,

had been corrupted by noise in the data, or was simply a random occurrence that got grouped into

the training set.

Quinlan implemented C4.5 decision tree post-processor called C4.5rules. This post-processor

generates succinct rules from cumbersome decision tree branches via (a) a greedy pruning algo-

rithm that removes statistically unnecessary rules followed by (b) removal of duplicate rules and

finally (c) exploring subsets of the rules relating to the same class [18]. It is similar to the rule-

learners discussed in Section 2.2.3

2.2.2 Naive Bayes

Naı̈ve Bayes classifiers are highly studied statistical method used for classification. Originally used

as a straw man [9, 28] - a method thought to be simple and that new methods should be compared

against in order to determine their usefulness in terms of improved accuracy, reduced error, etc -

it has since been shown to be a very useful learning method and has become one of the frequently

used learning algorithms.

Naı̈ve Bayes classifiers are called naı̈ve because of what is called the independent attribute

assumption. The classifier assumes that each attribute of an instance is unrelated to any other at-

tribute of the instance. This is a simplifying assumption used to make the mathematics used by the

classifier less complicated, requiring only the maintenance of frequency counts for eacy attribute.

However, real world data instances may contain two or more related attributes whose relationship

could affect the class of a testing instance. Because of the independent attribute assumption, that

relationship would most likely be ignored by the Naı̈ve Bayes classifier and could result in incorrect

classification of an instance. When a data set containing such relationships is used with the Naı̈ve

13

Bayes classifier, it can cause the classifier to skew towards a particular class and cause a decrease

in performance. Domingos and Pazzani show theoretically that the independence assumption is a

problem in a vanishingly small percent of cases [9]. This explains the repeated empirical result

that, on average, Naı̈ve Bayes classifiers perform as well as other seemingly more sophisticated

schemes. For more on the Domingos and Pazzani result, see Section 2.3.2

A Naı̈ve Bayes classifier is based on Bayes’ Theorem. Informally, the theorem says next =

old ∗new; in other words, what we’ll believe next is determined by how new evidence affects old

beliefs. More formally:

P(H|E) =
P(H)
P(E) ∏

i
P(Ei|H) (2.6)

That is, given fragments of evidence regarding current conditions Ei and a prior probability for

a class P(H), the theorem lets us calculate a posterior probability P(H|E) of that class occurring

under the current conditions. Each class (hypothesis) has its posterior probability calculated in turn

and compared. The classification is the hypothesis H with the highest posterior P(H|E).

Equation 2.6 offers a simple method for handling missing values. Generating a posterior prob-

ability means tuning a prior probability to new evidence. If that evidence is missing, then no tuning

is needed. In this case Equation 2.6 sets P(Ei|H) = 1 which, in effect, makes no change to P(H).

This is very useful, as real world data often contains missing attribute values for certain instances;

take, for instance, the student data mentioned previously. Not all students will take a particular

standardized test, so using both the ACT and SAT scores in classification might be harmed in other

methods if a missing value were to occur. However, with Naı̈ve Bayes, this missing value does not

harm or help the chance of classification, making it ideal for data that may having missing attribute

values.

When estimating the prior probability of hypothesis H, it is common practice [23,24] to use an

M-estimate as follows. Given that the total number of classes/hypothesis is C, the total number of

training instances is I, and N(H) is the frequency of hypothesis H within I, then:

P(H) =
N(H)+m
I +m ·C (2.7)

14

Here m is a small non-zero constant (often, m = 2). Three special cases of Equation 2.7 are:

• For high frequency hypothesis in large training sets, N(H) and I are much larger than m and

m ·C, so Equation 2.7 simplifies to P(H) = N(H)
I , as one might expect.

• For low frequency classes in large training sets, N(H) is small, I is large, and the prior

probability for a rare class is never less than 1
I ; i.e. the inverse of the number of instances. If

this were not true, rare classes would never appear in predictions.

• For very small data sets, I is small and N(H) is even smaller. In this case, Equation 2.7

approaches the inverse of the number of classes; i.e. 1
C . This is a useful approximation when

learning from very small data sets when all the data relating to a certain class has not yet

been seen.

The prior probability calculated in Equation 2.7 is a useful lower bound for P(Ei|H). If some

value v is seen N(f = v|H) times in feature f ’s observations for hypothesis H, then

P(Ei|H) =
N(f = v|H)+ l ·P(H)

N(H)+ l
(2.8)

Here, l is the L-estimate, or Laplace-estimate and is set to a small constant (Yang &Webb [23, 24]

recommend l = 1). Two special cases of are:

• A common situation is when there are many examples of an hypothesis and numerous ob-

servations have been made for a particular value. In that situation, N(H) and N(f = v|H)

are large and Equation 2.8 approaches N(f =v|H)
N(H) , as one might expect.

• In the case of very little evidence for a rare hypothesis, N(f = v|H) and N(H) are small and

Equation 2.8 approaches l·P(H)
l ; i.e. the default frequency of an observation in a hypothesis

is a fraction of the probability of that hypothesis. This is a useful approximation when very

little data is available.

For numeric attributes it is common practice for Naı̈ve Bayes classifiers to use the Gaussian

probability density function [22]:

g(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2.9)

15

where {µ,σ} are the attributes’s {mean,standard deviation}, respectively. To be precise, the proba-

bility of a continuous (numeric) attribute having exactly the value x is zero, but the probability that

it lies within a small region, say x± ε/2, is ε× g(x). Since ε is a constant that weighs across all

possibilities, it cancels out and needs not be computed. Yet, while the Gaussian assumption may

perform nicely with some numeric data attributes, other times it does not and does so in a way that

could harm the accuracy of the classifier.

One method of handling non-Gaussians is Johns and Langley’s kernel estimation technique [11].

This technique approximates a continuous distribution sampled by n observations {ob1,ob2, ...,obn}

as the sum of multiple Gaussians with means {ob1,ob2, ...,obn} and standard deviation σ = 1√
n .

In this approach, to create a highly skew distribution, multiple Gaussians would be added together.

Conclusions are made by asking all the Gaussians which class they believe is most likely.

Finally, numeric attributes for Naı̈ve Bayes classifiers can also be handled using a technique

called discretization, discussed in Chapter 3. This has been the topic of many studies ([4, 14, 23–

25, 28]) and has been shown to deal well with numeric attributes, as seen in [9] where a Naı̈ve

Bayes classifier using a simple method of discretization outperformed both so-called state-of-the-

art classification methods and a Naı̈ve Bayes classifier using the Gaussian approach.

Naı̈ve Bayes classifiers are frustrating tools in the data mining arsenal. They exhibit excellent

performance, but offer few clues about the structure of their models. Yet, because their perfor-

mance remains so competitive with other learning methods their structures, this complaint is often

overlooked in favor of their use.

2.2.3 Other Classification Methods
1-R

One of the simplest learners developed was 1-R [13, 22]. 1-R examines a training dataset and

generates a one-level decision tree for an attribute in that data set. It then bases its classification

decision on the one-level tree. It makes a decision by comparing a testing instance’s value for

the attribute that the tree was constructed against the decision tree values. It classifies the test

instance as being a member of the class that occurred most frequently in the training data with

16

the attribute value. If several classes occurred with equal frequency for the attribute value then a

random decision is used at the time of final tree construction to set the class value that will be used

for future classification.

The 1-R classifier decides which attribute to use for future classification by first building a set

of rules for each attribute, with one rule being generated for each value of that attribute seen in

the training set. It then tests the rule set of each attribute against the training data and calculates

the error rate of the rules for each attribute. Finally, it selects the attribute with the lowest error -

in the case of a tie the attribute is decided arbitrarily - and uses the one-level decision tree for this

attribute when handling the testing instances. Pseudo code for 1-R can be found in Figure 2.2.3:! "
For each a t t r i b u t e :

For each v a l u e o f t h a t a t t r i b u t e , make a r u l e a s f o l l o w s :
Count how o f t e n each c l a s s a p p e a r s
De te rmine t h e most f r e q u e n t c l a s s
Make a r u l e such t h a t a s s i g n s t h e g i v e n v a l u e t h e most f r e q u e n t c l a s s

C a l c u l a t e t h e e r r o r r a t e o f t h e r u l e s f o r t h e a t t r i b u t e
Compare t h e e r r o r r a t e s , d e t e r m i n e which a t t r i b u t e has t h e s m a l l e s t e r r o r r a t e
Choose t h e a t t r i b u t e whose r u l e s had t h e s m a l l e s t e r r o r r a t e#$ %

Figure 2.3: 1-R Pseudo-Code

The 1-R classifier is very simple and handles both missing values and continuous attributes.

Continuous attributes are handled using discretization, discussed in Chapter 3. It specifically uses

a method similar to EWD, defined in Section 3.2. Missing values are dealt with by creating a

branch in the one-level decision tree for a missing value. This branch is used when missing values

occur.

Because of its simplicity, 1-R often serves a ”straw-man” classification method, used as a

baseline for performance for new classification algorithms. While 1-R sometimes has classification

accuracies on par with modern learners - thus suggesting that the structures of some real-world data

are very simple - it also sometimes performs poorly, giving researchers a reason to extend beyond

this simple classification scheme [17].

17

Rule Learners

Rather than patch an opaque learner like Naı̈ve Bayes classifierswith a post-processor to make them

more understandable to the average user, it may be better to build learners that directly generate

succinct, easy to understand, high-level descriptions of a domain. For example, RIPPER [5] is

one of the fastest rule learners in the available literature. The generated rules are of the form

condition−→ conclusion:

Feature1 = Value1∧Feature2 = Value2∧ . . .︸ ︷︷ ︸
condition

−→ Class︸ ︷︷ ︸
conclusion

The rules generated by RIPPER perform as well as C45rules - a method which creates rules from

C4.5 decision trees - yet are much smaller and easier to read [5].

Rule learners like RIPPER and PRISM [3] generate small, easier to understand, symbolic

representations of the patterns in a data set. PRISM is a less sophisticated learner than RIPPER

and is no longer widely used. It is still occasionally used to provide a lower bound on the possible

performance. However, as illustrated below, it can still prove to be surprisingly effective.! "
(1) F ind t h e m a j o r i t y c l a s s C
(2) C r e a t e a R wi th an empty c o n d i t i o n t h a t p r e d i c t s f o r c l a s s C .
(3) U n t i l R i s p e r f e c t (or t h e r e a r e no more f e a t u r e s) do

(a) For each f e a t u r e F n o t men t ioned i n R
(b) For each v a l u e v i n F , c o n s i d e r a d d i ng F = v t o t h e c o n d i t i o n o f R
(c) S e l e c t F and v t o maximize p / t where t i s

t o t a l number o f examples o f c l a s s C and p i s t h e number
o f examples o f c l a s s C s e l e c t e d by F=v .
Break t i e s by c h o o s i n g t h e c o n d i t i o n wi th t h e l a r g e s t p .

(d) Add F = v t o R
(4) P r i n t R
(5) Remove t h e examples c o v e r e d by R .
(6) I f t h e r e a r e examples l e f t , l oop back t o (1)#$ %

Figure 2.4: PRISM pseudo-code.

Like RIPPER, PRISM is a covering algorithm that runs over the data in multiple passes. As

shown in the pseudo-code of Figure 2.4, PRISM learns one rule at each pass for the majority class

(e.g. in Figure 2.1, at pass 1, the majority class is yes). All the examples that satisfy the condition

18

are marked as covered and removed from the data set currently begin considered for a rule. PRISM

then recurses on the remaining data.

The output of PRISM is an ordered decision list of rules where rule j is only tested on instance

x if all conditions in rulei:i< j fail to cover x. PRISM returns the conclusion of the first rule with a

satisfied condition.

One way to visualize a covering algorithm is to imagine the data as a table on a piece of paper.

If there exists a clear pattern between the features and the class, define that pattern as a rule and

cross out all the rows covered by that rule. As covering recursively explores the remaining data, it

keeps splitting the data into:

• What is easiest to explain during this pass, and

• Any remaining ambiguity that requires a more detailed analysis.

PRISM is a naı̈ve covering algorithm and has problems with residuals and over-fitting similar

to the decision tree algorithms. If there are rows with similar patterns and similar frequencies occur

in different classes, then:

• These residual rows are the last to be removed for each class;

• so the same rule can be generated for different classes. For example, the following rules

might be generated: if x then class=yes and if x then class=no.

As mentioned in the discussion on decision tree learners, in over-fitting, a learner fixates on rare

cases that do not predict for the target class. PRISM’s over-fitting arises from part 3.a of Figure 2.4

where the algorithm loops through all features. If some feature is poorly measured, it might be

noisy (contains spurious signals/data that may confuse the learner). Ideally, a rule learner knows

how to skip over noisy features.

RIPPER addresses residuals and over-fitting problem three techniques: pruning, description

length and rule-set optimization. For a full description of these techniques, which are beyond the

scope of this thesis, please see [8]. To provide a quick summary of these methods:

19

• Pruning: After building a rule, RIPPER performs a back-select in a greedy manner to see

what parts of a condition can be deleted, without degrading the performance of the rule.

Similarly, after building a set of rules, RIPPER performs a back-select in a greedy manner

to see what rules can be deleted, without degrading the performance of the rule set. These

back-selects remove features/rules that add little to the overall performance. For example,

back pruning could remove the residual rules.

• Description Length: The learned rules are built while minimizing their description length.

This is an information theoretic measure computed from the size of the learned rules, as well

as the rule errors. If a rule set is over-fitted, the error rate increases, the description length

grows, and RIPPER applies a rule set pruning operator.

• Rule Set Optimizaton: tries replacing rules with straw-man alternatives (i.e. rules grown

very quickly by some naı̈ve method).

Instance-Based Learning

Instance-based learners perform classification in a lazy manner, waiting until a new instance is

inserted to determine a classification. Each new added instance is compared with those already in

the data set using a distance metric. In some instance-based learning methods, the existing instance

closest to the newly added instance is used to assign a ”group” or classification to the new instance.

Such methods are called nearest-neighbor classification methods. If instead the method used the

majority class, or a distance-weighted average majority class, of the k closest existing instances,

the classification method is instead called a k-nearest-neighbor classification method.

While such methods are interesting to explore, their full and complete explanation is beyond

the scope of this thesis. This introduction is provided as a simple basis for the idea of instance-

based learning rather than specific details about specific methods. For more information about

instance-based classification methods, we recommend starting with [22], which provides an ex-

cellent overview and explores specific instance-based methods such as k-means, ball trees, and

kD-trees.

20

2.3 Summary

2.3.1 Data Mining and Classification

Data Mining is a large field, with many areas to study. This chapter has touched primarily on clas-

sification and classifiers. Classification is a very useful tool for a variety of industries. Classifiers

can review a variety of medical test data to make a decision about whether a patient is at high risk

for a particular disease. They can be used by retailers to determine which customers might be ideal

for special offers. They could also be used by colleges and universities to determine which students

they should admit, which students to spend time recruiting, or which students should be provided

financial aid. These are just a few of the very large number of instances where classification could

be used to the benefit of the organization who choses to use it.

Because classification is of such use to so many organizations, many people have studied it.

The result of that study is the variety of different classification methods discussed in this chapter,

from rule-based and instance-based learning to decision tree induction methods and Naı̈ve Bayes

classifiers. The goal of all this research is to find a better classifier, one that performs quickly

and more accurately than previous classifiers. Yet, other data mining methods exist that can help

to extend the accuracy of current methods, enabling them to be more accurate without additional

manipulation of the classifier itself. These methods are often preprocessing steps in the data mining

process, better preparing the data for use by the classifier. One such method is discretization.

Discretization, in general, removes numeric data - which can often cause concept confusion, over-

fitting, and decrease in accuracy - from the original data and substitutes a nominal attribute and

corresponding values in its place. Discretization is discussed in detail in Chapter 3. Because of

its usefulness as a preprocessing method to classification, we propose to examine the effects of

several methods of discretization on a classifier. But which classifier would best serve as a testing

platform?

21

2.3.2 Classifier Selection

A variety of literature exists comparing many of these classifier methods and how discretization

works for them. In [14], three discretization methods are used on both the C4.5 decision tree

induction algorithm and the Naı̈ve Bayes Classifier. The authors of that paper find that each form

of discretization they tested improved the performance of the Naı̈ve Bayes Classifier in at least

some cases. Specifically:

Our Experiments reveal that all discretization methods for the Naive-Bayes classifier

lead to a large average increase in accuracy.

On the other hand, when the same methods were used on the C4.5 learner only two datasets saw

significant improvement. This result leads us to believe that Naı̈ve Bayes classifiers truly provides

a platform for discretization methods to improve results and have a true, measurable impact on the

classifier.

In addition to that study, [9] compared the performance of the Naı̈ve Bayes classifiers against

C4.5 decision tree induction, PEBLS 2.1 instance-based learning, and CN2-rule induction. It com-

pared those methods against both a Gaussian-assumption Naı̈ve Bayes classifier, which uses an

assumption that all continuous features fit in a normal distribution to handle such values, and a

version of Naı̈ve Bayes that uses Equal Width Discretization (see Section 3.2) as a preprocessor to

handle any continuous data instances. It found that the simple Naı̈ve Bayes classifier using EWD

performed the best out of the compared methods, even compared against methods considered to

be state-of-the-art, and that the Naı̈ve Bayes classifier with the Gaussian-assumption performed

nearly as well. The paper also went on to test whether violating the attribute independence as-

sumption caused the classifier to significantly degrade, and found that the Naı̈ve Bayes classifier

still performed well when strong attribute dependencies or relationships were present in the data.

Finally, some of the most recent developments in discretization have been proposed specifi-

cally for use with the Naı̈ve Bayes classifier. The most modern discretization method used in our

experiment, aside from the DiscTree method implementation, is the PKID discretization method

(see Section 3.6). This method was derived with the specific intent of it being used with the Naı̈ve

Bayes classifier, and in order to provide a comparison with the results of the study performed with

22

its implementation, we believe it necessary to perform a comparison using that classifier. The same

author has proposed numerous other methods of discretization for Naı̈ve Bayes as well, specifically

in [23–25, 27, 28]. This leads us to believe that we too may be able to improve the performance of

this classifier.

As a result, we propose to use the Naı̈ve Bayes classifier for our experimental comparison of

discretization methods, despite all the other types of available learners. We feel it is necessary

to choose one learner with which to compare the discretization methods in order to provide for

easy comparison of the discretization methods without fear that the classifier is providing some

or all of any notable performance differences. We feel the Naı̈ve Bayes classifier will provide the

best comparison point due to its use to derive the most recent compared results [25] and is the

learner where the benefits of discretization have been most analyzed and best displayed, as seen

in [14]. While it does make assumptions about the data attributes being independent, we feel that

based on [9] we can reasonably move forward that this assumption will have a minimal affect

on the data, and because we are not comparing across classification methods but rather between

various discretization methods used on the same classifier, that this assumption will equally affect

all results if present and can thus be discounted. Thus, we are confident that the simple Naı̈ve Bayes

classifier will provide an acceptable base for our experimental comparison of the discretization

methods that will now be presented.

23

Chapter 3

Discretization

Chapter 3 describes a variety of data mining preprocessing methods that are used to convert con-

tinuous or numeric data, with potentially unlimited possible values, into a finite set of nominal

values.

Section 3.1 describes the general concepts of discretization. Section 3.2, Section 3.3, and

Section 3.4 describe a few simple discretization methods. Section 3.5 describes entropy-based ap-

proach to discretization. Section 3.6 describes proportional k-interval discretization. Section 3.7

describes an update to PKID to handle small data sets, while Section 3.8 describes Non-Disjoint

Discretization. Section 3.9 describes how the creation of WPKID provided a modification to Non-

Disjoint Discretization to get the benefits of decreased error rates in small data sets. We briefly

discuss why we don’t discuss in detail other discretization methods provided in some of the related

papers on the subject in Section 3.10. Section 3.11 describes the contribution of this thesis, dis-

cretization using a randomized binary search tree as the basic storage and organizing data structure.

3.1 General Discretization

Data from the real world is collected in a variety of forms. Nominal data, such as a choice from

the limited set of possible eye colors blue, green, brown, grey, usually describe qualitative values

that can not easily be numerically described. Ordinal or discrete data, such as a score from a set

1, 2,..., 5 as used to rate service in a hotel or restaurant, have relationships such as ”better” or

”worse” between their vales, yet because these relationships can not be quantified such data are

24

typically treated as or in similar fashion to nominal values. Numeric or quantitative values, such

as the number of inches of rainfall this year or month, can take on an unlimited number of values.

Figure 3.1 illustrates two such continuous attributes from a previously mentioned data set.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14
temperature 85 80 83 70 68 65 64 72 69 75 75 72 81 71

humidity 85 90 86 96 80 70 65 95 70 80 70 90 75 91
play no no yes yes yes no yes no yes yes yes yes yes no

Figure 3.1: The Continuous Attribute Values, Unsorted, of the WEATHER Data Set

Yet, while a variety of data types occur, and while many learners are often quite happy to

deal with numeric, nominal, and discrete data, there are problems that may arise as a result of this

mixed data approach. One instance where this can be easily illustrated is in decision tree induction.

Selection of a numeric attribute as the root of the tree may seem to be a very good decision from

the stand point that while many branches will be created from that root, many of those branches

may contain only one or two instances and most are very likely to be pure. As a result, the tree

would be quickly induced, but would result mostly in a ”lookup table” for class decision based on

previous values [12]. If the training data is not representative, the training data contains noise, or

a data value in the training examples that normally is representative of one class instead takes on

a different class value and is induced into the tree, the created decision tree could then perform

very poorly. Thus, using a continuous value when inducing trees may not be wise and should be

avoided. This idea can be carried over into various learners, including the Naı̈ve Bayes Classifier,

where the assumption of a normal distribution may be very incorrect for some data sets and leaving

this data in continuous form may result in an erroneous classification concept.

As a result of the threat to the accuracy and thus usability of the classifiers when continuous

data is used, a method of preprocessing these values to make them usable is frequently part of the

learning task. Data discretization involves converting the possibly infinite, usually sparse values

of a continuous, numeric attribute into a finite set of ordinal values. This is usually accomplished

by associating several continuous to a single discrete value. Generally, discretization transitions a

quantitative attribute Xi to a qualitative, representative attribute X∗i . It does so by associating each

25

value of X∗i to a range or interval of values in Xi [28]. The values of X∗i are then used to replace

the values of Xi found in the original data file. The resulting discrete data for each attribute is then

used in place of the continuous values when the data is provided to the classifier.

Discretization can generally be described as a process of assigning data attribute instances to

bins or buckets that they fit in according to their value or some other score. The general concept for

discretization as a binning process is dividing up each instance of an attribute to be discretized into

a number distinct buckets or bins. The number of bins is most often a user-defined, arbitrary value;

however, some methods use more advanced techniques to determine an ideal number of bins to use

for the values while others use the user-defined value as a starting point and expand or contract the

number of bins that are actually used based upon the number of data instances being placed in the

bins. Each bin or bucket is assigned a range of the attribute values to contain, and discretization

occurs when the values that fall within a particular bucket or bin are replaced by identifier for the

bucket into which they fall.

While discretization as a process can be described generally as converting a large continuous

range of data into a set of finite possible values by associating chunks or ranges of the original data

with a single value in the discrete set, it is a very varied field in terms of the type of methodologies

that are used to perform this association. As a result, discretization is often discussed in terms of at

least three different axes. The axis discussed must often is supervised vs. unsupervised [12,14,22].

Two other axes of frequent discussion are global vs. local, and dynamic vs. static [12, 14]. A

fourth axis is also sometime discussed, considering top-down or bottom-up construction of the

discretization structure [12].

Some discretization methods construct their discretization structure without using the class

attribute of the instance while making the determination of where in the discretization structure

the attribute instance belongs [12, 14, 22]. This form of discretization allows for some very sim-

ple methods of discretization, including several binning methods, and is called unsupervised dis-

cretization. However, a potential weaknesses exists in that two data ranges of the discretization

structure in the unsupervised discretization method may have some overlap one way or another in

regard to attributes with the same class attribute value being on both sides of the range division

26

or cut point. If the discretization method had some knowledge of the class attribute or use of the

class attribute, the cut points could be adjusted so that the ranges are more accurate and values of

the same class reside within the same range rather than being split in two. Methods making use of

the class attribute as part of the decision about how a value should be placed in the discretization

structure are referred to as supervised discretization methods [12, 14, 22].

Some classifiers include a method of discretization as part of their internal structure, including

the C.45 decision tree learner [14]. These methods employ discretization on a subset of the data

that falls into a particular part of the learning method, for example branch of a decision tree.

The data in this case is not discretized as a whole, but rather particular local instances of interest

are discretized if their attribute is used as a cut point. This typically learner-internal method of

discretization is called local discretization [12, 14]. Opposite to this is the idea of batch or global

discretization. These methods of discretization transform all the instances of the data set as part of

a single operation. Such methods are often run as external components in the learning task, such

as a separate script that then provides data to the learner or even calls the learner on the discretized

data.

Static discretization involves discretization based upon some user provided parameter k to de-

termine the number of subranges created or cut points found in the data. The method then performs

a pass over the data and finds appropriate points at which to split that data into k ranges. It treats

each attribute independently, splitting each into its own subranges accordingly [14]. While the

ranges themselves are obviously not determined ahead of time, a fixed, predetermined number

of intervals will be derived from the data. Dynamic discretization involves performing the dis-

cretization operation using a metric to compare various possible numbers of cut point locations,

allowing k to take on numerous values and using the value which scores best on the metric in order

to perform the final discretization.

Finally, discretization can be discussed in terms of the approach used to create the discretization

structure. Some methods start by sorting the data of the attribute being discretized and treating each

instance as a cut point. It then progresses through this data and ”merges” instances and groups of

instances by removing the cut points between them according to some metric. When some stop

27

point has been reached or no more merges can occur, the substitution for values occurs. Such

an approach is said to be bottom-up discretization [12], as it starts directly with the data to be

discretized with no framework already in place around it and treating each item as an individual to

be split apart. Alternatively, discretization can begin with a single range for all the values of the

continuous data attribute and use some approach by which to decide additional points at which to

split the range. This approach is called top-down discretization [12] and involves starting with the

large frame of the entire range and breaking it into smaller pieces until a stopping condition is met.

Many different methods of discretization exist and others are still being created. The rest of

this Chapter will discuss some of the commonly used discretization methods, provide information

about some of the state-of-the-art methods, and share the new discretization method we have cre-

ated. The ”temperature” attribute of the WEATHER data set has been provided in sorted form in

Figure 3.1 in order to provide for illustration of future methods

Instance 7 6 5 9 4 14 12 8 10 11 2 13 3 1
temperature 64 65 68 69 70 71 72 72 75 75 80 81 83 85

play yes no yes yes yes no yes no yes yes no yes yes no

Figure 3.2: The ”temperature” Attribute Values, Sorted, of the WEATHER Data Set

3.2 Equal Width Discretization (EWD)

Equal Width Discretization, also called Equal Interval Width Discretization [14], Equal Interval

Discretization , Fixed k-Interval Discretization [25], or EWD, is a binning method considered to be

the simplest form of discretization [14]. EWD involves determining the minimum and maximum

values of the data attribute to be discretized, and then dividing the continuous range contained

by [minval,maxval] into k distinct continuous subranges of size z = maxval−minval
k where the first

subrange would contain the values in the range minval ≤ x < z, the second subrange would contain

values in the range z≤ x < 2z, etc. The final subrange would contain values in the range (k− l)z≤

x≤ maxval. According to [25], k is most often set to be either 5 or 10.

As an example of how this method works, consider setting k=5 and processing the data from

Figure 3.1. This method would identify a minimum value of 64 and a maximum value of 85.

28

Calculating z = min−max
k = 64−85

5 = 4.2. Using this result, we derive the ranges and their

contents as seen in Figure 3.3

Range [64, 68.2) [68.2, 72.4) [72.4, 76.6) [76.6, 80.8) [80.8,85]
Values 64 69 75 80 81

65 70 75 83
68 71 85

72
72

Figure 3.3: A Sample of EWD as Run on the ”temperature” Attribute of the WEATHER Data Set
with k=5

This method may endure problems because of uneven distribution of instances; some subranges

may contain a large number or a majority of the instances, while others may contain very few or

no instances at all [22]. This is illustrated in Figure 3.3, where the range 68.2≤ x < 72.4 contains

5 instances - over one third of the instances in the original data - while the range 76.6≤ x < 80.8

contains only one instance from the data set. Additionally, outliers have been found to be capable

of drastically skewing the initial range and the subranges that would result from dividing it [14].

For our experiment, we will use a Equal Width Discretization method we have called tenbins,

which sets k = 10. This method is implemented using a script created in the GAWK programming

language. The source code for our implementation can be found in Appendix C.

3.3 Equal Frequency Discretization(EFD)

Equal Frequency Discretization (EFD) is similar to Equal Width Discretization, except that the

user-defined value k is used to delineate the number of instances that should fall in each of the

variably-sized ranges. Each of n data instance is read and the ranges computed by counting across

the values so that a break occurs after each n
k instance. The final interval may be slightly smaller

or larger depending on the size of the dataset and how the rounding of n
k is handled. Binning using

this method is referred to as histogram binning, because plotting the number of values in each

subspace against the number of values in each other subspace will result in a flat histogram [22].

As an example of this method, again consider the temperature data and allow k=5. Starting

29

from the original 14 instances, computing the number of instances per interval would result in an

interval size of 14
5 or 2.8 instances. To allow for a countable number of instances, we will round

up to 3. In such a case, the instances might be split as illustrated in Figure 3.4.

Instances 3 3 3 3 2
Values 64 69 72 75 83

65 70 72 80 85
68 71 75 81

Figure 3.4: A Sample of EFD as Run on the ”temperature” Attribute of the WEATHER Data Set
with k=5

This method may result in instances with the same numeric value ending up in different bins or

values that have the same class and small value differences being placed in different bins [14, 22].

In the example provided by Figure 3.4, the two instance values of 75 occur in two separate bins

due to the size limitations on each bin.

3.4 Bin Logging

Bin Logging is a special case of Equal Width Discretization where the value k, is set to the maxi-

mum of 1 and 2 · log(l) (max(1, 2 · log(1))), where l is the number of distinct - unique - values of the

attribute to be discretized. The Bin Logging discretization method was derived from a histogram

binning method in the statistics program called S-Plus [4, 14]. This was one of the methods that

was used by Dougherty et al. that showed the accuracy of Naı̈ve Bayes Classifiers benefited from

the use of discretization [14].

3.5 Entropy-based Discretization

As discussed previously, entropy is a measure of the randomness of class distribution in a split of

data. The more instances of each class that exist in a given split, the higher the entropy. On the

other hand, if a single class is the majority or all of a split, the entropy measure is much lower, and

can reach 0 if only one class is contained in a split. The lower the entropy of a split, the higher the

likelihood of a correct decision about the classification of a data point found in that split.

30

Examining this effect in decision trees, Fayyad and Irani proposed a method of discretization

based on the entropy measure [10]. Called a entropy minimization heuristic, this approach to

discretization begins by first sorting all the instance values of an attribute in ascending order. It then

identifies potential cut points by examining the class of each instance; if the class value changes

between two instances values, then the midpoint between those values can be considered as a

potential cut point. After completing a list of potential cut points, it then evaluates each potential

cut point using Equation 2.1. The cut point that minimizes the result of Equation 2.1 is the ”best”

split and used to separate the initial set of values into two subsets. The process is then repeated

recursively on each of the halves and continues until the algorithm reaches a stopping criterion.

The stopping criterion for method the method in [10] is the minimum description length prin-

ciple (MDLP) [4, 12, 14, 22]. This principle believes that the best theory is the one that minimizes

the size of the theory and any information necessary to note the exceptions to the theory [22]. It

will stop discretization only if the best split at the given level results in a lower information gain

than the amount of information it would cost to encode the theory being created by the new split.

This can be calculated using Equation 3.1, where N is the number of instances, c is the number of

classes, E is the measure of entropy for the existing split, E1 and E2 measure the entropy in the

proposed splits, with c1 and c2 as the number of classes in the proposed splits.

gain <
log(N−1)

N
+

log(3c−2)− cE + c1E1 + c2E2

N
(3.1)

If the gain calculated with Equation 2.3 is less than the resulting calculation, no new intervals

are created from the split currently being considered.

While entropy-based discretization was originally developed for decision tree learners (see

Section 2.2.1), it has been shown to be successful in working with Naı̈ve Bayes classifiers [14].

Several authors [17, 25] note that because of its initial purpose for use with decision trees, the

entropy-minimization approach typically creates nominal value attributes with few values (few

splits with many instances), which while useful in the decision tree environment may not be nec-

essary for the Naı̈ve bayes classifier, which does not suffer from the fragmentation and over-fitting

issues that cause problems for the decision trees. However, the creation of a few attributes has not

31

been shown to decrease this method’s performance; rather, in [14] found the entropy-minimization

method to be the most method which most improved the accuracy of Naı̈ve Bayes classifiers.

In attempting to run the entropy based method over the temperature data from the WEATHER

dataset, the entropy-minimization heuristic found that all the data should be part of one range and

did not split it beyond that range.

For our experiment, we will use the WEKA implementation of the entropy-minimization heuris-

tic, a supervised, attribute filter called Discretize. It will be called from a BASH command-line

program that can be found in Appendix E and was provided by Dr. Tim Menzies of West Virginia

University’s Lane Department of Computer Science (tim@menzies.us).

3.6 Proportional k-Interval Discretization

Proportional k-Interval Discretization, or PKID, is a method of discretization proposed specifically

for use with a Naı̈ve Bayes Classifier [25]. It seeks to find a balance between discretization bias

and discretization variance.

Classification or probability estimation bias is error that occurs as a result of a flaw in the

learned classification strategy that causes the classifier to incorrectly classify instances [23]. Dis-

cretization bias is defined as the effect that applying a particular discretization method to data for

the classifier has on that classifier’s classification bias. As interval sizes in discretization methods

grow large, they contain less information about each individual value they contain, leading to a

higher discretization bias [23,25]. A higher discretization bias leads to higher bias in classification

bias.

Classification variance is error that arises from random variation in training data and random

behavior of the algorithm used in learning. Classification variance can thus be said to be a measure

of how sensitive an algorithm is to changes in the training data [23]. Discretization variance is the

effect that a discretization method has on the classification variance of an algorithm to which its

discretized data is provided. Discretization variance is lowered by increasing interval size in order

to ensure that the interval contains a large number of instances.

Obviously there is a degree of conflict between minimizing discretization variance and dis-

32

cretization bias. Variance reduction would require fewer intervals, each large and containing many

instances. On the other hand, bias reduction requires more intervals in order to maintain more

distinguishing information about the values contained in each interval. This thus creates the issue

of a ”trade-off” between bias and variance, where increasing or decreasing one has the opposite

affect on the other.

In proposing Proportional k-Interval Discretization(PKID) for Naı̈ve Bayes Classifiers, [25]

proposes to provide equality to both discretization bias and variance. The proposed method is to

function similar to Equal Interval Discretization (see Section 3.2); however, rather than having a

fixed number of intervals be created (such as k=5 or k=10 in EWD), the method instead determines

the number of intervals given the number of available training instances. Assuming there are N

training instances for which there are known attribute values, PKID creates s =
√

N intervals, each

which should contain approximately t =
√

N instances. These rules are restated in Equation 3.2,

where N is the number of training instances, s is the number of intervals to place them in, and t is

the number of training instances per interval. By providing a nearly identical number of intervals

and instances per interval, PKID provides for equal consideration of size and number of intervals

and thus to both discretization bias and variance.

s× t = N

s = t (3.2)

PKID has certain special rules by which it performs the discretization. First, it only deals with

known values for numeric attributes - unknown or missing values are simply ignored. Second, all

identical values are kept in a single interval rather than being split among intervals to maintain

the sqrtN size; thus, the actual size of each interval may vary slightly from the sqrtN proposed

size depending on the number of identical values of an attribute. Finally, the standard size of an

interval should be *
√

N+ (an integer value). Larger size is only allowed when identical values of

an attribute occur in the interval, or if that interval is the last interval, which according to [25] have

size between *
√

N+ and *
√

N+. As part of the final rule, a statement is made that no interval may

33

be smaller than *
√

N+. However, in testing the implementation provided in the WEKA learning

toolkit, an interval may be smaller if duplicate values occur that prevent enough instances from

being available to fall into that interval.

In the initial experiment with PKID and Naı̈ve Bayes classifiers, it was found to have a lower

error rate than EWD and the method proposed by Fayyad and Irani dealing with entropy (see Sec-

tion 3.5). It also reacts to increases in the number of examples available during training, something

not done by either of the other methods studied.

A sample run of the PKID algorithm on the temperature attribute of the WEATHER data set can

be found in Figure 3.5. Note that for the 14 instances in that case,
√

n =
√

14 = 3.742. However,

the output from PKID produces only 3 intervals, each with four or five instances; this number of

intervals is smaller than expected but is probably caused by the duplicate values of 72 and 75 found

in the data.

Range (-infinity, 70.5) [70.5, 77.5) [77.5, infinity)
Instances 5 5 4

Values 64 71 80
65 72 81
68 72 83
69 75 85
70 75

Figure 3.5: A Sample of PKID as Run on the ”temperature” Attribute of the WEATHER Data Set

While PKID has been shown to perform well with large data sets, it has also been shown to

perform sub-optimally when faced with learning from a small training data set [23]. It has proposed

that this is due to the equal weighting of discretization bias and variance reduction; where as in

small data sets discretization variance reduction may be more important.

For our experiment, we will use the WEKA implementation of PKID, a filter called PKIDis-

cretize. It will be called from a BASH command-line program that can be found in Appendix D.

34

3.7 Weighted Proportional k-Interval Discretization (WPKID)

A solution for the PKID problem of sub-optimal performance on small training data set was pro-

posed in the WPKID algorithm. For smaller datasets, discretization variance reduction has a big-

ger impact on a Naı̈ve Bayes classifiersperformance than discretization bias [23]. WPKID weights

discretization variance reduction more than bias for small training sets. This is accomplished by

setting a minimum interval size of at least m instances so that the probability estimation always has

a certain degree of reliability.

Going back to the equations for PKID, WPKID replaces Equation 3.2 with Equation 3.3.

s× t = N

s−m = t (3.3)

Where m = 30, because, according to [23] it is commonly assumed the minimum sample space

from which reliable statistical inferences should be drawn. This new approach should remove the

disadvantage on smaller data sets by establishing a bias-variance trade-off that is appropriately

adjusted to the size of the available training data.

An implementation of this algorithm was unavailable for public testing when this thesis was

completed.

3.8 Non-Disjoint Discretization (NDD)

In suggesting Non-Disjoint Discretization, [24, 26] note that when substituting a range (a, b] for

a continuous value v, more reliable results are obtained if v is closer to the middle of the interval

than if the value false close to either boundary. As a result, NDD creates a series of overlapping

intervals for each attribute, locating a value of vi toward the middle of the corresponding interval

(ai, bi].

NDD uses a sizing strategy similar to the strategy employed by PKID; specifically, it assigns

s - the number of intervals - and t - the number of training instances per interval - according to

35

Equation 3.2. It then identifies t
′

atomic intervals, (a
′
1, b

′
1], (a

′
2, b

′
2], ..., (a

′
t , b

′
t], each of size s

′
.

Equation 3.4 describes the equations used to determine the size and number of atomic intervals.

s
′
=

s
α

s
′ ∗ t

′
= N (3.4)

Where α is any odd number and does not vary between intervals. [24] suggests that α = 3.

An interval is formed from each set of three consecutive atomic intervals such that the interval

k, where 1≤ k ≤ t
′ −2, denoted by (ak, bk] satisfies ak = a

′
k and bk = b

′
k+2.

With the atomic intervals, when a value v is seen, it is assigned to the interval (a
′
i−1, b

′
i+1]

where i is the index of the atomic interval which contains v. This means v will always fall towards

the middle of the interval, except when i = 1 in which case v is assigned to the interval (a
′
1, b

′
3],

and when i = t
′

in which case v is assigned to (a
′

t ′−2
, b

′

t ′
]. Grouping atomic intervals to form

discretization values produces overlapping intervals, resulting in the name non-disjoint.

An implementation of this algorithm was unavailable for public use when this thesis was com-

pleted. As a result, this method is not compared to the other methods described herein.

3.9 Weighted Non-Disjoint Discretization (WNDD)

WNDD [24] is performed the same way as NDD, creating atomic intervals so that values will occur,

in most cases, toward the middle of the interval used to replace them. However, WNDD adds the

additional restriction of the minimum interval size imposed by WPKID, specifically Equation 3.3.

As explained before, the minimum interval size parameter prevents the discretization algorithm

from forming intervals with too few examples for reliable probability estimation.

An implementation of this algorithm has not yet been released for use, and thus this method

was not tested as part of our comparison.

36

3.10 Other Methods

While other methods of discretization do exist, we have listed and explained the ones commonly

cited methods in some of the more recent examinations of discretization for Naı̈ve Bayes Classi-

fiers. Other methods such as Iterative Discretization, Fuzzy Discretization, and Lazy Discretization

are noted in [24]; however, each is shown to perform worse (slower, less accurately) than the meth-

ods discussed herein. Additionally, their implementations are not widely available and they could

not be tested as part of this experiment.

3.11 DiscTree Algorithm

In the course of reviewing other methods of discretization, we discovered that many of the methods

involved sorting the values of a continuous data attribute from smallest to largest as one of the

number of steps in deciding to which subrange of the data an individual instance belongs. This

approach often involves using a binary sorting method for deciding the ordering of data. As the

sorting approach adds additional steps on top of actually constructing the discretization structure,

we wondered if there wasn’t an approach that could sort the data as it built the discretization

structure, thus removing an individual step.

An additional interest was whether the structure we would identify for our discretization method

could be simple to explain to others. Discretization methods are often not easy to explain due to

their complicated structures or the methods they use to establish the continuous ranges related to

the individual discrete values created. We wanted to identify a structure that could be easily un-

derstood and explained to people who might use it. We decided to base our discretization method

on the general data structure of a tree; more specifically, we proposed to implement a discretiza-

tion method using a randomized binary search tree as the discretization method’s underlying data

structure.

To explain our choice more clearly, we’ll explain the general tree data structure and build from

it up to the randomized binary search tree and our method.

37

3.11.1 Trees

A commonly discussed data structure in computer science is that of a tree. We seek here to explain

the basic premises of that data structure so to explain how we used a type of tree for our work.

Full explanations of the tree data structure can be found in a variety of sources, including books,

articles, and on the Internet. If you would like to review a comprehensive discussion of trees, we

recommend a review of [20, 1085-1093].

A tree, by definition, is a connected, acyclic, undirected graph [20]. Every two points in the

graph are connected by one unique path. A point, or node, in the tree can be connected to any

number of other nodes in the tree so long as their connection does not create a circular path from

one node to the other and back to the first. Figure 3.6 illustrates a simple tree with nodes and the

paths between them.

Figure 3.6: A Simple Tree

A tree can be structured in such a way that it becomes ”rooted” [20]. This occurs when one node

is distinguished from the others as a starting point from which all other points can be discussed

38

relatively. This starting point is referred to as the root or root node of the tree, and is referred to by

the character r. A parameter of the tree T that is root(T) which should store the current root node

of the tree. Figure 3.7 is an example of a rooted tree, the node labeled 7 as the root.

Figure 3.7: A Rooted Tree

As nodes are discussed relatively to r, relationships can be said to exist between the nodes.

Consider a node x in a tree with root r. A node y that exists on the path from r to x, denoted (r,x),

is called an ancestor of x. For example, in Figure 3.7 the node labeled 9 is an ancestor of the node

labeled 8. Alternatively, x can be referred to as a descendant of y (and y a descendant of x). In

Figure 3.7, the node labeled 9 is also a descendent of the node labeled 7. If node y is the ancestor

immediately preceding node x in the tree - that is, there x and y share an edge then node y is said

to be the parent of x. The node labeled 7 is also the parent of the node labeled 9 in Figure 3.7. In

such a situation, node x is also referred to as a child of node y. Thus the node labeled 9 is a child

of the node labeled 7. If two nodes share a parent, then they may be called sibling nodes, such as

the nodes labeled 12, 17, and 9 in Figure 3.7. Any node x at the end of a path from the root, (r,x),

39

and having no children is said to be an external or leaf node, such as the node labeled 2. Any node

with children is called an internal node, such as the node labeled 17 in Figure 3.7.

Trees can be said to contain subtrees. A subtree is a branch of a tree that itself is a tree. For

example, consider a tree rooted at r that has children x and y, each with a variety of children and

other descendants. The subtree rooted at x would be the tree containing the descendants of x with

x at the root, while the subtree rooted at y would contain all the descendants of y with y as its root.

Again consider Figure 3.7. In that tree, we could discuss the subtree rooted at the node labeled 9,

for example.

Parameters should exist for implementations of the tree data structure that store the parent for

a given node x (we will call this parameter parent(x)). Calling parent(9) would return the node

labeled 7. Child nodes of a node x can be stored in a variety of ways to maintain ordering including

the use of arrays or matrices. We are not specifically interested in this abstract level of trees in this

thesis we will not discuss the specific implementations of these methods.

3.11.2 Binary Trees

A special case of traditional trees are called Binary Trees. A recursive definition describes how

they function. Each Binary Tree contains either no nodes - and is thus, in fact, the empty or null

tree - or contains three distinct sets of nodes: a root node, a left subtree that is also a binary tree

that meets this definition, and a right subtree that is also a binary tree that meets this definition.

Children of a binary tree that are themselves empty or null trees are said to be missing or absent.

A sample binary tree can be found in Figure 3.8.

In regard to the child node(s) of a root node in the binary tree that are not absent, they must

exist either as the left child or the right child of the root node. That is, if the root node has only

one child, that child node could be either a left or right child, but is either one or the other. When

the root node has two children, one node is distinguished as the left child node and the other as the

right child node. Parameters should exist for each node x such that leftchild(x) returns the node that

is the left child of x and rightchild(x) returns the right child of x. For example, from Figure 3.8,

leftchild(7) would return the node labeled 17, while rightchild(7) would return the node labeled 9.

If node x does not have either child, the parameter for that child would have the value NULL; this

40

Figure 3.8: Illustrations of a Binary Tree.

would be the case with leftchild(34) and rightchild(34), each of which would return NULL.

A relevant concept in binary trees is the concept of completeness or fullness. A complete or full

binary tree is one in which each node is either a leaf node or has exactly two child nodes. If one

node in the tree (including the root node) has only one child, then the binary tree is not considered

to be complete. For example, Figure 3.8 does not display a complete tree because the node labeled

72 has a left child but no right child.

While the position of a value in the binary tree does not denote anything in regard to its relative

value to other nodes (and thus the right child of a node could be positioned there with no known

relation to the left child of that node), the concept of left and right subtrees are very important for

a related branch of computer science data structures, the binary search tree.

41

3.11.3 Binary Search Trees

Binary Search Trees (BSTs) uses the organizational structure of a binary tree to create a data

structure that can allow for quick and easy sorting and searching of the data inserted into it. The

binary search tree maintains the binary search tree property. For each node created in the tree, a

key value is assigned to the node, such that for a value v to be placed in the tree, a node d is created

for which key(d) = v. Suppose there existed a binary search tree rooted at x, and y is identified as

the left child of x. Then the key(y) ≤ key(x). Suppose instead that y is a right child of x. Then the

key(y) ≥ key(x). An example of a Binary Search Tree can be found in Figure 3.9 - this is, in fact,

the binary tree in Figure 3.8 reorganized to meet the binary search tree property.

Figure 3.9: Illustration of a Binary Search Trees

A BST can be walked in numerous orders in order to retrieve the key values it stores. An in-

order tree walk or in-order traversal visits each node in the tree, printing the root of each subtree

of the tree after it has printed the key values of left subtree from that root and before it prints the

key values of the right subtree. An pre-order tree walk prints the key of the root of each subtree

42

prior to printing the values of the left and then right subtrees. Finally, a post-order tree walk prints

the key of the root of a subtree after the key values for both the left and then the right subtree of

that root are printed. Pseudo code for an in-order walk is provided in Figure 3.10.
! "

F u n c t i o n inOrderTreeWalk (x) :
i f x != NULL t h e n

inOrderTreeWalk (l e f t c h i l d (x))
p r i n t key (x)
inOrde rTreeWalk (r i g h t c h i l d (x))#$ %

Figure 3.10: In-Order Walk Pseudo Code

Because of their organization based on key value, the binary search tree provides a very use-

ful mechanism for searching trees. In addition to a general search routine, whose pseudo code

can be found in Figure 3.11, the binary search tree can easily find the minimum and maximum

values of the data set (the leftmost and rightmost leaf nodes respectively), and also determine the

preceding and succeeding key values of a node. The function names for determining the mini-

mum, maximum, predecessor, or successor of the a node z are treeMinimum(z), treeMaximum(z),

treePredecessor(z), and treeSuccessor(z) respectively.

! "
F u n c t i o n t r e e S e a r c h (x , k) :

i f x != NULL OR k = key (x) t h e n
re turn x

i f k < key (x)
s e a r c h T r e e (l e f t c h i l d (x) , k)

e l s e
s e a r c h T r e e (r i g h t c h i l d (x) , k)#$ %

Figure 3.11: BST Search Pseudo Code

Two of the most important functions of a Binary Search Tree are the INSERT and DELETE

functions. As one might imagine, INSERT places a new value into the binary search tree after

assigning it a key. DELETE removes node with the specified key from the tree. Both functions

modify the structure of the tree but in doing so maintain the binary search tree property. INSERT

is fairly straightforward, having only one special case when the tree first node is being added to

the tree. Essentially, it approaches the insertion of the new node by allowing the node to fall all

43

the way down into the tree to become a leaf node and either a left or right child node to a node that

currently exists in the tree (unless the tree is empty, in which case the node is added as the root of

the tree). Pseudo code for a BST INSERT can be found in Figure 3.12, where T is the tree (BST)

into which node z is being inserted.
! "

F u n c t i o n t r e e I n s e r t (T , z) :
y = NULL
x = r o o t [T]
whi le x != NULL:

y=x
i f key (z) < key (x) t h e n

x= l e f t c h i l d (x)
e l s e

x= r i g h t c h i l d (x)
p a r e n t (z)= y
i f y == NULL t h e n ∗∗∗ SPECIAL CASE, TREE EMPTY ∗∗∗

r o o t (T) = z
e l s e

i f key (z) < key (y) t h e n
l e f t c h i l d (x)= z

e l s e
r i g h t c h i l d (x)= z#$ %

Figure 3.12: BST INSERT Pseudo Code

While INSERT is straightforward, DELETE presents a few difficulties. Specifically, the algo-

rithm must handle the deletion of a node that may have children and must ensure that those children

are reconnected back to the tree when their parent node is removed. Essentially, we are presented

with three possible situations to handle with DELETE when we wish to remove node z:

• z is a leaf node and has no children. In this case, DELETE is simple - we simply remove the

node z and its parent’s reference to it as a child.

• z has one child. In this case, the parent(z) has the child that corresponds to node z set equal

to the child of z and z is effectively spliced out of the tree.

• z has two children. In this case, the successor of z(called node y), is spliced out of the tree

and its information is placed in the node that holds z’s information.

Pseudo code for the BST’s DELETE algorithm can be found in Figure 3.13.

44

! "
F u n c t i o n t r e e D e l e t e (T , z) :

i f l e f t c h i l d (z) == NULL OR r i g h t t c h i l d (z) == NULL t h e n
y=z

e l s e
y= t r e e S u c c e s s o r (z)

i f l e f t c h i l d (y} != NULL t h e n
x= l e f t c h i l d (y)

e l s e
x= r i g h t c h i l d (y)

i f x != NULL t h e n
p a r e n t (x)= p a r e n t (y)

i f p a r e n t (y) == NULL t h e n
r o o t (T)= x

e l s e
i f y == l e f t c h i l d (p a r e n t (y)) t h e n

l e f t c h i l d (p a r e n t (y)) = x
e l s e

r i g h t c h i l d (p a r e n t (y)) = x
i f y != z t h e n

key (z)= key (y)
copy node y ’ s d a t a i n t o node z

r e t u r n y#$ %
Figure 3.13: BST DELETE Pseudo Code

While binary search trees are useful for their organization and ease of search, they can suffer

from an instability issue caused by insertion in which instead of growing a full binary search tree,

the insert begins with either the maximum value or minimum value at the root and only builds a

right or left subtree. Such a tree would be very unbalanced, where a balanced tree, with equal or

near equal height in both subtrees, is desired to minimize search times. One proposed solution to

help balance the tree is the randomzied binary search tree.

3.11.4 Randomized Binary Search Trees

Randomized Binary Search Trees (RBSTs) take their name from the randomization of the INSERT

function used to add new data to the tree. In adding randomization to this approach, we allow that,

given an existing tree that contains n instances, that the current instance x has a 1
n chance of

becoming the root node of the tree; what is more, even if the node is not selected to be the root

node of the overall tree, this random insert is attempted at the root of each subtree that x belongs

in, with a chance to insert at that root equal to 1
size of subtree . If the new node does not ever get

selected as a root of the tree or its subtrees, then it is simply added as a node in the tree as it would

be using the INSERT function described in Figure 3.12.

45

Randomized Binary Search Tree provide some protection against unbalanced problems that

can occur as a result of doing a BST insert on sorted data or on data that starts with the minimum

or maximum value of the tree. Because of the random nature of the tree, it is expected that the tree

should be somewhat balanced or at least not so heavily skewed as the ordinary BST when provided

with the data that causes the deficiency. It is because of this protection that we select to use the

randomized binary search tree as our base data structure when creating the DiscTree algorithm.

Our implementation of the RBST insert is based upon the idea of always inserting a new node as

a leaf of the tree and ”bubbling up” the inserted value to its decided place in the tree using rotations

of keys in the tree [19]. This approach reorganizes the tree without the complications of trying to

split and rejoin the tree as has been proposed in [16]. Pseudo code for our implementation can

be found in the portion of Figure 3.14. Function rbstinsert draws a random number to determine

whether to insert the new value at the root of the current subtree; if it decides in favor of inserting

it at the root, it calls function insertR to insert at the root of the current subtree by rotating the new

value up from its initial insertion point as a leaf node to its place as the root of the decided-upon

subtree. If the new node is not found to be the root of a subtree, it is inserted simply as a leaf node

as it would in the binary search tree.

3.11.5 DiscTree

The DiscTree Algorithm makes use of the organization of the randomized binary search tree by

using such trees to create a storage and discretization structure for each attribute. For each of the

attributes of the data set, a separate RBST is created and each value from the data set is inserted

into its attribute’s RBST. At specific intervals, the tree is garbage-collected to ensure that it does

not grow boundlessly. Additionally, as the DiscTree algorithm becomes aware of additional data

- beyond the current expected training size - it increases the allowable size of that attribute’s tree

to allow for more possible nodes in the tree after a garbage-collect. The specific details of the

algorithm will be explained here.

The DiscTree algorithm performs discretization in two passes. The first pass builds randomized

binary search trees for each (numeric) attribute in the provided data set. In order to build the tree,

each instance is inserted into the tree in the form of a node that contains the information depicted

46

! "
F u n c t i o n i n s e r t R (h , x) :

i f h == NULL t h e n
re turn new Node (x)

i f (x . key () == h . i t em . key ())
updateNode (h)

i f (x . key () < h . i t em . key ())
l e f t c h i l d (h) = RBSTInser t (l e f t c h i l d (h) , x)
h = r o t a t e R (h)

e l s e
r i g h t c h i l d (h) = RBSTInser t (r i g h t c h i l d (h) , x)
h = r o t a t e L (h)

re turn h

F u n c t i o n r b s t i n s e r t (h , x) :
i f h == NULLthen

re turn newNode (x)
i f (x . key () == h . i t em . key ())

updateNode (h)
i f (r and () ∗ h . a l l () < 1 . 0)

re turn i n s e r t R (h , x)
e l s e

i f (x . key () < h . i t e m . key ())
r b s t i n s e r t (l e f t c h i l d (h) , x)

e l s e
r b s t i n s e r t (r i g h t c h i l d (h) , x)

h = i n s e r t T (h , x)

F u n c t i o n r o t a t e R (h) :
x = l e f t c h i l d (h)
l e f t c h i l d (h) = r i g h t c h i l d (x)
r i g h t c h i l d (x) = h
re turn x

F u n c t i o n r o t a t e L (h) :
x = r i g h t c h i l d (h)
r i g h t c h i l d (h) = l e f t c h i l d (x)
l e f t c h i l d (x) = h
re turn x

F u n c t i o n newNode (x) :
y . i t e m = x
l e f t c h i l d (y) = NULL
r i g h t c h i l d (y) = NULL
y . c o u n t = 1
/ / i n i t i a l i z e o t h e r v a l u e s as n e c e s s a r y
re turn y

F u n c t i o n updateNode (h) :
h . c o u n t = h . c o u n t + 1
re turn h#$ %

Figure 3.14: RBST INSERT Functions Pseudo Code

in figure DTNode. Repeated values that already exist in the tree increment the counters of the

existing node; the repeated values can also result in moving the node up in the tree if it is decided

during the rbstinsert of the value that it should be higher in the tree than it currently is. Missing

47

values (depicted in our input as question marks (?))are ignored; it is expected that the classifier

will handle any such values.

During insertion, a garbage collection mechanism may be called. Garbage collection occurs, if

the tree has reached or exceeded its maximum allowable size, after every 35 non-missing instances

are read. This is value we have chosen to use and have not examined a particular justification for.

It works for the data we are dealing with but might be an area of future concentration.. Garbage

collection occurs as follows: Tree nodes are ”visited” in Breadth-First Search [20] order. Each

visited node is counted, and when the count meets the maximum size limit, any additional nodes

are then pruned from the tree. This Breadth-First approach is taken to help preserve the target of a

balanced/full search tree.

The tree begins with a maximum allowable size of 7 nodes. This size is allowed to grow as the

tree is provided with more and more training instances. Specifically, after each 75 nodes of training

data, we allow the tree size to grow by a power of 2 such that, if the initial number of allowable

nodes is initially 7, then the allowable number of nodes 7 + 2(2+1) = 7 + 23 = 7 + 8 = 15. More

generally, the tree size increases as seen in Equation 3.5, allowing that maxsize is equal to the

current maximum tree size and 2i is the current largest power of 2 that can be subtracted from

maxsize without a negative result.

maxsize = maxsize+2(i+1) (3.5)

Which, when applied to the value 15, would result in:

maxsize = 15+2(3+1) = 15+24 = 15+16 = 31

Again, 75 instances was a value we chose without any experimental testing to determine an opti-

mum value. This may be another area that could be improved upon with further study. We have

attempted some brief experiments on tree-size start points and found performance to be very sim-

ilar for trees of size 7 and 15 and that those models tended to perform at about the same level.

48

Future work could be conducted in that area as well to determine a best starting size and growth

rate.

After each attribute value of each instance is read and inserted into that attribute’s RBST, the

discretization method begins a second pass. It begins it by garbage collecting any trees that are

larger than their maximum allowable size. It then determines which nodes and subtrees contain

enough instances within them to be used a discretization points for the data set. It makes this

determination by examining the nodes to determine which nodes contain at least
√

N instances,

where N is the number of non-unknown data values seen for the attribute. This is akin to Webb’s

PKID discretization method [25], which requires each bin of their discretization method to contain

at least
√

N. However, beyond that justification we have identified no other reason to support the
√

N instances per bin imposition; this may, like the number of instances between garbage collect

and tree size, be an area where this algorithm could be improved in the future. When the nodes and

subtrees have been determined, they are substituted into the data in place of the original possible

values for the data. This is done by examining each instance again, and replacing each attribute’s

value in that instance with the node or subtree which most closely matches the value of the attribute

value of the instance that meets the
√

N requirement. When this is done, the data is considered

discretized. As with previous examples, we provide the discretized values for the temperature

attribute of the WEATHER data set. This information is available in Figure 3.16

The DiscTree Algorithm as a whole can be described by the pseudo code in Figure 3.15

We implemented the DiscTree algorithm using a GAWK script in order to implement the data

processing and randomized binary search tree data structure. The source code is located in Ap-

pendix A.

49

! "
Pa ss 1 :
For each i n s t a n c e :

For each a t t r i b u t e :
I n s e r t each i n s t a n c e ’ s v a l u e i n t o t h a t a t t r i b u t e ’ s RBST
I f s p e c i f i e d number o f r e c o r d s seen , a l l o w t r e e s i z e t o grow
I f s p e c i f i e d number o f r e c o r d s seen , Garbage C o l l e c t .

Pa s s 2 :
Garbage C o l l e c t each RBST t r e e t o e n s u r e s i z e r e q u i r e m e n t b e f o r e d i s c r e t i z a t i o n
For each a t t r i b u t e :

Rep lace t h e a t t r i b u t e ’ s v a l u e t y p e wi t h t h e l i s t o f t r e e nodes t h a t meet s i z e r e q u i r e m e n t
For each i n s t a n c e :

For each a t t r i b u t e :
F ind t h e t r e e v a l u e t h a t :

(a) most c l o s e l y matches t h e c u r r e n t v a l u e and
(b) meets s i z e r e q u i r e m e n t

Rep lace t h e c u r r e n t v a l u e wi th t h e name of t h e chosen node#$ %
Figure 3.15: DiscTree Algorithm Pseudo Code

Node temperature#2 temperature#5 temperature#7 temperature#9 temperature#14
Instances 2 3 3 2 4

Values 64 68 71 75 80
65 69 72 75 81

70 72 83
85

Figure 3.16: A Sample of the DiscTree Algorithm as Run on the ”temperature” Attribute of the
WEATHER Data Set

50

Chapter 4

Experiment

Chapter 4 describes the experimental approach used to compare the discretization techniques. Sec-

tion 4.1 explains the data used to perform this comparison. Section 4.2 explains the cross-validation

method used to generate the results from the learner. Section 4.3 explains the different measures

used to compare the effects of discretization on the Naı̈ve Bayes classifier. Section 4.4 explains

the Mann-Whitney approach used to compare the results of each discretization method against its

competitors.

4.1 Test Data

In order to perform the comparison between the various discretization methods, we sought to use

a variety of data sets of both small - under 1000 instances - and large data sets. We also sought

data sets that used varying numbers of classes. We have decided to use 25 data sets from the UCI

machine learning repository [1] which contain varying numbers of numeric and discrete attributes

but each has a discrete class attribute making it an easy candidate for classifier learning. The data

sets we have elected to use and their describe features can be found in Figure 4.1.

51

Data Set Instances Attributes Numeric Nominal Classes
hayes-roth 132 5 1 4 3

iris 150 4 4 0 3
hepatitis 155 19 6 13 2

wine 178 13 13 0 3
flag 194 28 10 18 4

imports-85 205 25 15 10 5
audiology 226 69 0 69 24

breast-cancer 286 9 0 9 2
heart-h 294 13 6 7 5
heart-c 303 13 6 7 5
ecoli 336 7 7 0 8

auto-mpg 398 7 5 2 3
wdbc 569 30 30 0 2

soybean 683 35 0 35 19
credit-a 690 15 0 15 2

breast-cancer-wisconsin 699 9 0 9 2
diabetes 768 8 8 0 2
vowel 990 13 10 3 11

segment 2310 19 19 0 7
splice 3190 61 0 61 3

kr-vs-kp 3196 36 0 36 2
waveform-5000 5000 40 40 0 3

mushroom 8124 22 0 22 2
letter 20000 16 16 0 26

Figure 4.1: Data Sets Used for Discretization Method Comparison. The attributes column refers

to the number of non-class attributes that exist in the data set; the data set would have one more

nominal attribute if the class were counted.

52

4.2 Cross-Validation

Cross-validation is a statistical method that divides data into a fixed n folds, or partitions, of ap-

proximately the same size [22], for example, three folds each containing one-third of the data. The

first fold is then used for classifier testing, while the remaining n-1 folds are used for classifier

training. The process is repeated so that each of the n folds is used for testing. The resulting

process is known as nfold cross-validation. This process can be combined with stratification, or

random sampling to create the folds so as to guarantee that each class is represented evenly in

both the testing and training sets, which results in approximately the same class distribution across

folds. The result is called stratified nfold cross-validation.

Tenfold stratified cross-validation is a standard way of measuring the error rate or accuracy of

a learning scheme on a particular dataset [11, 12, 22]. In this form of cross-validation, the data

is divided randomly into ten subsets of approximately the same size. The classifier is run ten

times. Each run, the classifier uses a different subset as the testing set while the other subsets are

combined to use as the training set. This results in ten different accuracy/error estimates for the

learner that can be averaged to provide an overall accuracy/error estimate.

In order to ensure that variation in randomization or classifiers do not cause invalid or unreliable

results in a tenfold cross-validation, it is recommended in [22] that the tenfold cross-validation

process be repeated ten times, resulting in running the learning algorithm 100 times on a dataset.

The results are then averaged to obtain the accuracy/error rate for the learning algorithm.

In our experiment, we will use this ten by tenfold cross-validation (10 x 10fold) process to

compare the results of each discretization method. We will first run each discretization method for

this experiment on the data, creating a total of five data sets to test - the original data set, the data

set discretized using PKID, the data set discretized using the entropy-based method, the data set

discretized using the tenbins equal width discretization method, and the data set discretized using

the DiscTree algorthim. Each of the five data sets is then used with a Naı̈ve Bayes Classifier to

complete a ten x ten fold cross validation. The results are then compared as described in 4.4.

It is worth noting that one of the results we seek to compare against is that from [25]. The

authors of that paper, and in all of their other papers comparing discretization methods that we are

53

aware of ([23,24,27,28]), use a ten by threefold cross-validation (10x3). We put forth that we are

provide more runs for comparison using our ten by tenfold cross-validation approach and that, as

a result, we can be confident that our results are comparable to the previous results because they

used fewer runs, each of which would have a larger affect on the average result used to compare

discretization methods.

We implemented cross-validation as a BASH script. The source code for is available for review

in Appendix B.

4.3 Classifier Performance Measurement

As part of the cross-validation script we have created, we have provided a means of calculating

several discretization method/classifier performance measures. These methods are described as

follows:

Allow that A, B, C, D denote, in order, the true negatives, false negatives, false positives,

and true positives found by a binary detector. True negative denotes when the detector does not

identify the class of an instance as the desired class because it is truly not of the desired class; false

negatives, on the other hand, denote when the detector does not identify the class of an instance

as the desired class despite the fact that it is of the desired class. False positives denote when

the detector believes an instance does belong to the desired class but, in fact, it does not. Finally,

true positives are those instances where the detector determines the class of the instance is of the

desired class and it is, in fact, of that class. These definitions are illustrated in Figure 4.2.

instance of desired class?

no yes

identified as no A (true negative) B (false negative)

desired class? yes C (false positive) D (true positive)

Figure 4.2: A Tabular Explanation of A, B, C, & D

The following measures can be calculated from the values of A, B, C, & D. Each of the results

54

falls between 0 and 1; when multiplied by 100, the scores produced can be discussed as percentages

between 0 and 100%.

accuracy = acc =
A + D

A + B + C + D
(4.1)

probability of detection = pd = recall =
D

B + D
(4.2)

probability of false alarm = pf =
C

C + A
(4.3)

not probability of false alarm = !pf = 1 − pf (4.4)

precision = prec =
D

D + C
(4.5)

balance = bal = 1−

√
(0− p f)2 +(1− pd)2

√
2

(4.6)

Equation 4.1 describes the accuracy of a classifier (or in our case, a discretization method/clas-

sifier pair). By this, we mean the percentage of cases in which the classifier accurately identifies

the true positives and true negatives; that is, it correctly identifies when an instance belongs to the

desired class and when it does not.

Equation 4.2 describes the probability of detection of the desired class. It is also referred to as

recall. This equation measures how much of the desired class is found and correctly identified.

Equation 4.3 describes the probability of false alarm, where an instance is identified as belong-

ing to the desired class when it, in fact, does not. Equation 4.4 identifies the proportion of cases

that were not false alarms. This measure is most often used, as opposed to the Equation 4.3 as it

allows for positive comparison of the methods; that is, the desired score !pf would be a high score

like those desired for pd or acc, where as the desire when dealing with Equation 4.3 is to find the

method with the smallest result.

Equation 4.5 describes the precision of the method used. The precision of a method identifies

the proportion of instances which were identified as being of the desired class that are actually of

the desired class. A high precision is desired over a lower one.

Equation 4.6 describes the method’s balance between pd and pf. While the desired balance

would be pd= 1 and pf = 0, this does not occur in practice, with methods instead often taking on

55

risk-adverse balances - with a high pf in order to ensure a high pd - or cost-adverse balances -

where in order to keep from having too many costly alarms, the method accepts a low pd in order

to ensure a low pf. Higher bal scores mean that the method performs closer to the ideal balance

and thus a higher score is desired.

4.4 Mann-Whitney

Many papers comparing results of classification compare those results using standard parametric

statistical tests, such as the t-test, to determine whether the results for one classifier differ signifi-

cantly from the results of other classifiers. In the case that the test does find statistical significance,

a classifier may be said to significantly better or worse than another classifier. The problem with

this approach is that it assumes a specific distribution for the data being examined for significance;

for example, in the case of a t-test, that assumption is that the distribution takes on a curve similar

to N(0,1), the normal curve between 0 and 1 [6]. Unfortunately, data can not be guaranteed to fit

a specific curve, and outliers in the data can cause the mean and standard deviation measured used

for parametric measures to become greatly skewed from the actual bulk of the data. As a result, it

is considered prudent that nonparametric tests be used to compare results.

The problem of comparatively assessing L learners (or L discretization methods on one learner)

run on multiple sub-samples of D data sets has been extensively studied in the data mining commu-

nity. T-tests that assume Gaussian distributions are becoming deprecated. Demsar [7] argues that

non-Gaussian populations are common enough to require a methodological change in data mining.

Demsar [7] offers a definition of standard methods in data mining. In his study of four years of

proceedings from the International Conference on Machine Learning, he found that the standard

method of comparative assessment were t-tests over some form of repeated sub-sampling such

as cross-validation (see Section 4.2). Such t-tests assume that the distributions being studied are

Gaussian. However, as [7] warns, results can be highly non-Gaussian when the presence of one or

more outliers skews the distribution of the results. Thus calculations performed by such tests using

Gaussian assumptions should be avoided.

After reviewing a wide range of comparisons methods, [7] advocates the use of the 1945

56

Wilcoxon [21] signed-rank test that compares the ranks for the positive and negative differences

(ignoring the signs). Writing five years earlier, [2] commented that the Wilcoxon test has its limi-

tations, specifically that the sample sizes must be the same to be compared by the Wilcoxon test.

Demsar’s report offers the same conclusion. To fix this problem, [7] augments Wilcoxon with the

Friedman test.

One test not studied by [7] is Mann and Whitney’s 1947 modification [15] to Wilcoxon rank-

sum test (proposed along with his signed-rank test). We prefer this test since:

• The Mann-Whitney U test does not require that the sample sizes are the same. So, in a single

U test, a learner L1 can be compared to all its rivals.

• The U test does not require any post-processing (such as the Friedman test) to conclude if

the median rank of one population (the results of learner L1) is greater than, equal to, or less

than the median rank of another (the results of learner L2,L3, ..,Lx). In our specific case, we

will be applying the U-test to a discretization method/learner pair, although all other aspects

remain the same.

Non-parametric tests such as the U test proposed by Mann and Whitney [15] mitigate the

outlier problem. The U test uses ranks, not precise numeric values. For example, if method A

generates N1 = 5 values {5,7,2,0,4} and method B generates N2 = 6 values {4,8,2,3,6,7}, then

these sort as follows:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8

Figure 4.3: Sorted Values of Method A and Method B

On ranking, averages are used when values are the same:

Samples A A B B A B A B A B B
Values 0 2 2 3 4 4 5 6 7 7 8
Ranks 1 2.5 2.5 4 5.5 5.5 7 8 9.5 9.5 11

Figure 4.4: Sorted, Ranked Values of Method A and Method B

57

Note that, when ranked in this manner, the largest value (8 in this case) gets the same rank even

if it was ten to a hundred times larger. Because of this, such rank tests are less susceptible to large

outliers.

Figure 4.5 shows the U test for the two treatments A and B discussed in Figure 4.3 and Fig-

ure 4.4. The test concludes that these methods are not statistically different (at the 95% significance

level). As defined in Figure 4.5, this test counts the wins, ties, and losses for A and B (where A and

B are single or groups of methods). In most cases, we will seek the method which wins most.

58

The sum and median of A’s ranks is

sumA = 1+2.5+5.5+7+9.5 = 25.5

medianA = 5.5

and the sum and median of B’s ranks is

sumB = 2.5+4+5.5+8+9.5+11 = 40.5

medianB = 6.75

The U statistic is calculated from Ux = sumx− (Nx(Nx +1))/2:

UA = 25.5−5∗6/2 = 10.5

UB = 40.5−6∗7/2 = 19.5

These can be converted to a Z-curve using:

µ = (N1N2)/2 = 516.4

σ =
√

N1N2(N1+N2+1)
12 = 5.477

ZA = (UA−µ)/σ = −0.82

ZB = (UB−µ)/σ = 0.82

(Note that ZA and ZB have the same absolute value. In all case, these will be the same, with opposite signs.)

If abs(Z) < 1.96 then the samples A and B have the same median rankings (at the 95% significance level). In

this case, we add one to both tiesA & tiesB. most cases of this work (accuracy, pd, balance, precision), higher

values are better since we are comparing errors. Hence:

• If medianA > medianB add 1 to both winsA & lossesB.

• Else if medianA < medianB add 1 to both lossesA & winsB.

• Else, add 1 to both tiesA & tiesB.

Figure 4.5: An example of the Mann-Whitney U test.

59

Chapter 5

Experimental Results

Chapter 5 shares and briefly explains the results of the experimental comparison of the discretiza-

tion methods used with a Naı̈ve Bayes classifier. Section 5.1 describes a comparison of possible

implementations of the DiscTree algorithm Section 5.2 describes the results of the experimental

comparison between the selected version of the DiscTree algorithm and the other selected dis-

cretization methods. Section 5.3 summarizes the results in this section.

5.1 DiscTree Variant Selection

When the concept of DiscTree was originally created, we proposed three possible cases for how

it would function. Specifically, there were two features that we questioned including in the final

method to be compared. They were:

• Allowing the DiscTree algorithm to perform its organization and substitution on all data in

a data set; that is, performing substitutions for both nominal and numeric data. We will refer

to this as nominal attribute discretization.

• Performing the Garbage Collection described in Section 3.11.5.

In order to make the decision about which methodology to use, we created scripts for three

possibilities:

• That both features would be included. Specifically, a script called disctree2 was implemented

that contained both Garbage Collection and nominal attribute discretization.

60

• That only the Garbage Collection feature would be included. Specifically, a script called

disctree3 was created that implemented Garbage Collection. However, it only would only

perform discretization on numeric attributes.

• That neither Garbage Collection nor nominal attribute discretization would be used. We

created a script called disctree4 that only allowed for numeric attributes to be discretized.

The discretization trees could grow infinitely large; however, they still had the constraint of

requiring a minimum number of instances in or below a subtree to use the root node of that

subtree as a substitution point.

5.1.1 Accuracy Results

The results of a U-test comparing the three method’s accuracy across all the results from each data

set are found in Figure 5.1. The results find that disctree3 ties disctree4 in terms of accuracy, but

performs better than disctree2. This tends to suggest that adding nominal attribute discretization

to disctree would cause it to perform worse.

key win loss ties win-loss

disctree3 1 0 1 1

disctree4 0 0 2 0

disctree2 0 1 1 -1

Figure 5.1: overall for acc

In addition to the U-test results across all the data sets, we have isolated the results for each

data set, sorted the resulting accuracy scores, and provided them in the plots found in Figure 5.1.1

to Figure 5.1.1. The x-axis of each of these graphs is the number of data points generated as results

for that data set, with each point having one plot and being associated with an accuracy score. The

y-axis of each of the graphs is the accuracy percentage of the method for plotted point.

While the methods perform similarly on many of the data sets, there are some stand out results

that are worth noting:

61

• The script disctree3, in green on the plots, clearly wins in four data sets (auto-mpg, hayes-

roth, imports-85, and iris) while only clearly losing in one data set (flag). In the case of the

flag data set, its appearance at the end of each segment denotes it had lower accuracy than

the other methods at several points in the data set.

• The script disctree2, in red on the plots, clearly wins in only two data sets (diabetes and flag),

while it loses in several (heart-h, hepatitis, mushroom, soybean, and wine).

• The script disctree4, in blue on the plots, has no clear wins, and only one loss where has

lower performance measures than either of the other scripts in the diabetes data set.

It is clear from these results that if accuracy were the only measure of contention, that the clear

winner and choice of methods should be disctree3. However, we have put forth five methods of

comparison, and will review the results for each before making a decision.

62

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

acc comparison for audiology

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for auto-mpg

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

acc comparison for breast-cancer

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for breast-cancer-wisconsin

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for credit-a

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for diabetes

disctree2
disctree3
disctree4

Figure 5.2: Plots of the Accuracy Scores, Sorted by Value

63

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

acc comparison for ecoli

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

acc comparison for flag

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for hayes-roth

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for heart-c

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for heart-h

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for hepatitis

disctree2
disctree3
disctree4

Figure 5.3: Plots of the Accuracy Scores, Sorted by Value

64

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

acc comparison for imports-85

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for iris

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for kr-vs-kp

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

acc comparison for letter

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for mushroom

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

acc comparison for segment

disctree2
disctree3
disctree4

Figure 5.4: Plots of the Accuracy Scores, Sorted by Value

65

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

acc comparison for soybean

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for splice

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

acc comparison for vowel

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for waveform-5000

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for wdbc

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for wine

disctree2
disctree3
disctree4

Figure 5.5: Plots of the Accuracy Scores, Sorted by Value

66

5.1.2 Balance Results

The results of a U-test comparing the three method’s balance across all the results from each data

set are found in Figure 5.6. The results find that the methods all tie and the U-test finds no clear

winner in regard to which disctree script provides the best balance result.

key win loss ties win-loss

disctree4 0 0 2 0

disctree3 0 0 2 0

disctree2 0 0 2 0

Figure 5.6: overall for bal

In addition to the U-test results across all the data sets, we have isolated the results for each

data set, sorted the resulting accuracy scores, and provided them in the plots found in Figure 5.1.2

to Figure 5.1.2. The x-axis of each of these graphs is the number of data points generated as results

for that data set, with each point having one plot and being associated with one balance score. The

y-axis of each of the graphs is the balance percentage achieved for the discretization method of

plotted point.

While the methods perform similarly on many of the data sets, there are some stand out results

that are worth noting:

• The script disctree3, green, clearly wins in six data sets (auto-mpg, ecoli, hayes-roth, hep-

atitis, imports-85, and iris) while only clearly losing in one data set (segment).

• The script disctree2, red, clearly wins in four data sets (audiology, diabetes, flag, and vowel),

while it loses just as often (heart-h, hepatitis, soybean, and wine).

• The script disctree4, blue, has no clear wins, and has six losses (auto-mpg, diabetes, flag,

imports-85, iris, vowel) where it achieves lesser balance scores than the other methods for

many of the same data points.

67

While the U-test finds no clear winner between the methods, examining the data plots leads

to the assertion that if balance were to be used to choose the DiscTree algorithm’s representative

method that disctree3, with the highest number of wins and fewest losses, would be the ideal

choice.

68

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

bal comparison for audiology

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for auto-mpg

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

bal comparison for breast-cancer

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for breast-cancer-wisconsin

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for credit-a

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for diabetes

disctree2
disctree3
disctree4

Figure 5.7: Plots of Balance Scores, Sorted by Value

69

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

bal comparison for ecoli

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

bal comparison for flag

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for hayes-roth

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for heart-c

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for heart-h

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for hepatitis

disctree2
disctree3
disctree4

Figure 5.8: Plots of Balance Scores, Sorted by Value

70

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

bal comparison for imports-85

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for iris

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for kr-vs-kp

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

bal comparison for letter

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for mushroom

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

bal comparison for segment

disctree2
disctree3
disctree4

Figure 5.9: Plots of Balance Scores, Sorted by Value

71

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

bal comparison for soybean

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for splice

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

bal comparison for vowel

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for waveform-5000

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for wdbc

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for wine

disctree2
disctree3
disctree4

Figure 5.10: Plots of Balance Scores, Sorted by Value

72

5.1.3 Precision Results

The results of a U-test comparing the three method’s precision across all the results from each data

set are found in Figure 5.11. The results find that the methods all tie and the U-test finds no clear

winner in regard to which disctree script provides the best precision result.

key win loss ties win-loss

disctree4 0 0 2 0

disctree3 0 0 2 0

disctree2 0 0 2 0

Figure 5.11: overall for prec

In addition to the U-test results across all the data sets, we have isolated the results for each

data set, sorted the resulting accuracy scores, and provided them in the plots found in Figure 5.1.3

to Figure 5.1.3. The x-axis of each of these graphs is the number of data points generated as results

for that data set, with each point having one plot and representing one precision score. The y-axis

of each of the graphs is the precision percentage achieved for the discretization method of plotted

point.

While the methods perform similarly on many of the data sets, there are some stand out results

that are worth noting:

• The script disctree3, green, clearly wins in five data sets (auto-mpg, ecoli, hayes-roth, imports-

85, and iris) while only clearly losing in one data set (flag).

• The script disctree2, red, clearly wins in four data sets (audiology, diabetes, flag, and vowel),

while it loses in six (ecoli, hepatitis, heart-h, mushroom, soybean, and wine).

• The script disctree4, blue, had one clear win in the segment data set, and has four losses

(diabetes, auto-mpg, hayes-roth, vowel) where it achieves lower precision scores than the

other methods for many of the same data points.

73

While the U-test finds no clear winner between the methods, examining the data plots leads

to the assertion that if precision were to be used to choose the DiscTree algorithm’s representative

method that disctree3, with the highest number of wins and fewest losses, would be the ideal

choice.

74

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

prec comparison for audiology

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for auto-mpg

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

prec comparison for breast-cancer

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for breast-cancer-wisconsin

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for credit-a

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for diabetes

disctree2
disctree3
disctree4

Figure 5.12: Plots of Precision Scores, Sorted by Value

75

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

prec comparison for ecoli

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

prec comparison for flag

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for hayes-roth

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for heart-c

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for heart-h

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for hepatitis

disctree2
disctree3
disctree4

Figure 5.13: Plots of Precision Scores, Sorted by Value

76

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

prec comparison for imports-85

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for iris

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for kr-vs-kp

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

prec comparison for letter

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for mushroom

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

prec comparison for segment

disctree2
disctree3
disctree4

Figure 5.14: Plots of Precision Scores, Sorted by Value

77

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

prec comparison for soybean

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for splice

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

prec comparison for vowel

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for waveform-5000

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for wdbc

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for wine

disctree2
disctree3
disctree4

Figure 5.15: Plots of Precision Scores, Sorted by Value

78

5.1.4 Probability of Detection Results

The results of a U-test comparing the three method’s probability of detection across all the results

from each data set are found in Figure 5.11. The results find that the methods all tie and the U-test

finds no clear winner in regard to which disctree script provides the best probability of detection

result.

key win loss ties win-loss

disctree4 0 0 2 0

disctree3 0 0 2 0

disctree2 0 0 2 0

Figure 5.16: overall for pd

In addition to the U-test results across all the data sets, we have isolated the results for each

data set, sorted the resulting accuracy scores, and provided them in the plots found in Figure 5.1.3

to Figure 5.1.3. The x-axis of each of these graphs is the number of data points generated as results

for that data set, with each point having one plot and representing one probability of detection

score. The y-axis of each of the graphs is the probability of detection percentage achieved for the

discretization method of plotted point.

While the methods perform similarly on many of the data sets, there are some stand out results

that are worth noting:

• The script disctree3, green, clearly wins in seven data sets (auto-mpg, ecoli, hayes-roth,

heart-h, hepatitis, imports-85, and iris) while only clearly losing in two data sets (audiology,

segment).

• The script disctree2, red, clearly wins in four data sets (audiology, diabetes, flag, and vowel),

while it loses in seven (breast-cancer, ecoli, heart-h, hepatitis, mushroom, soybean, and

wine).

• The script disctree4, blue, had one clear win in the wine data set, and has three losses (di-

abetes, flag, vowel) where it achieves lower probability of detection scores than the other

79

methods for many of the same data points.

While the U-test finds no clear winner between the methods, examining the data plots leads

to the assertion that if probability of detection were to be used to choose the DiscTree algorithm’s

representative method that disctree3, with the highest number of wins and fewest losses, would be

the ideal choice.

80

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

pd comparison for audiology

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for auto-mpg

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

pd comparison for breast-cancer

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for breast-cancer-wisconsin

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for credit-a

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for diabetes

disctree2
disctree3
disctree4

Figure 5.17: Plots of Probability of Detection Scores, Sorted by Value

81

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

pd comparison for ecoli

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

pd comparison for flag

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for hayes-roth

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for heart-c

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for heart-h

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for hepatitis

disctree2
disctree3
disctree4

Figure 5.18: Plots of Probability of Detection Scores, Sorted by Value

82

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

pd comparison for imports-85

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for iris

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for kr-vs-kp

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

pd comparison for letter

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for mushroom

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

pd comparison for segment

disctree2
disctree3
disctree4

Figure 5.19: Plots of Probability of Detection Scores, Sorted by Value

83

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

pd comparison for soybean

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for splice

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

pd comparison for vowel

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for waveform-5000

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for wdbc

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for wine

disctree2
disctree3
disctree4

Figure 5.20: Plots of Probability of Detection Scores, Sorted by Value

84

5.1.5 Probability of Not False Alarm

The results of a U-test comparing the three method’s probability of not false alarm across all the

results from each data set are found in Figure 5.21. The results show disctree3 and disctree4 each

with a win over disctree2, but in a tie with each other. The U-test thus tells us we should not choose

disctree2, the method that includes both garbage collection and nominal attribute discretization, if

we seek to maximize the probability of not false alarm results and minimizes the probability of

false alarm scores for the method. It does not, however, tell us which of the other methods to

chose.

key win loss ties win-loss

disctree4 1 0 1 1

disctree3 1 0 1 1

disctree2 0 2 0 -2

Figure 5.21: overall for npf

In addition to the U-test results across all the data sets, we have isolated the results for each

data set, sorted the resulting accuracy scores, and provided them in the plots found in Figure 5.1.3

to Figure 5.1.3. The x-axis of each of these graphs is the number of data points generated as results

for that data set, with each point having one plot and representing one probability of not false alarm

score. The y-axis of each of the graphs is the probability of not false alarm percentage achieved

for the discretization method of plotted point.

While the methods perform similarly on many of the data sets, there are some stand out results

that are worth noting:

• The script disctree3, green, clearly wins in six data sets (auto-mpg, hayes-roth, heart-h,

hepatitis, imports-85, and iris) while only clearly losing in one data set (flag).

• The script disctree2, red, clearly wins in two data sets (diabetes and flag), while it loses in

six (audiology, heart-h, hepatitis, mushroom, soybean, and wine).

85

• The script disctree4, blue, has no clear wins but has two losses (diabetes and iris) where it

achieves lower not probability of failure scores than the other methods for many of the same

data points.

While the U-test finds no clear winner between the disctree3 and disctree4 methods, a review

of the data plots leads us to assert that of the two methods, disctree3 would be a better choice

because it wins more often in the data plots.

86

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

npf comparison for audiology

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for auto-mpg

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

npf comparison for breast-cancer

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for breast-cancer-wisconsin

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for credit-a

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for diabetes

disctree2
disctree3
disctree4

Figure 5.22: Plots of Probability of not False Alarm Scores, Sorted by Value

87

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

npf comparison for ecoli

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

npf comparison for flag

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for hayes-roth

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for heart-c

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for heart-h

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for hepatitis

disctree2
disctree3
disctree4

Figure 5.23: Plots of Probability of not False Alarm Scores, Sorted by Value

88

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

npf comparison for imports-85

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for iris

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for kr-vs-kp

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

npf comparison for letter

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for mushroom

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

npf comparison for segment

disctree2
disctree3
disctree4

Figure 5.24: Plots of Probability of not False Alarm Scores, Sorted by Value

89

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

npf comparison for soybean

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for splice

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

npf comparison for vowel

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for waveform-5000

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for wdbc

disctree2
disctree3
disctree4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for wine

disctree2
disctree3
disctree4

Figure 5.25: Plots of Probability of not False Alarm Scores, Sorted by Value

90

5.1.6 Decision Tree Method Selection

The results above show us that, overall, the disctree3 method clearly obtains the most wins. In

regard to accuracy, it is the only method to achieve a win in the U-test, and wins in several of the

data plots. In regard to balance, precision, and probability of detection, it performs as well as the

other methods in regard to the U-test but clearly wins in more of the data plots. Not Probability of

Failure gives us two options in regards to methods that achieve U-test wins, but clearly disctree3

wins in more data plot comparisons. Another interesting note from that measure is that clearly the

method with nominal attribute discretization, disctree2 would lead to higher a probability of false

alarm, which, when paired with its result of one loss and one tie in the U-test for accuracy, would

lead to a decision that it is certainly not the best method for us to use.

Based on the results above, we selected the implementation that used the Garbage Collection

but did not perform nominal attribute discretization. This method, disctree3, will be used as the

DiscTree algorithm in the comparisons against other discretization methods.

5.2 Discretization Method Comparison

5.2.1 Accuracy Results

The overall results for the accuracy comparison between the discretization methods discussed in

Chapter 3, across all the data generated, can be found in Figure 5.26

key win loss ties win-loss

fayyadIrani 4 0 0 4

tbin 1 1 2 0

pkid 1 1 2 0

disctree3 1 1 2 0

cat 0 4 0 -4

Figure 5.26: overall for acc

The results of this overview shows that in comparison with all the other discretization methods,

91

the entropy-minimization method, called fayyadIrani in this comparison, won over each of the

other methods. The tenbins (tbin), PKID (pkid), and DiscTree (disctree3) methods each performed

comparably well, each winning a comparison, losing a comparison, and reaching a tie twice. The

pure data set, provided by the ”cat” method, had the worst results, losing out to each other method.

These results provide a great general summary of the results. However, each data set has also

had the win/loss/tie record created for that data set. Those results can be found in Figure F.1 to

Figure F.22. Figure 5.27 displays the winning method(s) for each data set where all the discretiza-

tion methods did not tie. The winner or winners for each dataset are displayed, along with the

number of degrees by which it wins. The counts for total wins are found in Figure 5.28. Clearly,

the entropy-minimization heuristic, fayyadIrani, had more accuracy wins than any other method

with ten, while DiscTree and tenbins each receiving one third of that number of wins. Interestingly,

there is no clear manner by which to describe the conditions under which the DiscTree algorithm

wins, other than that the data sets where it is recorded as a winner tend to have fewer classes (less

than 4). However, it also loses to the entropy-minimization heuristic in similar data sets.

Another interesting result is the sorted data plots for each data set. These plots, found in

Figure 5.2.1 to Figure 5.2.1, show that in most of the data sets where the fayyadIrani method

wins, there is so very little difference in the accuracy scores that the plotted points for fayyadIrani,

generate on top of or very close to the scores for the other methods. This should mean that, even

when the entropy-minimization method wins, it is doing so by very little, unlike the DiscTree win

in the auto-mpg data set, where the DiscTree accuracy plot quite clearly shows it winning across

most of the data plot.

92

Data Set Instances Winner(s) Degree Numeric Classes

hayes-roth 132 cat/fayyadIrani 1(1) 1 3

hepatitis 155 fayyadIrani 2(3) 6 2

flag 194 tbin/pkid/fayyadIrani/disctree3 1 10 4

imports-85 205 fayyadIrani 3(4) 15 5

heart-c 303 tbin 1(1) 6 5

auto-mpg 398 disctree3 3 5 3

wdbc 569 fayyadIrani 3(3) 30 2

credit-a 690 disctree3 1 0 2

diabetes 768 fayyadIrani 2(4) 8 2

vowel 990 tbin/fayyadIrani 1(3) 10 11

segment 2310 fayyadIrani/tbin 2(2) 19 7

waveform-5000 5000 fayyadIrani 2(4) 40 3

letter 20000 fayyadIrani 1(1) 16 26

Figure 5.27: These data sets had a particular winner(s) for their Accuracy comparison. In all cases,

degree measures the number of wins over the next closest method. In the event that disctree3 did

not win, the number in parenthesis represents its win difference from the lead method.

Method Wins

fayyadIrani 10

disctree3 3

tbin 3

pkid 1

cat 1

Figure 5.28: Total Wins Per Method Based on Mann-Whitney U-Test Wins on each Data Set’s

Accuracy Scores

93

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

acc comparison for audiology

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for auto-mpg

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

acc comparison for breast-cancer

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for breast-cancer-wisconsin

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for credit-a

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for diabetes

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.29: Plots of Accuracy Scores, Sorted by Value

94

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

acc comparison for ecoli

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

acc comparison for flag

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for hayes-roth

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for heart-c

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for heart-h

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for hepatitis

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.30: Plots of Accuracy Scores, Sorted by Value

95

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

acc comparison for imports-85

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for iris

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for kr-vs-kp

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

acc comparison for letter

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for mushroom

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

acc comparison for segment

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.31: Plots of Accuracy Scores, Sorted by Value

96

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

acc comparison for soybean

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for splice

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

acc comparison for vowel

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for waveform-5000

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

acc comparison for wdbc

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

acc comparison for wine

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.32: Plots of Accuracy Scores, Sorted by Value

97

5.2.2 Balance Results

The overall results for the probability of not false alarm comparison between the discretization

methods discussed in Chapter 3, across all the data generated, can be found in Figure 5.33

key win loss ties win-loss

fayyadIrani 4 0 0 4

pkid 2 1 1 1

disctree3 2 1 1 1

tbin 1 3 0 -2

cat 0 4 0 -4

Figure 5.33: overall for bal

The results of this overview shows that in comparison with all the other discretization methods,

the entropy-minimization method, won over each of the other methods. The PKID (pkid), and

DiscTree (disctree3) methods each performed comparably well, each winning two comparisons,

losing a comparison, and reaching a tie once. The pure data set, provided by the ”cat” method, had

the worst results, losing out to each other method, while tenbins performed slightly better winning

once against other methods but losing to the other three.

These results provide a general summary of the results. However, each data set has also had

the win/loss/tie record created for that data set. Those results can be found in Figure F.25 to Fig-

ure F.46. Figure 5.34 displays the winning method(s) for each data set where all the discretization

methods did not tie. The winner or winners for each dataset are displayed, along with the num-

ber of degrees by which it wins. The counts for total wins are found in Figure 5.35. Clearly, the

entropy-minimization heuristic, fayyadIrani, had more balance wins than any other method. Disc-

Tree won five times, more than each of the other methods. Interestingly, there is no clear manner

by which to describe the conditions under which the DiscTree algorithm wins, other than that the

data sets where it is recorded as a winner tend to have fewer classes (less than 5). However, it also

loses to the entropy-minimization heuristic in similar data sets.

Another interesting result is the sorted data plots for each data set. These plots, found in

98

Figure 5.2.2 to Figure 5.2.2, show that in most of the data sets where the fayyadIrani method wins

there is so very little difference in the balance scores that the plotted points for fayyadIrani generate

on top of or very close to the scores for the other methods. This should mean that, even when the

entropy-minimization method wins, in most cases it is doing so by very little, unlike the DiscTree

win in the auto-mpg data set or the fayyadIrani win in the imports-85 data set, where the respective

method’s plot quite clearly shows it winning across most of the data plot.

Data Set Instances Winner(s) Degree Numeric Classes

hayes-roth 132 cat/disctree3/fayyadIrani 1 1 3

hepatitis 155 fayyadIrani/tbin 1(1) 6 2

flag 194 fayyadIrani 1(1) 10 4

imports-85 205 fayyadIrani/pkid 1(1) 15 5

heart-c 303 disctree3/tbin 1 6 5

ecoli 336 cat/fayyadIrani/pkid 2(2) 7 8

auto-mpg 398 disctree3 3 5 3

wdbc 569 fayyadIrani 3(3) 30 2

credit-a 690 disctree3 1 0 2

diabetes 768 fayyadIrani 3(3) 8 2

vowel 990 fayyadIrani/tbin 1(3) 10 11

segment 2310 fayyadIrani/tbin 2(2) 19 7

waveform-5000 5000 fayyadIrani 2(3) 40 3

letter 20000 disctree3/fayyadIrani/pkid 1 16 26

Figure 5.34: These data sets had a particular winner(s) for their Balance comparison. In all cases,

degree measures the number of wins over the next closest method. In the event that disctree3 did

not win, the number in parenthesis represents its win difference from the lead method.

99

Method Wins

fayyadIrani 11

disctree3 5

tbin 4

pkid 3

cat 2

Figure 5.35: Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s

Balance Scores

100

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

bal comparison for audiology

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for auto-mpg

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

bal comparison for breast-cancer

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for breast-cancer-wisconsin

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for credit-a

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for diabetes

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.36: Plots of Balance Scores, Sorted by Value

101

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

bal comparison for ecoli

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

bal comparison for flag

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for hayes-roth

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for heart-c

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for heart-h

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for hepatitis

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.37: Plots of Balance Scores, Sorted by Value

102

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

bal comparison for imports-85

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for iris

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for kr-vs-kp

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

bal comparison for letter

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for mushroom

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

bal comparison for segment

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.38: Plots of Balance Scores, Sorted by Value

103

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

bal comparison for soybean

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for splice

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

bal comparison for vowel

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for waveform-5000

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

bal comparison for wdbc

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

bal comparison for wine

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.39: Plots of Balance Scores, Sorted by Value

104

5.2.3 Precision Results

The overall results for the precision comparison between the discretization methods discussed in

Chapter 3, across all the data generated, can be found in Figure 5.40

key win loss ties win-loss

fayyadIrani 4 0 0 4

tbin 1 1 2 0

pkid 1 1 2 0

disctree3 1 1 2 0

cat 0 4 0 -4

Figure 5.40: overall for prec

The results of this overview shows that in comparison with all the other discretization methods,

the entropy-minimization method, fayyadIrani, won over each of the other methods. The tenbins

(tbin), PKID (pkid), and DiscTree (disctree3) methods each performed comparably well, each

winning a comparison, losing a comparison, and reaching a tie twice. The pure data set, provided

by the ”cat” method, had the worst results, losing out to each other method.

These results provide a general summary of the results. However, each data set has also had

the win/loss/tie record created for that data set. Those results can be found in Figure F.49 to

Figure F.70. Figure 5.41 displays the method for each data set where all the discretization methods

did not tie. The winner or winners for each dataset are displayed, along with the number of degrees

by which it wins. The counts for total wins are found in Figure 5.42. The entropy-minimization

heuristic, fayyadIrani, had more precision wins than any other method, with DiscTree winning

half as many times. Interestingly, there is no clear manner by which to describe the conditions

under which the DiscTree algorithm wins, other than that the data sets where it is recorded as a

winner tend to have fewer classes (less than 5). However, it also loses to the entropy-minimization

heuristic in similar data sets.

Another interesting result is the sorted data plots for each data set. These plots, found in

Figure 5.2.1 to Figure 5.2.1, show that in most of the data sets where the fayyadIrani method

105

wins there is so very little difference in the precision scores that the plotted points for fayyadIrani

generate on top of or very close to the scores for the other methods. While in some cases (DiscTree

with the auto-mpg data set, entropy in the ecoli data set), in most cases the plots are very, very

similar and very little difference appears between the methods.

Data Set Instances Winner(s) Degree Numeric Classes

hayes-roth 132 cat/disctree3/fayyadIrani/tbin 1 1 3

flag 194 cat/disctree3/fayyadIrani/pkid 1 10 4

heart-c 303 disctree3 1 6 5

ecoli 336 fayyadIrani 1(2) 7 8

auto-mpg 398 disctree3 3 5 3

wdbc 569 fayyadIrani 3(3) 30 2

credit-a 690 disctree3/fayyadIrani/pkid 1 0 2

diabetes 768 fayyadIrani 4(4) 8 2

vowel 990 cat/fayyadIrani/tbin 2(2) 10 11

segment 2310 fayyadIrani/tbin 2(3) 19 7

waveform-5000 5000 fayyadIrani 1(2) 40 3

letter 20000 fayyadIrani 1(1) 16 26

Figure 5.41: These data sets had a particular winner(s) for their Precision comparison. In all cases,

degree measures the number of wins over the next closest method. In the event that disctree3 did

not win, the number in parenthesis represents its win difference from the lead method.

106

Method Wins

fayyadIrani 10

disctree3 5

tbin 3

pkid 2

cat 3

Figure 5.42: Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s

Precision Scores

107

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

prec comparison for audiology

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for auto-mpg

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

prec comparison for breast-cancer

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for breast-cancer-wisconsin

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for credit-a

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for diabetes

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.43: Plots of Precision Scores, Sorted by Value

108

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

prec comparison for ecoli

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

prec comparison for flag

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for hayes-roth

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for heart-c

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for heart-h

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for hepatitis

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.44: Plots of Precision Scores, Sorted by Value

109

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

prec comparison for imports-85

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for iris

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for kr-vs-kp

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

prec comparison for letter

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for mushroom

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

prec comparison for segment

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.45: Plots of Precision Scores, Sorted by Value

110

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

prec comparison for soybean

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for splice

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

prec comparison for vowel

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for waveform-5000

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

prec comparison for wdbc

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

prec comparison for wine

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.46: Plots of Precision Scores, Sorted by Value

111

5.2.4 Probability of Detection Results

The overall results for the probability of detection comparison between the discretization methods

discussed in Chapter 3, across all the data generated, can be found in Figure 5.47

key win loss ties win-loss

fayyadIrani 4 0 0 4

pkid 2 1 1 1

disctree3 2 1 1 1

tbin 0 3 1 -3

cat 0 3 1 -3

Figure 5.47: overall for pd

The results of this overview shows that in comparison with all the other discretization methods,

the entropy-minimization method, called fayyadIrani in this comparison, won over each of the

other methods. The PKID (pkid), and DiscTree (disctree3) methods each performed comparably

well, each winning two comparisons, losing a comparison, and reaching a tie once. The pure data

set, provided by the ”cat” method, had the worst results, losing out to each other method. The

tenbins method (tbin) performed just as poorly.

These results provide a general summary of the results. However, each data set has also had

the win/loss/tie record created for that data set. Those results can be found in Figure F.73 to Fig-

ure F.94. Figure 5.48 displays the winning method(s) for each data set where all the discretization

methods did not tie. The winner or winners for each dataset are displayed, along with the number

of degrees by which it wins. The counts for total wins are found in Figure 5.49. The entropy-

minimization heuristic, fayyadIrani, had more probability of detection wins than any other method,

with DiscTree having the next highest number of wins. Interestingly, there is no clear manner by

which to describe the conditions under which the DiscTree algorithm wins, other than that the data

sets where it is recorded as a winner tend to have fewer classes (typically less than 5). However, it

also loses to the entropy-minimization heuristic in similar data sets.

Another interesting result is the sorted data plots for each data set. These plots, found in

112

Figure 5.2.4 to Figure 5.2.4, show that in most of the data sets where the fayyadIrani method wins

there is so very little difference in the probability of detection scores that the plotted points for

fayyadIrani generate on top of or very close to the scores for the other methods. The DiscTree

algorithms still performs visibly well in the auto-mpg data set, and other methods visibly win in

one or two other data sets, but in most cases there is very little difference between the plots.

Data Set Instances Winner(s) Degree Numeric Classes

hayes-roth 132 cat/fayyadIrani 1(1) 1 3

hepatitis 155 fayyadIrani 1(1) 6 2

flag 194 cat/disctree3/fayyadIrani/pkid 1 10 4

heart-c 303 disctree3 1 6 5

ecoli 336 cat 2(4) 7 8

auto-mpg 398 disctree3 3 5 3

wdbc 569 fayyadIrani 2(2) 30 2

credit-a 690 disctree3/fayyadIrani 1 0 2

diabetes 768 fayyadIrani 4(4) 8 2

vowel 990 fayyadIrani/tbin 1(3) 10 11

segment 2310 fayyadIrani 1(2) 19 7

waveform-5000 5000 fayyadIrani 2(4) 40 3

letter 20000 disctree3/fayyadIrani/pkid 1 16 26

Figure 5.48: These data sets had a particular winner(s) for their Probability of Detection compar-

ison. In all cases, degree measures the number of wins over the next closest method. In the event

that disctree3 did not win, the number in parenthesis represents its win difference from the lead

method.

113

Method Wins

fayyadIrani 10

disctree3 5

tbin 1

pkid 2

cat 3

Figure 5.49: Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s

Probability of Detection Scores

114

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

pd comparison for audiology

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for auto-mpg

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

pd comparison for breast-cancer

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for breast-cancer-wisconsin

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for credit-a

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for diabetes

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.50: Plots of Probability of Detection Scores, Sorted by Value

115

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

pd comparison for ecoli

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

pd comparison for flag

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for hayes-roth

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for heart-c

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for heart-h

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for hepatitis

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.51: Plots of Probability of Detection Scores, Sorted by Value

116

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

pd comparison for imports-85

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for iris

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for kr-vs-kp

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

pd comparison for letter

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for mushroom

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

pd comparison for segment

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.52: Plots of Probability of Detection Scores, Sorted by Value

117

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

pd comparison for soybean

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for splice

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

pd comparison for vowel

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for waveform-5000

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pd comparison for wdbc

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

pd comparison for wine

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.53: Plots of Probability of Detection Scores, Sorted by Value

118

5.2.5 Probability of Not False Alarm

The overall results for the probability of not false alarm comparison between the discretization

methods discussed in Chapter 3, across all the data generated, can be found in Figure 5.54

key win loss ties win-loss

fayyadIrani 4 0 0 4

tbin 3 1 0 2

pkid 0 2 2 -2

disctree3 0 2 2 -2

cat 0 2 2 -2

Figure 5.54: overall for npf

The results of this overview shows that in comparison with all the other discretization methods,

the entropy-minimization method won over each other methods. The tenbins algorithm performed

next best, winning a comparisons against each method besides fayyadIrani and losing just to that

method. The pure data set, DiscTree, and pkid each performed poorly in this comparison, losing

out to each other method.

Figure 5.54 provides a general summary of the results. However, each data set has also had the

win/loss/tie record created. Those results can be found in Figure F.97 to Figure F.118. Figure 5.55

displays the winning method(s) for each data set where all the discretization methods did not tie.

The winner or winners for each dataset are displayed, along with the number of degrees by which

they win. The counts for total wins are found in Figure 5.56. Again, the entropy-minimization

heuristic had the most wins, while the DiscTree method won about half as often. Interestingly,

there is no clear manner by which to describe the conditions under which the DiscTree algorithm

wins, other than that the data sets where it is recorded as a winner tend to have fewer classes

(typically less than 5). However, it also loses to the fayyadIrani method in similar data sets.

Another interesting result is the sorted data plots for each data set. These plots, found in

Figure 5.2.5 to Figure 5.2.5, show that in most of the data sets where the fayyadIrani method wins,

there is so very little difference in the not probability of failure scores that the plotted points for

119

fayyadIrani, generate on top of or very close to the scores for the other methods.

Data Set Instances Winner(s) Degree Numeric Classes

hayes-roth 132 cat 1(1) 1 3

hepatitis 155 fayyadIrani 1(1) 6 2

flag 194 disctree3/fayyadIrani/pkid/tbin 1 10 4

imports-85 205 fayyadIrani 2(3) 15 5

heart-c 303 disctree3 1 6 5

auto-mpg 398 disctree3 3 5 3

wdbc 569 fayyadIrani 2(2) 30 2

credit-a 690 disctree3/fayyadIrani 1 0 2

diabetes 768 fayyadIrani 4(4) 8 2

vowel 990 cat/fayyadIrani/tbin 2(2) 10 11

segment 2310 fayyadIrani/tbin 2(2) 19 7

waveform-5000 5000 fayyadIrani 1(2) 40 3

letter 20000 disctree3/fayyadIrani/pkid 1 16 26

Figure 5.55: These data sets had a particular winner(s) for their not Probability of Failure compar-

ison. In all cases, degree measures the number of wins over the next closest method. In the event

that disctree3 did not win, the number in parenthesis represents its win difference from the lead

method.

120

Method Wins

fayyadIrani 10

disctree3 5

tbin 3

pkid 2

cat 2

Figure 5.56: Total Wins Per Method Based on Mann-Whitney U-Test Wins on Each Data Set’s not

Probability of Failure Scores

121

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

npf comparison for audiology

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for auto-mpg

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

npf comparison for breast-cancer

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for breast-cancer-wisconsin

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for credit-a

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for diabetes

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.57: Plots of Probability of not False Alarm Scores, Sorted by Value

122

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

npf comparison for ecoli

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

npf comparison for flag

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for hayes-roth

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for heart-c

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for heart-h

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for hepatitis

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.58: Plots of Probability of not False Alarm Scores, Sorted by Value

123

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

npf comparison for imports-85

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for iris

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for kr-vs-kp

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

npf comparison for letter

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for mushroom

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

npf comparison for segment

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.59: Plots of Probability of not False Alarm Scores, Sorted by Value

124

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

npf comparison for soybean

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for splice

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

npf comparison for vowel

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for waveform-5000

cat
disctree3

pkid
tbin

fayyadIrani

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

npf comparison for wdbc

cat
disctree3

pkid
tbin

fayyadIrani
 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

npf comparison for wine

cat
disctree3

pkid
tbin

fayyadIrani

Figure 5.60: Plots of Probability of not False Alarm Scores, Sorted by Value

125

5.3 Summary

Our results for the discretization method comparison are what could be called a mixed bag. For

each method used, the entropy-minimization heuristic won most often when just viewing the results

of the Mann-Whitney U-test scores. This is consistent with results from [12,14], which both found

the method proposed in [10] to have the best effect on the Naı̈ve Bayes classifier.

However, it is notable that for each method, most of the plots of the data points appear very

similar, with small differences between the data points plotted for the fayyadIrani method and the

other methods it was compared against.

Also notable is the considerable win that the DiscTree algorithm had for each measure in the

auto-mpg data set. That data set, described in Figure 5.61, consistently had DiscTree winning by

a degree of 3. DiscTree also performed well against the PKID method proposed in [25]. In each

measure, DiscTree consistently had more wins than PKID (and in most cases the other methods).

This is notable because of the methods compared, PKID is the method proposed most recently and

provides the basis for WPKID, NDD, and WNDD that could not be tested in this paper.

Data Set Instances Attributes Numeric Nominal Classes

auto-mpg 398 7 5 2 3

Figure 5.61: Data Set Information for auto-mpg

The results in this section will be reviewed in Chapter 6.

126

Chapter 6

Conclusion

Chapter 6 begins with Section 6.1 which is a broad overview of the previous content of this docu-

ment. Section 6.2 describes conclusions reached based on the results of the experiments described

previously in this document. Section 6.3 proposes additional open research questions which have

been brought to light by the work and experimental results of this thesis.

6.1 Overview

In this thesis we have reviewed the broad field of data mining. We identified classification as

a useful tool to predict future occurrences based on current evidence and previous information.

We reviewed classification methods, including decision tree learners and Naı̈ve Bayes classifiersin

order to discuss the differences between available methods of performing this useful task. We

then identified Naı̈ve Bayes classifiersas the ideal method for comparing discretization methods,

as previous results from numerous sources have shown them to be prone to vast improvement when

used with discretization.

We discussed numerous methods of discretization, identifying their strengths and weaknesses

and selecting a few of them for comparison against our newly proposed method, the DiscTree

algorithm. We introduced this algorithm in this paper and have implemented it. We proposed

comparing it to the previously described and selected methods in order to determine how it per-

formed relative to them. We discussed our experimental method, specifically using each of the

selected discretization methods and the raw data from 25 data sets in a ten by ten-fold stratified

127

cross-valdiation to obtain the classifier performance measures of acc, bal, pd, !pf, and prec. We

then compared the results of each of these performance measures across each classifier to obtain

the results provided in the form of win-loss tables.

We will now discuss our conclusions based on the results collected and provide possible future

avenues to continue this research.

6.2 Conclusions

The results of our discretization method comparison appear to align with the results from [14] and

[12]. The entropy-minimization heuristic, encapsulated in the script fayyadIrani (see Appendix E)

clearly wins when the U-test statistics are reviewed. For each measure, it does at least twice as

many times as any of the other methods to which it was compared.

However, despite the results of the U-test statics, it is very interesting to note the data plots

provided for each measure for each data set. These plots show that, even in most of the cases

where fayyadIrani wins, it is doing so almost marginally, with other methods plotting very close

to it - so close the that fayyadIrani data points, plotted last, often plot over the other methods.

There are some clear instances where this isn’t true - for example, the auto-mpg results which

always show DiscTree as a clear winner and various results for each measure where fayyadIrani or

another method clearly out pace the other methods - but in the majority of cases it appears that the

differences between the scores for each method or just slight enough to qualify as different when

compared using the U-test statistic.

Of interest to this particular thesis is the results for the DiscTree Algorithm. For each measure,

DiscTree performs second-best behind fayyadIrani and almost always better than all the other

methods. This is interesting because it often wins out over the PKID method, the most recently

proposed of its competition. That method had been shown to perform better in terms of minimized

error than the fayyadIrani method in other cases [25]. We did not have similar results; PKID

obtains fewer accuracy wins than fayyadIrani and does not even perform as well as DiscTree. This

leads us to believe that our method, while clearly not most superior in this comparison, is clearly

not an idea that should just be discarded.

128

The data plots lead us to question whether there exists a continuing need to create better dis-

cretization methods. While there may be ways yet unidentified to increase accuracy beyond the

entropy-minimization heuristic, the plots of the data values for each performance measure are so

close to one another in most cases that perhaps this goal of finding a ”better” discretization method

can end with a statement that, so long as a discretization method is used it should better the perfor-

mance of the Naı̈ve Bayes classifier in most cases. There are a few cases where one discretization

method performs better than another, but overall, they perform very similarly. We therefore con-

clude that discretization is a useful technique for aiding Naı̈ve Bayes classifiers, but we can not put

forth one particular method that we would always recommend, except to say that we believe that

the methods compared herein perform very similarly in most cases and would recommend using

simple methods when possible for easy of explanation.

6.3 Future Work

Our research has led us to a few possible future paths for research in this area.

An immediate possibility from our work would be the modification of DiscTree discretization

method to create an incremental method of discretization. Incremental discretization involves data

being discretized as each new instance (or a very small group of instances) arrive, rather than

requiring all the data as in the batch approach currently used. Incremental discretization methods

are very useful because they can be used on streams of data as well as on the files of instances used

with the current batch method. For instance, incremental discretization methods could be used

as part of a learning mechanism in a problem that involves collecting data online or from a real

time source and analyzing it as it arrives, rather than performing the learning operations on static,

previously created files stored on a disk.

A second possible area of future research would be in expanding the DiscTree algorithm to

examine other possible tree structures that may improve some aspect of the DiscTree algorithm’s

performance. Specifically, we have identified splay trees and AVL trees as possible alternatives for

the base data structure in the DiscTree algorithm. The implementation of a Randomized Binary

Search Tree was the easiest to implement at the inception of this idea of a base sorting data struc-

129

ture behind the discretization and performed fairly well when compared to some recommended

methods. It is likely that such other data structures would have similar or better performance.

Splay trees may be most interesting because their re-balancing of the tree in accordance with the

most accessed values may help to prevent any useful nodes from being pruned during the garbage

collection activities of the DiscTree algorithm.

A third possible area of future research would be combining the DiscTree algorithm with some

additional forms of data preprocessing, such as attribute subset selection. This technique involves

using machine learning algorithm to determine the best combinations of attributes and pruning

the data to only contain those attributes. This might be useful because experimental results have

shown that learners may become confused or distracted in their classification schemes by irrelevant

attributes [22]. Pruning the data prior to running it through the DiscTree algorithm would not

increase the method’s performance in terms of classification results. It would, however, save the

algorithm time spent in building trees for the unused attributes. Another option for preprocessing

prior to use of the DiscTree algorithm would be a review of over-sampling and under-sampling

techniques for the data provided to the discretization method. In either case the data is examined

for notable instances. In over-sampling, those instances are then repeated numerous times in the

data used by the discretization method/classifier. In under-sampling, the instances of interest are

used to prune instances from the data set to avoid or minimize their affect on the discretization

method/classifier. Both could be potential boons for DiscTree if they could be harnessed to remove

the worst or multiply the best examples that DiscTree should learn from. Thus, improvements with

additional preprocessing might be made to make DiscTree perform better.

A final possible area of future research would be examining the DiscTree Algorithm to deter-

mine if there is a way to best decide the ”cludged” values of that algorithm, including:

• The number of instances required between garbage collects

• The maximum allowable tree size

• The number of instances required between increments of maximum allowable tree size

• The number of instances per node/subtree required to make it worthy of being used in the

130

discretization.

It is possible that finding optimum values for these items could improve the performance of Disc-

Tree against its competition.

131

Appendix A

disctree Source Code

! "
! / u s r / b i n / gawk − f
/∗ vim : s e t f i l t e y p e =awk : ∗ / −∗− awk −∗−

A Design f o r A Randomized B i n ar y
Search Tree D i s c r e t i z a t i o n Method
By DJ Boland

M u l t i p u r p o s e i m p l e m e n t a t i o n . A l l o w s dynamic t r e e s i z i n g , t r e e s i z e , and
v a r i a b l e node s i z e r e q u i r e m e n t f o r s u b s t i t u t i o n

#−−

BEGIN{
FS=” ∗ , ∗” ; # F i e l d s s e p e r a t e d by a comma and i t s p r e c e e d i n g
OFS=” , ” ; # and t r a i l i n g s p a c e s .
SUBSEP=” # ” #An pound s i g n w i l l be used as t h e d e f a u l t s e p e r a t o r
IGNORECASE=1; # S e t i n t e r p r e t e r t o be case− i n s e n s i t i v e
Val=” v a l ” ; # S u b s t i t u t e t h e s t r i n g ” v a l ” where Val used
L e f t =” l e f t ” ; # S u b s t i t u t e t h e s t r i n g ” l e f t ” where L e f t used
R i g h t =” r i g h t ” ; # S u b s t i t u t e t h e s t r i n g ” r i g h t ” where R i g h t used
Here=” h e r e ” ; # S u b s t i t u t e t h e s t r i n g ” he re ” where Here used
A l l =” a l l ” ; # S u b s t i t u t e t h e s t r i n g ” a l l ” where A l l used
Min=” min ” ; # S u b s t i t u t e t h e s t r i n g ”min” where Min used
Max=”max” ; # S u b s t i t u t e t e h s t r i n g ”max” where Max used
srand () ; # Randomize t h e se ed used t o g e n e r a t e random numbers
B u i l d T r e e =0; #By d e f a u l t , don ’ t add r e c o r d s t o t h e t r e e s

#0 − don ’ t add ; 1 − add .
C u r r e n t R e c o r d =0; # Record c u r r e n t l y b e i n g a c c e s s e d
Pass =0; # C o n t a i n s t h e c u r r e n t pas s b e i n g made t h r o u g h da t a
L a s t L i n e =” ” ; # C o n t a i n s l a s t l i n e se en from t h e f i l e b e i n g read
MaxSize =7; #The maximum s i z e t o a l l o w t h e t r e e t o grow t o
ReqRecs =35; #The minimum number o f r e c o r d s t h a t must be see n

be tween garbage c o l l e c t i o n s
C s i z e =0; # S i z e f o t h e t r e e c u r r e n t l y b e i n g m a n i p u l a t e
Mode =0;
R e c o r d s I n =0; #Number o f r e c o r d s se en t h u s f a r
I n c S i z e =75; #Number o f r e c o r d s r e q u i r e d b e f o r e t r e e s i z e grows
GrowthMult =1 ;

S p e c i a l # I f s p e c i a l e q u a l s 1 , p r i n t T r e e s on d i s c r e t i z a t i o n f i n i s h
DynTree =0; # DynTree = 1 a l l o w s dynamic t r e e s i z e ; e l s e s t a t i c
S i z e C h o i c e =0; # S i z e C h o i c e = 1 use s i z e req o f n / 3 ; e l s e s q r t (n)

}

S k i p b l a n k and comment l i n e s
{ sub (/ \% . ∗ / , ” ”)} # S u b s t i t u t e comments w i t h b l a n k s
{gsub (/ [\ ’ \ ” \ ‘] / , ” ” , $0)} #Remove any s i n g l e o r do u b l e q u o t e s from t h i s l i n e
{ gsub (” ’ ” , ” ” , $0)} #Remove any s i n g l e q u o t e s

/ ˆ [\ t]∗ $ / { n e x t } #When b l a n k l i n e obse rved , go t o t h e n e x t l i n e

#PROCESS RELATION LINES
/@RELATION/{ sub (/ @RELATION/ , ” @ r e l a t i o n ”)}
/ @ r e l a t i o n /{

B u i l d T r e e =0; # S e t f l a g f o r p a r s i n g l i n e s t o remember (add t o t r e e) t o f a l s e
A t t r =0 ; # S e t a t t r i b u t e c o u n t e r t o z e r o
L a s t L i n e =” ” ; # S e t t h e L a s t L i n e se en t o n o t h i n g
R e c o r d s I n =0;
i f (P as s ==2){

f o r (I i n T r e e s)
{

i f (C u r r e n t S i z e [I] > MaxSize)

132

{
g a r b a g e C o l l e c t (C u r r e n t R o o t [I] , Rbst , MaxSize)

}
}

p r i n t $0
}
#COMMENTED CODE can be used t o v e r i f y t h a t t h e f i r s t p a s s c r e a t e d t h e BSTs f o r t h e numer ic
a t t r i b u t e s and t h a t i t m a i n t a i n e d c l a s s c o u n t s . I t p r i n t s t h e t r e e t o t h e s c r e e n f o r r e v i e w
i f (Pas s ==2){
f o r (I i n Numeric)
{
a l l v a l u e s =” ”
f o r (J i n C l a s s e s){ a l l v a l u e s = a l l v a l u e s ” ” C l a s s e s [J]}
p r i n t ” C l a s s e s a r e : [” a l l v a l u e s ”] ”
p r i n t t r e e (C u r r e n t R o o t [I] , Rbst , ” ” , ” ” , C l a s s e s)
p r i n t ” ”
}
#}

}

#PROCESS ATTRIBUTE LINES
/@ATTRIBUTE/ { sub (/ @ATTRIBUTE/ , ” @ a t t r i b u t e ”)}
/ @ a t t r i b u t e / {

#On t h e f i r s t pass , d e t e r m i n e which a t t r i b u t e s s h o u l d be p u t i n t o t r e e s
w h i l e p r e v e n t i n g t h e c l a s s a t t r i b u t e from b e i n g p u t i n t o t h e t r e e .
i f (Pa s s ==1)
{

i f (L a s t L i n e != ” ”)
{

A t t r ++; # For each new a t t r i b u t e , i n c r e a s e a t t r i b u t e c o u n t e r

Ob t a i n t h e name of each a t t r i b u t e and
s t o r e t o t h e Names a r r a y
gsub (” ” , ” ” , L a s t L i n e)
s p l i t (Las t L i ne , a , ” ”)
Names [A t t r]= a [2]

C r e a t e a l i s t o f t h e f i e l d s t h a t s h o u l d be p u t i n t o t r e e s
A t t r s [A t t r]=1
i f ((match (Las tL ine , / numer ic /) > 0) | | (match (Las tL ine , / r e a l /) > 0) | | (match (Las tL in e , / i n t e g e r /) > 0))
{

T r e e s [A t t r]=1
}

}
L a s t L i n e =$0 # M a i n t a i n a copy of t h e l a s t a t t r i b u t e read , a s i f t h e @data

symbol i s s e en t h e n t h e L a s t L i n e a t t r i b u t e i s t h e c l a s s
a t t r i b u t e

n e x t
}

#On t h e second pass , r e p l a c e t h e o r i g i n a l a t t r i b u t e v a l u e s wi th an
a c c u r a t e l i s t o f t h e d i s c r e t i z e d c l a s s e s
i f (Pas s ==2)
{

i f (L a s t L i n e != ” ”)
{

A t t r ++
i f (A t t r i n T r e e s)
{

o u t c l a s s e s = ” ”
i f (S i z e C h o i c e ==1)
{

o u t c l a s s e s = d i s c C l a s s e s (Rbst , C u r r e n t R o o t [A t t r] , i n t ((Rbs t [C u r r e n t R o o t [A t t r] , A l l]) / 3) , o u t c l a s s e s)
}
e l s e
{

o u t c l a s s e s = d i s c C l a s s e s (Rbst , C u r r e n t R o o t [A t t r] , i n t (s q r t (Rbs t [C u r r e n t R o o t [A t t r] , A l l])) , o u t c l a s s e s)
}
sub (Las t L i ne , ” @ a t t r i b u t e ” Names [A t t r] ” {” o u t c l a s s e s ”}” , L a s t L i n e)

}
p r i n t L a s t L i n e

}
L a s t L i n e =$0
n e x t

}
}

#PREPARE TO PROCESS DATA
/@DATA/{ sub (/@DATA/ , ” @data ”)}
/ @data /{

B u i l d T r e e =1; #The p o i n t has been r e a c h e d where d a t a s h o u l d be p u t i n t r e e
C u r r e n t R e c o r d =1; #The n e x t nonb lank l i n e r e a d w i l l be t h e f i r s t r e c o r d
#On f i r s t pass , d e t e r m i n e t h e t h e c l a s s e s and s e t up t h e t r e e s
i f (Pa s s ==1)
{

P a r s e l a s t l i n e t o o b t a i n c l a s s e s s

133

sub (/ \ } $ / , ” ” , L a s t L i n e) # Prune c l o s i n g b r a c k e t from c l a s s
sub (/ @ a t t r i b u t e / , ” ” , L a s t L i n e) # Prune @ a t t r i b u t e sybmol from c l a s s
sub (/ ˆ [[: alnum :] [: b l a n k :]] ∗ \ { / , ” ” , L a s t L i n e) # Prune c l a s s name and open ing b r a c k e t from c l a s s e s
gsub (/ [\ t \n] ∗ / , ” ” , L a s t L i n e) # Prune any e x t r a n e o u s s p a c e s from c l a s s e s
s p l i t (Las t L i ne , myClasses , ” , ”) # S p l i t r e m a i n i n g i n f o r m a t i o n i n t o d i f f e r e n t c l a s s e s

COMMENTED CODE p r i n t s each c l a s s and c r e a t e s a l i s t o f a l l t h e c l a s s e s and p r i n t s i t
f o r (J i n myClasses){ p r i n t myClasses [J]}
a l l v a l s = ” ”
f o r (J i n myClasses){ i f (a l l v a l s ==” ”){ a l l v a l s = myClasses [J]} e l s e { a l l v a l s = a l l v a l s ” ” myClasses [J]}}
p r i n t a l l v a l s

I n i t i a l i z e t h e r o o t s o f each t r e e t o s y b o l i z e an empty t r e e , and new r e c o r d s f o r each t r e e t o 0
f o r (I i n T r e e s){ C u r r e n t R o o t [I] = ” ? ” ; C u r r e n t S i z e [I] = 0 ; NewRecords [I]=0}

}

#When o u t p u t t i n g pruned d a t a s e t , e n s u r e k e e p i n g t h e @data l i n e
i f (Pa s s ==2) { p r i n t L a s t L i n e ; p r i n t $0}

#Do n o t want t o p r o c e e d t o p u t t h e @data symbol i n t h e t r e e , so go t o t h e n e x t l i n e
n e x t

}

#PROCESS DATA / BUILD TREES FROM DATA
#PASS ONE c r e a t e s t h e b i n a r y s e a r c h t r e e f o r each (numer ic) a t t r i b u t e
Pas s ==1 && B u i l d T r e e && NF >1{

f o r (I i n T r e e s) # For each non−c l a s s a t t r i b u t e
{

NewRecords [I]++ #Add one t o t h e number o f r e c o r d s see n s i n c e l a s t g a r b a g e c o l l e c t
f i e l d = $I ; # f i e l d s e t t o t h e v a l u e o f t h e a t t r i b u t e i n t h e row c u r r e n t l y b e i n g p r o c e s s e d
CSize= C u r r e n t S i z e [I] # s e t CSize t o t h e s i z e o f t h e c u r r e n t t r e e

I f m i s s i n g da ta , d e c r e a s e new r e c o r d c o u n t and go t o n e x t f i e l d
i f (f i e l d ˜ / ? /) {NewRecords [I]−−; c o n t i n u e }

Otherwise , d a t a i s v a l i d , i n s e r t i n t o t h e t r e e
e l s e r e t u r n v a l u e s = r b s t i n s e r t (C u r r e n t R o o t [I] , Rbst , f i e l d , Names [I] , Cu r r en tReco rd , $NF , myClasses , CSize)

S p l i t t h e r e t u r n e d v a l u e i n t o t h e c u r r e n t r o o t and s i z e o f t h e t r e e
t h a t was j u s t p r o c e s s e d
s p l i t (r e t u r n v a l u e s , v a l s , SUBSEP)
C u r r e n t R o o t [I]= v a l s [1] SUBSEP v a l s [2]
C u r r e n t S i z e [I]= v a l s [3]

I f t h e t r e e e x c e e d s t h e Maximum s i z e and t h e minumum numer o f r e c o r d s
between g a r b a g e c o l l e c t i o n s has been seen , Garbage C o l l e c t !
i f ((C u r r e n t S i z e [I] > MaxSize) && (NewRecords [I] >=ReqRecs))
{

g a r b a g e C o l l e c t (C u r r e n t R o o t [I] , Rbst , MaxSize)
NewRecords [I]=0

}
R e c o r d s I n ++;
i f (DynTree ==1)
{

i f (R e c o r d s I n >= (I n c S i z e ∗ GrowthMult))
{

GrowthMult ++;
MaxSize= MaxSize + 2 ˆ (2 + GrowthMul t i)

}
}

}

I n c r e a s e t h e c o u n t e r o f t h e number o f r e c o r d s t h a t have been p r o c e s s e d
C u r r e n t R e c o r d ++;

}

#PASS TWO s u b s t i t u t e s t h e d i s c r e t i z e d v a l u e from t h e s e a r c h t r e e f o r each v a l u e / a t t r i b u t e
Pas s ==2 && B u i l d T r e e && NF >1{

f o r (I i n T r e e s) # f o r each non−c l a s s a t t r i b u t e
{

f i e l d = $I # f i e l d s e t t o t h e v a l u e o f t h e a t t r i b u t e i n t h e row c u r r e n t l y b e i n g p r o c e s s e d
R o o t I n s t a n c e = C u r r e n t R o o t [I] # S e t R o o t I n s t a n c e t o t h e r o o t i n s t a n c e o f t h e a t t r i b u t e c u r r e n t l y b e i n g p r o c e s s e d
i f (f i e l d ˜ / ? /) c o n t i n u e # I f m i s s i n g d a t a (s y m b o l i z e d by ?) , go t o t h e n e x t f i e l d

Otherwise , d a t a i s v a l i d , d e t e r m i n e what d i s c r e t e v a l u e t o s u b s t i t u t e wi th
e l s e
{

i f (S i z e C h o i c e ==1)
{

$I = s u b w i t h (i n t ((Rbs t [R o o t I n s t a n c e , A l l]) / 3) , f i e l d , Rbst , C u r r e n t R o o t [I])
}
e l s e
{

$I = s u b w i t h (i n t (s q r t (Rbs t [R o o t I n s t a n c e , A l l])) , f i e l d , Rbst , C u r r e n t R o o t [I])
}

134

}
}

P r i n t t h e p a r s e d l i n e s
p r i n t $0

}

END{
i f (S p e c i a l ==1)
{

f o r (I i n T r e e s)
{

p r i n t ” ”
a l l v a l s = ” ”
f o r (J i n myClasses){ i f (a l l v a l s ==” ”){ a l l v a l s = myClasses [J]} e l s e { a l l v a l s = a l l v a l s ” ” myClasses [J]}}
p r i n t ” C l a s s e s a r e : [” a l l v a l s ”] ”
p r i n t t r e e (C u r r e n t R o o t [I] , Rbst , ” ” , ” ” , myClasses)
p r i n t ” ”

}
}

}

#∗∗
b s t . awk
#DJ ’ s B in a r y Se a r c h Tree F u n c t i o n s

I n s e r t a a new node a t t h e r o o t o f t h e t r e e
f u n c t i o n i n s e r t R (R o o t I n s t a n c e , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)
{

i f (R o o t I n s t a n c e == ” ? ”)
{

r e t u r n n e w t r e e (A t t r SUBSEP Rec , Tree , Value , C las s , C l a s s e s , C u r r e n t S i z e)
}
Tree [R o o t I n s t a n c e , A l l]++
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s]++

i f (Value == Tree [R o o t I n s t a n c e , Val])
{

Tree [R o o t I n s t a n c e , Here]++
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s]++
r e t u r n R o o t I n s t a n c e SUBSEP C u r r e n t S i z e

}

i f (Value < Tree [R o o t I n s t a n c e , Val])
{

r e t u r n v a l s = i n s e r t R (Tree [R o o t I n s t a n c e , L e f t] , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)
s p l i t (r e t u r n v a l s , v a l s , SUBSEP)
Tree [R o o t I n s t a n c e , L e f t]= v a l s [1] SUBSEP v a l s [2]
C u r r e n t S i z e = v a l s [3]
R o o t I n s t a n c e = r o t a t e R (R o o t I n s t a n c e , Tree , C l a s s e s)

}
e l s e
{

r e t u r n v a l s = i n s e r t R (Tree [R o o t I n s t a n c e , R i g h t] , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)
s p l i t (r e t u r n v a l s , v a l s , SUBSEP)
Tree [R o o t I n s t a n c e , R i g h t]= v a l s [1] SUBSEP v a l s [2]
C u r r e n t S i z e = v a l s [3]
R o o t I n s t a n c e = r o t a t e L (R o o t I n s t a n c e , Tree , C l a s s e s)

}
r e t u r n R o o t I n s t a n c e SUBSEP C u r r e n t S i z e

}

R o t a t e t h e c u r r e n t r o o t ’ s l e f t s u b c h i l d t o r i g h t t o make i t become t h e c u r r e n t r o o t
f u n c t i o n r o t a t e R (R o o t I n s t a n c e , Tree , C l a s s e s , temp)
{

temp = Tree [R o o t I n s t a n c e , L e f t]
Tree [R o o t I n s t a n c e , L e f t] = Tree [temp , R i g h t]
Tree [temp , R i g h t] = R o o t I n s t a n c e
Tree [temp , A l l] = Tree [R o o t I n s t a n c e , A l l]
f o r (M i n C l a s s e s)
{

Tree [temp , ”A” SUBSEP C l a s s e s [M]] = Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]]
}
i f ((Tree [R o o t I n s t a n c e , L e f t] != ” ? ”) && (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l]=\
Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l]+ Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l]+ Tree [R o o t I n s t a n c e , Here]
f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\
Tree [Tree [R o o t I n s t a n c e , L e f t] , ”A” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , R i g h t] , ”A” SUBSEP C l a s s e s [M]] +\
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]]

}

135

}
e l s e
{

i f ((Tree [R o o t I n s t a n c e , L e f t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l] = Tree [R o o t I n s t a n c e , Here]+ Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l]
f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , L e f t] , ”A” SUBSEP C l a s s e s [M]]

}
}
e l s e
{

i f ((Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l] =\
Tree [R o o t I n s t a n c e , Here]+\
Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l]

f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , R i g h t] , ”A” SUBSEP C l a s s e s [M]]

}
}
e l s e
{

Tree [R o o t I n s t a n c e , A l l] = Tree [R o o t I n s t a n c e , Here]
f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] = Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]]
}

}
}

}
r e t u r n temp

}

R o t a t e t h e c u r r e n t r o o t s r i g h t s u b c h i l d up t o t h e r o o t (by r o t a t i n g i t t o t h e l e f t)
f u n c t i o n r o t a t e L (R o o t I n s t a n c e , Tree , C l a s s e s , temp)
{

temp = Tree [R o o t I n s t a n c e , R i g h t]
Tree [R o o t I n s t a n c e , R i g h t] = Tree [temp , L e f t]
Tree [temp , L e f t] = R o o t I n s t a n c e
Tree [temp , A l l] = Tree [R o o t I n s t a n c e , A l l]
f o r (M i n C l a s s e s)
{

Tree [temp , ”A” SUBSEP C l a s s e s [M]] = Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]]
}
i f ((Tree [R o o t I n s t a n c e , L e f t] != ” ? ”) && (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l]=\
Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l]+\

Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l]+\
Tree [R o o t I n s t a n c e , Here]

f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\
Tree [Tree [R o o t I n s t a n c e , L e f t] , ”A” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , R i g h t] , ”A” SUBSEP C l a s s e s [M]] +\
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]]

}
}
e l s e
{

i f ((Tree [R o o t I n s t a n c e , L e f t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l] = Tree [R o o t I n s t a n c e , Here]+ Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l]
f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , L e f t] , ”A” SUBSEP C l a s s e s [M]]

}
}
e l s e
{

i f ((Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”))
{

Tree [R o o t I n s t a n c e , A l l] = Tree [R o o t I n s t a n c e , Here]+ Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l]
f o r (M i n C l a s s e s)

{
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] =\

136

Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] +\
Tree [Tree [R o o t I n s t a n c e , R i g h t] , ”A” SUBSEP C l a s s e s [M]]

}
}
e l s e
{

Tree [R o o t I n s t a n c e , A l l] = Tree [R o o t I n s t a n c e , Here]
f o r (M i n C l a s s e s)

{
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] = Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]]

}
}

}
}
r e t u r n temp

}

F u n c t i o n t o i n s e r t a new node i n t o t h e t r e e
f u n c t i o n n e w t r e e (R o o t I n s t a n c e , Tree , Value , C las s , C l a s s e s , C u r r e n t S i z e)
{

p r i n t R o o t I n s t a n c e
Tree [R o o t I n s t a n c e , L e f t]= ” ? ”
Tree [R o o t I n s t a n c e , R i g h t]= ” ? ”
Tree [R o o t I n s t a n c e , Val]= Value
Tree [R o o t I n s t a n c e , A l l]=1
Tree [R o o t I n s t a n c e , Here]=1

I n i t i a l i z e t h e h e r e and A l l c l a s s c o u n t s f o r each c l a s s
f o r (M i n C l a s s e s)
{

Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] = 0
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] = 0

}

Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s]=1
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s]=1
C u r r e n t S i z e ++
r e t u r n R o o t I n s t a n c e SUBSEP C u r r e n t S i z e

}

F u n c t i o n t o p r i n t t h e c u r r e n t t r e e
f u n c t i o n p r i n t t r e e (R o o t I n s t a n c e , Tree , b4 , i n d e n t , C l a s s e s , a l l c l a s s e s , t r e e c l a s s e s)
{

a l l c l a s s e s =” ”
t r e e c l a s s e s =” ”
f o r (M i n C l a s s e s)
{

i f (a l l c l a s s e s ==” ”){ a l l c l a s s e s = Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]] }
e l s e a l l c l a s s e s = a l l c l a s s e s ” ” Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s e s [M]]
i f (t r e e c l a s s e s ==” ”){ t r e e c l a s s e s = Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]] }
e l s e t r e e c l a s s e s = t r e e c l a s s e s ” ” Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s e s [M]]

}
p r i n t i n d e n t b4 R o o t I n s t a n c e ” = ” Tree [R o o t I n s t a n c e , Val] ” [h e r e =” Tree [R o o t I n s t a n c e , Here] ”] [a l l =” Tree [R o o t I n s t a n c e , A l l] ”] ”
p r i n t i n d e n t b4 R o o t I n s t a n c e ” C l a s s e s h e r e a r e : [” a l l c l a s s e s ”] , a l l : [” t r e e c l a s s e s ”] ”
i f (Tree [R o o t I n s t a n c e , L e f t] != ” ? ”)

p r i n t t r e e (Tree [R o o t I n s t a n c e , L e f t] , Tree , ”< ” , i n d e n t ” | ” , C l a s s e s , x)
i f (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”)

p r i n t t r e e (Tree [R o o t I n s t a n c e , R i g h t] , Tree , ”> ” , i n d e n t ” | ” , C l a s s e s , x)
}

F u n c t i o n f o r i n s e r t i n g a v a l u e i n t o t h e t r e e . I f t h e v a l u e i s n o t a t t h e r o o t ,
t h i s f u n c t i o n w i l l , w i t h a 1 / n chance , i n s e r t t h e node a t t h e c u r r e n t r o o t .
f u n c t i o n r b s t i n s e r t (R o o t I n s t a n c e , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)
{

p r i n t R o o t I n s t a n c e
i f (R o o t I n s t a n c e == ” ? ”)
{

r e t u r n n e w t r e e (A t t r SUBSEP Rec , Tree , Value , C las s , C l a s s e s , C u r r e n t S i z e)
}

i f (Value == Tree [R o o t I n s t a n c e , Val])
{

Tree [R o o t I n s t a n c e , Here]++
Tree [R o o t I n s t a n c e , A l l]++
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s]++
Tree [R o o t I n s t a n c e , ” h ” SUBSEP C l a s s]++
r e t u r n R o o t I n s t a n c e SUBSEP C u r r e n t S i z e

}

e l s e
{

i f ((r and () ∗ Tree [R o o t I n s t a n c e , A l l]) < 1 . 0)
{

137

r e t u r n i n s e r t R (R o o t I n s t a n c e , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)
}
i f (Value < Tree [R o o t I n s t a n c e , Val])
{

r e t u r n v a l s =\
r b s t i n s e r t (Tree [R o o t I n s t a n c e , L e f t] , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)

s p l i t (r e t u r n v a l s , v a l s , SUBSEP)
Tree [R o o t I n s t a n c e , L e f t]= v a l s [1] SUBSEP v a l s [2]
C u r r e n t S i z e = v a l s [3]

}
e l s e
{

r e t u r n v a l s =\
r b s t i n s e r t (Tree [R o o t I n s t a n c e , R i g h t] , Tree , Value , A t t r , Rec , C las s , C l a s s e s , C u r r e n t S i z e)

s p l i t (r e t u r n v a l s , v a l s , SUBSEP)
Tree [R o o t I n s t a n c e , R i g h t]= v a l s [1] SUBSEP v a l s [2]
C u r r e n t S i z e = v a l s [3]

}
Tree [R o o t I n s t a n c e , A l l]++
Tree [R o o t I n s t a n c e , ”A” SUBSEP C l a s s]++
r e t u r n R o o t I n s t a n c e SUBSEP C u r r e n t S i z e

}
}

F u n c t i o n t h a t d e t e r m i n e s which t r e e node t o s u b s t i t u t e f o r a g i v e n v a l u e
For a t r e e node t o be chosen as a v i a b l e s u b s t i t u t e , i t must have a t l e a s t
minSize nodes a t i n i t s e l f and / o r i n i t s c h i l d r e n .
f u n c t i o n s u b w i t h (minSize , Value , Tree , R o o t I n s t a n c e)
{
p r i n t ” T h i s i n s t a n c e i s : ” Value ” and i t i s b e i n g compared t o : ” Tree [R o o t I n s t a n c e , Val]

i f (((Value == Tree [R o o t I n s t a n c e , Val]) | | (Value ˜ Tree [R o o t I n s t a n c e , Val])) \
&& (Tree [R o o t I n s t a n c e , A l l] >= minSize))

{
p r i n t ” They a r e e q u a l ”

r e t u r n R o o t I n s t a n c e
}

p r i n t ” n o t e q u a l ”
i f (Value < Tree [R o o t I n s t a n c e , Val])
{

i f (Tree [R o o t I n s t a n c e , L e f t] ! = ” ? ”)
{

i f (Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l] >= minSize)
{

r e t u r n s u b w i t h (minSize , Value , Tree , Tree [R o o t I n s t a n c e , L e f t])
}
e l s e r e t u r n R o o t I n s t a n c e

}
e l s e r e t u r n R o o t I n s t a n c e

}
i f (Value > Tree [R o o t I n s t a n c e , Val])
{

i f (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”)
{

i f (Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l] >= minSize)
{

r e t u r n s u b w i t h (minSize , Value , Tree , Tree [R o o t I n s t a n c e , R i g h t])
}
e l s e r e t u r n R o o t I n s t a n c e

}
e l s e r e t u r n R o o t I n s t a n c e

}
e l s e
{

i f (i n t (2∗ r and ()) > 1)
{

i f (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”)
{

i f (Tree [Tree [R o o t I n s t a n c e , R i g h t] , A l l] >= minSize)
{

r e t u r n s u b w i t h (minSize , Value , Tree , Tree [R o o t I n s t a n c e , R i g h t])
}
e l s e r e t u r n R o o t I n s t a n c e

}
e l s e r e t u r n R o o t I n s t a n c e

}
e l s e
{

i f (Tree [R o o t I n s t a n c e , L e f t] ! = ” ? ”)
{

i f (Tree [Tree [R o o t I n s t a n c e , L e f t] , A l l] >= minSize)
{

r e t u r n s u b w i t h (minSize , Value , Tree , Tree [R o o t I n s t a n c e , L e f t])
}
e l s e r e t u r n R o o t I n s t a n c e

}

138

e l s e r e t u r n R o o t I n s t a n c e
}

}
}

F u n c t i o n t o o b t a i n t h e l i s t s o f d i s c r e t i z e d c l a s s e s
#To be a p a r t o f t h i s l i s t , t h e g i v e n node must
be o f a t l e a s t minSize
f u n c t i o n d i s c C l a s s e s (Tree , R o o t I n s t a n c e , minSize , myClasses)
{

i f (Tree [R o o t I n s t a n c e , L e f t] != ” ? ”)
{

myClasses = d i s c C l a s s e s (Tree , Tree [R o o t I n s t a n c e , L e f t] , minSize , myClasses)
}
i f (Tree [R o o t I n s t a n c e , A l l] >= minSize)
{

i f (myClasses != ” ”)
{

myClasses = myClasses ” , ” R o o t I n s t a n c e
}
e l s e
{

myClasses = R o o t I n s t a n c e
}

}
i f (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”)
{

myClasses = d i s c C l a s s e s (Tree , Tree [R o o t I n s t a n c e , R i g h t] , minSize , myClasses)
}
r e t u r n myClasses

}

F u n c t i o n t o p rune t r e e t o an a p p r o p r i a t e s i z e / keep i t from e x c e e d i n g memory a v a i l a b i l i t y
f u n c t i o n g a r b a g e C o l l e c t (R o o t I n s t a n c e , Tree , MaxSize , low , high , s i z e)
{

S e t up a s e t t o t r a c k t h e t r e e nodes t h a t have been ” t o u c h e d by t h e b r e a d t h f i r s t s e a r c h
s i z e =0;
h igh =1;
low =0;
NodeSet [0] = R o o t I n s t a n c e

F u n c t i o n u s e s a bread th− f i r s t approach t o span t h e t r e e , add ing nodes t o t h e s e t l e f t t o r i g h t
a c r o s s each l e v e l and t h e n moving down t o t h e f o l l o w i n g one . When t h e max s i z e o f t h e t r e e i s
reached , t h e nodes r e m a i n i n g i n t h e s e t are removed , a long w i t h any o f t h e i r c h i l d r e n t h a t were
n o t d i s c o v e r e d .
whi le (h i gh != low)
{

i f (Tree [NodeSet [low] , L e f t] != ” ? ”)
{

NodeSet [h i gh]= Tree [NodeSet [low] , L e f t] ;
h igh ++;

}
i f (Tree [NodeSet [low] , R i g h t] != ” ? ”)
{

NodeSet [h i gh]= Tree [NodeSet [low] , R i g h t] ;
h igh ++;

}
s i z e ++;
low ++;
i f (s i z e == MaxSize)
{

h igh = high −1;
whi le (low <= h igh)
{

removeVal (R o o t I n s t a n c e , Tree , pruneNode (NodeSet [h igh] , Tree))
h i gh = h i gh − 1 ;

}
}

}
}

F u n c t i o n t o remove a g i v e n node and any o f i t s c h i l d r e n from t h e t r e e
f u n c t i o n pruneNode (R o o t I n s t a n c e , Tree)
{

I f t h i s node has a l e f t c h i l d , remove t h a t l e f t c h i l d b e f o r e t h i s node
i f (Tree [R o o t I n s t a n c e , L e f t] != ” ? ”)
{

pruneNode (Tree [R o o t I n s t a n c e , L e f t] , Tree)
}
I f t h i s node has a r i g h t c h i l d , remove t h a t r i g h t c h i l d b e f o r e t h i s node
i f (Tree [R o o t I n s t a n c e , R i g h t] != ” ? ”)
{

pruneNode (Tree [R o o t I n s t a n c e , R i g h t] , Tree)
}

S e t a l l r e l e v a n t v a l u e s o f t h i s t r e e t o z e r o and d i s c o n n e c t t h e c h i l d r e n s nodes

139

Tree [R o o t I n s t a n c e , L e f t]= ” ? ”
Tree [R o o t I n s t a n c e , R i g h t]= ” ? ”
Tree [R o o t I n s t a n c e , A l l]=0
Tree [R o o t I n s t a n c e , Here]=0
re turn Tree [R o o t I n s t a n c e , Val]

}

F u n c t i o n t o remove a node from t h e t r e e based on i t s v a l u e
S t a r t i n g r o o t node w i l l n o t be removed u s i n g t h i s method
f u n c t i o n removeVal (R o o t I n s t a n c e , Tree , myVal)
{

i f (Tree [R o o t I n s t a n c e , Val] > myVal)
{

i f (Tree [Tree [R o o t I n s t a n c e , L e f t] , Val] == myVal)
{

Tree [R o o t I n s t a n c e , L e f t]= ” ? ”
}
e l s e
{

removeVal (Tree [R o o t I n s t a n c e , L e f t] , Tree , myVal)
}

}
e l s e
{

i f (Tree [Tree [R o o t I n s t a n c e , R i g h t] , Val] == myVal)
{

Tree [R o o t I n s t a n c e , R i g h t]= ” ? ”
}
e l s e
{

removeVal (Tree [R o o t I n s t a n c e , R i g h t] , Tree , myVal)
}

}
}#$ %

140

Appendix B

crossval Source Code

! "
! / b i n / bash
/∗ vim : s e t f i l e t y p e =sh : ∗ / −∗− sh −∗−

DESTDIR=${DESTDIR=” / s r v / b r on ze / d j ”}
MyHome=${MyHome=${HOME}} #${HOME}}

Q0 : where w i l l t h e o u t p u t be s t o r e d
Safe =${ S af e =${DESTDIR} / v a r / weka}
BinDi r =${BinDi r =${MyHome} / b i n }

Q1 : where i s your da ta ?
Data=${Data=${MyHome} / v a r / d a t a / d i s c r e t e }

Q2 : what da t a s e t s w i l l we run ?
A2 : o n l y t h o s e w i t h d i s c r e t e c l a s s e s :
Datums=${Datums=” a2b / a u d i o l o g y a2b / au to−mpg

a2b / b r e a s t−c a n c e r a2b / b r e a s t−cance r−w i s c o n s i n
c2d / c r e d i t −a c2d / d i a b e t e s e 2 i / e c o l i e 2 i / f l a g e 2 i / hayes−r o t h
e 2 i / h e a r t−c e 2 i / h e a r t−h e 2 i / h e p a t i t i s e 2 i / i m p o r t s −85
e 2 i / i r i s j 2 p / kr−vs−kp j 2 p / l e t t e r j 2 p / mushroom
q2s / segment q2s / s p l i c e q2s / soybean t 2 z / vowel
t 2 z / wine t 2 z / wdbc t 2 z / waveform−5000”}

Q3 : what l e a r n e r s w i l l you t r y ?
L e a r n e r s =${ L e a r n e r s =” bayes ”}
bayes () { wt tp $1 $2 $wBayes | go twan t ; }

[−f ” $ F u n c t i o n s ”] && . $ F u n c t i o n s

Q4 : what pre−p r o c e s s o r s w i l l you use
P r e p s =${ P r e p s =” c a t d i s c t r e e 3 f a y y a d I r a n i pk id t b i n ”}
d i s c t r e e 3 () { d t r e e 3 DynTree =1 Pass =1 $1 Pas s =2 $1 ; }
t b i n () { t e n b i n s Pas s =1 $1 Pa s s =2 $1 Pas s =3 $1 ; }
pk id () { wpkid $1 ;}

Q5 : how many r e p e a t s ?
R e p e a t s =${R e p e a t s =10}

Q6 : how many b i n s ?
Bins =${Bins =10}

A l l r i g h t t h e n . L e t s go !
mkdir −p $Safe # e n s u r e s a f e p l a c e e x i s t s
Tmp= ‘mktemp −d ‘ # make a sandbox where o n l y you w i l l p l a y
trap ”rm − r f $Tmp” 0 1 2 3 15 # l e a v e n o t h i n g b e h in d when you q u i t
cd $Tmp # go t o t h e sandbox

main () {
s e t −x
f o r datum i n $Datums
do

echo ” # da ta , l e a r n e r , prep , t r a i n , t e s t , r e p e a t s , b in , goa l , a , b , c , d , a cc u ra cy , pd , pf , p r e c i s i o n , b a l ”
f o r p rep i n $P re ps
do

$prep ${Data } / ${datum } . a r f f > d a t a . a r f f
f o r ((r e p e a t s =1 ; r e p e a t s <=$ R e p e a t s ; r e p e a t s ++))
do

s eed =$RANDOM
f o r ((b i n =1; bin<=${Bins } ; b i n ++))
do

c a t d a t a . a r f f | someArff −−s eed $seed −−b i n s $Bins −−b i n $b in

141

g o a l s = ‘ c a t d a t a . a r f f | c l a s s e s −−b r i e f ‘
n1 = ‘ i n s t a n c e s t r a i n . a r f f ‘
n2 = ‘ i n s t a n c e s t e s t . a r f f ‘
f o r l e a r n i n $ L e a r n e r s
do

$ l e a r n t r a i n . a r f f t e s t . a r f f > r e s u l t s . c sv
cp r e s u l t s . c sv $Safe / r e s u l t s . c sv
f o r g o a l i n $ g o a l s
do

b4=” $datum , $ l e a r n , $prep , $n1 , $n2 , $ r e p e a t s , $bin , $ g o a l ” ;
c a t r e s u l t s . c sv | ${BinDi r } / abcd −g ” $ g o a l ” −p ” ${b4}” −d 1 | t a i l −n 1

abcd P r e f i x =”${b4}” F a l s e=”${one}” True=”${ two}”
done

done ; done ; done ; done ; done
}

Log=$$
S t a r t = ‘ d a t e +%H:%M:%S%t%m/%d/%Y‘
(main | t e e $Safe / x v a l . $Log) 2> $Safe / x v a l . e r r . $Log
d o E x t r a s $Sa fe / x v a l . $Log > $Safe / m y r e s u l t s . $Log . csv

echo ” Computing acc compar i son ”
w i n l o s s t i e −− i n p u t $Sa fe / m y r e s u l t s . $Log . csv −− f i e l d s 18 −−pe r fo rm 13 −−key 3 −−95 −−h i gh > $Safe / c ros sva l accmw . $Log . csv
echo ” Computing pd compar i son ”
w i n l o s s t i e −− i n p u t $Sa fe / m y r e s u l t s . $Log . csv −− f i e l d s 18 −−pe r fo rm 14 −−key 3 −−95 −−h i gh > $Safe / crossva lpdmw . $Log . csv
echo ” Computing p r e c compar i son ”
w i n l o s s t i e −− i n p u t $Sa fe / m y r e s u l t s . $Log . csv −− f i e l d s 18 −−pe r fo rm 16 −−key 3 −−95 −−h i gh > $Safe / c r o s s v a l p r e c m w . $Log . csv
echo ” Computing b a l compar i son ”
w i n l o s s t i e −− i n p u t $Sa fe / m y r e s u l t s . $Log . csv −− f i e l d s 18 −−pe r fo rm 17 −−key 3 −−95 −−h i gh > $Safe / c r o s s v a l b a l m w . $Log . csv
echo ” Computing npf compar i son ”
w i n l o s s t i e −− i n p u t $Sa fe / m y r e s u l t s . $Log . csv −− f i e l d s 18 −−pe r fo rm 18 −−key 3 −−95 −−h i gh > $Safe / c ros sva lnp fmw . $Log . csv

End= ‘ d a t e +%H:%M:%S%t%m/%d/%Y‘
echo $ S t a r t ” t o ” $End
echo $ S t a r t ” t o ” $End >> m y r e s u l t s . $Log . csv
echo $Safe / x v a l . $Log#$ %

Notes on Support Scripts:

• instances counts the number of data instances that occur in the data file provided to it.

• someArff randomly generates the testing and training data sets from the file provided.

• classes returns the classes found in the provided data set.

• abcd computes the A, B, C, and D values for the provided data file and also calculates each

instances Accuracy, PD, PF, Balance, and Precision score

• doExtras computes the !PF score for each instance of the results

• winlosstie computers the U-test tables for each performance measure provided.

142

Appendix C

tenbins Source Code

! "
! / u s r / b i n / gawk − f
/∗ vim : s e t f i l e t y p e =awk : ∗ / −∗− awk −∗−
O r i g i n a l S c r i p t by Dr . Tim Menz ies as n b i n s
M o d i f i e d f o r use as t e n b i n s by DJ Boland , January 2007
p a t t e r n s 0 : i n i t i a l i z a t i o n s t u f f

BEGIN{
BinLog =0; # i f non−zero , use b i n l o g g i n g a f t e r r o u n d i n g numbers
Bins =10;
FS=OFS=” , ” ;
IGNORECASE=1;
I n f =10∗∗32;

}
{ sub (/ \% . ∗ / , ” ”)}

/ ˆ [\ t]∗ $ / {next }

/ @ r e l a t i o n / { Header =1; Data =0; A t t r =0 ; }
/ @data / { Header =0; Data =1; }
/ @ a t t r i b u t e / { A t t r ++; }

Pass ==1 && / @ a t t r i b u t e / && (/ numer ic / | | / r e a l / | | / i n t e g e r /) {
Numeric [A t t r]= 1 ;
Max[A t t r] = −1∗ I n f ;
Min [A t t r] = I n f ;

}
Pass ==1 && Data && NF > 1{

f o r (I i n Numeric) {
i f ($ I ˜ / ? /) c o n t i n u e ;
i f ($ I > Max [I]) Max[I]= $ I ;
i f ($ I < Min [I]) Min [I]= $ I ;

Seen [I , $ I] + + ;
}

}
Pass ==2 && / @ r e l a t i o n / {

f o r (I i n Numeric) {
Div [I]= Bins
Bin [I] = (Max[I]−Min [I]) / Div [I] ;
p r i n t ”% a t t r i b u t e : ” I ”=−=min : ”Min [I] ”=−=max : ”Max [I] \

”=−= b i n s : ” Div [I] ”=−= s t e p s : ” Bin [I]}
}

Pass ==2 && / @ a t t r i b u t e / {
i f ((A t t r i n Numeric) && A t t r != MaxAttr) {

Names=” ” ;
f o r (I =2 ; I<=Div [A t t r] ; I ++) Names=Names” , ” I

sub (/ i n t e g e r | numer ic | r e a l / , ”{ 1 ”Names”}”) ;
}

}
Pass ==2 && Data && NF> 1{

f o r (I i n Numeric) {
i f (I == MaxAttr) c o n t i nu e ;
i f ($ I ˜ / ? /) c o n t i nu e ;
$ I =” ” l a b e l (I , $ I) } ;

}
Pass ==2 { p r i n t $0}

f u n c t i o n round (x) { re turn i n t (x + (x<0 ? −0.5 : 0 . 5)) }
f u n c t i o n l a b e l (i , va l , x) {

i f (Bin [i]==0) re turn 1 ;
x= round ((va l−Min [i]) / Bin [i]) ;
i f (x ==0) { re turn 1} e l s e { re turn x } ;

}#$ %
143

Appendix D

Script for PKID

PKID Call BASH Script

Usage: pkid datafile

! "
! / b i n / bash

myJava=${myJava=” j a v a −Xmx1024M −cp / home / dona ldb / b i n / weka . j a r ”}

m y F i l t e r =${ m y F i l t e r =” weka . f i l t e r s . u n s u p e r v i s e d . a t t r i b u t e . P K I D i s c r e t i z e ”}

i n F i l e =${ i n F i l e =”− i ” $1}

myOpts=${myOpts=”−R f i r s t − l a s t −c l a s t ”}

command=${command= $myJava $ m y F i l t e r $ i n F i l e }

$command > o u t . d a t a

p r u n e j a v a o u t . d a t a > ou t2 . d a t a

c a t ou t2 . d a t a

rm o u t . d a t a

rm ou t2 . d a t a#$ %
Prunejava GAWK Script

! "
! / u s r / b i n / gawk − f
BEGIN{

FS = ” ∗ , ∗” ;
}

{ sub (/ \% . ∗ / , ” ”)} # S u b s t i t u t e comments w i t h b l a n k s
{gsub (/ [\ ’ \ ” \ ‘] / , ” ” , $0)} #Remove any s i n g l e o r d ou b l e q u o t e s from t h i s l i n e
{ gsub (” ’ ” , ” ” , $0)} #Remove any s i n g l e q u o t e s

/ ˆ [\ t]∗ $ / { n e x t } #When b l a n k l i n e obse rved , go t o t h e n e x t l i n e

/ ˆ j a v a / { n e x t }

{ p r i n t $0}#$ %

144

Appendix E

Entropy-Minimization Method Script

usage: fayyadIrani datafile! "
! / b i n / bash
j a v a −cp $wJar weka . f i l t e r s . s u p e r v i s e d . a t t r i b u t e . D i s c r e t i z e − i $1 −c l a s t#$ %

Where $wJar is an environmental variable set to the location of the weka.jar file and $1 repre-

sents the file presented to the script for discretization.

145

Appendix F

Performance Measure U-test Tables

F.1 Accuracy U-test By Data Set

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.1: audiology for acc

key win loss ties win-loss
disctree3 4 0 0 4

pkid 1 1 2 0
fayyadIrani 1 1 2 0

tbin 0 1 3 -1
cat 0 3 1 -3

Figure F.2: auto-mpg for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.3: breast-cancer for acc

146

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.4: breast-cancer-wisconsin for acc

key win loss ties win-loss
disctree3 3 0 1 3

fayyadIrani 2 0 2 2
pkid 2 1 1 1
tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.5: credit-a for acc

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 2 1 1 1
cat 2 1 1 1

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.6: diabetes for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.7: ecoli for acc

key win loss ties win-loss
tbin 1 0 3 1
pkid 1 0 3 1

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

cat 0 4 0 -4

Figure F.8: flag for acc

147

key win loss ties win-loss
fayyadIrani 2 0 2 2

cat 2 0 2 2
disctree3 1 0 3 1

tbin 1 2 1 -1
pkid 0 4 0 -4

Figure F.9: hayes-roth for acc

key win loss ties win-loss
tbin 1 0 3 1

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0
pkid 0 1 3 -1

Figure F.10: heart-c for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.11: heart-h for acc

key win loss ties win-loss
fayyadIrani 3 0 1 3

tbin 1 0 3 1
disctree3 0 1 3 -1

cat 0 1 3 -1
pkid 0 2 2 -2

Figure F.12: hepatitis for acc

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 1 1 2 0
disctree3 0 1 3 -1

cat 0 1 3 -1
pkid 0 2 2 -2

Figure F.13: imports-85 for acc

148

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.14: iris for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.15: kr-vs-kp for acc

key win loss ties win-loss
fayyadIrani 3 0 1 3

pkid 2 0 2 2
disctree3 2 1 1 1

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.16: letter for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.17: mushroom for acc

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
pkid 1 2 1 -1

disctree3 1 2 1 -1
cat 0 4 0 -4

Figure F.18: segment for acc

149

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.19: soybean for acc

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.20: splice for acc

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
cat 2 2 0 0

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.21: vowel for acc

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 2 1 1 1
cat 2 1 1 1

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.22: waveform-5000 for acc

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 1 1 2 0
pkid 1 1 2 0

disctree3 1 1 2 0
cat 0 4 0 -4

Figure F.23: wdbc for acc

150

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.24: wine for acc

F.2 Balance U-test by Data Set

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.25: audiology for bal

key win loss ties win-loss
disctree3 4 0 0 4

pkid 1 1 2 0
tbin 0 1 3 -1

fayyadIrani 0 1 3 -1
cat 0 2 2 -2

Figure F.26: auto-mpg for bal

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.27: breast-cancer for bal

151

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.28: breast-cancer-wisconsin for bal

key win loss ties win-loss
disctree3 3 0 1 3

fayyadIrani 2 0 2 2
pkid 2 1 1 1
tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.29: credit-a for bal

key win loss ties win-loss
fayyadIrani 4 0 0 4
disctree3 1 1 2 0

tbin 0 1 3 -1
pkid 0 1 3 -1
cat 0 2 2 -2

Figure F.30: diabetes for bal

key win loss ties win-loss
pkid 2 0 2 2

fayyadIrani 2 0 2 2
cat 2 0 2 2
tbin 0 3 1 -3

disctree3 0 3 1 -3

Figure F.31: ecoli for bal

key win loss ties win-loss
fayyadIrani 2 0 2 2

pkid 1 0 3 1
disctree3 1 0 3 1

cat 1 1 2 0
tbin 0 4 0 -4

Figure F.32: flag for bal

152

key win loss ties win-loss
fayyadIrani 2 0 2 2
disctree3 2 0 2 2

cat 2 0 2 2
tbin 1 3 0 -2
pkid 0 4 0 -4

Figure F.33: hayes-roth for bal

key win loss ties win-loss
tbin 1 0 3 1

disctree3 1 0 3 1
fayyadIrani 0 0 4 0

cat 0 0 4 0
pkid 0 2 2 -2

Figure F.34: heart-c for bal

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.35: heart-h for bal

key win loss ties win-loss
tbin 2 0 2 2

fayyadIrani 2 0 2 2
disctree3 1 0 3 1

pkid 0 2 2 -2
cat 0 3 1 -3

Figure F.36: hepatitis for bal

key win loss ties win-loss
pkid 1 0 3 1

fayyadIrani 1 0 3 1
tbin 0 0 4 0

disctree3 0 0 4 0
cat 0 2 2 -2

Figure F.37: imports-85 for bal

153

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.38: iris for bal

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.39: kr-vs-kp for bal

key win loss ties win-loss
pkid 2 0 2 2

fayyadIrani 2 0 2 2
disctree3 2 0 2 2

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.40: letter for bal

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.41: mushroom for bal

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
pkid 1 2 1 -1

disctree3 1 2 1 -1
cat 0 4 0 -4

Figure F.42: segment for bal

154

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.43: soybean for bal

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.44: splice for bal

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
cat 2 2 0 0

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.45: vowel for bal

key win loss ties win-loss
fayyadIrani 3 0 1 3

tbin 1 0 3 1
cat 1 1 2 0

pkid 0 1 3 -1
disctree3 0 3 1 -3

Figure F.46: waveform-5000 for bal

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 1 1 2 0
pkid 1 1 2 0

disctree3 1 1 2 0
cat 0 4 0 -4

Figure F.47: wdbc for bal

155

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.48: wine for bal

F.3 Precision U-test by Data Set

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.49: audiology for prec

key win loss ties win-loss
disctree3 3 0 1 3

pkid 0 0 4 0
tbin 0 1 3 -1

fayyadIrani 0 1 3 -1
cat 0 1 3 -1

Figure F.50: auto-mpg for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.51: breast-cancer for prec

156

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.52: breast-cancer-wisconsin for prec

key win loss ties win-loss
pkid 2 0 2 2

fayyadIrani 2 0 2 2
disctree3 2 0 2 2

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.53: credit-a for prec

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 0 1 3 -1
pkid 0 1 3 -1

disctree3 0 1 3 -1
cat 0 1 3 -1

Figure F.54: diabetes for prec

key win loss ties win-loss
fayyadIrani 2 0 2 2

pkid 1 0 3 1
cat 1 0 3 1
tbin 0 1 3 -1

disctree3 0 3 1 -3

Figure F.55: ecoli for prec

key win loss ties win-loss
pkid 1 0 3 1

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

cat 1 0 3 1
tbin 0 4 0 -4

Figure F.56: flag for prec

157

key win loss ties win-loss
tbin 1 0 3 1

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

cat 1 0 3 1
pkid 0 4 0 -4

Figure F.57: hayes-roth for prec

key win loss ties win-loss
disctree3 1 0 3 1

tbin 0 0 4 0
fayyadIrani 0 0 4 0

cat 0 0 4 0
pkid 0 1 3 -1

Figure F.58: heart-c for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.59: heart-h for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.60: hepatitis for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.61: imports-85 for prec

158

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.62: iris for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.63: kr-vs-kp for prec

key win loss ties win-loss
fayyadIrani 3 0 1 3

pkid 2 0 2 2
disctree3 2 1 1 1

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.64: letter for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.65: mushroom for prec

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
pkid 1 2 1 -1

disctree3 0 2 2 -2
cat 0 3 1 -3

Figure F.66: segment for prec

159

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.67: soybean for prec

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.68: splice for prec

key win loss ties win-loss
tbin 2 0 2 2

fayyadIrani 2 0 2 2
cat 2 0 2 2

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.69: vowel for prec

key win loss ties win-loss
fayyadIrani 2 0 2 2

tbin 1 0 3 1
cat 1 0 3 1

pkid 0 1 3 -1
disctree3 0 3 1 -3

Figure F.70: waveform-5000 for prec

key win loss ties win-loss
fayyadIrani 4 0 0 4

pkid 1 1 2 0
disctree3 1 1 2 0

tbin 0 1 3 -1
cat 0 3 1 -3

Figure F.71: wdbc for prec

160

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.72: wine for prec

F.4 Probability of Detection U-test by Data Set

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.73: audiology for pd

key win loss ties win-loss
disctree3 4 0 0 4

pkid 1 1 2 0
tbin 0 1 3 -1

fayyadIrani 0 1 3 -1
cat 0 2 2 -2

Figure F.74: auto-mpg for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.75: breast-cancer for pd

161

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.76: breast-cancer-wisconsin for pd

key win loss ties win-loss
fayyadIrani 2 0 2 2
disctree3 2 0 2 2

pkid 1 0 3 1
tbin 1 2 1 -1
cat 0 4 0 -4

Figure F.77: credit-a for pd

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 0 1 3 -1
pkid 0 1 3 -1

disctree3 0 1 3 -1
cat 0 1 3 -1

Figure F.78: diabetes for pd

key win loss ties win-loss
cat 4 0 0 4

pkid 2 1 1 1
fayyadIrani 2 1 1 1

tbin 0 3 1 -3
disctree3 0 3 1 -3

Figure F.79: ecoli for pd

key win loss ties win-loss
pkid 1 0 3 1

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

cat 1 0 3 1
tbin 0 4 0 -4

Figure F.80: flag for pd

162

key win loss ties win-loss
fayyadIrani 2 0 2 2

cat 2 0 2 2
disctree3 1 0 3 1

tbin 1 2 1 -1
pkid 0 4 0 -4

Figure F.81: hayes-roth for pd

key win loss ties win-loss
disctree3 1 0 3 1

tbin 0 0 4 0
fayyadIrani 0 0 4 0

cat 0 0 4 0
pkid 0 1 3 -1

Figure F.82: heart-c for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.83: heart-h for pd

key win loss ties win-loss
fayyadIrani 1 0 3 1

tbin 0 0 4 0
pkid 0 0 4 0

disctree3 0 0 4 0
cat 0 1 3 -1

Figure F.84: hepatitis for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.85: imports-85 for pd

163

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.86: iris for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.87: kr-vs-kp for pd

key win loss ties win-loss
pkid 2 0 2 2

fayyadIrani 2 0 2 2
disctree3 2 0 2 2

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.88: letter for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.89: mushroom for pd

key win loss ties win-loss
fayyadIrani 3 0 1 3

tbin 2 0 2 2
pkid 1 1 2 0

disctree3 1 2 1 -1
cat 0 4 0 -4

Figure F.90: segment for pd

164

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.91: soybean for pd

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.92: splice for pd

key win loss ties win-loss
tbin 3 0 1 3

fayyadIrani 3 0 1 3
cat 2 2 0 0

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.93: vowel for pd

key win loss ties win-loss
fayyadIrani 4 0 0 4

cat 2 1 1 1
tbin 1 1 2 0
pkid 1 2 1 -1

disctree3 0 4 0 -4

Figure F.94: waveform-5000 for pd

key win loss ties win-loss
fayyadIrani 3 0 1 3
disctree3 1 0 3 1

tbin 1 1 2 0
pkid 1 1 2 0
cat 0 4 0 -4

Figure F.95: wdbc for pd

165

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.96: wine for pd

F.5 Probability of Not False Alarm U-test by Data Set

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.97: audiology for npf

key win loss ties win-loss
disctree3 3 0 1 3

pkid 0 0 4 0
tbin 0 1 3 -1

fayyadIrani 0 1 3 -1
cat 0 1 3 -1

Figure F.98: auto-mpg for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.99: breast-cancer for npf

166

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.100: breast-cancer-wisconsin for npf

key win loss ties win-loss
fayyadIrani 2 0 2 2
disctree3 2 0 2 2

pkid 1 0 3 1
tbin 1 2 1 -1
cat 0 4 0 -4

Figure F.101: credit-a for npf

key win loss ties win-loss
fayyadIrani 4 0 0 4

tbin 0 1 3 -1
pkid 0 1 3 -1

disctree3 0 1 3 -1
cat 0 1 3 -1

Figure F.102: diabetes for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.103: ecoli for npf

key win loss ties win-loss
tbin 1 0 3 1
pkid 1 0 3 1

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

cat 0 4 0 -4

Figure F.104: flag for npf

167

key win loss ties win-loss
cat 2 0 2 2

fayyadIrani 1 0 3 1
disctree3 1 0 3 1

tbin 1 1 2 0
pkid 0 4 0 -4

Figure F.105: hayes-roth for npf

key win loss ties win-loss
disctree3 1 0 3 1

tbin 0 0 4 0
fayyadIrani 0 0 4 0

cat 0 0 4 0
pkid 0 1 3 -1

Figure F.106: heart-c for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.107: heart-h for npf

key win loss ties win-loss
fayyadIrani 1 0 3 1

tbin 0 0 4 0
pkid 0 0 4 0

disctree3 0 0 4 0
cat 0 1 3 -1

Figure F.108: hepatitis for npf

key win loss ties win-loss
fayyadIrani 3 0 1 3

tbin 1 0 3 1
disctree3 0 1 3 -1

cat 0 1 3 -1
pkid 0 2 2 -2

Figure F.109: imports-85 for npf

168

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.110: iris for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.111: kr-vs-kp for npf

key win loss ties win-loss
pkid 2 0 2 2

fayyadIrani 2 0 2 2
disctree3 2 0 2 2

tbin 1 3 0 -2
cat 0 4 0 -4

Figure F.112: letter for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.113: mushroom for npf

key win loss ties win-loss
tbin 2 0 2 2

fayyadIrani 2 0 2 2
cat 0 0 4 0

pkid 0 2 2 -2
disctree3 0 2 2 -2

Figure F.114: segment for npf

169

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.115: soybean for npf

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.116: splice for npf

key win loss ties win-loss
tbin 2 0 2 2

fayyadIrani 2 0 2 2
cat 2 0 2 2

pkid 0 3 1 -3
disctree3 0 3 1 -3

Figure F.117: vowel for npf

key win loss ties win-loss
fayyadIrani 2 0 2 2

tbin 1 0 3 1
cat 1 0 3 1

pkid 0 1 3 -1
disctree3 0 3 1 -3

Figure F.118: waveform-5000 for npf

key win loss ties win-loss
fayyadIrani 3 0 1 3
disctree3 1 0 3 1

tbin 1 1 2 0
pkid 1 1 2 0
cat 0 4 0 -4

Figure F.119: wdbc for npf

170

key win loss ties win-loss
tbin 0 0 4 0
pkid 0 0 4 0

fayyadIrani 0 0 4 0
disctree3 0 0 4 0

cat 0 0 4 0

Figure F.120: wine for npf

171

Bibliography

[1] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[2] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd. What accuracy statistics really
measure. Software,IEE Proceedings, 148(3):81–85, 2001.

[3] J. Cendrowska. Prism: An algorithm for inducing modular rules. International Journal of
Man-Machine Studies, 27:349–370, 1987.

[4] CN. Hsu, HJ. Huang, and TT. Wong. Implications of the Dirichlet As-
sumption for Discretization of Continuous Variables in Naive Bayesian Clas-
sifiers. Machine Learning, 53(3):235–263, 2003. Available online at:
http://www.iis.sinica.edu.tw/ chunnan/DOWNLOADS/MACH-1735-00.pdf.

[5] William W. Cohen. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[6] D. S. Moore and G. P. McCabe. Introduction to the Practice of Statistics. W. H. Freeman and
Company, New York, 2nd edition, 1993.

[7] J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006. available from
http://jmlr.csail.mit.edu/papers/v7/demsar06a.html.

[8] T. Dietterich. Machine learning research: Four current directions. AI Magazine, 18(4):97–
136, 1997.

[9] P. Domingos and M. Pazzani. On the Optimality of Simple Bayesian Classifier under Zero-
One Loss. Machine Learning, 29:103–130, 1997.

[10] U. M. Fayyad and K. B. Irani. On the Handling of Continuous-Valued Attributes in Decision
Tree Generation. Machine Learning, 8:87–102, 1992.

[11] G.H. John and P. Langley. Estimating Continuous Distributions in Bayesian Classifiers. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann, 1995.

172

[12] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An Enabling Technique. Data
Mining and Knowledge Discovery, 6(4):393–423, October 2002.

[13] R. C. Holte. Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets. Machine Learning, 11(1):63–90, April 1993.

[14] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretization of
Continuous Features. In Machine Learning, Proceedings of the Twelfth International Con-
ference, pages 194–202, 1995.

[15] H.B. Mann and D. R. Whitney. On A Test Of Whether One Of Two Random Variables Is
Stochastically Larger Than The Other. The Annals of Mathematical Statistics, 18(1):50–60,
1947.

[16] C. Martinez and S. Roura. Randomized binary search trees. Journal of the ACM, 45(2):288–
323, March 1998.

[17] A. S. Orrego. Sawtooth: Learning from huge amounts of data. Master’s thesis, West Virginia
University, 2004.

[18] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[19] Robert Sedgewick. Algorithms in Java: Parts 1-4. Addison-Wesley Professional, 3rd edition,
2002.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill Book Company, New York, 2nd edition, 2001.

[21] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.

[22] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufman, 2 edition, 2005.

[23] Y. Yang and G. I. Webb. Weighted Proportional k-Interval Discretization for Naive-Bayes
Classifiers. In Proceedings of PAKDD 2003: The 7th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, 2003. Available from http://www.csse.monash.edu/ web-
b/Files/YangWebb03.pdf.

[24] Y. Yang and G.I.Webb. A comparative study of discretization methods for naive-bayes classi-
fiers. In Proceedings of PKAW 2002, The 2002 Pacific Rim Knowledge Acquisition Workshop,
pages 159–173, Tokyo, 2002.

[25] Y. Yang and G. I. Webb. Proportional k-interval discretization for naive-bayes classifiers.
In Proceedings of the 12th European Conference on Machine Learning, pages 564–575.
Springer Berlin, 2001.

[26] Y. Yang and G. I. Webb. Non-disjoint discretization for naive-bayes classifiers. In Proceed-
ings of the Nineteenth International Conference on Machine Learning, pages 666–673, 2002.

173

[27] Y. Yang and G. I. Webb. Discretization for naive-bayes learning: managing discretization
bias and variance. Technical report, School of Computer Science and Software Engineering,
Monash University, 2003.

[28] Y.Yang and G.I. Webb. On Why Discretization Works for Naive-Bayes Classifiers. In AI
2003: Advances in Artificial Intelligence, pages 440–452. Springer Berlin, 2003.

174

