MAINTAINING PROCEDURAL KNOWLEDGE:
RIPPLE-DOWN-FUNCTIONS

TIM MENZIES

Al Lab, Computer Science, University of NSW,
P.O. Box 1, Kensington, NSW, Australia, 2033
timm@spectrum.cs.unsw.oz.au

ABSTRACT

Research into the maintenance of procedural knowledge has focused on
the detection of declarative meta-structures within the procedures. An
alternative approach is described here based on the ripple-down-rules
(RDR) formalism. To the standard RDR rule tree, we add a functions
environment hierarchy that stores the implementation of the pro-
cedures used in the rules. This functions environment structures the
evolution of functions and scopes the effect of a newer version of a pro-
cedure to the rules that require it. We describe implementation tech-
niques for the maintenance environment using commercially- available
tools. KEYWORDS: Knowledge acquisition, knowledge maintenance,
declarative knowledge, procedural knowledge, ripple-down-rules.

1. Introduction

Despite the many advantages of a logic-based formalism for representing knowledge, the use
of procedural constructs to represent knowledge is often required in a knowledge-based sys-
tem. Such constructs exist in nearly all commercial systems used for expert systems develop-
ment. The use of procedures to express knowledge is orthogonal to much of the knowledge
acqusition (KA) research. KA is often viewed as the task of extracting declarative statements
about the universe from a domain expert!!l. Supporters of the declarative approach argue
that an appropriate analysis of seemingly-procedural knowledge can detect an underlying
declarative structure. For example, Hayes-Roth et al'?! describe RLL, a frame based system
that stores its "rules" as instances of a rule class. The slots of the rule frames represent sim-
ple descriptions of aspects of procedural knowledge formally stored, somewhat opaquely, in
raw LISP code within a rule condition. Other analysis of the meta-structure of seemingly
spaghetti-like knowledge can be found in 13114,

Here, we take an alternative approach for three reasons. Firstly, we are interesting in
extending the utility of the RDR formalism'®! /! RDR is based on a sophisticated knowledge
acquisition model, but lacks a strong understanding of the meta-structure of the experts
knowledge. We note that RDR is the only knowledge maintenance environment we know of
where maintenance time remains constant. Given this finding, we hypothesis that meta-
knowledge of expert tasks or inferencing structure is less important than meta-knowledge of
the context of knowledge acquisition (see section Three for more details on RDR).

Secondly, we suspect that RDR’s unique approach to non-monotonicity may be relevant to
procedural knowledge. RDR permits the simple and continuous correction of incorrect
knowledge. Further, once a knowledge base has been initialised by (e.g.) a machine learning

page 2

program, it can then be extended using RDR!” In domains where (i) the knowledge to be
learnt is procedural and (ii) machine learning techniques exist for learning some of the

[8]

domain'® it would be useful to be able to combine human and automatic learning of pro-

cedural knowledge using RDF.

Thirdly, research into the detection of declarative meta-structures within procedural
knowledge has yet to reach a definite conclusion. We note that Clancey’s research in this area
has been proceeding for at least a decade and does not appear to be terminating on tech-
niques that are commercially mature!®. Commercial practioners would prefer a general-
purpose formalism that can cope with a variety of programs.

This paper is structured as follows. Section two discusses the benefits and complications of
procedural constructs. Section three introduces RDF. This section includes a tutorial on
RDR. Section four discusses pragmatic implementation details and section five discusses
common objections to the RDF formalism.

Note that portions of this paper have appeared previously''°!,

2. Procedural Constructs

Bustany advocates a knowledge engineering methodology called application languages based
on the construction domain-specific procedural constructs!'!. PIGE is a Prolog-based applica-
tion language developed for a farm management expert system. PIGE has been in the field

(121 At the time of this writing, the rule base comprises some 486 rules of

now for two years
varying complexity. The domain experts report that maintaining the system is not a prob-
lem®. A large part of this ease of maintenance was the procedural-constructs approach. The
domain experts wrote the rules with occasional support from the knowledge engineers.
Whenever the knowledge engineers noted that the experts had to write a particularly in-
elegant, clumsy, or confusing rule, they would extend the library of procedural constructs
such that the rule condition could be expressed succinctly and elegantly. The acid test of each
such extension was the domain experts. If the new construct made their work easier, then it

remained. If they did not like it, it was junked.

Procedural constructs create significant problems with knowledge maintenance. Consider a
procedural construct used in many rules. Experience with a certain case could prompt a
redefinition of that construct. This could have adverse effects on other rules. The new
definition of the construct could patch one case while causing errors in other cases. This prob-
lem is particularly acute in application language systems. Imagine a domain expert hacking
a application language knowledge base. Since they are working with succinct, high-level
drivers, they can very quickly create spaghetti knowledge; i.e. convoluted knowledge that gets
more convoluted every time it is maintained. It is easy to test for spaghetti knowledge. In a
good maintenance environment, the change time remains constant. A bad maintenance
environment causes change time to increase as the spaghetti grows more and more entangled
(as illustrated in Figure One).

1. To be accurate, the domain experts simply did not understand the question "how hard is it to change the rules?".
They looked blank then said "Sorry? What do you mean? We just change things."

page 3

10 — Bad mainte

Change 8 — (changes confysé knowledge)
time 6 —
(arbitrary4 od maintenance
units) 2 — (change time constant)

0

Months in Production

Figure 1. Good vs bad maintenance

Sadly, most knowledge is maintained in bad maintenance environments. Software develop-
ment continues and the time taken to process each change request lengthens. Eventually, the
change time proves prohibitive and the system is redesigned. The process repeats since the
new system is usually another bad maintenance environment.

There are very few examples of good maintenance environments. One such good environ-
ment is RDR. This system will be used as the basis for our procedural maintenance environ-
ment.

3. Ripple-Down-Functions

This section describes RDF, an extension to RDR. RDF enforces the disciplined evolution of
procedural constructs. Using an RDR tree, the scope of the change to a construct is limited
to the rules written after the revision of a construct at a particular rule. The definition of the
construct in existing knowledge does not change.

Suppose that experience suggested that the definition of some construct was incomplete.
After an examination of several cases, it was proposed to add another conjunction (tomor-
rowIsMyDayOf) to this procedure; for example:

i Want ToGoHome :- late, working, |l unchALongTi neAgo, t onorrowl sMyDayOf f .
tonorrow sMyDayOr f : - day(friday).

Suppose further that the expert system was in production and that we already had rules that
used the construct iWantToGoHome. Since the system currently works adequately, we

should be reluctant to change working knowledge. We may wish to "freeze" knowledge that
has proved satisfactory and only use this new definition in any additional knowledge?.

The RDR scheme adopts the frozen knowledge principal for propositional systems. In RDR,
whenever a case results in an inappropriate conclusion, the patch knowledge is entered in as
a unless test beneath the rule that resulted in error. As the knowledge base develops, it
grows into a binary tree with knowledge patches stored at every node (see Figure Two).

2. This is an application of the heuristic: "if it ain’t broke, don’t fix it".

page 4

rule] ¢ & [then
1 b x1

if false if txue (x1 is true
unless...)

@l

rule then
2 x2

if false if tvue

@l

rule d then

Figure 2. An example RDR tree

At runtime, the final conclusion is the conclusion of the last satisfied node. At maintenance
time, when fixing deficient knowledge, the unless logic is added beneath the incorrectly last-
satisfied node. Only the logic delta is added in the new node since the system can not get to
this node without first satisfying the logic from the root to the node. So, if x2 is the correct
conclusion when a & b & c is true, but incorrect when c is false, then we add the logic delta ¢
to a new node on the if true branch beneath rule 1.

The frozen knowledge principal simplifies maintenance. To see this, consider how most
expert systems would encode the knowledge in the above RDR tree. Most probably, they
would enumerate all the logical paths in the RDR tree and write one rule for each path.
Assuming the RDR interpreter, then the logical paths for Figure Two are shown in Figure
Three.

Rule If Then
1 a&bé¬ec x1
2 a&b&ec x2
3 a&b¬c&d | x3

Figure 3. The logic implicit in the example RDR tree

If the knowledge of the system is patched, then in a conventional rule-based expert system,
this patch could extend over many rules. Repeating our above example, the patch on the x1
error requires an edit to one rule (rulel) and the creation of another (rule 2). Further, the
new logic refers to ¢ which is a new concept that must be propagated down to all related rules
(rule 3). The more related rules, the more edits. As the knowledge base grows, so to does the
number of edits. Hence the time taken to make a change increases and we have a bad
maintenance environment.

page 5

In RDR, existing knowledge is frozen and we only extend the knowledge base. For this rea-
son, RDR is a good maintenance environment. The time taken to change the knowledge does
not increase as the knowledge grows since the knowledge base author does not have to tour
all the knowledge to make a patch. Instead, at patch time, the system presents the author
with a list of candidate delta logic and the author selects item(s) off that list. These items are
added beneath the incorrect node. This is the action at every knowledge patch time. Mainte-
nance time hence remains constant.

Note that the RDR formalism makes no commitment to tree structures that are optimal. An
RDR tree can contain repeated tests, redundant knowledge, and its sub-trees can overlap
each other semantically. While this is less than optimal in a computational sense, it is some-
what misguided to attempt to optimise an RDR tree to (e.g.) remove the redundancies or
separate out the overlaps. The important feature of an RDR tree is that it is optimised for
maintenance. Alternative knowledge representation schemas may run faster® but incur the

penalty of non-constant maintenance time*.

RDR is being used to develop PIERS, an expert system for biochemistry at the St. Vincents
Hospital, Sydney. The current system comprises 1250 rules and is in routine use. Mainte-
nance time remains constant and the system is maintained by the domain experts without

[15] " This represents somewhat of a triumph for the RDR

the need for knowledge engineers
approach. Previous attempts at building intelligent software for the PIERS domain required
sophisticated inferencing procedures and experimental causal modelling techniques (e.g. the
ABEL system!'®)), Further these experimental systems never went into routine production.
We can conjecture that these domains can be tamed via the use of sophisticated knowledge

acquisition modules rather than sophisticated inferencing modules.

If we adopt the RDR frozen knowledge principal, then it follows that the definition of iWant-
ToGoHome should be split each time a refinement is made. In terms of RDR, we should add a
rule chronology list that stores the order in which new nodes were added to the system. Each
entry in the list contains a procedure environment that stores the definitions of procedural
constructs. When a rule needs the definition of a procedure, it finds its own reference in the
rule chronology and searches back towards rule 1. At each entry in the chronology, it checks
the current environment for a definition of the required procedure. If found, the search stops
and the procedure is executed.

We can optimise this representation. We need only add a new procedure environment when a
definition changes. Whenever a new rule is created, a pointer is added from this rule to the
latest environment. If the maintenance cycle produces a change in the procedure definition,
then:
1. A new environment is pushed with the new definition.
2. A new rule is added under the current node on the if false branch. The procedure
environment pointer of this new rule points to the new environment.

3. Techniques for automatically optimising propositional systems such as RDR are discussed by Colomb'*®! and
Forgy'14!

4. It should be noted that even the seemingly inefficient RDR trees have never proven to be too slow in practice.

page 6

3. The logic in the old node is copied along with the logic delta. When the new rule exe-
cutes, it will now execute using the new definition.

Continuing the previous RDR example of Figure Three, suppose the b is found to be faulty in
the case of @ and b and e. A new definition b1 is written. A new rule rule 4 is added to our
RDR tree. The resultant tree (and the pointers to the functions environments) is shown in
Figure Four. (It is assumed that working definitions of a, b, ¢, and d were defined during
some analysis phase and created as the first procedure environment at the same time as
rulel.)

a :-a0.
b :- b0.
e - co.
Sld - do.

rule] a & [then]|

rule] o & Jthen] |..- :
4 |b&e | x4 rule] then| :

rule] then
3 d x3 | @

Figure 4. RDR tree with functions environments

4. Pragmatics

The functions environment stack consists of functions scoped in a hierarchy that override the
definition of functions higher-up in the hierarchy. This design maps naturally into a
message-passing paradigm such as object-oriented languages or Hypercard!'",

RDF is simplest to implement in an interpreted environment. At runtime, the program flow
is re-directed based on the knowledge acquisition process. A natural development cycle would
be to allow experts to test out their changes as soon as they have made them. The compile-
link stage of traditional compiled languages, we argue, is hence inappropriate for RDF.

One class of compiled languages that could support RDF are those languages that support
functions as variables. For example, C supports pointers to compiled functions. Such
pointers can be stored in a look-up table and the runtime behaviour of the system can be
modified by changing the contents of this table. Nevertheless, we would be reluctant to
implement RDF in C. The functions still need to be compiled. We suspect that a C-based RDF
would become a front end to a set of make files. If so, then the turn-around time between con-
ceiving, making, and testing a change could be prohibitive.

RDF would be simpler in an interpreted message-passing system like Hypercard or an incre-
mentally compiled object system like Smalltalk. Consider the Smalltalk case. The functions

page 7

environment would be a a Smalltalk class hierarchy. At runtime, functions could be browsed

and edited using some specialisation of the ClassBrowser class®

. The class being edited
would be a subclass of the abstract class Environment. The methods of this abstract class
would then be the implementation of environment_zero (see below). Every "save" command
checks for a difference between the old and new function. If found, then the current subclass

would be subclassed.

An instance of this new class would be created and stored in a class variable LatestFunctions.
Rules are instances of the class Rule. Rule classes have instance variables for pointers to the
true and false branch, some Context instance that stores the condition, as well a pointer to
the environment instance. The Context block would have been compiled within the environ-
ment of the rule instance. Hence it would access to the environment instance’s pointer. When
this Context executes, its boolean tests are implemented as messages to the environment
pointer. When a new rule is created, this LatestFunctions would be installed as the rule’s
environment pointer.

One last point: the class compiler methods within the Behaviour hierarchy should be custom-
ised as to forbid a re-compilation of an existing class in the Environment hierarchy.

We argue that this style of implementation is accessible to commercial practioners. We sug-
gest that researchers implement RDF using a logic programming paradigm. We suspect that
RDF trees contain sufficient information to drive intelligent partial evaluators that could
optimise the RDF functions.

5. Discussion

This section discusses certain objections to the RDF formalism.

5.1 Excessive Change

One objection to RDF is that if the system pushes one new functions environment for every
changed function, then the environment would get too big to be processed efficiently. For-
tunately, our experience with application language development and RDR-style systems sug-
gest that, after the initial analysis stage is over, function revision occurs at a pace at least
two orders of magnitude slower than rule revision. Typically, new functions are merely
added rather than changed. Since additions do not necessitate a new environment, the addi-
tions can be inserted without extending the size of the functions environment.

We concede that this observation is specific to the domains we have worked in (biochemistry,
farm management, process control) and would require monitoring in other domains.

5.2 Change Everything?
Critics of the RDF proposal have argued that some functions should not be open to the
maintenance process. They argue that functions such as (e.g.) member and subset have such

a well-defined, well-elaborate definition that it would be nonsensical to permit the user to
customise them.

5. Our example will be passed on on Digitalk’s Smalltalk/V.

page 8

An alternative view is that a domain expert’s understanding of a procedure may be evolving
and, hence, should be maintainable. Even seemingly well-defined functions may have
context-dependant properties that require modification. Consider, for example, the standard
Prolog list processing predicate member/2. member/2 has at least two definitions: one that
backtracks to find all solutions and one that succeeds only once:

% menber A: backtracks
menber 1(X, [X]) .
menber 1(X, [_[T]) :- nenberA(X Y).

% nmenber B: only succeeds once
menber 2(X, [X_]) :- !.
menber 2(X, [_T|T]) :- menber2(XY).

The semantics of a rule could be crucially dependant on which member is chosen. The back-
tracking member2 could permit a single rule to activate multiple sub-goals while a non-
backtracking member could usefully cull the search space of solutions. If an expert’s initial
understanding was that of (e.g.) memberl, and they wrote rules based on that understanding,
then a global conversion to member2 might have strange side-effects.

A compromise position would be to initialise the stack of procedure environments with an
environment_zero. Into environment_zero, we would install the functions that seem to have a
semantics that is commonly understood (such as the set functions described above). If in
fact, these functions are understood by the community of experts writing the rules, then they

would need no maintenance. If, however, they require modification, then they can be altered
as desired using RDF.

REFERENCES

1. Debenham J., Knowledge Systems Design, 1989, Prentice Hall, Sydney.

2. Hayes-Roth F., Waterman D.A., & Lenat D.B. (eds) Building Expert Systems,
Addison-Wesley, Reading Massachusetts, 1983, pp314-321.

3. Aikins J.S. Prototypical Knowledge for Expert Systems in Artifical Intelligence, 20
(1983) pp163-210.

4. Steels L. Components of Expertise in AI Magazine, Summer 1990, pp29-49.

5. Compton P. & Jansen R. Knowledge in Context: A Strategy for Expert System Mainte-
nance in Barter C. & Brooks M. (eds) Proc AI 88, Lecture Notes in Artificial Intelligence,
Vol. 406, Berlin, Springer-Verlag, 1990.

6. Compton P., Edwards G., Kang B., Lazarus L., Malor R., Menzies T., Preston P., Sriniva-
san A. & Sammut C. Ripple Down Rules: Possibilities and Limitations Proceedings of the
6th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff 1991, pp6.1 to
6.18 (to appear in the Knowledge Acqusition Journal).

7. Gaines B., Compton P. Induction of Ripple-Down-Rules, Proceedings of Al ’92, submit-
ted.

8. Sammut C. Hurst S., Kedzer D. Learning to Fly in Proceedings of the 9th Interna-
tional Conference on Machine Learning, Aberdeen, 1992 (in press).

9. Clancey W.J. Model Construction Operators in Artificial Intelligence, 53, (1992) ppl-
115.

10. Menzies T.J. Concerning the Use of Procedural Constructs as a Knowledge Acqusition
Technique, Australian Knowledge Acqusition Workshop, IJCAI '91, Hunter Valley
Australia, August 1991.

11. Bustany A. & Skingle B Knowledge-based Development via Application Languages in
Proceedings of the Fourth Australian Conference on Applications of Expert
Systems, May 11-13, 1988, pp277-302.

page 9

12. Menzies T.J. An Expert System for Raising Pigs in Proceedings of the First Interna-
tional Conference on the Practical Application of Prolog, April 2-3, 1992.

13. Colomb R.M. & Chung C.Y.C. Very Fast Decision Table Execution of Propositional Expert
Systems in Proceedings of AAAI-90, Boston Mass. USA, 30 July- 3 August, 1990.

14. Forgy C.L. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem in Artificial Intelligence, 19, 1982, pp17-37.

15. Compton P., Edwards G., Srinivasan A., Malor R., Preston P., Kang B. & Lazarus L.
Ripple-down-rules: Turning Knowledge Acquisition into Knowledge Maintenance, in
Artificial Intelligence in Medicine (in press).

16. Patil R.S., Szolovitis P. & Schwartz W.B. Causal Understanding of Patient Illness in
Medical Diagnosis in &th IJCAI, 1981, pp893-899.

17. Apple Technical Publications. (1987) Hypercard Script Language Guide, APDA.

page 10

CONTENTS

Introduction .
Procedural Constructs
Ripple-Down-Functions .

Pragmatics

A e

Discussion ..
5.1 Excessive Change
5.2 Change Everything?

REFERENCES .

0 II-31 O W N K~

LIST OF FIGURES

Figure 1. Good vs bad maintenance
Figure 2. An example RDR tree
Figure 3. The logic implicit in the example RDR tree

Figure 4. RDR tree with functions environments

11 -

o Y R NGt

