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ABSTRACT

Informal vague causal diagrams (VCDs) are a common technique for illustrating and sharing
expert intuitions. Normally, VCDs andewed as precursordo other modelling techniques
which necessitatefurther knowledgeacquisition.Here we explorewhat semanticscan be
grantedto VCDs, without havingto requestmore information from the expert(s)or the
domain. The impreciseness of VCDs typically makes them indeterminateinf&@Bncing
must assume multiple possibilities and manage mutually exclusive possibiliseparate
worlds. Given a library of known behaviourof the entity being modelled,we can use
exhaustive abductionover VCDs to provevhat behavioursare categorically impossible;
i.e. we can use VCDs for knowledge acquisitiiBEYWORDSCommon sensesasoning,
knowledge acquisition, knowledge representation, knowledge sharing technology,
gualitative reasoning, reasoning about physical systems, situated cognition, truth
maintenance, diagrammatic reasoning, causality, abduction

1. Introduction

Diagrammatic reasoningdDR) is a poorly definedfield. Despiteattemptsto define general
principlesfor DR, any summaryof recentwork in the ared demonstrateshat (i) DR meansvery
differentthings to different researchersand (ii) that the field lacks unifying theoriesor principles.
However, we can approximately divide the field into two camps: propositional/sententiavs
image/analogical (though some overkaysts). The sloganof analogueDR researchs "peopledon't
do inference, the world does most ofdt us". AnalogueDR* usespropertiesof the representatiorto
avoid inferencing. For example, to work out what cities lie undgeat-circleroute betweenLondon
and Sydney, take a globe and run a finger diwvedesiredroute, writing down what cities you toucl.
Sentential DR typically converts two-dimensional representatiofinto a sententiafform that canbe
processedby someform of logic. Significantly for the sententialvs analoguedebate Jogical proofs
can be generatedaster using heuristicstaken from visual inferencing. Further, convincing and
intuitive proofsof certaintheorems aretrivial and rapid to producevisually but require non-trivial
sententialinferencé.  Claims that humansuse diagramsinternally to augment/ replace logical
inferencing are commérut this is not universally accepfed

Despite the shortcuts offered by the analogue approach, we endorse sentential DR.
Methodologicaly, we believe it more useful to explore general principles rather than specific égvices
special domains. Although there exist examples of gepeiratiplesfor analogueDRY, theseare few
in number. The sentential framework presented here makes sense of diagraragasemglinference
procedure with wide applicability (exhaustive abduction).

The kind of diagramwe will explorearethe vaguecausaldiagrams(VCDs) drawnto share
expert intuitions in domains like neuroendocrinology (the study of the interaction of nerves and glands).
Such diagrams consisf nodesconnectedy arcslabelled(e.g.) "inhibits", "+", "promotes", "-", or
"blocks". These diagrams are common (e.g. figure 1).rM@uroendocrinologicatxpertcould find five
such graphs in as many minutes from the first two textbooks he took randomly from his bookshelf.
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+¢ Figure 1: VCD for connectionsbetweenserumadrenocorticotropin (acth),
serum corticosterone (cortico), and neuro-noradrenergic activity (nna -

acth measured as the ratio of noradrenaline to its post-cursor, 3,4-
+i dihydroxphenylethethyleneglycol). VCD drawn by Snijthe
aceTio

In this paper,we offer a novel sententialdefinition for diagramaticreasoningbasedon our
research on knowledge acquisition for neuroendocrinologys&y¢hat sucha VCD is understood iff

we can extract from it a deductitleeory that can explain someof our known behaviourwithout also
entailing inconsistencies.We understandhat VCDy is betterthan VCDy iff the theory extracted

from VCDy can explain more known behaviours than the theory extractedM@iny . This extraction

processs definedin 83, after a generaldiscussionin 8§82 aboutVCDs. 84 discussegossiblelimits

with our sentential diagram understanding system. 85 describes our experimenta{egsdéntential

VCD understanding can yield insights that are invisible to other techniques). 86 discusses related work.
Applicationsfor this novel definition include multiple-expertknowledgeacquisition (when

feuding expertsneed some judgmentabout competingknowledge),group decisionsupport systems

(when groups use vague diagrams as a knowledge sharing tool), and single-expertknowledge

acquisition (whera single expertis unsureaboutwhat knowledgeto addto a knowledgebase).Note

that this work is a generalisation of Compton & Feldman's qualitative hypothesis testing%pfoject

2. About Vague Causal Diagrams (VCDs)

VCDs are usually viewed as pre-cursors to a nfion@mal modelling technique For example,
vague statementssuch as "glucose levels effect insulin production” can be translatedinto a
compartmentaimodel: a set of exponentialfunctions that control flows in and out of the insulin
"compartment". This translationtypically requiresmore information that what is availablein the
original diagram(e.g. numericparametergor the exponentiafunctionsmodellingthe flow rates).In
poorly measurediomains(e.g. economicsgcology,and most of human internal medicineincluding
neuroendocrinology) this information may be currently unavailable (e.g. tee®f VCDs drawnas
hypothesis about new ideas) or prohibitively expensive to collect.

These limitations with numeric modelling have lead some mathematicalmodellers to
questionusing quantitativemethodsfor understandinghe kinds of diagramswe call VCDs. For
example, after producing eight different quantitative models for the same phenomena(human
ovulation), MclIntosh & Mcintosh comment that:

The most striking featureevidentfrom studyingthesemodelsis the variety of

equationswhich give reasonablerepresentationsof the observedexperimental

data...In eachmodeltheseapparentlyappropriate equationshave been derived
from quite different assumptions and simplifications and use different parameters.

Mclintosh & Mclntosh believethat deeperthan the non-uniqueempirical modelsis another
kind of modelwhich embodiesour actualconceptof what causedhe observedoehaviour.We concur
andarguethat, whereverpossible,the natural expressionof the domain (i.e. VCDs) should not be
inappropriately contorted into a numeric formalism.

Processing VCDs directly without further knowledge acquisition is complicateddditative
indeterminacy.For example,in figure 1, when both cortico andnnago T (up), we have two
competing influences oacth, the net effect of which could laethl, acthl (down), oractl (remains
steady). This indeterminacy is worse in poorly measured domains since we can't tame indeterminacy by
using known measurements to rejpossibilities. Also, when generatingexplanationswe will often
make assumptions about unmeasured vertices. Some of these assuwipitibesncompatible.VCD
inference must manage the incompatible assumptions in diffecels (definedbelow). Lastly, given
the informal mannerof VCD construction,only a subsetof a VCD (VCD') may be consistentand
VCD' may only be able to explain a subsekobwn behaviour.VCD inferencemust be a searchfor



somesubsetof the total diagramthat can explain somesubsetof known effects without generating
inconsistencies (e.g. provirgthl andacthl simultaneously)Given the indeterminatenatureof the
inference, there may be multiple subsets and we will have to define some criteria for chebsasmn
them. Formally, VCD inference is a variant on abduct{eae next section).

3. About Abduction

Consider asystemwith two factsa, b andarule Ry: If a= b. Deductionis the inference
froma to b. Inductionis the processof learningR1 given examplesof a andb occurringtogether.
Abductionis inferringa, givenb®™. Abduction is only a plausible inference since other rules may have
concludedb using other premise(s).Hence abduction requires some inference assessmenbperator
(which we will callBEST). Abduction is a mechanical procedure that, syrabol level, is equivalent
for a variety of %" operators: logical deduction, causality, applicationof a defaultrule’® (however,
various authors caution againstmixing up "=" operatorswithin a single knowledge basé’+*®).
Intuitively, abduction is the generation and evaluation of possible behaViandhasbeenappliedto
many domains;e.g. diagnosi€»#, causalreasonin&, natural languageprocessing, explanation
generatio?, planning,anddesigr®, visual patternrecognitior®®, frame-basedeasoning>*® andcase-
based reasonify

The abductiveproblemwe will consideris a tuple <M', I, IN, OUT, BEST> defined as
follows. LetM be some model anid' be a directed, possibly cyclic graph generated via convevting
into a propositional fornffor example,seeFigure 2). M' is the spaceof possiblegroundproof trees
that could be extracted fromM. More precisely: (i) the verticas of M' are either literals from M or
Ands(defined below); (ii) the directed edggy(Fromy, Tay) of M" representsn inferencerule of the
form: Ew(Vx,Vy) iff literal Vy could explain literaVy.

We translateM to M' since(i) the translationconvertsany domain-specificprocessingto
(possibly) additional edges and/or vertices; hence, (ii) lets us definedductiveprocessn termsof a
uniform M' structure; (iii) we can define macro-expansions for commonly sisbejraphs(iv) we can
assign eacM' vertex a unique integed andusebitstringsto optimise the inferencing.Note that M'
explicitly represents the search space tadilin

Figure 2: M' for the M of figure 1. OneM' vertex
nraf has been created for each possible state of M
vertices (p, down, steadyAnds have beeraddedto
combineinfluencesthat can lead to a steady(e.qg.
nna & corticol = acth). The vertices nna@ and
cortic@ are isolated since no combination of
influences can combine to lead to these steady
vertices.

acthd

4, >

cortico T corticod corticod

LetIN andOUT be subsets of thd' vertices P is the set of non-cycliproofs Py whose

nodes, edges, leaves, roots are fonE, IN, OUTrespectively and whose edges share a vertex with at
least one other edge ik, No two vertices irPx can violate the invariants For allAnds in Py, all
the in-edges of thaAnd must also be i ; i.e. all parents of thaknd arealsoin P, For all V that
are notAnds Py must contain zero or one parent or®UJT andIN list the knownmeasurementef

the entity being modelled. Verticesn that are not fronOUT or IN are assumptiong.
Abduction is the generation of a wold; i.e. the edges containedd@wunion of a subsetof

P such that (i) DONE O OUT: (i) USED O IN; (i) Wyx & USED = DONE ;

(iv) =-(Wx & USED-= false) i.e. does not violate; (v) inference for (ii) and (iii) igestrictedto Wx;
(vi) Wy is maximal with respect to set inclusionEfFor example, consider an abductimrer the M'

of figure 2 withIN = {corticol }, OUT={nnal, acti}, and| being the rule tha®y cannotincludean



T, 1, or 8 simultaneouslyfor the sameM vertex. We would generateone world W1 = {Py} =
{Ex(cortical, nnal )} with A={}, USED=IN andDONE= {nnal}. Acti8 is notin DONE sinceits
explanation requires a proof through two different states of &ititéco or acth (which would violate

).
: Exhaustive abduction (EA) is the generatiorathfWy andtheir subsequenevaluationby a
domain-specificBEST operator. Example BESTs include BEST. returning all Wy with fewest
assumptiong|A|); BEST: with fewestnumberof causeq|USED); BESTE: with shortestproof size
(IP)); BEST,: with the largestnumberof explainedeffects(|IDONE); or BEST which avoids edges
with low likelihood (assumingthat suchmeta-knowledgebout edgesis available;e.g. some edges
were proposed as part of a theory you wish to fault).

Our definition of abductionis compatiblewith abductionas defined elsewheré®*%%, Our

worlds are different to thextension®f Reiter's default logi in that not all consequences of literais
Wy appearin Wy: if a propositionis not in a pathto a memberof OUT, it is ignored (this saves

unnecessary world generation). Note Wt satisfies our requiremeifior understanding/CDs: (i) Wy
is some portion of M which can be usedto simply infer DONE from USED (ii)Wx contains

consistent assumptions; (IBESTis an explicit selection criteria.

4. Apparent Limitations
This section discusses possible limitatidasour approachln practice,theseissuesare not
overly restrictive (see below).

M must be a finite theory otherwis# (the explicit search space tacithf) will be infinite
and EA will never terminaté?, can't contairloops. Hence,we cannotexplaintime-seriesdata(e.g X
went up, then later it went down, then it went up again) without significantly increasing the size of our
models (i.e. createone M' vertex for eachliteral in M at all measuredime intervals). All our
experiments (see below) assume non-time-series data.

Generalabductionis known to be NP-hard** and polynomial time abductive inference
procedures are only known for certain restrictive casesurigresolutionover non-cyclic background
theoried®; or when sufficient "rule-out knowledge" is available to cull much of the search’spdok
does more work than standard abductod so we could pessimisticallypredictthat the generationof
all Wy to be impractically slow.

Another pre-experimentapessimisticpredictionaboutEA would be that any behaviourcan
be generatefrom a searchthroughindeterminatemodels.If so, thenthe powerof our sententiaDR
approach would be minimal since it would incorrectly "understand” that any VCD can do anything.

5. Experimental Work

Compton & Feldmanused BEST, to demonstratethat a VCD for glucose regulation
developedrom internationalrefereedpublicationg® could not produceproofs for a large number of
known causes and effects.dll, 109 of 343 (32%) of the known datapoints from six studiedpapers
could not be explained with reference to their model. Of these detected faults, at leaptesentedn
insight into the process of glucose regulation tretbeeninvisible to conventionalscientific review
proces¥. Interestingly,the faults were detectedusing datapublishedto supportthe models;i.e. it is
possiblethat waiting in all the publicationsin the booksin all the libraries aroundthe world is a
backlog of extra inferencebat we could makeaboutexisting knowledge without havingto perform
expensive further experimentation.

A subsequent study by MenZigsorrected some modelling errors of Compton & Feldman to
increasethe inexplicable percentagefrom 32% to 45%. Another smaller study used BEST, to
successfully fault the published scientific theory of figufe 1

Compton& Feldman'ssystem,andtwo subsequenprototypes,useda basicchronological
backtracking approach (i.e. no memoing) that was very slow. Basimologicalbacktrackinghasthe



disadvantage that any feature of the space learnt by the search algofagotienwhen backtracking
on failure. The current implementation, HT4, caches the most-upstream contrag&ssiabptionsas a
side-efectof proof generationin a manneranalagougo the generationof ATMS minimal labels?).

This system runs 130 times faster than the Compton & Feldsyamtemsince world switching does
not requireextensivefurther computatiof’. Menzies& Gambettareports2 studiesinvolving 4504
EA runs over 299 differe¥l' modelé’. TheChanging N studrtificially generate®4 M' of varying
numbers of vertices\) while keepingB (the average number of children/vertex) consta.25. The
ChangingB study artificially generated®05 M' of varying fanoutwhile keepingN constantat 554.
Figure 3 shows the results.
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Figure 3A: Runtimes from Menzies & Gambett Figure 3B: % effects explainable from Menzie
Note that the plateau aft&é=800 is an artefact of & Gambetta. Figure 3a shows that aftd=800, most
the "give-up" time limit of 5 minutes built into H™ of the runs did not terminate before the "give-up"
(300 seconds). time of 300 seconds. Hence, tisanging Ncurve

in this figure drops off suddenly aftéd=800 .

Experimentally, we see that HT4 is limited® of N < 800 andB < 4. The N limit is a
function of the currentimplementationbut the B limit may be fundamentato exhaustiveabduction.
Clearly, after a certain level of inter-connectivity, it would be possible to find proofs for any behaviour.
Figure 3B suggests that limit B= 4.

Basedon known sizesof fielded expertsystem®, Menzies& Gambettaarguethat these
limits are larger than models we see in contemporary knowledge engingexatige;i.e. we canscale
up VCDs to knowledgebasesat leastas big asthoseseenin currentpractice. Further,the level of
critique offered by EA can be non-trivial. The changistudy of figure3B showsthat up to 75% of
behaviour may be falsifiable.

6. Related Work

The internal structures of some validation tools for propositional sy§t&msea multiple-
worlds architecture which, like ours, were inspired by the simultaneous context genefddieileer's
ATMS. Our focusis the validationof hastily scribbleddiagramsof qualitativedomains,though our
techniquesalso apply to propositional systems. These other systems also incorporate model
modification operators.We do not explore model modification since we foreseethat various users
would treasuretheir favourite portions of their model(s)(typically, the onesthey have developedand
successfullydefendedfrom all critics). It would be unacceptablego permit a learning algorithm
scribble all over this knowledge. Learning programs for this domain must stipregervethe current
background theory (an approach explored by Mahidadia in an ILP franf&®jprk

Qualitativereasoning(QR) processe¥CDs by convertingthem into systemsof equations
whose numeric values are repladsdone of threequalitativestates:up, down or steady’. Early QR
waslimited to systemsthat were piece-wisewell-approximatedby low-order linear equationsor by
first-order non-linear differential equations (e.g. CONFLUENBEQSIM®?, QPT*). Subsequentvork
studied the asymptotic long-terbehaviourof more complexsystemsof equation¥*®. Re-expressing



VCDs in qualitative equational ternmsay not necessarilyreflect the intuitions of humanmodellers®.
Mapping VCDs to mathematics was required when no alternative execution feamavailable.Now
we offer an alternative approach.

Belief networks (BNs) deduce causality from a statistical analysis of the frequency
distributionsof variablesin a sampleto deduceacyclic "networks" (which are really trees)of causal
relationships between variabiesBNs assume sufficient measuremearsavailablefor the statistical
analysis;i.e. they areinappropriatein poorly measureddomainssuch as neuroendocrinologyAlso,
current state-of-the-art BNs assumes acyclic m&datsl modelsin our test domainare usually cyclic
(e.g. figure 1). Further, the theories generditgdBNs makedo not preservecurrentbeliefs (seeabove
remarks regarding preserving the background theory).

Causality was a central concernin QR in the mid-80s°. However, after an inconclusive
public debat€®, the term was avoidedby experiencedesearchergexception:the BN community).
Causalityin QR was usually a deducecconceptfrom the equationsof the qualitative modef*. This
causaldeductionprocesss unsuitablefor our domain:sinceour modelsmay be wrong, the deduced
causal graphs may also be wrong. An alternative approach was taltem"bgusaleditors”;i.e. those
researcherike us that let their expertsspecify causalgraphsdirectly. Early work (e.g. CASNET®)
demonstrated the utility of this approach. Subsequent workABHEL %) arguedfor addingabstraction
hierarchiesto causal models. Causal models at various levels of abstraction permit inferencing
down/up/across abstractidevel(s)if more/less/samabstractions usefulin the reasoning. We do
not use CASNET-style causation strengths on our edges since like most nuntherdamain,these
strengthsare unknown. Nor do we use ABEL-style abstractiorhierarchiessincein our searchfor all
possible answers, we will explore the entire theory, across every absttagggn.e. a bigger search.
We also address a different problem to other causal editing reseafidieepsimary usefor our models
is verification, not simulation (as with CONFLUENCES) or diagnosis (e.g ABEL, CASNET).

7. Conclusion

We have describedgeneralprinciples for sententialDR: (i) permit expertsto draw vague
causaldiagramsj(ii) translatetheminto propositionaltheorieswith a set of invariants; (i) critique
them via libraries of known behaviour(a set of pairs<IN, OUT>). We say that we understandhat
diagramiff we canextractfrom it a deductivetheorythat canexplain someof our known behaviour
without also entailing inconsistencies. Further, we understandhat some diagramis better other
diagram(s)iff its extractedtheory explains more known behavioursthan its competitor(s).At the
symbol-level, this theory extraction process is exhaustive abduction (EA).

Our experimental results demonstrate that we can offienarivial level of critique;i.e. EA
is a useful techniquefor knowledgeacquisition The currentimplementationis limited to critiquing
non-cyclic behaviour(e.g. no time-series¥rom finite modelswith an averagefanout< 4 and |V| in
M' < 800. Theselimits are beyondthe modelsthat we can find documentedn current knowledge
engineering practice; i.&A is a practical technique Further, EA over VCDs canidentify errorsthat
areinvisible to alternativemethods;i.e. EA may be a superior techniqueof understandingdiagrams
than alternative quantitative methods

Note thatwe understandur diagramsusing generallogical principlesas apposedo the ad-
hocary of standard analogue DR.
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