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ABSTRACT

Informal vague causal diagrams (VCDs) are a common technique for illustrating and sharing
expert intuitions. Normally, VCDs are viewed as precursors to other modelling techniques
which necessitates further knowledge acquisition. Here we explore what semantics can be
granted to VCDs, without having to request more information from the expert(s) or the
domain. The impreciseness of VCDs typically makes them indeterminate. VCD inferencing
must assume multiple possibilities and manage mutually exclusive possibilities in separate
worlds. Given a library of known behaviour of the entity being modelled, we can use
exhaustive abduction   over VCDs to prove what behaviours are categorically  impossible;
i.e. we can use VCDs for knowledge acquisition. KEYWORDS: Common sense reasoning,
knowledge acquisition, knowledge representation, knowledge sharing technology,
qualitative reasoning, reasoning about physical systems, situated cognition, truth
maintenance, diagrammatic reasoning, causality, abduction

1. Introduction
 Diagrammatic reasoning  (DR) is a poorly defined field. Despite attempts to define general

principles for DR1, any summary of recent work in the area2 demonstrates that (i) DR means very
different things to different researchers; and (ii) that the field lacks unifying theories or principles.
However, we can approximately divide the field  into two camps: propositional/sentential vs
image/analogical (though some overlap exists3). The slogan of analogue DR research is "people don't
do inference, the world does most of it for us". Analogue DR4 uses properties of the representation to
avoid inferencing.  For example,  to work out what cities lie under a great-circle route between London
and Sydney, take a globe and run a finger over the desired route, writing down what cities you touch5.  
Sentential DR typically converts a two-dimensional  representation into a sentential form that can be
processed by some form of logic.  Significantly for the sentential vs analogue debate, logical proofs
can be generated faster using heuristics taken from visual inferencing6.  Further,  convincing and
intuitive proofs of certain theorems  are trivial and rapid to produce visually but require non-trivial
sentential inference7.  Claims that humans use diagrams internally to augment/ replace logical
inferencing are common8 but this is not universally accepted9.  

Despite the shortcuts offered by the analogue approach, we endorse sentential DR.
Methodologicaly, we believe it more useful to explore general principles rather than specific devices for
special domains. Although there exist examples of general principles for analogue DR10, these are few
in number.  The sentential framework presented here makes sense of diagrams using a general inference
procedure with wide applicability (exhaustive abduction). 

The kind of diagram we will explore are the vague causal diagrams (VCDs) drawn to share
expert intuitions in domains like neuroendocrinology (the study of the interaction of nerves and glands).
Such diagrams consist of nodes connected by arcs labelled (e.g.) "inhibits", "+", "promotes",  "-", or
"blocks". These diagrams are common (e.g. figure 1). Our neuroendocrinological expert could find five
such graphs in as many minutes from the first two textbooks he took randomly from his bookshelf. 



Figure 1:  VCD for connections between serum adrenocorticotropin (acth),
serum corticosterone (cortico), and neuro-noradrenergic activity (nna -
measured as the ratio of noradrenaline to its post-cursor, 3,4-
dihydroxphenylethethyleneglycol). VCD drawn by Smythe11.

In this paper, we offer a novel sentential definition for diagramatic reasoning based on our
research on knowledge acquisition for neuroendocrinology. We say that such a VCD is understood  iff
we can extract from it a deductive theory that can explain some of our known behaviour without also
entailing  inconsistencies.  We understand that VCDx  is better than VCDy  iff the theory extracted
from VCDx can explain more known behaviours than the theory extracted from VCDy . This extraction

process is defined in §3, after a general discussion in §2 about VCDs.  §4 discusses possible limits
with our sentential diagram understanding system. §5 describes our experimental results (e.g. sentential
VCD understanding can yield insights that are invisible to other techniques). §6 discusses related work.

Applications for this novel definition include multiple-expert knowledge acquisition (when
feuding experts need some judgment about competing knowledge), group decision support systems
(when groups use vague diagrams as a knowledge sharing tool), and single-expert knowledge
acquisition (when a single expert is unsure about what knowledge to add to a knowledge base). Note

that this work is a generalisation of Compton & Feldman's qualitative hypothesis testing project12,13.

2. About Vague Causal Diagrams (VCDs)
VCDs are usually viewed as pre-cursors to a more formal modelling technique. For example,

vague statements such as "glucose levels effect insulin production" can be translated into a
compartmental model: a set of exponential functions that control flows in and out of the insulin
"compartment".  This translation typically requires more information that what is available in the
original diagram (e.g. numeric parameters for the exponential functions modelling the flow rates). In
poorly measured domains (e.g. economics, ecology, and most of human internal medicine including
neuroendocrinology) this information may be currently unavailable (e.g. in the case of VCDs drawn as
hypothesis about new ideas) or prohibitively expensive to collect.

These limitations with numeric modelling have lead some mathematical modellers to
question using quantitative methods for understanding the kinds of diagrams we call VCDs.  For
example, after producing eight different quantitative models for the same phenomena (human
ovulation),  McIntosh & McIntosh14 comment that:

The most striking feature evident from studying these models is the variety of
equations which give reasonable representations of the observed experimental
data... In each model these apparently appropriate equations have been  derived
from quite different assumptions and simplifications and use different parameters.
McIntosh & McIntosh believe that deeper than the non-unique empirical models is another

kind of model which embodies our actual concept of what caused the observed behaviour. We concur
and argue that, wherever possible, the natural expression of the domain (i.e. VCDs) should not be
inappropriately contorted into a numeric formalism. 

Processing VCDs directly without further knowledge acquisition is complicated by qualitative
indeterminacy. For example, in figure 1, when both cortico  and nna go (up),  we have two
competing influences on acth , the net effect of which could be acth ,  acth (down), or acth (remains
steady).  This indeterminacy is worse in poorly measured domains since we can't tame indeterminacy by
using known measurements to reject possibilities. Also, when generating explanations, we will often
make assumptions about unmeasured vertices. Some of these assumptions will be incompatible. VCD
inference must manage the incompatible assumptions in different worlds (defined below). Lastly, given
the informal manner of VCD construction, only a subset of a VCD (VCD') may be consistent and
VCD' may only be able to explain a subset of known behaviour.  VCD inference must be a search for



some subset of the total diagram that can explain some subset of known effects without generating
inconsistencies (e.g. proving acth and acth  simultaneously). Given the indeterminate nature of the
inference,  there may be multiple subsets and we will have to define some criteria for choosing between
them. Formally, VCD inference is a variant on abduction  (see next section).

3. About Abduction
Consider a system with two facts a,  b and a rule R1: If a  b. Deduction is the inference

from a  to b. Induction is the process of learning R1 given  examples of a and b occurring together.

Abduction is inferring a,  given b15.  Abduction is only a plausible inference since other rules may have
concluded b using other premise(s). Hence abduction requires some inference assessment operator
(which we will call BEST).  Abduction is a mechanical procedure that, at a symbol level, is equivalent
for a variety of  " " operators: logical deduction, causality, or application of a default rule16 (however,

various authors caution against mixing up " " operators within a single knowledge base17,18).
Intuitively, abduction is the generation and evaluation of possible behaviours19 and has been applied to

many domains; e.g. diagnosis20,21, causal reasoning22, natural language processing23,  explanation

generation24,  planning, and design25, visual pattern recognition26, frame-based reasoning27,28 and case-
based reasoning29.  

 The abductive problem we will consider is a tuple <M', I, IN, OUT, BEST> defined as
follows. Let M  be some model and M'  be a directed, possibly cyclic graph generated via converting M
into a propositional form (for example, see Figure 2). M' is the space of possible ground proof trees
that could be extracted from M. More precisely: (i) the vertices V  of M' are either  literals from M  or
Ands (defined below); (ii) the directed edge Exy(Fromx, Toy) of M'  represents an inference rule of the
form: Ew(Vx,Vy)  iff literal Vx could explain literal Vy.  

We translate M  to M' since (i) the translation converts any domain-specific processing to
(possibly) additional edges and/or vertices; hence, (ii) lets us define our adductive process in terms of a
uniform M' structure; (iii) we can define macro-expansions for commonly used sub-graphs; (iv) we can
assign each M' vertex a unique integer id and use bitstrings to optimise the inferencing. Note that M'
explicitly represents the search space tacit in M.

Figure 2: M' for the M of figure 1. One M' vertex
has been created for each possible state of M
vertices (up, down, steady). Ands have been added to
combine influences that can lead to a steady (e.g.
nna  & cortico acth ). The vertices nna  and
cortico  are isolated since no combination of
influences can combine to lead to these steady
vertices.

 Let IN and OUT be subsets of the M' vertices.  P is the set of non-cyclic proofs  Px  whose

nodes, edges, leaves, roots are from V , E, IN, OUT respectively and whose edges share a vertex with at
least one other edge in Px. No two vertices in Px can violate the invariants I. For all Ands  in Px,  all
the in-edges of that And must also be in P ; i.e. all parents of that And  are also in Px. For all V  that
are not Ands, Px  must contain zero or one parent only. OUT  and IN  list the known measurements of

the entity being modelled. Vertices in P  that are not from OUT  or IN  are  assumptions A.
Abduction is the generation of a world Wx; i.e. the edges contained in a union of a subset of

P  such that (i) DONE ⊂ OUT; (ii) USED ⊂ IN;  (iii) Wx & USED DONE ;

(iv) ¬(Wx & USED false) i.e. does not violate I. ; (v) inference for (ii) and (iii) is restricted to Wx;

(vi) Wx is maximal with respect to set inclusion of E. For example, consider an abduction over the M'

of figure 2 with IN = {cortico }, OUT = {nna , acth }, and I being the rule that Px  cannot include an



or simultaneously for the same M  vertex. We would generate one world W1 = {P1} =

{E1(cortico , nna )} with A = {}, USED = IN and DONE = {nna }. Acth is not in DONE since its

explanation requires a proof through  two different states of either cortico or acth  (which would violate
I).

Exhaustive abduction  (EA) is the generation of all Wx and their subsequent evaluation by a
domain-specific BEST operator. Example BESTs  include BEST1: returning all Wx with fewest
assumptions (|A|); BEST2: with fewest number of causes (|USED|); BEST3: with shortest proof size
(|Px|); BEST4: with the largest number of explained effects (|DONE|); or BEST5 which avoids edges

with low likelihood (assuming that such meta-knowledge about edges is available; e.g. some edges
were proposed as part of a theory you wish to fault).

Our definition of abduction is compatible with abduction as defined elsewhere,30,31,32. Our
worlds are different to the extensions of Reiter's default logic33 in that not all consequences of literals in
Wx appear in Wx: if a proposition is not in a path to a member of OUT, it is ignored (this saves
unnecessary world generation). Note that Wx  satisfies our requirement for understanding VCDs: (i)Wx
is some portion of M  which can be used to simply infer DONE from USED; (ii)Wx contains

consistent assumptions;  (iii) BEST is an explicit selection criteria.

4. Apparent Limitations
This section discusses possible limitations to our approach. In practice, these issues are not

overly restrictive (see below).
 M  must be a finite theory otherwise M' (the explicit search space tacit in M) will be infinite

and EA will never terminate. Px can't contain loops. Hence, we cannot explain time-series data (e.g X

went up, then later it went down, then it went up again) without significantly increasing the size of our
models  (i.e. create one M' vertex for each literal in M  at all measured time intervals).  All our
experiments (see below) assume non-time-series data.

General abduction is known to be NP-hard34,35 and polynomial time abductive inference
procedures are only known for certain restrictive cases: e.g. unit resolution over non-cyclic background
theories36; or  when sufficient "rule-out knowledge" is available to cull much of the search space37.  EA
does more work than standard abduction and so we could pessimistically predict that the generation of
all Wx  to be impractically slow.  

Another pre-experimental pessimistic prediction about EA would be that any behaviour can
be generated from a search through indeterminate models. If so, then the power of our sentential DR
approach would be minimal since it would incorrectly "understand" that any VCD can do anything.

5. Experimental Work
Compton & Feldman used BEST4  to demonstrate that a VCD for glucose regulation

developed from international refereed publications38 could not produce proofs for a large number of
known causes and effects. In all, 109 of 343 (32%) of the known data points from six studied papers
could not be explained with reference to their model. Of these detected faults, at least one represented an
insight into the process of glucose regulation that had been invisible to conventional scientific review
process39. Interestingly, the faults were detected using data published to support the models; i.e. it is
possible that waiting in all the publications in the books in all the libraries around the world is a
backlog of extra inferences that we could make about existing knowledge, without having to perform
expensive further experimentation.

A subsequent study by Menzies40 corrected some modelling errors of  Compton & Feldman to
increase the inexplicable percentage from 32% to 45%. Another smaller study used BEST4  to

successfully fault the published scientific theory of figure 141.
 Compton & Feldman's system, and two subsequent prototypes, used a basic chronological

backtracking approach (i.e. no memoing) that was very slow. Basic chronological backtracking has the



disadvantage that any feature of the space learnt by the search algorithm is forgotten when backtracking
on failure. The current implementation, HT4, caches the most-upstream contraversial assumptions as a
side-efect of proof generation (in a manner analagous to the generation of ATMS minimal labels42).
This system runs 130 times faster than the Compton & Feldman  system since  world switching does
not require extensive further computation43.  Menzies & Gambetta reports 2 studies involving  4504
EA runs over 299 different M' models44. The Changing N study artificially generated 94 M' of varying
numbers of vertices (N) while keeping B (the average number of children/vertex)  constant at 2.25. The
Changing B study, artificially generated 205 M' of varying fanout while keeping N constant at 554.  
Figure 3 shows the results.
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 Figure 3A: Runtimes from Menzies & Gambetta.
Note that  the plateau after N=800 is an artefact of
the "give-up" time limit of  5 minutes built into HT4
(300 seconds).

Figure 3B: % effects explainable  from  Menzies
& Gambetta. Figure 3a shows that after N=800, most
of the runs did not terminate before the "give-up"
time of 300 seconds. Hence, the  changing N curve
in this figure drops off suddenly  after  N=800 .

Experimentally, we see that HT4 is limited to M' of N < 800 and B < 4. The N  limit is a
function of the current implementation but the B limit may be fundamental to exhaustive abduction.
Clearly, after a certain level of inter-connectivity, it would be possible to find proofs for any behaviour.
Figure 3B suggests that limit is B = 4.

Based on known sizes of fielded expert systems45, Menzies & Gambetta argue that these
limits are larger than models we see in contemporary knowledge engineering practice; i.e. we can scale
up VCDs to knowledge bases at least as big as those seen in current practice.  Further, the level of
critique offered by EA can be non-trivial. The changing N study of figure 3B shows that up to 75% of
behaviour may be falsifiable. 

6. Related Work
The internal structures of some validation tools for propositional systems46,47 use a multiple-

worlds architecture which, like ours, were inspired by the simultaneous context generation of DeKleer's
ATMS. Our focus is the validation of hastily scribbled diagrams of qualitative domains, though our
techniques also apply to propositional systems.  These other systems also incorporate model
modification operators. We do not explore model modification since we foresee that various users
would treasure their favourite portions of their model(s) (typically, the ones they have developed and
successfully defended from all critics). It would be unacceptable to permit a learning algorithm 
scribble all over this knowledge. Learning programs for this domain must strive to preserve the current
background theory (an approach explored by Mahidadia in an ILP framework48,49).

Qualitative reasoning (QR) processes VCDs by converting them into systems of equations
whose numeric values are replaced by one of three qualitative states: up, down, or steady50. Early QR
was limited to systems that were piece-wise well-approximated by low-order linear equations or by
first-order non-linear differential equations (e.g. CONFLUENCES51, QSIM52, QPT53). Subsequent work
studied the asymptotic long-term behaviour of more complex systems of equations54,55. Re-expressing



VCDs in qualitative equational terms may not necessarily reflect the intuitions of human modellers56.
Mapping VCDs to mathematics was required when no alternative execution format was available. Now
we offer an alternative approach.

Belief networks (BNs) deduce causality from a statistical analysis of the frequency
distributions of variables in a sample to deduce acyclic "networks" (which are really trees) of causal
relationships between variables57.  BNs assume sufficient measurements are available for the statistical
analysis; i.e. they are inappropriate in poorly measured domains such as neuroendocrinology. Also,
current state-of-the-art BNs assumes acyclic models58 and models in our test domain are usually cyclic
(e.g. figure 1). Further, the theories generated by BNs make do not preserve current beliefs (see above
remarks regarding preserving the background theory). 

Causality was a central concern in QR in the mid-80s59. However, after an inconclusive
public debate60, the term was avoided by experienced researchers (exception: the BN community).
Causality in QR was usually a deduced concept from the equations of  the qualitative model61. This
causal deduction process is unsuitable for our domain: since our models may be wrong, the deduced
causal graphs may also be wrong. An alternative approach was taken by the "causal editors"; i.e. those
researchers like us that let their experts specify causal graphs directly. Early work (e.g. CASNET62)
demonstrated the utility of this approach. Subsequent work (e.g. ABEL63) argued for adding abstraction
hierarchies to causal models. Causal models at various levels of abstraction permit inferencing
down/up/across  abstraction  level(s) if more/less/same abstraction is useful in the reasoning.  We do
not use CASNET-style causation strengths on our edges since like most numbers in our domain, these
strengths are unknown. Nor do we use ABEL-style abstraction hierarchies since in our search for all
possible answers, we will explore the entire theory, across every abstraction level; i.e. a bigger search.
We also address a different problem to other causal editing researchers. The primary use for our models
is verification, not simulation (as with CONFLUENCES) or diagnosis (e.g ABEL, CASNET). 

7. Conclusion
We have described general principles for sentential DR: (i) permit experts to draw vague

causal diagrams; (ii) translate them into propositional theories with a set of invariants; (iii) critique
them via libraries of known behaviour (a set of pairs <IN, OUT>). We say that we understand that
diagram iff we can extract from it a deductive theory that can explain some of our known behaviour
without also entailing  inconsistencies.  Further, we understand that some diagram is better other
diagram(s) iff  its extracted theory explains more known behaviours than its competitor(s). At the
symbol-level, this theory extraction process is exhaustive abduction (EA).

Our experimental results demonstrate that we can offer a non-trivial level of critique; i.e. EA
is a useful  technique for knowledge acquisition.  The current implementation is limited to critiquing
non-cyclic behaviour (e.g. no time-series) from finite models with an average fanout < 4 and |V| in
M'  < 800. These limits are beyond the models that we can find documented in current knowledge
engineering practice; i.e. EA is a practical technique. Further, EA over VCDs can identify errors that
are invisible to alternative methods; i.e. EA may be a superior technique of understanding diagrams
than alternative quantitative methods.

Note that we understand our diagrams using general logical principles as apposed to the ad-
hocary of standard analogue DR.
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