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ABSTRACT

Currently, "task analysis" is the dominant paradighe knowledgeacquisitioncommunity. We

argue that for performancesystemgi.e. systemsthat do not have to offer a knowledge-level
descriptionof their performanceat runtime) a simpler "test analysis"approachmay suffice. We

offer exampleswere a seemingly-naivetesting regime gives rise to competent performance
systemsFurther, by certain measuresthesesystemsdevelopedvia test analysisout-performed
systemsdevelopedfor similar domains using other techniques.Test analysisdid not augment
some other methodological approach:it removed the need for any other methodology. We

speculate that for performance systems, task analysis couldfegedtill after the development
of a testedperformancesystem. That is, for performancesystemstesting replacedtask but task

analysis could augment test analysis once a system was in production.

1. INTRODUCTION

Task analysis evolved from a reverse engineering of existing expert systems. We use the term "tas
analysis" togroup togethera setof researchersvho arguefor a similar structureusing different
terminology; e.g. KADS (Wielinga, Schreiber et al. 1992), Chandrasekaran'generic tasks
(Chandrasekaran1986), Steels' components of expertise (Steels 1990), Clancey's model
constructionoperators(Clancey 1992), and the architecture of SPARK/BURN/FIREFIGHTER
(Marques, Klinker et al. 1991). Currently, task analysisis the dominant paradigm in the
knowledge acquisition (KA) community

Here we present "tesinalysis”,our own reverseengineeringof the ripple-down-rules(RDR) and
hypothesis testing approaches. Both systems had certain similarities:

Section 2.1 gives an overview of task analysis but the pregtails of this approachare beyondthe scopeof
this paper. The interested reader is referred to the "related work" section of (Wielinga, Sdhraib&e92) for
an historical overviewanda comparisonof the different approachesThe dominanttask analysistechniqueis
KADS. For a gentle introduction to KADS, seethe short tutorial in (Linster and Musen 1992) followed by
(Wielinga, Schreiber et al. 1992). For a detailed introduction to the technique, see (Tansley and Hayball 1993).



Design: An approachto KB constructionwas proposedthat relied on low-level representation
primitives.

Use of Test Casediest cases were used during the development to test the knowledgentrol
the development.

Traces: The systems could offer support for detectany fixing KB anomaliesonly in terms of
low-level rule-traces.

Test Domains:The targetdomain wascomplex: interpreting biochemicalresultsand modelling
neuroendocrinological theories.

Of Courseit Won't Work: The pre-experimentalintuition was that the proposedmethod was
obviously naive and doomed to failure. Previous researtheisamedomainsrelied extensively
on high-level abstracted constructs.

Oh... It Worked: Onceimplementedthe systemsdisplayedadequatecompetencyin their target
domains. In fact, by certain measures, the systems, lmasedemingly-naiverepresentationsput-
performed existing systems based on more complex representations.

Maintenance Tools: Tools for maintaining the systemwere developedas part of the initial
product. Test analysis does not divide development into implementagomaintenancetools
for maintaining the knowledge have to be developed prior to commencing KA. Conseqtesttly,
analysis permits the seamless extension of the initial system into the maintenance system.

This experienceleadsus to speculatethat using testanalysis,we could create competentexpert
systemswhich (i) can completetheir inferencing in reasonabletime; (ii) can exhibit satisfying

competency in their target domain; afiii) provide sufficient insight into the inner workings of

the knowledgebaseto detectand fix KB anomalie3 during the developmentand maintenance
cycle. Further,if the goal of the systemis not (i) a teachingtool or (ii) a theoreticaltool for

generalisingold designsthen this performancesystemgeneratedvia test analysiswould suffice

and the overheads and problems of task analysis could be avoided.

The structure of this paperis as follows. Sectiontwo gives an overview of the strengthsand
weaknesse®f the task paradigm and defines performance systems Sectionsthree and four
describe our test analysis syster8sctionfive debatescertain objectionsto our proposalthat we
have encountered in the past.

2. TASK ANALYSIS
2.1. OVERVIEW

2.1.1 A reverse engineering of existing expert systems has revealed that abdeeetioé rules,
frames, forward/ backward chaining, etc., there exist repeatedmeta-level patterns of inference
(Chandrasekaran983; Clancey1985; Kahn, Nowlan et al. 1985; Van de Brug, Bachantet al.
1986; Clancey 1992).

2 A KB anomaly is a mismatch between the expectation ofitihreain expert and what can be found either in the
KB or in the output of the KB's execution. Note that we do not use the term "error" since this requires
assumptionsof Platonic "truth" or "falsehood" which we reject. This point is discussedurtherin the section
5.3. "Incorrect Models".



2.1.2 Software that stores parameterised versions of thetae-levelpatternsoffers a structured
approach to the knowledge acquisitiendeavour(Chandrasekaran986; Chandrasekarai990;
Steels1990; Clancey1992; Wielinga, Schreiberet al. 1992). KA can initially be the hunt for a
match between known expert behaviour and known meta-at&drns(Wielinga, Schreiberet al.
1992). Once a matchis found, then the meta-levelpattern offers a rich descriptionof the high-
level processing loops as well as the data structures that the experts have to supply.

2.1.3 Within the meta-levelpatterns there often exist processingmodulesused in other meta-

level patterns (e.g. "classify"select”,"match", "generalise" etc) (Chandrasekarai986; Marques,
Klinker et al. 1991; Clancey 1992; Wielinga, Schreiber et al. 1992). Software libraries that support
theseprocessingmodules can be usedto decreasedevelopmenttime. Marqueset al compare
development times with and without such a software library: &9 (without) to 20 days (with)
(Marques, Klinker et al. 1991).

2.1.4 Some evidencesuggeststhat encoding knowledge bases(KBs) using these meta-level
patterns gives the inference engine enough control knowledge to significantly improve its
performance.Clancey reports that in one task-analysisreverseengineeringof MYCIN, all the
searchwas removedfrom the inferencing (Clancey 1992). This would be consistentwith the
theory that novices spend much of their inferencing time working out what texidi.e. setting
goals) while expertsalready know the relevant stepsin their inferencing and so reach their
conclusions faster (Larkin, McDermott et al. 1980).

2.1.5 Explanationsgeneratedfrom the meta-levelpatternsare more insightful for the domain
expert and the software designerthan a (e.g.) low level trace of rule firings (Clancey 1983;
Wielinga, Schreiberet al. 1992). Such explanationscan be usedto identify and fix knowledge
anomalies during KA.

2.1.6 These explanationscan also be used to offer justifications of the delivered system's
conclusions for the end-user.

2.1.7 Despite early attempts to formalise the expert systeonstructionprocess(Stefik, Aikins
et al. 1982), expert systemconstructionremainsa somewhathit-and-missaffair. By the end of
the 1980s, it was recognisedthat our design conceptsfor expert systemswere incomplete
(Buchananand Smith 1989). Task analysisprovidesus with a rich and succinctvocabulary for
describing, summarisingnd comparing expert systemsFor example,a KADS-level description
of heuristicclassification fills 10 pages(Akkermans,van Harmelenet al. 1992) while Clancey's
original descriptionis somewhatmore verbose(61 pages)and not as precise (Clancey 1985).
Practitionersfind this retrospectivesecond-glanceat their systemsuseful for developingmore
generalised architectures for future work (Linster dhasen 1992). Expert systemstheoreticians
can usetask analysisto assesand clarify the essentialfeaturesand differencesof applications
(Schreiber, Wielinga et al. 1992). Lastly, knowledge engineering novices can use a task ahalysis
classic expert systems to quickly review successful techniques.

2.2. PERFORMANCE SYSTEMS

Note that, with the exception of poin2.1.7 above, the primary advantage®f task analysisis to
reduce the complexity and (hence)time required for the construction of performanceexpert
systemsi.e. a systemthat must (i) achievesome goal at runtime and (ii) provide assistanceat



designtime for KA. Pure performance systemscannot do point sevenabove;i.e. deliver a
knowledge-level (Newell 1982) description of their competency or reasons for their conclusions.

A performance systemeednot havetools for browsingits knowledgebase provided that some
design timesupportwasavailablefor verifying the semanticsof this black-box knowledgebase.
While these verification tools have to presenta summary of the KB to the domain expert/
knowledge engineer, this summangednot be a knowledge-leveldescription(for example,see
the discussion in section 3.3. on the traces from the RDR system).

2.3. PROBLEMS WITH TASKS

In this section we describe the overheads and problems associated with task analysis.

2.3.1 Task analysisis an active researcharea and mature tools for this technique are still
evolving. Even simple documentation tools are lacking

2.3.2 Betweenthe various campsof taskresearcherghereis little agreemenion the details of
the precise structuref the meta-levelpatterns.Contrast the list of repeatedprocessingmodules
from KADS (Wielinga, Schreiberet al. 1992) and SPARK/ BURN/ FIREFIGHTER (Marques,
Klinker et al. 1991) (termedknowledgesources"and "mechanisms'tespectively).While thereis
some overlap, thésts are different. Further,the number and nature of the meta-levelpatternsis
not fixed. Often when a domain is analysed using taske&w meta-levelpatternis induced (Tu,
Shahar et al. 1991; Linster and Musen 1992).

2.3.3 The existing meta-level patterns may not be correct. Consider, as one exane#eADS
interpretation modef for diagnosis (Wielinga, Schreiberet al. 1992). Our reading of the
model-baseddiagnosis (MBD) literature (Hamscher,Console et al. 1992) is that the KADS
diagnosisinterpretationmodelsignore many important featuresof the researchinto diagnosis.
For example,the interpretationmodelslisted in (Tansleyand Hayball 1993) separatediagnosis
from repair; a questionable division.

We make nacommenthere asto the correctnesf (e.g.) the KADS diagnosismodel. We only
note that the knowledge engineeringfields that task analysisis trying to generaliseare by no
means"closed-books"but are themselvesubjectto rapid evolutiorP. Such an evolution could
imply fundamental redesigns of the meta-level patterns. For example: recent waibdarctio
suggests that a wide variety of knowledge engineering tasks casefdly describedasdifferent
forms of abductionO'Rourke 1990). GeneralKR architecturedor a variety of knowledge-level
tasks could be implemented oop of an abductiveinferencesystem.This approachwould have
at least two advantagesi(i) a common underlying representationwould facilitate knowledge

3 Prior to the publication of (Tansley and Hayball 1993) there existed no centrarsiteen a Internet FAQ list
of commonly usedmodels. Further, many of the modelslisted in (Tansley and Hayball 1993) were created
especially for the book by the authors from their own undocumented sources (see paragraph 4, page 260).

4 KADS-speak for a meta-level inference pattern.

5 An informal KADS seminar convened at DX ‘93 (Hewlett-Packard 19@Bicludedthat the KADS interpretation
models for diagnosis were premature generalisations of a developing field.

6 Given somerule a - 8, then deduction meansconcluding 8 given o andabductionmeansconcluding o
given B. Induction means concludingiXa(X) - B(X) from the exampler —» B0a OB



sharing; (ii) formal results regarding the tractability of abduction could be used by the
knowledge engineer to avoid the acquisition of knowledge that is intractable to process

2.3.4 The bottleneckin task analysisis the mapping betweenproblem description and meta-
level inference patterns. In the SPARK/ BURN/ FIREFIGHTER wéok,example,the application
domainswereall pre-selectedand the mappingsbetweena library of application types and the
library of mechanisms was hand-coded. Techniques to automate this process have yet to evolve.

2.3.5. One technique we have found useful for expert system developmentis prototyping
(Menzies,Black et al. 1992). The overheadsassociatedwith documenting (e.g.) KADS may
introduce an organisational inertia inhibiting the prototyping process (Hyeanyou wantwe to
re-write the design document... agaif?")

2.3.6 Any reading of the task analysis literature suggests that one requires a high level of skill to
usethis approach(perhapsbecauseof points 2.3.1 to 2.3.5). Allemang note that "generic task
analysis” (the Chandrasekaraschool of task analysis)is difficult and requires a knowledge
engineer (Allemang 1992). Marquesal similarly note that expertsare enmeshedn the details

of using their skills and find it difficult to understan¢hat they are doing in more abstractterms
(Marques,Klinker et al. 1991). Aben provides lists of authors who expressdiscontentwith
imprecisions in the KADS formalism (Aben 1992).

2.3.7 The problem of explanationis not solved merely by offering a trace of the system’s
traversalover a task description(e.g. a KADS interpretationmodel). The issueof appropriate
runtime explanations is an active reseaacba.Explanationsmay haveto be extensivelytailored
to the specific goals ahe humanwho needsthe explanation(Leake 1991). For example,end-
usersmay not understandan expert descriptionof the competencyof the system(Paris 1989).
Task architecturesmay haveto be significantly augmentedto fully support explanation.Leake
arguesconvincingly that a cacheof prior explanationsand an active user model are essential
components of a good explanation module (Leake 1998¢r modelsand caselibraries are not
issues addressed in current task formalisms.

2.3.8 We have argued previously that task analysisis falling into the same trap as the
conventionalknowledgeengineeringtechniquesit was evolved to avoid (Compton, Kang et al.
1993). We view knowledge as a dynamic structure that is creatib@ context of its need.Meta-
level inference patternsare still knowledge, therefore thesedynamic constructthat may not be
relevant outside of the domain in which they were primarily evolved .

3. RIPPLE-DOWN-RULES (RDR)

This section describes ripple-down-rul@ssystembuilt using testanalysis(Compton, Edwardset
al. 1991; Compton, Edwards at 1992; Kang and Compton 1992; Compton,Kang et al. 1993;
Kang and Compton 1993; Mulholland, Preston et al. 1993; Preston, Edwards et al. 1993) .

7 For more on tractableabductiveinference,see(Bylander, Allemang et al. 1991; Eshghi 1993). For more on
generalising abductive architectures, see (Falkenhainer 1990; Poole 1990).

8 For example, after one KADS trainingpurse(conductedby specially-importedconsultants)for an experienced
Australian knowledge engineeringroup, that group concludedthat the overheadsof KADS madeit unsuitable
for projects less than 6 months long (i.e. the majority of their applications).



3.1. DESIGN

In RDR, cases comprising lists aftribute-valuepairs are passedone at a time to a propositional
rule-base.In classicalRDR, eachrule can conclude a single classification. The RDR scheme
adoptsthe frozen knowledgprinciple for propositionalsystemsWe "freeze"knowledgethat has
proved satisfactory.An RDR knowledge baseis write-once-only. New knowledgeis alwaysan
addition to the KB, never a re-write. This is applicationof the heuristic:"if it ain't broke, don't
fix it".

In RDR, whenever a case results in an inappropriate conclusion, thekpatetedgeis enteredin

as anunless test beneath the rule that resulted in the anomaly. A&riberledgebasedevelops,it

grows into a binary trewiith knowledge patchesstoredat every node (seefigure 1). At runtime,
the final conclusion is the conclusion of the last satisfied node.

if true
(x1is true Tule 2 ) .
unless...) - if true s e Figure 1: An RDR-tree. At
rule 1 — runtime, the output conclusio
t:&bl' if false | rule 3 e is the conclusion of the last
en X . no d Xo IS true .
iffalse = conclusion —— satisfied node.

if false x1 is true

Note that the RDR formalisrmakesno commitmentto tree structuresthat are optimal. An RDR
tree can contain repeatedtests,redundantknowledge,and its sub-treescan overlap each other
semantically.

3.2. USE OF TEST CASES

Test cases are used to check for the need to extend the knowledge base.r&xpertae output
of the systemand when they disagreewith the system'sconclusions,they enter a maintenance
environment where thegdd someunlesslogic beneaththe incorrectly last-satisfied node. Only
the logic deltais addedin the new node sincethe systemcan not get to this node without first
satisfying thelogic from the root to the node. So, if x1 is the correctconclusionwhena & b is
true, but incorrect whea & b is true and c is true, then we add the logic delta.a new node on
theif true branch beneattule 1 (as seen in figure 1).

Whenevera newrule is added,the input casethat promptedthe rule addition is cachedwith the
new rule. Such cases are caltEanerstone case®lew rules areaddedby the expertvia a simple
selectionfrom a differencelist. To generatethis differencelist, the RDR shell computesthe set
difference between all thpossibledescriptorsfor the input caseand the cornerstonecaseof the
incorrectly last-satisfied node. This is presented to the expert who can sélctN1) items off
this list for inclusion into the new rule. For example:

. If the relevantcornerstonecasehad referred to a measuremenof thyroid stimulating
hormone (TSH) as "high" and the T4 hormone as "low"; and

. If the incorrectly classified case referred to TSH as "high" and T4 as "high";

. Then the difference listvould compriseone item: "T4 = low". Referenceso TSH would

be dropped since the TSH attribute(s) of the incorrectly classified case was thastame
TSH attribute(s) of the relevant cornerstone case.



With this difference list, the condition of the patch rule could only be "if T4 = low then ..." .
3.3. TRACES

Explanations within the system are restricted to lists of the fired (u&esa trace of the RDR tree
from the route to the incorrectly last-satisfiednode), the cornerstonecasesfound during the
inferencing and the difference lists.

3.4. TEST DOMAIN(S)

RDR hasbeenappliedto biochemicalinterpretationand configuration of ion-chromatography
detectors (Mulholland, Preston et al. 1993). In one test domain, RDR simulates the reaéaning
doctor studying time seriesdata (the data being a record of the patient'slast 5 blood tests)
(Compton, Edwards et al. 1992).

3.5. OF COURSE IT WON'T WORK

In this section, we play devils advocate and demonstrate the implausibility of ripple-down-rules.

Representationaproblems: The modelssupportedby the RDR representatiorare too simplistic
for practical purposes.Considerthe nature of the conclusionsthat can be reached:simple flat
facts. Worsestill, the systemmakesno use of intermediary conclusions.Rules cannot make an
assertion that another ruleseslater in the inferencing. In sucha system,how can a knowledge
base simulate the progression of a disease?

Feature extraction problemsThe system isrucially dependanton a knowledgestructurethat is
representedoutside of the system.The list of all possibledescriptorsfor a case,and how we
calculate those descriptors from trew data,is a black box pre-processorlt is not an RDR tree
and hence unmaintainable by this system.

Difference list problems:In many real-world domains, theumber of descriptionsfor data(and,
in particular, time course datajill be very large. Therefore,the differencelists will be too large
and unmanageable.

Domain problems: The language used in the rule conditions is woefully inadequate for
expressing complicated medical concepts since it can only perform simple attribute/value
comparisons. Pattern matching across time-course dataas-trivial task (perhapsbetter solved
by geneticalgorithms?).Sincethis datarepresenta partial snapshotof the diseaseprocess,the
conclusions reached have a degree of uncertainty about them. We notatieenthat RDR has
no features for probabilistic reasoning, non-monotonic inference or accessingits previous
conclusions when it runs its next inference cycle.

Uncontrolled tree growth: Obviously, the extension of the KB via the addition of patch
knowledge beneath each rule will lead to undisciplined KB development. The inabifjipbally
reorganise and optimise the RDRe will lead to spaghettiknowledgethat will needlesslyrepeat
tests as well as patches that repeatedly ovesaaee higher-leveloverride. Theseconvolutionsin

the logic will have two results: (i) slow runtimes; (iigaaph of the competencyof the systemvs
time will not be a monotonicalljncreasingcurve. A patchthat fixes one problem could destroy
the semantics of the rest of the KB.

Summary: Clearly, ripple-down-rules cannot work. Higher-level abstractionssuch as the
knowledge-level constructs of task analysis are obviously required.



3.6. OH...IT WORKED

RDR is being usedfor PIERS an expertsystemfor biochemistryat the St. Vincent's Hospital,
Sydney. The current systemcomprises2037 rules (at the time of this writing) and is in routine
daily use. Maintenance time remains constant (measured in rules added per day: aBragd =
the systemis maintained by the domain experts without the need for knowledge engineers
(Compton, Edwards et al. 1992). Current level of competency: 95% acciitaeygurrent system
is limited to one-fifth of the biochemical tests performedbatVincent'sHospital; i.e. using RDR
we havebeenable to constructa systemthat in a very real pragmaticsenseis expertin 20% of
human physiology.

PIERSIs a significant result for the RDR approach.Previous attemptsat building intelligent
software for thdPIERSdomain required sophisticatednferencing proceduresand experimental
causalmodelling techniques(e.g. the ABEL system(Patil, Szolovitiset al. 1981)). Further these
experimental systems never went into routine production.

Experimentswith alternativeapproachedurther demonstratethe utility of the RDR approach.
Mansuri comparedthe competencyof an rule-basevs time using two approachesa machine
learning technique(ID3) and RDR. Time wasmeasuredn number of casespresented.In each
approach,a new case was presentedto the system, and the rule-base was re-organised
appropriately.The RDR systemachievedreasonablecompetencyafter a few hundred cases(at

which time the ID3 system was still 70% inaccurate). ID3 only caught up to &@2R6000 cases
were presented Note that the RDR systemwould havebeenready for delivery after only a few

hundred cases had been collected (Mansuri, Compton et al. 1991).

The following perceived problems proved not to be an issue in practice:

Representationaproblems: The level of competencyof the systemsuggeststhat the simple
representations of RDR did not hinder the expression oéxipert'slogic. Either domain experts
do not use complicatedreasoningin their own thinking or the RDR patch facility permitted
adequate repairs on partially expressed concepts.

Feature extraction problems: Featureextractionis not ascomplicatedas one might think (see
aboveparagraph).Also, somedegreeof repair of poor feature extractorsis possiblewithin the
RDR trees.For example,supposethe intendedlogic is "TSH is high, but only a little high". A
feature such as "TSH high when TSH > 7.2" can be fixed by pagst in the RDR to "if TSH >
7.1".

Difference list problems: While the total number of descriptorsis large, the differencelist is the
subsetrepresentingthe difference betweenthe relevantcornerstonecaseand the current case.
Such a list is manageablein size if a few interface tricks are used (e.g. grouping together
differences relating to similar concepts).

Domain problems:Prior to implementation,a considerationof the domain problemsleadto an
extension of basic RDR fdPIERS Extra functions wereaddedto accesghe lastN results.Prior
results couldbe testedusing max min, average netch, current, and previousfunctions. Experts
could enter in formulae that combined these operatorsin arbitrary combinations. Preston
(Preston,Edwards et al. 1993) studied how these operators were used in practice (studied
performed whePIERSwas at the 957 rule level). Table 1 shows the relative frequencies of use
the variousfunctionsin thoserules. In the majority of testsconditions, the logic required only



simple tests.The arbitrary combinationsof conditionswasusedvery rarely (2.8% of the tests)
(Preston,Edwardset al. 1993). The observedcompetencyof the system,despitethe in-frequent
useof tools that analysethe time coursedata,suggestghat expertreasoningis possible without
requiring sophisticatedechniquessuch asnon-monotonicinferenceor probabilistic reasoning.

Function curr min max netch previous average
Used 1069 192 135 108 21 1
Used / 10.69 100 18 12.6 10.1 1.96 0.09

Table 1: Frequency of functions in 997IERSrules. Line 2 shows line 1 as ratios (1069 =
100 therefore 192 = 18). Taken frdiareston, Edwards et al. 1993)ote that while the
experts had access to more intricate methods to express their knowledge, satisfactory
performance was obtained using very simple constructs.

Uncontrolled tree growth:RDR trees tend to bleroad and flat (maximum number of patchesin

PIERS= 8, average = 2-3). As to the redundancy and overlagisilogic of the tree,while this

is less than optimal i computationalsensejt is somewhatmisguidedto attemptto optimisean

RDR tree to (e.g.) remove the redundancies or separate out the overlapmpohant featureof

an RDR tree is that it is optimised for maintenance. Alterndh@vledgerepresentatiorschemes
may run faster but incur the penalty of hardermaintenance. It should be noted that eventhe

seemingly inefficient RDR trees have never proven to be too slow in practice. Further, there
exists some experimental evidence that suggests that the redundancy raet tm@gignificantly

large. Gainesand Comptondescribetechniquesfor the machinelearning of RDR trees. When

given cornerstone cases from existing RDR trees, only a 50%esizetion wasobserved(Gaines
and Compton 1992).

3.7. MAINTENANCE SUPPORT

The frozenknowledgeprincipal of RDR simplifies maintenanceTo seethis, considerhow most
expert systemswould encodethe knowledgein the above RDR tree. Most probably, they would
enumerateall the logical pathsin the RDR tree and write one rule for eachpath. Assuming the
RDR interpreter, then the logical paths for figure 1 are shown in table 2.

Rule If Then
1 a&b&notc&notd |x1
2 a&bé&c X2
3 a&b&notc&d X3

Table 2: A propositional system that is equivalent to figure 1.

If the knowledgeof the systemis patched,thenin a conventionalrule-basedexpert system,this
patch could extend over many rules. Repeating our above exampl@attiieon the x1 anomaly
requiresan edit to one rule (rulel) and the creation of another (rule2). Further, the new logic
refers toc which is a new concept that must lopagateddown to all relatedrules (rule3). The
more related rules, the more edits. the knowledgebasegrows, so to doesthe number of edits.
Hence the time taken to make a change increases and we have a bad maintenance environment.

In RDR, existing knowledge is frozen and we oektendthe knowledgebase.The time takento
change the knowledge does not increase as the knowledge grows siknewhedgebaseauthor



doesnot haveto tour all the knowledgeto make a patch. Instead,at patch time, the system
presents the authawith a list of candidatedeltalogic and the author selectsitem(s) off that list.
Theseitems are addedbeneaththe incorrect node. This is the action at every knowledge patch
time. Maintenance time is hence reduced.

The astutereader will note that this is only a patch on the rule that was discoveredto be
anomalous for this case. The same lagi®maly could existin other rulesin different branches

and would remain unpatched by the above process. In practice, the process of tracking down thes
other anomaliesoccursas part of correcting other case8 Hence,tracking down anomalieson

other branches does not noticeably increase the maintenance effort described above.

4. HYPOTHESIS TESTING

This section describes hypothesgsting: a framework for exploring scientific theoriesusing test
analysis (Feldman, Compton et 4P89; Feldman,Compton et al. 1989; Mahidadia, Compton et
al. 1992; Mahidadia, Sammut et al. 1992¢enzies,Mahidadiaet al. 1992; Menzies,Compton et
al. 1992; Menzies 1993; Menzies and Compton 1993) .

Despite the advantagesof the RDR approach (e.g. easy maintenance),RDR makes two
assumptions that are not relevant in all domains.

. The expert does not wish to browse the knowlelgse.RDR allows expertsonly to view
the portion of the KB usedby a particular case.Any other, more global, analysisof the
KB is prevented by the RDR interface.

. The KBs generated via RDR will not be uded purposesother than interpretationby an
RDR system.A KB generatedoy a RDR systemcannot(e.g.) by ported to a qualitative
reasoning system for simulation purposes.

Hypothesistesting is a test analysis technique developedfor domains where experts want to
browsetheir hypothesesaswell aspermitting a migration of the hypothesedor other purposes.
The challenge in these domains is to support KB development and maintevidrmé having to
imposeon the expert RDR-stylerestrictionson how they accessthe knowledge. Further, RDR
imposes a KA regime from the vesjartof the KA process.Hypothesistestingis an experiment
in test analysis where KA has already begun and background hypotheses already exist.

41. DESIGN

A hypothetical model to be testdd is a directed, possibly cycliand-or graph whoseverticesare
entitiesare one of T types (whereeachtype canbe in one of S finite states)and whoseedges
represent causal effects betweantities. One specialkind of T is a "and" vertex which combines
upstreaminfluencesto resultin a single downstreaminfluence. All other T vertices are "or"

vertices: arriving at that node from any of its upstreaminfluences gives us permissionto

propagatean influence downstream.A useful model as one that can replicate the observed
behaviourof the thing that is being modelled. Behaviour is a g&rE> whereC is a setof input
causes that result B, the set of output effects.

9 As evidence of this, theIERSnew rule rate remains constant at 3 rules/day.



Elements ofC andE are state assignments; i.e. associations \wfrtex and a state.To generateE
from C andM, we searchfor stateassignment®f neighbouringverticesthat link effectsback to
any cause.Such an assignmentis called an explanation The explanationis given a causal
interpretation:vertex Vy, in stateS, causedadjacentdownstreanvertexV, to be in stateS, We
attempt to generate one explanation for each elemet of

Theseexplanationsmust not violate a set of invariantsl. We define invariantsin the negative
sense; ifnot(l) is true, then no invariants have been violated. Usulall/simply the single rule |,
which is true (i.e. violated) if a vertex is two different statesFor single explanations], implies
that explanationscontain no loops. For the setof explanationsrequired to explain all of E, I,
implies that for a given <M,C,E>, explanationsrequire a single stateassignmentto all vertices
used in the explanations.

In our testdomain (neuroendocrinology), often violated: one explanationmay require a state
assignment that makes another explanation impossibles8nmptiors a stateassignmenthich
commits us to one explanationor another(but not and). Dependingon which assumptionswe
make, the explanations are divided up into multiple alternatowédsW,, W,, etc. Within a single
world, the explanationsdo not violate invariants.If a world is a proper subsetof anotherworld,
and both use the same assumptions, then we fuse them (this corddimesthat we do not deal
with the trivial case of one world for each explanation).

A world can be uniquely defined by its base assumptions.e. an assumptionwhich has no
upstreamassumption. When we move from world to world, we only needto resetthe base

assumptions, since all other assumptions in that world are dependant on the base assumptions.

The done seb is the subset dE that can be explained within a world. Toaverof aworld is the
cardinality of D (i.e. the number of effects thaan be explained).We define a "faulty model" as
one in which no worldV, can be computed that satisfies:

cover(W) = |E|
4.2. USE OF TEST CASES
For example, consider the mode of figure 2 and the case where:

C = {a(up), b(up)}
E = {d(up), e(up), f(down)}
cause(up, ++, up ).

(A )+
-\ cause(down, '++', down).

iy qrm

++ s

G T>| E_| cause(up, ‘--, down).
++

_ cause(down, ', up).

Figure 2A: Causal connections Figure 2B: Definition of edges in figure 2A.
between the vertices labelled For example g(up) could be explained via
{a,b,c,d,e,f,g} c(up) since the edgE€G is ‘++'.

Note that we have no value foror g. Values forc andg will be assumed as a side-effecttofing
to explainE in terms ofC. These explanations are:

E = {a(up), c(up), g(up), d(up) }



E = {a(up), c(up), g(up), e(up) }
E = {b(up), c(down), g(down), (down) }

Note thatl, is violated byc(up) & c(down) We must split our three explanations into two worlds.

W={E E}

W = { Es}.
W, contains the assumptiofis(up), g(up)}andW, containsthe assumptiongc(down), g(down)}.
However, since is fully dependant om, we can defindV, in terms of the basassumption(up)
andW, in terms of the base assumptiofdown).

Cover(W) = 2 andcover(W) = 1. Since neither of these covers eqyB|s the model is faulty.
Formally, we can characterise the above process as a search Kby atid D such that:
[equation 1] DOEOM, OMO(M, ODOCO-I)

44. TRACES

Tracesof the performanceof the causalmodels are limited to descriptionsof how node states
influence other node statesrossthe causallinks. For typical networkswith multiple inputs and

multiple outputs, this trace isverwhelming.Graphicaldepictionsof the net cover many screens.
These traces have to kammarisedo be useful for KA. A list of statesbetweena single output
and input look like a simple rule: e.lg.going up made go downwhich madeg go down which

madef go down. Domain experts can critique these simple path traces.

4.5. TEST DOMAIN(S)

Hypothesistesting is a far more experimentaltechniquethat RDR. Until recently, complexity
issues(seebelow) limited our experimentationwith this approach.However,some progresshas
beenmadein the processingof time-independentgualitative models as well as causalmodels.
Feldmanet. al. took quantitative compartmental modélsef neuroendocrinologyand converted
them into a qualitative form (Feldman,Compton et al. 1989). Menzieset. al. found a more
general causal representationunderlying the Feldman models that used simpler primitives
(Menzies, Mahidadia et al. 1992).

Recently we have come to view thesecausalmodels as simpler and/or graph (e.g. figure 2a)
(Menzies 1993). By compiling our representations into and-or graphs of poskitdéransitions,

we should be able to apply hypothesistestingto a variety of representationge.g. mathematical
equations, propositional rule-bases (Menzies, Mahidadia et al. 1992)). More speculatively, we have
argued previously that hypothesistesting could be the basisfor a genericKA loop for multiple

model types (Menzies, Mahidadia et al. 1992).

4.6. OF COURSE IT WON'T WORK

In this section,we play devils advocateand demonstratethe implausibility of this test analysis
technique.

10 Compartmental models utilise the principal of conservation of mass. The sum of flows of substance in and out of
a compartment must equal zero. These flows are typically modelled using a time-dependant expadietital
since the rate of flows often proportional to the amountof stuff in the compartment.For a brief tutorial on
compartmental models, see (Menzies and Compton 1993). For more details, see (Mcintosh and Mcintosh 1980).



Too many behaviours: Given the under-determinechature of the qualitative models processed
by hypothesis testing antthe feedbackloops they contain, surely pathscan be found to explain

any effect. It would be extremelyunlikely that a datasetcould not be explainedin termsof a

gualitative model with feedbadkops. We note that much of the work in neuroendocrinological
theory review hadbeenbasedon quantitativecompartmentaimodelling. Large databaseslready

exist of quantitativemodels and experimentalresults. Why surrenderthese guantitative models

(which support precise prediction) to qualitative models (which can only support the vaguest
prediction)?

Better techniquesBetter techniques exist for deducing appropriate causal models from data. Pearl
describestechniquesfor deducing causal models (which he terms "belief networks") from
observed frequency distributions of variab{@earland Verma 1991). His techniquesgrounded

in soundmathematicatheory, are a more principled approachto KA of causalmodelsthan the
ad-hocary of hypothesis testing.

Fundamental complexity limitations: Given the size of real models,we find it implausible that
equation one will be of any practical utility. If consistencyis determinedvia a depth-first
chronological backtracking search (e.g. as proposed in (Menzies, Mahidadia et al. 1992)) then the
complexity of the processwould be overwhelming. Equationone would have to be applied to

every subset of the effects and the modiets;O0(2N) whereN = |M| + |E['1. We understandthat
(Menzies1993) estimateghat the searchspacefor a chronological backtracking searchfor the
Feldman ‘89 model to be 26 (an area much to large to be exhaustively searched).

One technique for taming this complexity would be to imposeeta-structureon the basicnode
representation. Such a meta-structure would allow us to constrain the search to (e.g.) entities in th:
same abstracthierarchy. Other researchin causal models of human physiology have made
extensive use of such a meta-lesalucture. ABEL, developedin the domain of diagnosingacid-
base and electrolytic disorders, propagates causal influenvees causalmodel that existsin N-
layers of abstraction(Patil, Szolovitis et al. 1981). The reasoning can move across a level
(projecting an hypothesis sideways to firelatednodes),up a level (aggregatingsymptomsto a
higher level of abstraction), or down a level (disaggregation: the opposite to aggregation).

Ignoringthese meta-level structures implies that search procedures cannot take advantage of therr
Note that the Feldman '89 modehsconstructedfrom one review article thatis a summaryof a

mere 6 research papers. These 6 pagenerateda searchspaceof 1027, Clearly this technique

will not scale up.

Better representations:As with our critique of the RDR approach the representationsised here
seem too low-level to capture the domain. It is illuminating to consider how other researchers have
approachedhis area.For example,Dardenuseda theory anomaly detectorbasedon a generic
task approach (Darden 1990). Entities within the domain were bundled into groups (using
functional knowledge)and anomaly localisation proceededvia this meta-levelgrouping, rather
than at the mere single node level (Moberg 1992). Anomaly localisation wasc@ssof walking
backwardsfrom the final stateback towardsthe initial state,through the difference parts of the

1 For the model of figure 2AM| = the number of arcs = 6 afid| = 3. $+3=512; j.e. even trivially small models
have non-trivial search spaces.



theory (modelled as "function frames") inquiring at each puwihétherthe intermediatestatehad
been entered.

Summary: Clearly, hypothesis testing won't work. Higher-level abstractions such as the
knowledge-level constructs of task analysis are obviously required.
4.7. OH...IT WORKED

The success of the hypothesis testing technique was first regorteid Banff workshopin 1989
and 1992. Data sets daxistin the neuroendocrinologicaliterature that cannotbe explainedvia
our indeterminate qualitative models.

. Menzieset. al. reportedanomaliesin the Smythe'87 model (Menzies, Mahidadia et al.
1992). This was a novel finding that Smythe himself was unaware of (Smythe 1992).
. Feldmanet al. reportedthat in analysisof the Smythe'89 (Smythe 1989) review paper

and 343 datapoints collected from six related researchpapers,109 of the data points
could not be explained (32%) (Feldman,Compton et al. 1989). While some of the
inconsistencies werdue to deliberatesimplifications of the model by the researcherthe
most important result was that the norepinephdatin hypothyroid ratswho had been
given an alpha-2 adrenegeridblocker could not be explained.This was a novel finding
that the authorsof Smythe '82 researchpaper (Smythe, Duncam et al. 1982)werenot
aware of.

That is, we can fault published neuroendocrinologicaltheories using previously-unrecognised
relationshipsin the datapublishedto supportthem. Further,the anomaliesthat we found were
previously undetected. We offer two theories for why this is so:

1) Focus: Researchers design experiments to test a particular hypothesidauutetection
often occurs in comparisons of data that was not relevathietbypothesisthey setout to
test.

2) Mental effort: Without anautomatictool to perform the searchfor causalpathwaysgeven

simple models are too complex poocessby hand. In larger models,the complexity of
the task is truly overwhelming (recall thezfo‘igure mentioned above).

As regards the other objections raised above:

Fundamental complexity limitationsOur two initial prototypeswere,in retrospectnaivein their
search andvould not havescaledup. The Feldman'89 study could only process28 of the 992
experimentalcomparisong(i.e. thosewith only one causeand no steady effects) and took two
daysto run. The work on hypothesistesting over the last year has focused on the complexity
problem and we have now moved beyond the chronological backtracking approach used in
(Menzies,Mahidadiaet al. 1992) to an assumption-basettuth-maintenanc€ ATMS) approach
that builds all alternative world simultaneously (thus avoiding the complexitg-ofventingeach
alternativeworld asthe searchtries each alternative). When analysing different worlds, we now
only iterate over thdaseassumptiongratherthan over all assumptions)Such baseassumptions
are calculatedsa side-effectof applying our ATMS algorithm. The new approachcan process
all 992 comparisonsn under 5 hours using an interpretedlanguage (Smalltalk). Moving to a
faster language (e.g. "C") could speedthat time up by a factor of up to 40. Also, recent



observations of the behaviour of the search suggest that further reductitvescomplexity may
be possible. (Menzies 1993).

Better techniques: Belief networksdo not permit the integration of an existing theory by an
analysis ofa newexample.In our system,we can foreseethat various userswould treasuretheir
favourite portions of the model (typically, the ones they have developed and successfully
defended from all critics). It would be unacceptable to permit an algorithm to scribble all over this
knowledge.

Also, generatingbelief networksrequiresaccesdo large amountsof datais availableon all the

entitiesin the domain. Our domain is characterisedas being hypothesis-rich,but data-poor.
Obtaining valuesfor certain chemicalswithin the body is not as simple as, say, attaching a volt

meterto an electric circuit. Often delicatemeasurementfaveto be madeby skilled staff using

expensiveequipment.The measurementnust be repeateda statistically meaningful number of

times. Also, in certain domains, it may take years to gather the data (e.g. large-scale
epidemiological studies).Hence, the data required to assistfeuding experts debating different
versionsof the samemodel may be unobtainableor incomplete. Consequentlyjn the Feldman
‘89 study, over 90% of the nodes were unmeasured.

Better representations:We found that the meta-level constructsA&EL andthe Darden/Moberg
study werenot requiredfor fault detection. ABELs causallinks are more complicatedthan in
hypothesis testing: they stored information about causal sewerityluration. Patil et. al. do not
justify the complexity of their systemThe essential featuref the Darden/Mobergrepresentation
that supportedmodel faulting wasthe causallinks betweenentitiesin the domain. In terms of
model faulting, the restof the architecturewassuperfluous.In fairnessto their work we should
add that, unlike our workthey were exploring an existing representatiorrather than seekingthe
minimal architecture needed for model refutation. At most, we could argue that the
Darden/Mobergstudy demonstratedhat in terms of model revision, the useful featuresof a
representatiorare the causallinks betweenentities. At the very leastwe observethat verification
does not fall out straight away from a task analysis approach, but requires some additional work.

4.8. MAINTENANCE SUPPORT

The qualitative nature of hypothesistesting, and its ability to handle missing data, makesour
approach more suitable as a review/maintenancegool for scientific models than alternative
techniques(e.g. qualitative compartmentaimodelling). The modelsand data we processedwere
taken frompublications;i.e. our detectedanomalieshad escapedoeer review and the inspection
of the international neuroendocrine community.

The drawback with quantitative compartmental modelling is that it requires extensive experimental
observations.Much of the time of the neuroendocrinologistds spent collecting data on a
parameterof a proposedlink in a compartmentalmodel. A single qualitative causalreference
translated intca quantitativeequationmay require numerousvaluesbefore that equationcan be
executed.If the macro-structureof the proposedmodel is wrong, then this effort is wasted.
Hypothesis testingllows a researcheto quickly sketchand testthe macro-structureof a model

before wasting time on collecting data on potentially spurious connections.



5. DEBATE

In this section, we try to anticipate our critics and discuss objections to test analysis.
5.1. THE NEED FOR EXPLANATION

Objection: Expertsystemsieedto supportknowledge-levekxplanations.Such explanationscan
be generated via traces ekecutionof task architectures.Therefore,we should usetask analysis
to develop expert systems, particularly when we are building tutoring systems.

Let us distinguishbetweentwo usesof explanation: (1) explanationsfor KA purposesand (2)
explanations requested by users at runtime from the delivered system:

Explanation for KA: We agreethat expert systemsneed to supply "clues" regarding how the
inference traverses the knowledge base in oml@etectknowledgeanomalies.For performance
systemsthesecluesneednot be knowledge-leveldescriptions providing that they support KB

anomaly detectionand repair. RDR and hypothesistesting are examplesof systemswhere the
clues are below the knowledge level, yet competent expert systems can be developed.

Explanation for end-usersat runtime: As to runtime explanationsfor end-usersfrom the

delivered expert system, our oveixperiencehasbeenthat (a) this is a little-usedfeatureand (b)

satisfyingjustifications can be suppliedwithout recourseto knowledgelevel descriptions.Recall

that PIERS has no explanation other than the rule trace. No doctor, other than the rule

development team, has ever requesta@é@xplanationfrom PIERS Whenthe developmentteam
wantedexplanationsthe rule traceand a list of cornerstonecasesalong the rule-trace sufficed.

Menzies'PIGE system was an intelligent post-processor to a mathematical model ofyeoping

in a piggery. As well as theecommendatiorscreensof the expert system,the userscould access
detailed mathematicalanalyseshat explainedthe system'seasoning. The experiencethere was
that as long as the end-users knew that they could access the mathemaditalthat they never
actually did so. Menziest al. conjecture that expert systerden't needan explanationfacility at

runtime, but an excusefacility that gave usersa feeling that they could trust the reasoning
(Menzies, Black et al. 1992).

Lastly, as noted in 82.3.7, the problem of explanationoissolvedmerely by offering a trace of
the system’draversalover a task description.Explanationis an activeresearchareaand general
principles are only just beginning to develop (Paris 1989; Leake 1991; Leake 1993).

5.2. LACK OF GENERALITY

Objection: Testanalysisis hardly a general techniquewhile task analysisis relevantto more
domains.

While it is true that RDR has only been successfullyappliedto well for classification tasks,
attemptsto generalisethe techniqueto other domains have been encouraging(but only partial
successful). Mulholland'st al. ion chromatography system was @xperimentin extendingRDR
into configuration tasks. Gaine's INDUCT machine learning program was used to generate
multiple RDR trees from libraries of known chromatography configurations (Gaines and
Compton 1992). Each tree related to the setting of a particular parametentrol structurewas
then placed over the trees such that they were called in an appropriate sequencefor the



configuration. KA sessionsould patch the RDR treesusing the RDR interface, but the control

structure was outside of the RDR maintenance environment (Mulholland, Preston et al. 1993).

However,we believeit possiblethat, with further researchtestanalysiscan be becomea general
technique. Compton argues that RDR can be used to initialise a system which can then
incrementallygrow into a classificationor configuration or whatevertype of system(Compton,
Kang et al. 1993). Our preliminary work with hypothesis testing suggest# tteat be appliedto
gualitativereasoning,causalmodelling, and propositional rule-bases(Menzies, Mahidadia et al.
1992). Further, our techniquesseemvery similar to the general notion of expert critiquing
systems (ECS) (Silverman 1992) which Silverman defines as follows:

“programs that first cause their user to maximise the falsifiabiitytheir statementsand then
proceedto checkto seeif errors exist. A good critic program doubtsand traps its userinto
revealing his or her errors. It then attempts to help the user make the necessaryl¥epairs

Silverman'sresearchseemsto be focused on an implementation-independenanalysis of the
processof "critiquing" a program. Hypothesistesting aims for an engineeringformalism that
allows us to simultaneously process and validate different types of knowledge.

5.3. INCORRECT MODELS

Objection: The validity of a model can be measured by rtiae just its ability to cover certain
test cases.Other measuressuch as parsimony, succinctnessand clear use of existing domain
concepts are just as important as performance. A narrow focus merely on performancgiceuld
rise to incorrect and truly bizarre models indeed.

We have two comments on this objectidiirstly, we note that tacit in this objection is a belief in
the now-out-datedknowledge-transfeapproach.Gone are the days when KA wasviewedasthe
processof extracting the experts actual knowledge (poetically describedby Feigenbaumas
"mining the jewels in the expert's head" (Feigenbaum and McCorduck 1988} that none of
the above points 2.1.1 #.1.7 makesany claim to the meta-levelpatternsbeing an instanitation
of an actual model of human cognition!3. Davis et al. give the modern view of knowledge
representation: representatioage an inaccuratesurrogateof reality (Davis, Shrobeet al. 1993).
Gaines report that "the knowledge-modellingperspectivehas become widely adopted and
terminologiesreflecting an expertise-transfeperspectivehave been quietly dropped” (Gaines
1992).

We endorse the knowledge modelling perspective and believe ikdbity to aim for the "right"

or "correct" knowledgebasefor an expert system.Expert systemsare models of the world and
sincemodelsare not the sameas the thing they are modelling, they can never be completely
correct Popper argues that our models ocawer be "proved”in someabsolutesenselnstead,

the currently "true" theories are merely the ones that have not been disproved (Popper 1963).

have argued previously thahowledgeis a dynamic constructand that our KBs should be tools
for exploring those constructs rather thiaols for enshriningold insights (Compton and Jansen

12 ECSs are thereformuch broaderthan the definition instantiatedby ATTENDING (Miller 1986) which hadno
mechanism for doubting its own internal knowledge base.

13 Though (O'Hara and Shadbolt 1993) notes that despite dffairal public line, sometask analysisresearchers

believe in a human psychological basis for tasks.



1990). KA isa processof building and debugginga symbolic model that may neverhavebeen
created previously. This view is endorsed by Bradshaw et al who argue that the primary uility of
model is:

...not to serve as a "picture" of a domain, but adeaicefor the attainmentor formulation
of knowledge about it. (Bradshaw, Ford et al. 1991)

We regard the (i) RDR treeswith their redundanciesand overlapping subtreesor (ii) the
neuroendocrinologicatausalmodelswith redundantor unprovenlinks asbeing just asvalid as
any other construct for these domains. We demand only that our KBs esdnityitetencyin their
domain and can provide clues regarding knowledge anomalies.

Secondly, "clear usef existing domain concepts'is an interestingissue.Medicine, for example,
has entire libraries devoted to expounding domain concepts. Note that medicalsysparisuse
very few of theseconceptsand often haveto invent new constructs(e.g. the context tree in

MYCIN (Buchananand Shortliffe 1984)). PIERS (which can process20% of all biochemical
testsat St. Vincent's Hospital) used none of theseconcepts.Clancey'sresearchon generating
explanations from MYCIN showed that the knowledge required to explain an drug

recommendationwasdifferent to the knowledgerequire to make the recommendation(Clancey
1983; Clancey 1984). Werould argue that many "existing domain concepts"have beenevolved
for explanation purposes and may not be relevant for competency.

6. CONCLUSION

We have described our progress towards a general test analysis methodology (sunimtatded
3). In domains where the experts do not wish global knowledge of théRRR,can be useful. In
domainswhereglobal browsingis required, hypothesistesting may be appropriate.We concede
that test analysis requires more work but claim that our current results are encouraging.

"Naive" Pre-experimental Experimental Augment or
Technique| Domain KA intuition result replace task-
approach based KA?
Large systems (2037
Ripple- Classifica- | Binary tree Tree will be rules) can be built an Replace.
Down-Rules tion with logic unmanageable. easily maintained
patches | Competency unlikely| without knowledge
engineers.
Qualitative Indeterminacy will Naturally occurring
Hypothesis| models of | Indeterminatdy allow any behaviour| data sets can be fault§ Possibility of
testing the neuro- causal to be generated. (these faults are replace.
endocrine | influences. Ability to critique invisible to other
system hypotheses unlikely techniques)

Table 3: Summary of test analysis techniques. Competent performance systems can be

built using simplistic techniques. Note that the pre-experimental intuitions regarding the

naivety of the techniques were wrong. Perhaps before moving on to more complicated
techniques, we should experiment further with simpler alternatives.

Issuesrelating to testing are often deferred during discussionsabout KA and KR design. An
attitude we commonly strike is "oh yes,we can testit ... later". Here we haveargued for (i) test
sooner rather than latend (i) that developmentmethodologiesbasedaround rigourous testing



can replacelternativedevelopmenttechniques. The constructsusedin a KR built using testing
analysiswere significantly simpler than constructsrequired by other approaches.We wonder if
underlying the intricacies oéxisting expert systemsare a minimal setof KR techniquesthat are
the essentialcomponentsof artificial expert competency. We ask proponentsof alternative
methodologies requiring more intricate design constructs two questions:

. Have you experimented with simpler alternatives? Mgt that designsthat seemnaive at
first glance may in fact produce satisfactory competency with comparatively less effort.
. Does your approach support the maintenance cycle?

So,whencan "test" replace "task"? We have given examplesof performancesystemsthat were
developedusing test analysis. Such systemsare unsuitable for the following purposes:(i) a
teachingtool, or (ii) atheoreticaltool for generalisingold designs.We note that once we have
developeda testedperformancesystem,then task analysiscan be used reverse-engineering
knowledge-leveldescriptionof that system. That is, for performancesystemstesting replaced
task but task analysiscould augmenttestanalysisonce a systemwasin production. Indeed, this
reverse engineering for succinctdescriptionis whattask analysiswasdesignedfor and may be
its most useful feature.
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