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Currently, "task analysis" is the dominant paradigm in the knowledge acquisition community. We
argue that for performance systems (i.e. systems that do not have to offer a knowledge-level
description of their performance at runtime) a simpler "test analysis" approach may suffice. We
offer examples were a seemingly-naive testing regime gives rise to competent performance
systems. Further, by certain measures, these systems developed via test analysis out-performed
systems developed for similar domains using other techniques. Test analysis did not augment
some other methodological approach: it removed the need for any other methodology. We
speculate that  for performance systems, task analysis could be deferred till after the development
of a tested performance system.  That is, for performance systems, testing replaced task but task
analysis could augment test analysis once a system was in production.
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Task analysis evolved from a reverse engineering of existing expert systems. We use the term "task
analysis" to group together a set of researchers who argue for a similar structure using different
terminology; e.g. KADS (Wielinga, Schreiber et al. 1992), Chandrasekaran's generic tasks
(Chandrasekaran 1986), Steels' components of expertise (Steels 1990), Clancey's model
construction operators (Clancey 1992), and the architecture of SPARK/BURN/FIREFIGHTER
(Marques, Klinker et al. 1991).  Currently, task analysis is the dominant paradigm in the
knowledge acquisition (KA) community1.

Here we present "test analysis", our own reverse engineering of the ripple-down-rules (RDR) and
hypothesis testing approaches. Both systems had certain similarities:

                                                
1 Section 2.1 gives an overview of task analysis but the precise details of this approach are beyond the scope of

this paper. The interested reader is referred to the "related work" section of  (Wielinga, Schreiber et al. 1992) for
an historical overview and a comparison of the different approaches. The dominant task analysis technique is
KADS. For a gentle introduction to KADS,  see the short tutorial in (Linster and Musen 1992) followed by
(Wielinga, Schreiber et al. 1992).  For a detailed introduction to the technique, see (Tansley and Hayball 1993).



Design: An approach to KB construction was proposed that relied on low-level representation
primitives.

Use of Test Cases: Test cases were used during the development to test the knowledge and control
the development.

Traces: The systems could offer support for detecting and fixing KB anomalies only in terms of
low-level rule-traces.

 Test Domains: The target domain was complex: interpreting biochemical results and modelling
neuroendocrinological theories.

Of Course it Won’t Work: The pre-experimental intuition was that the proposed method was
obviously naive and doomed to failure.  Previous research in the same domains relied extensively
on high-level abstracted constructs.

Oh… It Worked: Once implemented, the systems displayed adequate competency in their target
domains. In fact, by certain measures, the systems, based on seemingly-naive representations, out-
performed existing systems based on more complex representations.

Maintenance Tools: Tools for maintaining the system were developed as part of the initial
product.  Test analysis does not divide development into  implementation then maintenance: tools
for maintaining the knowledge have to be developed prior to commencing KA. Consequently, test
analysis permits the seamless extension of the initial system into the maintenance system.

This experience leads us to speculate that using test analysis, we could create competent expert
systems which (i) can complete their inferencing in reasonable time; (ii) can exhibit satisfying
competency in their target domain; and (iii) provide sufficient insight into the inner workings of
the knowledge base to detect and fix KB anomalies2 during the development and maintenance
cycle. Further, if the goal of the system is not (i) a teaching tool or (ii) a theoretical tool for
generalising old designs, then this performance system generated via test analysis would suffice
and the overheads and problems of task analysis could be avoided.  

The structure of this paper is as follows. Section two gives an overview of the strengths and
weaknesses of the task paradigm and defines performance systems. Sections three and four
describe our test analysis systems. Section five debates certain objections to our proposal that we
have encountered in the past.
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2.1.1 A reverse engineering of existing expert systems has revealed that above the level of rules,
frames, forward/ backward chaining, etc., there exist repeated meta-level patterns of inference
(Chandrasekaran 1983; Clancey 1985; Kahn, Nowlan et al. 1985; Van de Brug, Bachant et al.
1986; Clancey 1992).

                                                
2 A KB anomaly is a mismatch between the expectation of the domain expert and what can be found either in the

KB or in the output of the KB's execution. Note that we do not use the term "error" since this requires
assumptions of Platonic "truth" or "falsehood" which we reject. This point is discussed further in the section
5.3. "Incorrect Models".



2.1.2 Software that stores parameterised versions of these meta-level patterns offers a structured
approach to the knowledge acquisition endeavour (Chandrasekaran 1986; Chandrasekaran 1990;
Steels 1990; Clancey 1992; Wielinga, Schreiber et al. 1992). KA can initially be the hunt for a
match between known expert behaviour and known meta-level patterns (Wielinga, Schreiber et al.
1992). Once a match is found, then the meta-level pattern offers a rich description of the high-
level processing loops as well as the data structures that the experts have to supply.

2.1.3 Within the meta-level patterns, there often exist processing modules used in other meta-
level patterns (e.g. "classify", "select", "match", "generalise", etc) (Chandrasekaran 1986; Marques,
Klinker et al. 1991; Clancey 1992; Wielinga, Schreiber et al. 1992). Software libraries that support
these processing modules can be used to decrease development time. Marques et al compare
development times with and without such a software library: 200 days (without) to 20 days (with)
(Marques, Klinker et al. 1991).

2.1.4 Some evidence suggests that encoding knowledge bases (KBs) using these meta-level
patterns gives the inference engine enough control knowledge to  significantly improve its
performance. Clancey reports that in one task-analysis reverse engineering of MYCIN, all the
search was removed from the inferencing (Clancey 1992). This would be consistent with the
theory that novices spend much of their inferencing time working out what to do next (i.e. setting
goals) while experts already know the relevant steps in their inferencing and so reach their
conclusions faster (Larkin, McDermott et al. 1980).

2.1.5 Explanations generated from the meta-level patterns are more insightful for the domain
expert and the software designer than a (e.g.) low level trace of rule firings (Clancey 1983;
Wielinga, Schreiber et al. 1992). Such explanations can be used to  identify and fix knowledge
anomalies  during KA.

2.1.6 These explanations can also be used to offer justifications of the delivered system's
conclusions for the end-user.

2.1.7 Despite early attempts to formalise the expert systems construction process (Stefik, Aikins
et al. 1982), expert system construction remains a somewhat hit-and-miss affair.  By the end of
the 1980s, it was recognised that our design concepts for expert systems were incomplete
(Buchanan and Smith 1989). Task analysis provides us with a rich and succinct vocabulary for
describing, summarising, and comparing expert systems. For example, a KADS-level description
of heuristic classification  fills 10 pages (Akkermans, van Harmelen et al. 1992) while Clancey's
original description is somewhat more verbose (61 pages) and not as precise (Clancey 1985).
Practitioners find this retrospective second-glance at their systems useful for developing more
generalised architectures for future work (Linster and Musen 1992). Expert systems theoreticians
can use task analysis to assess and clarify the essential features and differences of applications
(Schreiber, Wielinga et al. 1992). Lastly, knowledge engineering novices can use a task analysis of
classic expert systems to quickly review successful techniques.
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Note that, with the exception of point  2.1.7 above,  the primary advantages of task analysis is to
reduce the complexity and (hence) time required for the construction of performance expert
systems; i.e. a system that must (i) achieve some goal at runtime and (ii) provide assistance at



design time for KA. Pure performance systems cannot do point seven above; i.e. deliver a
knowledge-level (Newell 1982) description of their competency or reasons for their conclusions. 

A performance system need not have tools for browsing its knowledge base, provided that some
design time support was available for verifying the semantics of this black-box knowledge base.
While these verification tools have to present a summary of the KB to the domain expert/
knowledge engineer, this summary need not be  a knowledge-level description (for example, see
the discussion in section 3.3. on the traces from the RDR system).
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In this section we describe the overheads and problems associated with task analysis.

2.3.1 Task analysis is an active research area and mature tools for this technique are still
evolving. Even simple documentation tools are lacking3.

2.3.2 Between the various camps of task researchers, there is little agreement on the details of
the precise structure of the meta-level patterns. Contrast  the list of repeated processing modules
from KADS (Wielinga, Schreiber et al. 1992) and SPARK/ BURN/ FIREFIGHTER (Marques,
Klinker et al. 1991) (termed "knowledge sources" and "mechanisms" respectively). While there is
some overlap, the lists are different. Further, the number and nature of the meta-level patterns is
not fixed. Often when a domain is analysed using tasks, a new meta-level pattern is induced  (Tu,
Shahar et al. 1991; Linster and Musen 1992).

2.3.3 The existing meta-level patterns may not be correct. Consider, as one example,  the KADS
interpretation model4  for diagnosis (Wielinga, Schreiber et al. 1992).  Our reading of the 
model-based diagnosis  (MBD) literature (Hamscher, Console et al. 1992) is that the KADS
diagnosis interpretation models ignore many important features of the research into diagnosis.
For example, the interpretation models listed in (Tansley and Hayball 1993) separate diagnosis
from repair; a questionable division. 

We make no comment here as to the correctness of (e.g. ) the KADS diagnosis model. We only
note that the knowledge engineering fields that task analysis is trying to generalise are by no
means "closed-books" but are themselves subject to rapid evolution5.  Such an evolution could
imply fundamental redesigns of the meta-level patterns.  For example: recent work on  abduction6

suggests that a wide variety of knowledge engineering tasks can be usefully described as different
forms of abduction (O'Rourke 1990). General KR architectures for a variety of knowledge-level
tasks could be implemented on top of an abductive inference system. This approach would have
at least two advantages: (i) a common underlying representation would facilitate knowledge

                                                
3 Prior to the publication of  (Tansley and Hayball 1993) there existed no central site, or even a Internet FAQ list

of commonly used models. Further, many of the models listed in (Tansley and Hayball 1993) were created
especially for the book by the authors from their own undocumented sources (see paragraph 4, page 260).

4 KADS-speak for a meta-level inference pattern.
5 An informal KADS seminar convened at DX ‘93 (Hewlett-Packard 1993) concluded that the KADS interpretation

models for diagnosis were premature generalisations of a developing field.
6 Given some rule α → β , then deduction  means concluding β  given  α  and abduction means concluding   α

given β . Induction  means concluding ∀Xα (X) → β (X)  from the example α → β ∧ α ∧ β



sharing; (ii) formal results regarding the tractability of  abduction could be used by the
knowledge engineer to avoid the acquisition of knowledge that is intractable to process7.  

2.3.4 The bottleneck in task analysis is the mapping between problem description and meta-
level inference patterns. In the SPARK/ BURN/ FIREFIGHTER work, for example, the application
domains were all pre-selected and the mappings between a library of application types and the
library of mechanisms was hand-coded. Techniques to automate this process have yet to evolve.

2.3.5. One technique we have found useful for expert system development is prototyping
(Menzies, Black et al. 1992). The overheads associated with documenting (e.g.) KADS may
introduce an organisational inertia inhibiting the prototyping process ("you mean you want we to
re-write the design document... again?")8.

2.3.6 Any reading of the task analysis literature suggests that one requires a high level of skill to
use this approach (perhaps because of points 2.3.1 to 2.3.5). Allemang note that "generic task
analysis" (the Chandrasekaran school of task analysis) is difficult and requires a knowledge
engineer (Allemang 1992).  Marques et al similarly note that experts are enmeshed in the details
of using their skills and find it difficult to understand what they are doing in more abstract terms
(Marques, Klinker et al. 1991). Aben provides lists of authors who express discontent with
imprecisions in the KADS formalism (Aben 1992).

2.3.7 The problem of explanation is not solved merely by offering a trace of the system’s
traversal over a task description (e.g. a KADS interpretation model).  The issue of appropriate
runtime explanations is an active research area. Explanations may have to be extensively tailored
to the specific goals of the human who needs the explanation (Leake 1991).  For example, end-
users may not understand an expert description of the competency of the system (Paris 1989).
Task architectures may have to be significantly augmented to fully support explanation. Leake
argues convincingly that a cache of prior explanations and an active user model are essential
components of a good explanation module (Leake 1993). User models and case libraries are not
issues addressed in current task formalisms.

2.3.8 We have argued previously that task analysis is falling into the same trap as the
conventional knowledge engineering techniques it was evolved to avoid (Compton, Kang et al.
1993). We view knowledge as a dynamic structure that is created in the context of its need. Meta-
level inference patterns are still knowledge, therefore these dynamic construct that may not be
relevant outside of the domain in which they were primarily evolved .
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This section describes ripple-down-rules, a system built using test analysis (Compton, Edwards et
al. 1991; Compton, Edwards et al. 1992; Kang and Compton 1992; Compton, Kang et al. 1993;
Kang and Compton 1993; Mulholland, Preston et al. 1993; Preston, Edwards et al. 1993) .

                                                
7 For more on tractable abductive inference, see (Bylander, Allemang et al. 1991; Eshghi 1993). For more on

generalising abductive architectures, see (Falkenhainer 1990; Poole 1990).
8 For example, after one KADS training course (conducted by specially-imported consultants) for an experienced

Australian knowledge engineering group, that group concluded that the overheads of KADS made it unsuitable
for projects less than 6 months long (i.e. the majority of their applications).
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In RDR, cases comprising lists of attribute-value pairs are passed one at a time to a propositional
rule-base. In classical RDR, each rule can conclude a single classification. The RDR scheme
adopts the frozen knowledge principle for propositional systems. We "freeze" knowledge that has
proved satisfactory. An RDR knowledge base is write-once-only. New knowledge is always an
addition to the KB, never a re-write. This is an application of the heuristic: "if it ain't broke, don't
fix it".

In RDR, whenever a case results in an inappropriate conclusion, the patch knowledge is entered in
as an unless  test beneath the rule that resulted in the anomaly. As the knowledge base develops, it
grows into a binary tree with knowledge patches stored at every node (see figure 1). At runtime,
the final conclusion is the conclusion of the last satisfied node.

rule 1

a & b

then x1
if false

if true
(x1 is true
unless...)

if false

if true

rule 3

d

then x3

rule 2

c

then x2

  x2 is true

no
conclusion

if false

if true
x3 is true

x1 is true

Figure 1: An RDR-tree. At
runtime, the output conclusion

is the conclusion of the last
satisfied  node.

Note that the RDR formalism makes no commitment to tree structures that are optimal. An RDR
tree can contain repeated tests, redundant knowledge, and its sub-trees can overlap each other
semantically.
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Test cases are used to check for the need to extend the knowledge base. Experts review the output
of the system and when they disagree with the system's conclusions, they enter a maintenance
environment where they add some unless logic beneath the incorrectly last-satisfied  node. Only
the logic delta is added in the new node since the system can not get to this node without first
satisfying the logic from the root to the node. So, if x1 is the correct conclusion when a & b is
true, but incorrect when a & b is true and c is true, then we add the logic delta c to a new node on
the if true branch beneath rule 1 (as seen in figure 1).

Whenever a new rule is added, the input case that prompted the rule addition is cached with the
new rule. Such cases are called cornerstone cases. New rules are added by the expert via a simple
selection from a difference list. To generate this difference list, the RDR shell computes the set
difference between all the possible descriptors for the input case and the cornerstone case of the
incorrectly last-satisfied node. This is presented to the expert who can select N (N >= 1) items off
this list for inclusion into the new rule. For example:

• If the relevant cornerstone case had referred to a measurement of thyroid stimulating
hormone (TSH) as "high" and the T4 hormone as "low"; and

• If the incorrectly classified case referred to TSH as "high" and T4 as "high";

• Then the difference list would comprise one item: "T4 = low". References to TSH would
be dropped since the TSH attribute(s) of the incorrectly classified case was the same as the
TSH attribute(s) of the relevant cornerstone case.



With this difference list, the condition of the patch rule could only be "if T4 = low then ..." .
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Explanations within the system are restricted to lists of the fired rules (i.e. a trace of the RDR tree
from the route to the incorrectly last-satisfied node), the cornerstone cases found during the
inferencing and the difference  lists.
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RDR has been applied to biochemical interpretation and configuration of ion-chromatography
detectors (Mulholland, Preston et al. 1993).  In one test domain, RDR simulates the reasoning of a
doctor studying time series data (the data being a record of the patient's last 5 blood tests)
(Compton, Edwards et al. 1992).
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In this section, we play devils advocate and demonstrate the implausibility of ripple-down-rules.

Representational problems: The models supported by the RDR representation are too simplistic
for practical purposes. Consider the nature of the conclusions that can be reached: simple flat
facts. Worse still, the system makes no use of intermediary conclusions. Rules cannot make an
assertion that another rule uses later in the inferencing.  In such a system, how can a knowledge
base simulate the progression of a disease?

Feature extraction problems: The system is crucially dependant on a knowledge structure that is
represented outside of the system. The list of all possible descriptors for a case, and how we
calculate those descriptors from the raw data, is a black box pre-processor. It is not an RDR tree
and hence unmaintainable by this system.

Difference list problems:  In many real-world domains, the number of descriptions for data (and,
in particular, time course data) will be very large. Therefore, the difference lists will be too large
and unmanageable.

Domain problems: The language used in the rule conditions is woefully inadequate for
expressing complicated medical concepts since it can only perform simple attribute/value
comparisons. Pattern matching across time-course data is a non-trivial task (perhaps better solved
by genetic algorithms?). Since this data represent a partial snapshot of the disease process, the
conclusions reached  have a degree of uncertainty about them. We note the concern that RDR has
no features for probabilistic reasoning, non-monotonic inference or accessing its previous
conclusions when it runs its next inference cycle.

Uncontrolled tree growth:  Obviously, the extension of the KB via the addition of patch
knowledge beneath each rule will lead to undisciplined KB development. The inability to globally
reorganise and optimise the RDR tree will lead to spaghetti knowledge that will needlessly repeat
tests as well as patches that repeatedly override some higher-level override. These convolutions in
the logic will have two results: (i) slow runtimes; (ii) a graph of the  competency of the system vs
time will not be a monotonically increasing curve. A patch that fixes one problem could destroy
the semantics of the rest of the KB.

Summary: Clearly, ripple-down-rules cannot work. Higher-level abstractions such as the
knowledge-level constructs of task analysis are obviously required.
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RDR is being used  for  PIERS, an expert system for biochemistry at the St. Vincent’s Hospital,
Sydney. The current system comprises 2037 rules (at the time of this writing) and is in routine
daily use. Maintenance time remains constant (measured in rules added per day: average = 3) and
the system is maintained by the domain experts without the need for knowledge engineers
(Compton, Edwards et al. 1992). Current level of competency: 95% accuracy. The current system
is limited to one-fifth of the biochemical tests performed at St. Vincent's Hospital; i.e. using RDR
we have been able to construct a system that in a very real pragmatic sense is expert in 20% of
human physiology.

PIERS is a significant result for the RDR approach. Previous  attempts at building intelligent
software for the PIERS domain required  sophisticated inferencing procedures and experimental
causal modelling techniques (e.g. the ABEL system (Patil, Szolovitis et al. 1981)). Further these
experimental systems never went into routine production. 

Experiments with alternative approaches further demonstrate the  utility of the RDR approach.
Mansuri compared the competency of an rule-base vs time using two approaches: a machine
learning technique (ID3) and RDR. Time was measured in number of cases presented. In each
approach, a new case was presented to the system, and the rule-base was re-organised
appropriately. The RDR  system achieved reasonable competency after a few hundred cases (at
which time the ID3 system was still 70% inaccurate). ID3 only caught up to RDR after 6000 cases
were presented. Note that the RDR system would have been ready for delivery after only a few
hundred cases had been collected (Mansuri, Compton et al. 1991).

The following perceived problems proved not to be an issue in practice:

Representational problems:   The level of competency of the system suggests that the simple
representations of RDR did not hinder the expression of the expert's logic. Either domain experts
do not use complicated reasoning in their own thinking or the RDR patch facility permitted
adequate repairs on partially expressed concepts.

Feature extraction problems:  Feature extraction is not as complicated as one might think (see
above paragraph). Also, some degree of repair of poor feature extractors is possible within the
RDR trees. For example, suppose the intended logic is "TSH is high, but only a little high". A
feature such as "TSH high when TSH > 7.2" can be fixed by patch logic in the RDR to "if TSH >
7.1".

Difference list problems: While the total number of descriptors is large, the difference list is the
subset representing the difference between the relevant cornerstone case and the current case.
Such a list is manageable in size if a few interface tricks are used (e.g. grouping together
differences relating to similar concepts).
Domain problems: Prior to implementation, a consideration of the domain problems lead to an
extension of basic RDR for PIERS. Extra functions were added to access the last N results. Prior
results could be tested using max, min, average, netch, current,  and previous functions. Experts
could enter in formulae that combined these operators in arbitrary combinations.  Preston
(Preston, Edwards et al. 1993) studied how these operators were used in practice (studied
performed when PIERS was at the 957 rule level). Table 1 shows the relative frequencies of use of
the various functions in those rules. In the majority of tests conditions, the logic required only



simple tests. The arbitrary combinations of conditions was used very rarely  (2.8% of the tests)
(Preston, Edwards et al. 1993). The observed competency of the system, despite the in-frequent
use of tools that analyse the time course data, suggests that expert reasoning is possible without
requiring  sophisticated techniques such as non-monotonic inference or probabilistic reasoning.

Table 1: Frequency of functions in 957 PIERS rules.  Line 2 shows line 1 as ratios (1069 =
100 therefore 192 = 18).  Taken from (Preston, Edwards et al. 1993). Note that while the

experts had access to more intricate methods to express their knowledge, satisfactory
performance was obtained using very simple constructs.

Uncontrolled tree growth:  RDR trees tend to be broad and flat (maximum number of patches in
PIERS = 8, average = 2-3).  As to the redundancy and overlaps in the logic of the tree, while this
is less than optimal in a computational sense, it is somewhat misguided to attempt to optimise an
RDR tree to (e.g.) remove the redundancies or separate out the overlaps. The important feature of
an RDR tree is that it is optimised for maintenance. Alternative knowledge representation schemes
may run faster  but incur the penalty of harder maintenance.  It should be noted that even the
seemingly  inefficient RDR trees  have never proven to be too slow in practice. Further, there
exists some experimental evidence that suggests that the redundancy rate may not be significantly
large. Gaines and Compton describe techniques for the machine learning of RDR trees. When
given cornerstone cases from existing RDR trees, only a 50% size reduction was observed (Gaines
and Compton 1992).
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The frozen knowledge principal of RDR simplifies maintenance. To see this, consider how most
expert systems would encode the knowledge in the above RDR tree. Most probably, they would
enumerate all the logical paths in the RDR tree and write one rule for each path. Assuming the
RDR  interpreter, then the logical  paths for figure 1 are shown in table 2.

Rule If Then

1 a & b & not c & not d x1

2 a & b & c x2

3 a & b & not c & d x3

Table 2: A propositional system that is equivalent to figure 1.

If the knowledge of the system is patched, then in a conventional rule-based expert system, this
patch could extend over many rules. Repeating our above example,  the patch on the x1 anomaly
requires an edit to one rule (rule1) and the creation of another (rule2). Further, the new logic
refers to c which is a new concept that must be  propagated down to all related rules (rule3). The
more related rules, the more edits. As the knowledge base grows, so to does the number of edits.
Hence the time taken to make a change increases and we have a bad maintenance environment.

In RDR, existing knowledge is frozen and we only extend the knowledge base. The time taken to
change the knowledge does not increase as the knowledge grows since the knowledge base author

Function curr min max netch previous average
Used 1069 192 135 108 21 1
Used / 10.69 100 18 12.6 10.1 1.96 0.09



does not have to  tour all the knowledge to make a patch. Instead, at patch time, the system
presents the author with a list of candidate delta logic and the author selects item(s) off that list.
These items are added beneath the incorrect node. This is the action at every knowledge patch
time. Maintenance time is hence reduced. 

The astute reader will note that this is only a patch on the rule that was discovered to be
anomalous for this case. The same logic anomaly could exist in other rules in different branches
and would remain unpatched by the above process. In practice, the process of tracking down these
other anomalies occurs as part of correcting other cases9. Hence, tracking down anomalies on
other branches does not noticeably increase the maintenance effort described above.
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This section describes hypothesis testing: a framework for exploring scientific theories using test
analysis (Feldman, Compton et al. 1989; Feldman, Compton et al. 1989; Mahidadia, Compton et
al. 1992; Mahidadia, Sammut  et al. 1992; Menzies, Mahidadia et al. 1992; Menzies, Compton et
al. 1992; Menzies 1993; Menzies and Compton 1993) .

Despite the advantages of the RDR approach (e.g. easy maintenance), RDR makes two
assumptions that are not relevant in all domains.

• The expert does not wish to browse the knowledge base. RDR allows experts only to view
the portion of the KB used by a particular case. Any other, more global, analysis of the
KB is prevented by the RDR interface.

• The KBs generated via RDR will not be used for purposes other than interpretation by an
RDR system. A KB generated by a RDR system cannot (e.g.) by ported to a qualitative
reasoning system for simulation purposes.

Hypothesis testing is a test analysis technique developed for domains where experts want to
browse their hypotheses as well as permitting a migration of the hypotheses for other purposes.
The challenge in these domains is to support KB development and maintenance without having to
impose on the expert RDR-style restrictions on how they access the knowledge.  Further, RDR
imposes a KA regime from the very start of the KA process. Hypothesis testing is an experiment
in test analysis where KA has already begun and background hypotheses already exist.
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A hypothetical model to be tested M is a directed, possibly cyclic and-or graph whose vertices are
entities are one of T types (where each type can be in one of S  finite states) and whose edges
represent causal effects between entities. One special kind of T is a "and" vertex which combines
upstream influences to result in a single downstream influence. All other T vertices are "or"
vertices: arriving at that node from any  of its upstream influences gives us permission to
propagate an influence downstream. A useful model as one that can replicate the observed
behaviour of the thing that is being modelled. Behaviour is a pair <C,E> where C is a set of input
causes that result in E, the set of output effects.

                                                
9 As evidence of this, the PIERS new rule rate remains constant at 3 rules/day.



Elements of C and E are state assignments; i.e. associations of a vertex and a state. To generate E
from C and M, we search for state assignments of neighbouring vertices that link effects back to
any cause. Such an assignment is called an explanation. The explanation is given a causal
interpretation: vertex Vm in state Sn caused adjacent downstream vertex Vo to be in state Sp  We
attempt to generate one explanation for each element of E.

These explanations must not violate a set of invariants I. We define invariants in the negative
sense; if not(I) is true, then no invariants have been violated. Usually, I is simply the single rule I1

which is true (i.e. violated) if a vertex is in two different states. For single explanations, I1 implies
that explanations contain no loops. For the set of explanations required to explain all of E, I1

implies that for a given <M,C,E>, explanations require a single state assignment to all vertices
used in the explanations.

In our test domain (neuroendocrinology) I1 often violated: one explanation may require a state
assignment that makes another explanation impossible. An assumption is a state assignment which
commits us to one explanation or another (but not and). Depending on which assumptions we
make, the  explanations are divided up into multiple alternative worlds Wx, Wy, etc. Within a single
world, the explanations do not violate invariants. If a world is a proper subset of another world,
and both use the same assumptions, then we fuse them (this condition ensures that we do not deal
with the trivial case of one world for each explanation). 

A world can be uniquely defined by its base assumptions i.e. an assumption which has no
upstream assumption.  When  we move from world to world, we only need to reset the base
assumptions, since all other assumptions in that world are dependant on the base assumptions.

The done set D is the subset of E that can be explained within a world. The cover of a world is the
cardinality of D (i.e. the number of effects that can be explained). We define a "faulty model" as
one in which no world Wx can be computed that satisfies:

cover(Wx) = |E|
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For example, consider the mode of figure 2 and the case where:
     C = {a(up), b(up)}
     E = {d(up), e(up), f(down)}

A

B

C

D

E

F

++

G
++

++

++
++

--

cause(up,   ’++’,  up  ). 
cause(down, ’++’,  down).
cause(up,   ‘--’,  down).
cause(down, ‘--’,  up).

Figure 2A: Causal connections
between the vertices labelled

{a,b,c,d,e,f,g}.

Figure 2B: Definition of edges in figure 2A.
For example, g(up) could be explained via

c(up) since the edge CG is ‘++’.

Note that we have no value for c or g. Values for c and g will be assumed as a side-effect of trying
to explain E in terms of C. These explanations are:
      E1 = {a(up), c(up),  g(up), d(up) }



      E2 = {a(up), c(up),  g(up), e(up) }
      E3 = {b(up), c(down),  g(down), (down) }

Note that I1 is violated by c(up) & c(down). We must split our three explanations into two worlds.

     W1 = { E1, E2 }
     W2 = { E3 }.

W1 contains the assumptions {c(up), g(up)} and W2 contains the assumptions {c(down), g(down)}.
However, since g is fully dependant on c, we can define W1 in terms of the base assumptions c(up)
and W2 in terms of the base assumption c(down).

Cover(W1) = 2 and cover(W2) = 1. Since neither of these covers equals |E|;  the model is faulty.

Formally, we can characterise the above process as a search for all  M1 and  D such that:

[equation 1]                D ⊆ E ∧ M1 ⊆ M ∧ M1 ∧ D ∧ C ∧ ¬I( )
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Traces of the performance of the causal models are limited to descriptions of how node states
influence other node states across the causal links. For typical networks with multiple inputs and
multiple outputs, this trace is overwhelming. Graphical depictions of the net cover many screens.
These traces have to be summarised to be useful for KA. A list of states between a single output
and input look like a simple rule: e.g. b going up made c go down which made g go down which
made f go down. Domain experts can critique these simple path traces.
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Hypothesis testing is a far more experimental technique that RDR. Until recently, complexity
issues (see below) limited our experimentation with this approach. However, some progress has
been made in the processing of time-independent qualitative models as well as causal models.
Feldman et. al.  took quantitative compartmental models10 of neuroendocrinology  and converted
them into a qualitative form (Feldman, Compton et al. 1989). Menzies et. al. found a more
general causal representation underlying the Feldman models that used simpler primitives
(Menzies, Mahidadia et al. 1992).

Recently we have come to view these causal models as simpler and/or graph (e.g. figure 2a)
(Menzies 1993). By compiling our representations into and-or graphs of possible state transitions,
we should be able to apply hypothesis testing to a variety of representations (e.g. mathematical
equations, propositional rule-bases (Menzies, Mahidadia et al. 1992)). More speculatively, we have
argued previously that hypothesis testing could be the basis for a generic KA loop for multiple
model types (Menzies, Mahidadia et al. 1992).
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In this section, we play devils advocate and demonstrate the implausibility of this test analysis
technique.

                                                
10  Compartmental models utilise the principal of conservation of mass. The sum of flows of substance in and out of

a compartment must equal zero. These flows are typically modelled using a time-dependant expodiential function
since the rate of flow is often proportional to the amount of stuff  in the compartment. For a brief tutorial on
compartmental models, see (Menzies and Compton 1993). For more details, see (McIntosh and McIntosh 1980).



Too many behaviours:  Given the under-determined nature of the qualitative models processed
by hypothesis testing and the feedback loops they contain, surely paths can be found to explain
any effect. It would be extremely unlikely that a data set could not be explained in terms of a
qualitative model with feedback loops. We note that much of the work in neuroendocrinological
theory review has been based on quantitative compartmental modelling. Large databases already
exist of quantitative models and experimental results. Why surrender these quantitative models
(which support precise prediction) to qualitative models (which can only support the vaguest
prediction)?

Better techniques: Better techniques exist for deducing appropriate causal models from data. Pearl
describes techniques for deducing causal models (which he terms "belief networks") from
observed frequency distributions of variables (Pearl and Verma 1991). His techniques, grounded
in sound mathematical theory, are a more principled approach to KA of causal models than the
ad-hocary of hypothesis testing.

Fundamental complexity limitations:  Given the size of real models, we find it implausible that
equation one will be of any practical utility. If consistency is determined via a depth-first
chronological backtracking search (e.g. as proposed in (Menzies, Mahidadia et al. 1992)) then the
complexity of the process would be overwhelming.  Equation one would have to be applied to
every subset of the effects and the models; i.e. O(2N) where N = |M| + |E|11. We understand that
(Menzies 1993) estimates that the search space for a chronological backtracking search for the
Feldman ‘89 model to be 1027 (an area much to large to be exhaustively searched).

One technique for taming this complexity would be to impose a meta-structure on the basic node
representation. Such a meta-structure would allow us to constrain the search to (e.g.) entities in the
same abstract hierarchy. Other research in causal models of human physiology have made
extensive use of such a meta-level structure. ABEL, developed in the domain of diagnosing acid-
base and electrolytic disorders, propagates causal influences over a causal model that exists in N-
layers of abstraction (Patil, Szolovitis et al. 1981). The reasoning can move across a level
(projecting an hypothesis sideways to find related nodes), up a level (aggregating symptoms to a
higher level of abstraction), or down a level (disaggregation: the opposite to aggregation).

Ignoring these meta-level structures implies that search procedures cannot take advantage of them.
Note that the Feldman '89 model was constructed from one review article that is a summary of a
mere 6 research papers. These 6 papers generated a search space of 1027. Clearly this technique
will not scale up.

Better representations: As with our critique of the RDR approach, the representations used here
seem too low-level to capture the domain. It is illuminating to consider how other researchers have
approached this area. For example, Darden used a theory anomaly detector based on a generic
task approach (Darden 1990). Entities within the domain were bundled into groups (using
functional knowledge) and anomaly localisation proceeded via this meta-level grouping, rather
than at the mere single node level (Moberg 1992). Anomaly localisation was a process of walking
backwards from the final state back towards the initial state, through the difference parts of the

                                                
11 For the model of figure  2A, |M| = the number of arcs = 6 and |E| = 3.  26+3 = 512; i.e. even trivially small models

have non-trivial search spaces.



theory (modelled as "function frames") inquiring at each point whether the intermediate state had
been entered.

Summary: Clearly, hypothesis testing won't work. Higher-level abstractions such as the
knowledge-level constructs of task analysis are obviously required.
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The success of the hypothesis testing technique was first reported to this Banff workshop in 1989
and 1992. Data sets do exist in the neuroendocrinological literature that cannot be explained via
our indeterminate qualitative models.

• Menzies et. al. reported anomalies in the Smythe '87 model (Menzies, Mahidadia et al.
1992). This was a novel finding that Smythe himself was unaware of (Smythe 1992).

• Feldman et al. reported that in analysis of the Smythe '89 (Smythe 1989) review paper
and 343 data points collected from six related research papers, 109 of the data points
could not be explained (32%) (Feldman, Compton et al. 1989).  While some of the
inconsistencies were due to deliberate simplifications of the model by the researcher, the
most important result was that the norepinephrine data in hypothyroid rats who had been
given an alpha-2 adrenegeric blocker could not be explained. This was a novel finding
that the authors of Smythe '82 research paper (Smythe, Duncam et al. 1982)were not
aware of. 

That is, we can fault published neuroendocrinological theories using previously-unrecognised
relationships in the data published to support them.  Further, the anomalies that we found were
previously undetected. We offer two theories for why this is so:

1) Focus: Researchers design experiments to test a particular hypothesis.  Our fault detection
often occurs in comparisons of data that was not relevant to the hypothesis they set out to
test.

2) Mental effort: Without an automatic tool to perform the search for causal pathways, even
simple models are too complex to process by hand.  In larger models, the complexity of
the task is truly overwhelming  (recall the 1027 figure mentioned above).

As regards the other objections raised above:

Fundamental complexity limitations: Our two initial prototypes were, in retrospect, naive in their
search and would not have scaled up. The Feldman '89 study could only process 28 of the 992
experimental comparisons (i.e. those with only one cause and no steady effects) and took two
days to run. The work on hypothesis testing over the last year has focused on the complexity
problem and we have now moved beyond the chronological backtracking approach used in
(Menzies, Mahidadia et al. 1992)  to an assumption-based truth-maintenance (ATMS) approach
that builds all alternative world simultaneously (thus avoiding the complexity of re-inventing each
alternative world as the search tries each alternative). When analysing different worlds, we now
only iterate over the base assumptions (rather than over all assumptions). Such base assumptions
are calculated as a side-effect of applying our ATMS algorithm. The new approach can process
all 992 comparisons in under 5 hours using an interpreted language (Smalltalk). Moving to a
faster language (e.g. "C") could speed that time up by a factor of up to 40. Also, recent



observations of the behaviour of the search suggest that further reductions in the complexity may
be possible. (Menzies 1993).

Better techniques:  Belief networks do not permit the integration of an existing theory by an
analysis of a new example. In our system, we can foresee that various users would treasure their
favourite portions of the model (typically, the ones they have developed and successfully
defended from all critics). It would be unacceptable to permit an algorithm to scribble all over this
knowledge.

Also, generating belief networks requires access to large amounts of data is available on all the
entities in the domain. Our domain is characterised as being hypothesis-rich, but data-poor.
Obtaining values for certain chemicals within the body is not as simple as, say, attaching a volt
meter to an electric circuit. Often delicate measurements have to be made by skilled staff using
expensive equipment. The measurement must be repeated a statistically meaningful number of
times. Also, in certain domains, it may take years to gather the data (e.g. large-scale
epidemiological studies). Hence, the data required to assist feuding experts debating different
versions of the same model may be unobtainable or incomplete.  Consequently, in the Feldman
'89 study, over 90% of the nodes were unmeasured.

Better representations:  We found that  the meta-level constructs of ABEL and the Darden/Moberg
study were not required for fault detection. ABEL's causal links are more complicated than in
hypothesis testing: they stored information about causal severity and duration. Patil et. al. do not
justify the complexity of their system. The essential feature of the Darden/Moberg representation
that supported model faulting was the causal links between entities in the domain. In terms of
model faulting, the rest of the architecture was superfluous. In fairness to their work we should
add that, unlike our work, they were exploring an existing representation rather than seeking the
minimal architecture needed for model refutation. At most, we could argue that the
Darden/Moberg study demonstrated that in  terms of model  revision, the useful features of a
representation are the causal links between entities. At the very least we observe that verification
does not fall out straight away from a task analysis approach, but requires some additional work.
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The qualitative nature of hypothesis testing, and its ability to handle missing data, makes our
approach more suitable as a review/maintenance tool  for scientific models than alternative
techniques (e.g. qualitative compartmental modelling). The models and data we processed were
taken from publications; i.e. our detected anomalies had escaped peer review and the inspection
of the international neuroendocrine community.

The drawback with quantitative compartmental modelling is that it requires extensive experimental
observations. Much of the time of the neuroendocrinologists is spent collecting data on a
parameter of a proposed link in a compartmental model. A single qualitative causal reference
translated into a quantitative equation may require numerous values before that equation can be
executed. If the macro-structure of the proposed model is wrong, then this effort is wasted.
Hypothesis testing allows a researcher to quickly sketch and test the macro-structure of a model
before wasting time on collecting data on potentially spurious connections.
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In this section, we try to anticipate our critics and discuss objections to test analysis.
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Objection: Expert systems need to support knowledge-level explanations. Such explanations can
be generated via traces of execution of task architectures. Therefore, we should use task analysis
to develop expert systems, particularly when we are building tutoring systems.

Let us distinguish between two uses of explanation: (1) explanations for KA purposes and (2)
explanations requested by users at runtime from the delivered system:

Explanation for KA: We agree that expert systems need to supply "clues" regarding how the
inference traverses the knowledge base in order to detect knowledge anomalies. For performance
systems, these clues need not be knowledge-level descriptions, providing that they  support KB
anomaly detection and repair. RDR and hypothesis testing are examples of systems where the
clues are below the knowledge level, yet competent expert systems can be developed.

Explanation for end-users at runtime: As to runtime explanations for end-users from the
delivered expert system, our own experience has been that (a) this is a little-used feature and (b)
satisfying justifications can be supplied without recourse to knowledge level descriptions. Recall
that PIERS has no explanation other than the rule trace. No doctor,  other than the rule
development team, has ever requested an explanation from PIERS.  When the development team
wanted explanations, the rule trace and a list of cornerstone cases along the rule-trace sufficed.
Menzies' PIGE system was an intelligent post-processor to a mathematical model of a pig growing
in a piggery. As well as the recommendation screens of the expert system, the users could access
detailed mathematical analyses that explained the system's reasoning.  The experience there was
that as long as the end-users knew that they could access the mathematical reports, that they never
actually did so. Menzies et al. conjecture that expert systems don't need an explanation facility at
runtime, but an excuse facility that gave users a feeling that they could trust the reasoning
(Menzies, Black et al. 1992). 

Lastly, as noted in §2.3.7, the problem of explanation is not solved merely by offering a trace of
the system’s traversal over a task description. Explanation is an active research area and general
principles are only just beginning to develop (Paris 1989; Leake 1991; Leake 1993).
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Objection: Test analysis is hardly a general technique while task analysis is relevant to more
domains.

While it is true that RDR has only been successfully applied to  well for classification tasks,
attempts to generalise the technique to other domains have been encouraging (but only partial
successful). Mulholland's et al. ion chromatography system was an experiment in extending RDR
into configuration tasks. Gaine's INDUCT machine learning program was used to generate
multiple RDR trees from libraries of known chromatography configurations (Gaines and
Compton 1992). Each tree related to the setting of a particular parameter. A control structure was
then placed over the trees such that they were called in an appropriate sequence for the



configuration. KA sessions could patch the RDR trees using the RDR interface, but the control
structure was outside of the RDR maintenance environment (Mulholland, Preston et al. 1993).

However, we believe it possible that, with further research, test analysis can be become a general
technique. Compton argues that RDR can be used to initialise a system which can then
incrementally grow into a classification or configuration or whatever type of system (Compton,
Kang et al. 1993). Our preliminary work with hypothesis testing suggests that it can be applied to
qualitative reasoning, causal modelling, and propositional rule-bases (Menzies, Mahidadia et al.
1992). Further, our techniques seem very similar to the general notion of expert critiquing
systems (ECS) (Silverman 1992) which Silverman defines as follows:

“programs that first cause their user to maximise the falsifiability of their statements and then
proceed to check to see if errors exist. A good critic program doubts and traps its user into
revealing his or her errors. It then attempts to help the user make the necessary repairs12”.

Silverman's research seems to be focused on an implementation-independent analysis of the
process of "critiquing" a program. Hypothesis testing aims for an engineering formalism that
allows us to simultaneously process and validate different types of knowledge.
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Objection:  The validity of a model can be measured by more than just its ability to cover certain
test cases. Other measures such as parsimony, succinctness, and clear use of existing domain
concepts  are just as important as performance. A narrow focus merely on performance could give
rise to incorrect and truly bizarre models indeed.

We have two comments on this objection. Firstly, we note that tacit in this objection is a belief in
the now-out-dated knowledge-transfer approach. Gone are the days when KA was viewed as the
process of extracting the experts actual knowledge (poetically described by Feigenbaum as
"mining the jewels in the expert's head" (Feigenbaum and McCorduck 1983)).  Note that none of
the above points 2.1.1 to 2.1.7 makes any claim to the meta-level patterns being an instanitation
of an actual model of human cognition13.  Davis et al.  give the modern view of knowledge
representation: representations are an inaccurate surrogate of reality (Davis, Shrobe et al. 1993).
Gaines report that "the knowledge-modelling perspective has become widely adopted and
terminologies reflecting an expertise-transfer perspective have been quietly dropped" (Gaines
1992).

We endorse the knowledge modelling perspective and believe that it is folly to aim for the "right"
or "correct" knowledge base for an expert system. Expert systems are models of the world and
since models are not the same as the thing they are modelling, they can never  be completely
correct.   Popper argues that our models  can never  be "proved" in some absolute sense. Instead,
the currently "true"  theories are merely the ones that have not been disproved (Popper 1963).  We
have argued previously that knowledge is a dynamic construct and that our KBs should be tools
for exploring those constructs rather than tools for enshrining old insights (Compton and Jansen

                                                
12 ECSs are therefore much broader than the definition instantiated by ATTENDING  (Miller 1986) which had no

mechanism for doubting its own internal knowledge base.
13 Though (O'Hara and Shadbolt 1993) notes that despite their official public line, some task analysis researchers

believe in a human psychological basis for tasks.



1990). KA is a process of building and debugging a symbolic model that may never have been
created previously. This view is endorsed by Bradshaw et al who argue that the primary utility of a
model is:

…not  to serve as a "picture" of a domain, but as a device for the attainment or  formulation
of knowledge about it. (Bradshaw, Ford et al. 1991)

We regard the (i) RDR trees with their redundancies and overlapping subtrees or (ii) the
neuroendocrinological causal models with redundant or unproven links as being just as valid as
any other construct for these domains. We demand only that our KBs exhibit competency in their
domain and can provide clues regarding knowledge anomalies.

Secondly, "clear use of existing domain concepts" is an interesting issue. Medicine, for example,
has entire libraries devoted to expounding domain concepts. Note that medical expert systems use
very few of these concepts and often have to invent new constructs (e.g. the context tree in
MYCIN (Buchanan and Shortliffe 1984)). PIERS  (which can process 20% of all biochemical
tests at St. Vincent's Hospital) used none of these concepts. Clancey's research on generating
explanations from MYCIN showed that the knowledge required to explain an drug
recommendation was different to the knowledge require to make the recommendation (Clancey
1983; Clancey 1984). We would argue that many "existing domain concepts" have been evolved
for explanation purposes and may not be relevant for competency.
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We have described our progress towards a general test analysis methodology (summarised in table
3). In domains where the experts do not wish global knowledge of the KR, RDR can be useful. In
domains where global browsing is required, hypothesis testing may be appropriate. We concede
that test analysis requires more work but claim that our current results are encouraging.

Technique Domain
"Naive"

KA
approach

Pre-experimental
intuit ion

Experimental
result

Augment or
replace task-

based KA?

Ripple-
Down-Rules

Classifica-
tion

Binary tree
with logic

patches

Tree will be
unmanageable.

Competency unlikely.

Large systems (2037
rules) can be built and

easily maintained
without knowledge

engineers.

Replace.

Hypothesis
testing

Qualitative
models of
the neuro-
endocrine
system

Indeterminate
causal

influences.

Indeterminacy will
allow any behaviour

to be generated.
Ability to critique

hypotheses unlikely.

Naturally occurring
data sets can be faulted

(these faults are
invisible to other

techniques)

Possibility of
replace.

Table 3: Summary of test analysis techniques. Competent performance systems can be
built using simplistic techniques. Note that the pre-experimental intuitions regarding the
naivety of the  techniques were wrong. Perhaps before moving on to more complicated

techniques, we should experiment further with simpler alternatives.

Issues relating to testing are often deferred during discussions about KA and KR design. An
attitude we commonly strike is "oh yes, we can test it ... later". Here we have argued for (i) test
sooner rather than later and (ii) that development methodologies based around rigourous testing



can replace alternative development techniques.  The constructs used in a KR built using testing
analysis were significantly simpler than constructs required by other approaches.  We wonder if
underlying the intricacies of existing expert systems are a minimal set of KR techniques that are
the essential components of artificial expert competency.  We ask proponents of alternative
methodologies requiring more intricate design constructs two questions:

• Have you experimented with simpler alternatives? We note that designs that seem naive at
first glance may in fact produce satisfactory competency with comparatively less effort.

• Does your approach support the maintenance cycle?

So, when can "test" replace "task"? We have given examples of performance systems that were
developed using test analysis. Such systems are unsuitable for the following purposes: (i) a
teaching tool, or (ii) a theoretical tool for generalising old designs. We note that once we have
developed a tested performance system, then  task analysis can be used reverse-engineering a
knowledge-level description of that system.  That is, for performance systems, testing replaced
task but task analysis could augment test analysis once a system was in production. Indeed, this
reverse engineering for a succinct description is what task analysis was designed for and may be
its most useful feature.
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