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Abstract: We argue that adding a requirement of evaluation and testing fundamehtailyesKBS practice.In
particular: (i) a fundamentalchangeto the symbol-levelrepresentationn KBS; (i) a rejection of certain
unnecessary knowledge-level distinctio(is) a fundamentakthangeto the inferenceengineof KBS; and(iv) a
basic computational limit to the size and internal complexity of the models we create via knowledge acquisition.

1. INTRODUCTION

It would be convenient if KBS evaluation was neutral with respect to KBS practice. If an evalnatiolewas
merely a post-hocbolt-on, thenits designcould be deferreduntil after a systemwas developed.However, if
evaluation adds extra requirements and restrictiorthe KBS processthen the designof an evaluationmodule
must be integrated with the system it will test.

This paper argues for the inconvenitatter position. Models constructedn vaguedomains(definedbelow) are
possibly inaccurate. Possibiyaccuratemodelsmust be tested lest they produceinappropriateoutputin some
circumstances. We will developa generalabductivé definition for "test" in such vague domains. This
characterisation leads us to two unexpected results:

. At a symbol-level, abduction executesover an and-or network with edges E and vertices V.
Experimentally,we show that the limits to test are 1000 (approx) vertices(]V|) and averagefanout
(IE/IV]) lessthan7. The fanout limit seemsfundamentalto abductionwhile the |V| limit could be
increased via optimisations of our current implementation. However, givdarttiamentallyexponential
nature of abduction, we do not expect large increases |W[thmit. Sincewe can'ttest modelsthat are
larger than|V| = 1000 (approx) antE|/|V| = 7, we should not build models larger than these limits.

. A generalisedvalidation module can serve as the inferencemodule a range of knowledge-leveltasks
including KBS validation, prediction,model-basedliagnosis, explanationclassification,learning,case-
basedreasoning financial reasoning,natural languagecomprehensiondesign, and recognition. More
generally,we find that abductiondirectly operationaliseshe model extraction processthat Breuker and
Clancey argue is at the core of expert systems inference. Wéiteuld separaténferenceand validation
modules, we would economise on our effoytusing the validation modulefor the inferencing.Thatis,
our definition of "generalised tes&placesrather than merelgugmentshe inference module of a KBS.

These results are restricted to vague domains. However, we will argue that most domains tankideig¢BS
are vague; i.e. these results are widely applicable.

This paper is structured as follows. Sections 2 addfiiesvaguedomainsand modelsrespectively. Section4
discusses what should be tested. Section 5 charactersdiesgyin vaguedomainsas abductionand describesour

1 Consider a system with two fads b and a ruleRy: If a= b. Deductionis the inference frora to b. Inductionis
the processof learning R1 given examplesof aandb occurringtogether. Abductionis inferring a, given b

(Levesquel989). Abduction is a not a certain inference and its results must be checkedby an inference
assessment operator (SBEST below).



experiments with the limits to test-as-abduction. Section 6 discusses the applicability of abductawlédge-
level tasks. Section 7 discusses related work.

2. VAGUE DOMAINS

A vague domain has one or more of the following properties:

. It is poorly measuredi.e. known datafrom that domainis insufficientto confirm or deny that some
inferred internal state of its model is valid

. Its models aréypothetical i.e. the domain lacks an authoritative oracle thatdesmfareknowledgeto be
"right" or "wrong"). Note that in avell-measuredlomain,the authoritativeoraclecould be a databasef
measurements.

. Its models aréindeterminatei.e. the model cannot choose between a number of different posgtplets.

For example, the qualitativmodel of Figure 1 is indeterminateln the caseof a’ & b7 we havetwo
competingqualitative influenceson c: (i) af can causec? while (ii) b7 can causec!. Lacking
guantitative information about the relative size of these competing forces, onewustitbe createdfor
each possible value of; i.e. {c7,d,c/}2 (Iwasaki 1989).
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For an example of a vague domain, consider multiple expert knowledge acquisitiofo{®uroendocrinology.
Model construction/revisiorin neuroendocrinologythe study of the interactionsof nervesand glands)is
complicated by (i) the different paradigms of researchers in different codntiigshe hypotheticalnatureof the
domairf; (iii) anda lack of dat® which meansthat not all portions of known modelsmay be exercised.
Consequentlycorrectionof modelanomaliesmay take monthsor evenyears.In the interim, researchermust
use the best available current models, even if they are known to contain unresolved anomalies.

We find that, with one partial exception (see below), all the domains we $tad@din detail in the last decade
are vague. For example, neuroendocrinol@pgnomicsand ecologyarevery vaguedomains. The (in)famous
"Limits to Growth" study attempted to predict the international effectoofinuedeconomicgrowth (Meadows,
Meadows et al. 1972). Less than 0.1% of the dagairedfor that studywas available(Coles1974). Puccia&
Levins comment on the utility of exhaustive data collection on ecological modelling:

In a complex system of only a modest number of variables and interconnections, anytattiasgtbe
the systemcompletelyand measurethe magnitudeof all the links would be the work of many people
over a lifetimg(Puccia and Levins 1985p5).

2 Notation: xT = "the valueof x hasgone up”; xJ/ = "the value of x hasgone down"; x8 = "the valueof x is
steady".

Feuding experts do not willing surrender controversial portions of their models.
4 Neuroendocrinologicaprocessmay be controlled by minute levels of certain chemicals. Some of the values

measured are in the pico-MOLE range @) and hard to detect. Detecting inter-relationships betvesities is
therefore difficult.

5 Datacollection in neuroendocrinologycan be very expensive and, hence,incomplete. In one extreme case,
300,000 sheepsbrains hadto be filtered to extract 1.0 milligrams of purified thyroptin-releasinghormone
(Krieger 1980). In the usualcase, delicate measurementfiave to be madeby skilled staff using expensive
equipment. In the QMOD study used as our test suite, data on a glucose model (R89dheas collectedfrom
six journal articles. In all, none of the flow constants were knawthonly 34% of the variableswere measured
(Feldman, Compton et al. 1989; Feldman, Compton et al. 1989).



They claim that this observation from ecological modelling also applissdiologicalmodels.For example,it
is well known that many crimego unreportedA literaturereview on crime statisticsshowsthat the resources
required to gather empirical data on the level on unreported crime is prohibitively high (Menzies 1985).

In our other KBS work, we havebuilt expertsystemsfor processcontrol (Menziesand Markey 1987), farm

managemenfMenzies,Black et al. 1992), consumeiending, and medicalapplications(Compton,Horn et al.

1989; Preston, Edwards et al. 1993). All this work can be characterised as the construction of rdatiefr
domains:

. ICI Chemicals Australia required an automatic controller for one of its petrochemicalplants. A
mathematical controller could have been constructed, but wouldnesessitatethe purchaseof a set of
parameter values from the engineering firm that built the plant. pitehaseprice was so high that ICI
funded the development of a heuristic rule-based controller (Menzies and Markey 1987).

. As of 1988, Australiaraised4.8 million pigs a year(networth $AUS 500 million). This represented
one-third of ongpercentof the internationalpig herd(1,440,000,00(igs). Despitethe enormity of the
international porcine enterprise, much of the internal physiology of the pig reorameasuredBuilding
andverifying an expertsystemfor raising pigs requiredthe collection of new data, especiallyfor that
model (Menzies,Black et al. 1992). This datacollection/ model developmenprocessook decadesof
work by CSIRO'sseniorexpertsin pig nutrition. The packagevasthen sold on a one-off basisto an
American manufacturer of feed stocks; i.e. once the data was collected, it was promptly bought and hidden
by a private corporation for their exclusive use.

. Our commercialexperimentsvith machinelearningfor consumelending demonstratedhat consumer
loan approval is a poorly-measured domain. One finaocganisationwve workedfor hadlarge databases
of prior loan approvals and defaulted loans. Much ofdhispre-datedcertaincrucial changesn Federal
legislation making it irrelevant for current use. Construction of exgyatemsfor consumetendingwas
therefore a process of creating new models for new domains that were yet to be measured.

Note that there is no theoretical barriethe accuratemeasuremensf any valuein any of the poorly-measured
domains listechbove. However,model constructionis a resource-boundedctivity. Organisationsavelimited
staff, time, and money. Tharoblemswith datacollection cataloguedabovemay reflect a fundamentalproblem
with numbers;ji.e. there exist usefulnumbersthat we may wish to measurebut lack the resourcesto collect.
Resource-bounded data collection implies a vague domain.

The one exception we are aware of to our general rule afidaltoy-domainsare characterisedy a lack of data
and are therefore vague" is the diagnosis of electrical circuits (Ham&ahespleet al. 1992). Electrical circuits
are an artificially constructed domain aimds theoreticallypossibleto addinstrumentatiorto circuitry to make
all values accessible. However, even in that domain, we can find some catitbehandlingincompletemodels
(Console, Dupre et al. 1989; Abu-Hakima 1993).

We are not alone in this characterisation of the expert systems endeavour as "vague modelling". Clancey describes
as expert systemss imprecise/qualitativanodel$ (Clancey1989). The knowledgemodelling school (described

below) acknowledgethe imprecisionof the modelscreatedvia KA (Bradshaw,Ford et al. 1991; Wielinga,

Schreiber et al. 1992; Davis, Shrobe et al. 1993). An acceptdric®mwledgebasemodelsas context-dependant
constructyPhillips 1984; Shaw 1988; Bradshaw/Ford et al. 1991; Agnew, Ford et al. 1993) tacitly implies
hypothetical domains (since non-hypothetical models would be context-independent).

SummaryMost KBS domains argague.lndeed,if a domaincan be characterise@ccuratelythenthe heuristic
approach that characterises KBS would not be required.

6 In using the phrase "qualitative model", Clancewpropriating a term usedextensively by the naive physics
community. Numerous researchers explogedlitative reasoningin the domain of first-order linear differential
equations. For more on this research, see (Coiera 1989; Iwasaki 1989).



3. WHAT IS A MODEL?

We cannot make general statements about testing models unless we commit defsatioaen of a model. This
section gives our definition. This definition is in two parts: a symbol-level view and a philosophical view.

3.1. Symbol-Level View

We view a "model" M as a device for generatingexplanationsof known behaviourB of the entity being
modelled.B is a setof pairsof known inputs and outputs<INj, OUT; > that representmeasurementsf the

entity being modelled. Amxplanationof <IN;j ,OUTj > is the union of theproof treeswhoseroots arein IN;
and whose leaves are single membe®UT;.

More preciselyM is a directed, possibly cyclic graph whose edfespresenpossibleexplanationsandwhose
verticesV areeither (i) literals from the expert'sdomainof discourseor (i) andvertices. The graph may be
implicit or explicit. In the explicit case, all edges gre-enumeratednd cached. In the implicit case,operators
exist that can generate new vertices or edges &xisting verticesandedged. M canrepresen{amongstother
things) the dependency grapbtweenliterals in a propositionaltheory, a rule-basecexpertsystens, a unfolded
first-order syste¥) a declarativédrame-basedystem&’, a qualitativereasoningsystem(seesection5), or some
vague sketch of how an expert sees their domain (Menzies 1994). ElemRrteafubsets &f. All proofsare
subsets oE. A proof that contains an and-vertex must also contain all the parents wvétteat. Proofsthat use
non-and-vertices must contain zero or one parents of that vertex.

Devices that can produce explanations ao be usedto predictbehaviout!. In the caseof explicit graphs,if

we setiNj to the known input an@®UTj to V - INj , thenthe generatedexplanations'are predictionsof what
could result froniN;.

Logical proofs can't contain loops. Hence, we cannot explain time-siatie@.g X went up, then laterit went

down, then it went up again) withosignificantly increasingthe size of our models (i.e. createone vertexfor

each literal irM at each measured time intervals).

A model from a vague domaiivi(;) may not necessarily be parsimonious, complete, deterministic, or consistent.
The modelmay be ableto explainonly a subsetof OUT; . Of the explainableoutputs, My may be ableto
generate 1< N<oo explanations N = 0 means no explanatiohl> 1 means multiple explanations). Further,
our explanations may be able to generate contradictions. Therefore:

. Generalised test's search for explanations is really the processrgautingfrom M a subsetof E that
covers the greatest number of elements f@idT; .

. Explanations must not violate a library iovariantsl. For example,l1 saysthat we shouldnot believe

the literal p and-p simultaneously Also, a variablethat cantake one of N mutually exclusive states
generated literals inMy,. 12 says that we should not simultaneously believe any moreathaof those
states. For conveniendeis definedin the negative;i.e. 1(x,y) is true whenthe combinationof x andy

violate some constraint.

. In the caseof N > 1 explanations,some domain specific BEST operator choosesthe preferred

explanations. Example BESTs include returning the explanationsthat require the least number of
unknown variablesBEST); with fewest number of inpu@ES™®); with shortestproof size (BESTR);

with the largestnumber of explained effects (BEST:); or which avoid edgeswith low likelihood
(BESE). BEST5 assumeghat such meta-knowledgeabout edgesis available;e.g. some edgeswere

7 E.G. in SOAR, operators can permit transitions from some current state to another newly createdstate
(Rosenbloom, Laird et al. 1985).

Less its conflict resolution strategy.
That is, unfolded until it is ground (i.e. all variables bound).

10 In partial-match systems, the disjunction of slots can lead to a frame. In total-match frame systems, the
conjunction of slots can lead to a frame.baoth, inferenceto a subclasscanleadto inferenceto the superclass
(e.g. f emu then birll

11 Aninsight we first gained from Poole (Poole 1990).



proposed as padf a theoryyou wish to fault. BEST may be indeterminatej.e. somesubsetX of all

known explanations may be ranked as the "best" explanationX[andL. In the caseof morethanone
world being "best", then generalised test returns them all.

Our results regarding the limits to testing are taken from the easy case where (i) the graph is explieisa(i)
arity of two (i.e. given one literal, we can deterministically infer which other literals are inconsiatef(i)i) B
does not include time-series data. In this easy case, numerous optimisations aré$adEsikektendour results
to full first-order theories/ implicit graphs/ invariaraé arbitrary arity/ testingtime seriesdata,simply increase
the runtimes.

3.2.  Philosophical View

Models are synthetic constructs created by people which may or may not reflect some aspe@atdf/theing
modelling. This view is consistent with recenttrendsin knowledgeacquisition(KA) away from expertise-
transfet3 to model-constructiolt (Gaines1992). In the modernKA view, knowledgebasesare only ever an
approximate surrogates of reality (Bradshaw, Ford et al. 1991; Wielinga, Sclae#hel 992; Davis, Shrobeet
al. 1993). "Knowledge" extractedlring KA from an expertis a reportcustomisedo the specific problem,the
specific justification, the expert, and thadience(Feldman,Comptonet al. 1989; Comptonand Janserl990).
"Truth" as expressedy humanexpertsvariesaccordingto who saysit (Phillips 1984; Bradshaw,Ford et al.
1991; Agnew, Ford et al. 1993) and even when they say it (Shaw 1988).

Models are createdby peopleand peoplecan often reasonidiosyncraticallyor sub-optimally.Kuhn notes that

datais not interpretedneutrally, but (in the usual case)is processedn terms of some dominantintellectual

paradigm (Kuhn 1962). Silverman cautions that systematic biasesin expert preferencesmay result in

incorrect/incomplete knowledge bases (Silverman 1992). Other writers issue similar warnings:
...expert-knowledgés comprisedof context-dependenpersonally constructed,highly functional but
fallible abstractions (Agnew, Ford et al. 1993).

Human reasoning does not always correspond to the prescriptions of logic. Pedpli¢ to seeas valid
certain conclusiongthat are valid, andthey seeas valid certain conclusionsthat are not!®. ((Anderson
1985) p264)

The same decision can be framed in several different ways; different frames can lead to different
decisiond®. ((Kahneman and Tversky 1982) p139)
Apart fromidiosyncrasiesaddedby their authors,modelswill alwaysexhibit one or more behaviourghat the
entity being modelled will not. This must be so since the model is different to the thing being modeliedpthe
is not the territory). Puccia & Levins comment:

A modelis an intellectual constructwe studyinsteadof studyingthe world. Every model distorts the
system under study in order to simplify it. ((Puccia and Levins 1985), p2)

12 E.G. (i) assign a unique integil to eachliteral and usebitstring processingfor all set manipulations;(ii) for
each literalL;, pre-compute and cache as a single bitstring the integer idseobther literals inconsistentwith

L.

13 E.G. The Feigenbaumperspectiveof "mining the jewels in the expert's head" (Feigenbaumand McCorduck
1983).

14 E.G. KADS (Wielinga, Schreiber et al. 1992). For a critique of KADS and KADS-like proposal@yiseeiesand
Compton 1994) and section 6.6.

15 When presenteda modustollens syllogism (i.e. P - Q, not Q, thereforenot P) 39% of subjectsincorrectly
stated it wasonly sometimestrue while 4% wrongly statedthat it wasnevervalid In anotherstudy, 90% of
subjectsincorrectly understooda syllogism, including trainedlogicians; presumably,the most rational of all
human beings (Anderson 1985).

16 In one study physicians consistently chooseone of two options accordingto the way a problem was framed.
Both options were actually identical, but one was expressed in teratssofutenumbersandthe other in terms
of percentagesThe problem wasframedin termsof lives-savedor lives-lost. Physicians presentedwith the
lives-savedframe were generally risk-avoiding; i.e. they electedto maximisedthe absolute number of lives
saved. Physicians presented with the lives-lost frame were risk-seékinglectedto minimise the percentage
of lives lost (Kahneman and Tversky 1982)



Our general thesis is that (i) the distortions added by the modelling process are non-trivial; and henosui) we
always test models. If the reader remains unconvirtbeg,areinvited to review a one-linemathematicamodel
of exponential population growthEQ : dN/AT = rN. In EQq, ris a constant that is positive or negative if the
environment is benevolewtr hostile respectively,T is time, andN is the population.Note that this modelis

wrong!’ since population growth must taper off as it approache<C the maximum carrying capacity of the
environment; i.e.EQp : dN/AT = rN(1-(N/C)) If the reader can correctly answhe following question,thenwe

have anecdotal evidence for believing that humansezatand critique models: is EQ2 correct? If the reader
cannotfind all errorsin a one-linemodel (which they probably studied extensivelyin high school), then we
should be suspicious of claims that the truth status of larger models can be accurately determined by people.
EQ is incorrect8. Our experience has been that the error isapptirento many people.Myers andFeldman

& Compton provide us with more examples of models defying human critique:

. Myers reportscontrolledexperimentsn which 59 experienceddata processingprofessionalshunted for
errorsin a very simple text formatter(63 line of PL/1 code).Evenwith unlimited time andthe use of
three different method$, the experts could only find (on average) 5 of the 15 errors in tHiséaodel
(Myers 1977).

. Feldman& Compton useda techniquecalled hypothesistesting to show that neuroendocrinological
theories published in international referred journals contain a surprisingly high percentage of esr@s. In
study, 109 of 343 (32%) of the known data points from six studied papers couldexpidiaedusing a
glucose regulation modelled developed frimernationalrefereedpublications(Feldman,Comptonet al.
1989; Feldman, Compton et al. 1989; Smythe 1989). A subsequent study (ME24¢sorrectedsome
modelling errors of Feldman& Comptonto increasethe inexplicablepercentagdrom 32% to 45%. A
similar study successfullyfaulted anothersmallerpublishedscientific theory (Menzies,Mahidadiaet al.
1992). Menzies'generalisatiorof the hypothesistesting techniqueis the generalised-test-as-abduction
algorithm described below.

Puccia & Levins (Puccia and Levins 1988eEQ1 andEQo to arguethat modelsare not universaltruths,

but are merely useful constructsfor a particularcontext. Demonstratingthe universaltruth of any model is
impossible. All proofs of "truth" terminate in some premises whitst be acceptecbn faith (Popper1963y0.

Note that this pessimism about the truth status of models is not justified for all models. Models tested over long
periods of time may asymptote to some satisfactory competeloeyever,most of the knowledgeinsertedinto

expert systems does not fall into this category. Gaines & Shaw comment:

In a well-establishedscientific domainit is reasonableto supposehat therewill be consensusamong
expertsas to the relevantdistinctions and terms- that is objective knowledgethat is independenf
individuals. However,the "expert systems"approachto systemsdevelopmenhas beendevelopedfor
domains where such objective knowledge is not yet available. (Gaines and Shaw 1989)
For example non-objectivdomains,considera sampleof problemstackledby modernexpertsystems:how to
configurea computer(Bachantand McDermott 1984); where to dig for minerals (Campbell, Hollister et al.
1982); how to diagnosis biochemical disorders (Preston, Edwards et al. 1@88)p bestrun a petro-chemical

17 If you cannot detect the error before reading on, then Q.E.D.

18 In the case of a hostile environment and over-populabior,C, r < 0, andour intuition is that the population
will fall. HoweveryN(1-(N/C)) > 0; i.e. the maths says that population witreasé (Puccia and Levins 1985)

19 (i) Reading the 30 line specification, then generating test cases which were run thraexgcatableversion of
the program; (ii) As before, but also reading the 63 line dzdimg; (iii) As with (ii), but testing wasdonevia
manual walk-throughs/inspections. Programmers only used one of (i), (ii) or (iii). Programmers using(iii) and
worked alone. Programmers using method (iii) worked in groups of three.

20

For example, consider one individual trying to reproduceall the experiments that lead to our current

understandingf atomic physics. Suchan undertakingcould longer than a lifetime and would be beyond the

resources of most individuals (e.g. building an five kilometre linear accelerator). Such a taslbadsvided up

and, sooneror later, our single researchewould have to accepton faith the validity of anotherresearcher's
statement that "while you were busy elsewhere, | did this, and | saw that. Trust me.".



plant, (Menzies and Markey 1987); what antibiotics we should prescribe (Buchanan and Shortliffe 1984); and
test domain of multiple expert KA for neuroendocrinology.

Our general claim is that any modelasly trustworthyin the samecontextwhereit was developedandtested.
As soonas a model moves "out-of-context",it may generateinappropriateresults. Sadly, models are rarely
labelled with their context boundaries. Whah availableknowledgeand exampless usedto generatea model,
out-of-context is never indicated since it representatba(sjunexploredduring development. We believethat
all modelsshouldbe testedwhenevemew datais availableregardingits proper behaviour.Pragmatically,this
means that every working expert system should be accompanied by a test engine continually in operation.

SummaryKnowledge bases containing non-objective knowledge are hypothetical conatnictismay generate
inappropriate behaviour in certain contexts. Therefore, we need to test these knowledge bases aarjasbmwe
to use. Note that these tests will never certify a model as correct (Popper 1968usidwaysre-testa model
when new databecomesavailableon its appropriatebehaviour.This implies that "test" must be an on-going
procedure for the entire life-cycle of a model.

4. WHAT TO TEST?

Any program can be assessed accortting) an internalassessmertf its internal structuresor (ii) an external
assessmertf its ability to fulfil somefunction. Our preferreddefinition of "test” focuseson the ability of a
model to provide explanations of known behaviour BEST). This definition of "test'is silent regardingthe

"best" internal form of the model. This section defends that position.

The KBS verification andvalidation (V & V) community have numeroustechniquesfor internal assessment.
After constructinga dependencyetwork betweenrulesin a knowledgebase,an automaticprocesscan detect
circularities, inappropriatedead-endsmissing logic (seenas isolatedliterals), repeatedlogic, and redundant/
subsumedogic (Suwa, Scott et al. 1982; Nguyen, Perkinset al. 1987; Preeceand Shinghal 1992). More
sophisticated systems import the rule-base irttaith maintenancesystem(TMS) and computethe worlds that
include eachconclusion.Zlatareva usesa JTMS-variant(Doyle 1979; Zlatareval1992; Zlatareva1993) while
Ginsbergusesan ATMS (DeKleer1986; Ginsberg1987; Ginsberg1990). For example,if no ATMS context
includesa conclusion,thenit canneverbe made. With their detailedknowledgeof inter-dependencieshese
TMS-style validation tools can also critique a test suite or propose new test cases. For ekdhgaeinimum
labels of the worlds within a KBS are not represented in a test suite, then the test suite is incbegplses
can then be automatically proposed to fill any gaps. The advantage tefctingueis thatit canbe guaranteed
that test cases can be generated to exercise all branches of a knowledge base. The disadvartedeinfutis
that, for eachproposedhew input, an expertmust still decidewhat constitutesa valid output. This decision
requiresknowledgeexternalto the model, lest we introducea circularity in the test procedurg(i.e. we test the
structureof M using test casesderived from the structureof M). Further, auto-test-generatiofiocuseson
incorrect features in the current model. We prefer to usedsssrom a totally externalsourcesincesuchtest
cases can highlight what is absent from the current modethEsereasonsywe cautionagainstautomatictest
case generation.

The standard external assessment technigestisuite assessmenthe inputs and outputsof the rule baseare
identified and a library is built of input/output pairs representing the expected outputigivieput. The inputs
arethenrun againstthe modelandthe output comparedwith the expectation.Externaltesting is harderthan
internaltesting sinceit implies making a decisionaboutthe correctbehaviourof a systemin a wide range of
circumstances. This is an expert task and a lengthy analysis process. Further, in vague dofoaimetjon for
test suite constructionis limited. Externaltesting is thereforeharderto apply andis rarely reportedin the
literature (exceptions: MYCIN (Yu, Fagan et al. 1979), CASNET (Weiss, Kulikowski et al. 18@8)in ES1
(Compton,Horn et al. 1989), PEIRS (Preston,Edwardset al. 1993), PIGE (Menzies,Black et al. 1992),
QMOD (Feldman,Comptonet al. 1989; Feldman,Compton et al. 1989; Menzies, Mahidadiaet al. 1992)).
Nevertheless, external testing is better than internal testing:

. We have stressed above the hypothetical nature of esymtegmmodels.The crucial test of suchmodels
is not some report of their internal structure. Rather, we must assess the connection of suctodealgue
to the entities they are trying to mimic.



. Programsn routine usecanfail internaltests,yet still be deemeduseful. Preece& Shingal detected
multiple internaltest failuresin fielded expertsystems (Preeceand Shinghal1992) (see Table 1). Yet
these systems were passing their day-to-day external operational test (i.e. their behaviour was

acceptabléy.
Application
MMU | TAPES| NEURON DISPLAN | DMS1 Hit
Size (literals) 105 150 190 350 540 Rate
Subsumption 0 5/5 0 4/9 5/59 14/73 = 19%
Missing rules 0 16/16 0 17/59 0 33/75 = 44%
Circularities 0 0 0 20/24 0 20/24 = 83%

Table 1. Someinternal errors detectedin fielded expert systems.Fractions represent
anomalies/faultsAnomalieswere detectedautomatically.Faults are anomaliesthat were
assessed by the experts to be true errors hitirateis the fraction of all anomaliedivided
by all errors. Note that thenit rateis much less thaa00%., From (Preeceand Shinghal
1992).
Zlatareva & Preece comment:
It is widely accepted that thenly direct way to measurethe actual level of KBS performances to test
the KBS on a set of test cases with known solutions (Zlatereva and Preece 1994).
Opponents of this view may argue that (i) the validity afi@del can be measuredy morethanjust its ability
to cover certain test cases; (ii) other measures such as parssuooyctnessand clear use of existing domain
concepts are just as important as performance; and (iii) a narrow focus orepegformancecould give rise to
incorrect and truly bizarre models indeed. We have argued previously that th@st abjectionis a belief in the
now-out-datedknowledge-transfeapproach(Menziesand Compton 1994). We endorsethe new knowledge
modelling perspective and believe that it is folly to aim for the "rigint"correct” knowledgebasefor an expert
system. More pragmatically,we note that externaltesting can resolve argumentsfaster than internal tests.
Feuding experts may not decide between alternative models if they all cover theusabegof casesHowever,
an expertwill concededefeat when their favoured model explains less of the known behaviourthan the
opposition's model.
Summary: Coverage of a test suite (eBEST) is a more important test than internal assessment.

5. GENERALISED TESTING IN VAGUE DOMAINS

This section develops a generalised computational model of "test" for vague domains.

External testing in non-vague domains is very simple (ugipgpcesswe call TEST). First, we compute the
transitive closure ofNj (IN"). If any inconsistencies are detected (i.e. violation§ of if OUT; is not covered
(OUT; - IN" # &) then the model is definitely wrong.

External testing in vague domains is more complicated. A model may generate inconsistencies or @t Gover

while still representing our best understanding of the domaidtates One model may be "better” than all others
without being ableto reproduceall known behaviours. While the entire model may generateinconsistencies,
some subset of the model may still be able to offer consistent explanattisosiesubsetof OUT;. In vague
domains, the goal of testing is ntg this modelthe absolutelycorrect” but "what contribution do portions of
this model make to explaining portions of the known behaviour?".

Testingin vaguedomainsis complicatedby their poorly measuredndindeterminatenature.In indeterminate

models, assumptionsnust be made. In data poor domains, these guesses baroaticked Mutually exclusive
assumptions must be maintained in sepawvaidds i.e. maximal subsetsof compatibleproofs. Any world Wy

21 Preeceand Shinghal discusshow this might occur. A rule base'sinference engine can tame a subsumption
anomaly (e.g.) by always picking the rule with the largest satisfied condition. Missing logicefitest the "do
nothing" defaultcaseor reflect somereasoningthat is out-of-scopefor a particular domain. Circularities may
exist as part of some loopingrocessthat terminatesin a special condition (e.g. prompting the userfor input
until they provide us with a satisfactory answer) (Preece and Shinghal 1992) .



contain a set of literalsy and can becharacterisedby (i) its inputs (Lx n INj ); (i) the numberof outputsit
covers (Lxy n OUT)); (iii) the assumptionst make (Lx - INj - OUTj); and (iv) their basecontroversial
assumptiongsi.e. the assumptionsn a proof that canviolate the invariantsl, but are not dependanbn other
controversial assumptions.

For example, consider the explicit and-or graph tacit in Figure 1 (see Figure ®earadeof <IN1, OUT1> =
<{af,bT}, {d7, el ,fi}>. All states incompatible withN u OUT are markedORBIDDEN i.e. cannot beised
in proof$2. Applying |2, theFORBIDDENSet is{a.,afd,b/,bd,d/,df, el e, i1 ,f4}.

Figure 2: The tacit and-or graph within Figure 1
assumingthat (i) a vertexcan go either up, down, or
steady (ii) the conjunction of an up and down can
explain a steady (iii) no changecan be explainedin
termsof a steady(i.e. steadyverticeshaveno children).
And-verticesare denoted'&"; for exampleal & bt =
A (seefar left-hand-sideof diagram). Steadynodesthat
do not connect to the rest of the graph are shown bot
left.

Isolated nodes:
apboeodgovo

The possibleexplanationsarethe proof treesP from Figure 2; i.e.: P1={a7,x7,y7,d7}, Pp={aT,c7,g7,d7},
P3={aT,cT,gT,eT}, P4={bT,cl,g!,f/}, andPs={b 7,f/}. The literals ofP that do not appear inld1,0UT1> are
the assumptionA = {x7,y7,c7,g7, c/,g¢ }. Applying |2, we seethat the controversialassumptionsA¢ are
{cT,97,cl,g}. Sinceg depends or (see Figure 1), the base controversial assumptigrase {7,c/}.

The minimal environmentdMinEnv) are defined to be the empty set, plus allrtreximal consistentsubsetsof
Ap; i.e. MinEnvg = {}, MinEnvy = {c!/}, MinEnw = {c 7}. Each MinEny; has an associatedexclusion X;
being all membersof Ap which, when combinedwith Xj, would violate I; i.e. Xo={cT,c/}, X1={cT},

Xo ={cl}. A proof belongs in world/j if it does not intersect the assumptions that are illegal in that waeld;
Xj. For example: (iP1 and Pg5 belongin all worlds sincethey do not overlapwith any memberof X; (i) P2

doesnot belongin Wg or W1 sinceit usesc’. Note that Wg representghe world where no controversial
assumptions are made.

Our computed worlds are herdég={P 1,Ps}, W1=Wg+{P 2,P3}, andWo=Wg+{P 4}. The proofsin theseworlds
explain (cover) different numbers of outputs; i.e. cover(W)=|d7,f/|=2, cover(\W)=|d7,f/,eT|=3,
cover(W)=|d7,f/|=2. ApplyingBESTs, we would declare that the model can fully explaii1, OUT1> using
W1 (i.e. assuming?).

More intuitively, we characterisgeneraliseded asthe extractionof somesubsetof the total knowledgebase
which can connedi;j to OUT;. Multiple subsets (worlds) are possible. We favour the subset that can reaches the

largest subset of the outputs (see Figure 3).

++
>y
yXT Y U Figure 3: The subsetof figure 2 containedin W1; i.e. the edgesthat
al Uit +%eT offer explanationsof the largest subsetof OUT1 ={d7,e?,f.} given
\ ++ ++ IN1={a7,bT}. Note while figure2 condonesnferenceshetweerb & c, g

bT\Jw & f, and d & x, generalised test has elected not to use these connecti

Note the difference between testing in vague and non-vague domains. Theofriéidelre 1 plus <IN1,0UT1>
can generate inconsistencies (efgandc/) andwould be categoricallyrejected by TESTy. Generalisedestis

22 A knowledge engineer can add other verticeB@RBIDDENIn order to cull the search space.



more fine-grained.While all of Figure 1 is not correct,it is incorrectto saythatit is entirely uselesgi.e. as
implied by TESTy). The subset of Figure 1 shown in Figure 3 is uskfukxplainingknown behaviour. If an
expert wished to change Figure 1, then generalised test gives thramipled basisfor decidingwhich sections
of Figure 1 are useful or useless.

Generalised test cannot be fully characterised in terms of classical deduction which demaintisetnale x if y
exists, then in every world whereis true, y is alsotrue (Poole 1990). Generalisedestis abductive from the
space of possible inferences supplied by the user, a subset has been selected accordimngterisgomerderto
fulfil a certain task. More precisely:

Generalised test (abduction) using B3 the generation alvorlds Wy O E that are the union

of edges in a subset of explanatprpofs P suchthat () COVERED [J OUTj; (i) CAUSES[

INj; (i) Wy O CAUSESH COVERED using the edges Wy; (iv) Wy 0 USED I falsei.e.

does not violaté; (v) Wy is maximal with respect to numbef includedproofs; (vi) COVERED

is maximal with respect to set size.

We find that this definition ofbductionis compatiblewith the standarddefinition of abductionas proposedoy
Poole (Poole 1990; Poole 1990), Eshghi (Eshghi 1988)Selman& LevesqugSelmanand Levesquel990).
Standardabductiongeneratesny world that satisfiespoints (i) to (v). Generalisedestis exhaustiveabduction
(Menzies 1994); i.e. all worlds are generated, then assessed. Recotjr@singnectionbetweengeneralisedest
and abduction allows us to use complexity results from the abduittratureto make strong claims regarding
the limits to abductive inference/ testing.

Abduction is known to NP-hard,e. very likely to be computationaintractablein the worst-case. Recall that
generalisedestis a searchfor a subsetof the suppliedmodelwhich canexplain the largestsubsetof known
behaviour. Given a model witg| edgesthenthereare pil= possiblesubsetsj.e. the numberof subsetsvaries
exponentially with model connectivity. For more formal proofs of the NP-hard nature of abduction, see (Selman
and Levesque 1990; Bylander, Allemang et al. 1991).

An interestingfeature of abductionis that this worst-casebehaviouris often the usual case: most known

abductive inference engines exhibit exponential runtimessfrworldinputs, evenfor sophisticatedalgorithms
(e.g.the ATMS (SelmanandLevesquel990)). Hence,many of the articlesin (O'Rourke 1990) are concerned
with heuristic optimisations of abduction. Eshghi report a class of polynomial-time abductive inference
problems, but this class of problems requires at leashecyclic and-orgraph.(Eshghi1993). Bylanderreports
techniques for tractable abduction (Bylanddiemanget al. 1991), but many of thesetechniquede.g. rule-out

knowledgeto cull much of the searchspace)are not applicableto hypotheticalmodelsin poorly measured
domains (e.g. neuroendocrinology).

Early versionsof our generalisedest useda basicchronologicalbacktrackingapproach(i.e. no memoing)that

was very slow. Basic chronological backtracking hagdibadvantagehat any featureof the spacelearntby the

search algorithm is forgotten when backtracking on failure.clineentabductiveimplementation HT4, deduces

the base controversial assumptions as a side-effect of proof-tree generatias, feasystemlearnsfeaturesof

the search space without backtracking. This system runs 130 times faster than our previous Feldman & Compton
system (Feldman, Compton et al. 1989; Feldman, Compton et al. 1989)wimitkswitching doesnot require
extensive further computation. The runtime behaviour of HT4 has been studied extens{MeEnzies1995).

Two experimental results from that study are relevant here:

. The ChangingN studyartificially generated®4 modelsof varying numbersof vertices(N= |V|) while
keepingB (|E|/|V]|) constant at 2.2%hanging B(other models)studyusedthe ChangingN study model
generator to produce six new models. These new modelsh@renutatedbetweena fanoutof 2 < B <
10.

. Two statisticswere collected:runtime and % explicable Runtimeswere collectedto seeif generalised
test was indeedexponentialas predictedby the formal complexity results of abduction.The maximum
number of explainable output¥(explicablé was collectedsinceit wassuspectedhat anindeterminate
non-trivial model could offer an explanationfor any behaviourat all. If so, then generalisedest would
"pass” all models; i.e. it losses its ability to distinguish between different types of models.



Figure 4 shows the results. Experimentally, we see that HT4 is limitét<t@50 andB < 7 (thoughafter B >
4.5, critiquing power is very low). B = 7 seemsto be the limit, beyond which a model can explain all
behaviours. We caB = 7 thePendrith limitand argue that it is a fundamental lingttesting. The exponential
behaviour seen in Figurgi indicatesthat HT4 doesnot avoid the NP-hardnatureof abductiveinference.Note
that these runtimes weret a resultof a naiveimplementationHT4 is the fourth generalisedest enginewe
have constructecand containsnumerousoptimisationsincluding: (i) avoiding chronologicalbacktracking;(ii)
discovering the definitionsf the minimal worlds (the basecontroversialassumptions)(iii) pre-computingand
caching the search space (the explicit and-or graph) prior to timing the inference runs; asiddibjtstrings to
optimise the set processing (for details, see (Menzies 1995)N Titné is only an approximationwhich may
be broken by (e.g.) faster machines and faster langudlgesever,dueto the exponentialnatureof the process,
we would not expect orders of magnitude increasés iftherefore we hesitate to place a firm limit on the model
size that is testable(henceour earlier statementthat generalisedtest is limited to models with less than
N = |V| = 1000 (approx) vertices).

~~
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Figure 4.i: Runtimes for 1991 <IN;,OUT;> Figure 4.ii: % effects explainable for 1631
pairs. Language:Smalltalk/V. Machine: Macintosh ~ <INj,OUT;> pairs. Conclusions(i) Most behaviours
Powerbookl170. Noneof the modelsover |[V|=800 can be explainedafter a fanout = 4.4; (ii) nearly all
terminated within the built-in "give-up" timlemit of behaviours can be explained after fanout = 6.8.

14 minutes.Conclusions;(i) the averageruntime at

V] = 850is > 14 minutes; (ii) the runtime curve

grows into the gray area shovon the right; (iii) the

runtime curve seems exponential.

On the positive side, based on known sizes of fielded expert systems (Preece and Shinghea¢ 1892rrgued
elsewherethat theseN and B limits are larger than modelswe seein contemporaryknowledgeengineering
practice; i.e. we can use generalised tedtimdgnowledgebasesat leastas big asthoseseenin currentpractice
(Menzies 1995). Further, the leved critique offeredby generalisedest canbe non-trivial. Figure 4.ii  shows
that at lowB values, up to 75% of behaviour may be falsifiable.

6. APPLICATIONS OF ABDUCTION/GENERALISED TEST

The previoussectionnotedthat the computationakernel of generalisedest is abduction.We have discussed
above how to use generalised test for verification and prediction. In this section we wiltrergaiea pragmatic
engineering level, it is useful to vieinferencein variousdomainsas abduction(i.e. asbeingisomorphicwith
generalised test).

6.1. Model-Based Diagnosis

The connection between abduction and model-based diagnosis is well documented. PRpg@aatknowledge
that their "diagnosis"systemsare really abduction(Pople 1973; Reggia 1985). Poole's abductiveframework
THEORISTcan be usedas a diagnosistool (Poole 1988; Poole 1989; Poole 1990). Consoleand Torasso
characterise the two main types of diagnosisa&ntsof the sameabductiveinferencealgorithm (Consoleand
Torasso01991). Both typesof diagnosisinput (i) a systemdescriptionof the systemto be diagnosed(i.e. a



modeP3); (ii) a set of observation®BS (iii) and a contexCXT in which theOBSwere made. Two sets are then
deduced: (i) a set of observables that must be avsidede. any observables inconsistent WBS) and (ii) a
set of observables that must be covékdd Consistency-basediagnosis(e.g. (Genesereti 984; DeKleerand
Williams 1987; Reiter 1987))sets W* = O while set-coveringdiagnosis(e.g. (Console,Dupreet al. 1989;
Poole 1989)) set¢* to OBS Set-covering diagnosis is best whbe knowledgebasecontainsknowledgeof
faulty operations while consistency-based diagnosis is best for knowedgecontainingknowledgeof normal
operation. For a comparison of the two approaches, see Figure 5.

oil_below_car(present) engine_  Figure 5: If OBS ={oil_below_car(present)}and
temperature(high)  CXT = {engine(on)},and we restrict the diagnosis

oiI_IeveI(Iow)\ oil_cup, then set covering diagnosis returns
holed(oil_cup _ & {holed(oil_cup)} while consistency-basediagnosis
o engine(on engine. returns {holed(oil_cup)} or {correct(oil_cup)}

correct(oil_cup -
temperature(norme - Example fron{Console and Torasso 1991)

oil_level(normaly——> &

Konologie arguesfor the primacy of set-coveringdiagnosis.He notesthat consistency-basediagnosisreturns
answerghat may not be relevantto causalexplanationsof OBS (Konoligue 1992) (e.g. correct(oil_cup)from
Figure 5 has little bearing on the problenodf below_car(preseny)

Having stressedhe differences,we note that generalised-testan be usedfor either consistency-basedr set-
covering diagnosis (see Table 2).

Generalised test configured for Generalised test configured for
set-coverage diagnosis consistency-based diagnosis
IN CXT CXT
OouT OBS V - CXT
FORBIDDEN| w= = {x | x OV, y JCXT vOBS ,I(x,y)} | W~ = {x | x OV, yJCXT vuOBS ,I(x,y)}
BEST all world(s) that cover all of?* =OBS all worlds

Table 2: Generalisedest configuredfor differentmodel-basedliagnosistasks of a modelwith
verticesV. For set-coverageexplanationsare attemptedfor all OBS. For consistency-based
diagnosis, explanations are attempted forradh-inputvertices. The FORBIDDEN definition says

that any vertex that contradicts CXT u OBS is forbidden. Note that generalisedtest is a
generalisationof model-basedliagnosissince (i) BEST permits the generationof worlds with
partial coverageof OBS and (i) the BEST operatorallows for the customisationof the world
preference criteria.

6.2. Explanation

Leake (Leake 1991) and Paris (Paris 1987; Paris 1989) discussexplanationalgorithms where explanation
presentation is constraingéd thoseexplanationsvhich containcertainsignificant structures Paris'ssignificant
structures are determined at design time while Leake assigns significance at runtime.

. Paris's experimental results suggest thadert'suse parts-base@xplanationsvhile novicesuse process-
basedexplanations.Edgesin her systemare taggedas being part either process-basedr parts-based
Knowledge of the expertise of the audience is used to tag each asttexown to user"or "unknownto
user".Whenfacedwith a choiceof edgesto be usedin an explanation,Paris's explanationalgorithm
selects either a process-based trace or a parts-trasedccordingto an examinationof the local vertices
in the network. If the local vertices are "unknown", then the process-based descriptions are preferred.

. Leakeassignssignificanceat runtime accordingto a set of eight pre-definedalgorithms. For example,
when the goal of the explanation is to minimise undesirable efthetsuntime significant structuresare
any pre-conditions to anomalous situations .

23 Console and Torasso further divide a model imtset of componentsCOMP and knowledgeof the behavioural
modes BM of those components. We would input <BM,COMP> and output our and-or graphs.



Leake clearly acknowledges the connection of his work with abduction (Leake 1993). Nbithhatake'sand
Paris's algorithms can kharacteriseéh termsof operatorshat selectsomesubsetof the possibleinferences
according to a user/goal-specific criteria; i.e. they are compatible witRE®siTformalism.

6.3. Classification

Applying the samenotion of "significant structures”we canadaptour symbol-levelalgorithmto a variety of
classification algorithms. Consider the dependency graph of a rule-base develapaskiticationpurposesThe
possible output classificatidDLASSESre a subset of all the literals in the knowledge base (e tipediterals
with in-edges, but no out-edges).

. To perform simple classification witheneralisedest, we usethe predictionalgorithm describecabove,
plus a BESTthat favoursthe worlds with the most numberof CLASSE SNote that this would be a
single and multiple-classificationsystem. Multiple classificationsthat were specifiedas incompatible
would appear in separate worlds. Therefore Nlotassifications in a world would be mutuattpmpatible
(N=1 means single classificatioN,>1 means multiple classification).

. To perform a style of heuristic classification, we &dd edges to the knowleddmsefrom sub-classeso
super-classes (e.gnimal if dog; organicThing if animal or plantNow we use 8ESTthat usesfavours
the worlds with the most number GLASSE&ndis-a edges.

6.4. Other Knowledge-Level Tasks

Leake characterises case-based reasoning as an abductive procefisayjemsibleexplanationsare assessetlia

a library of prior caseqLeake 1993). Hamschemotesthat certain sub-tasksin financial reasoning(financial
assessmenfoing concernevaluation,auditing, and the explanationof unexpectedfinancial results) are all

abductive tasks (Hamscher 1990). Numerous papers in  (O'Rourke 1990) describe natural language
comprehension in terms of abduction.

Hirata characterisesductive logic programming(a techniquefor learning first-order theories)as an abductive
process where the search space for explanations is either in the curren{sbismtingabductior), an analogous
theory (finding abductior), or a theory especiallycreatedfrom a generalisationof known theories(generating
abductior). More generally, Hirata argues that scientific theory formation is an abductive process (Hirata 1994).

Poole maps design and recognition into abduction:
. Design is the process of hypothesising components which would imply a design goal (Poole 1990).

. Visual pattern recognition is a procesfshypothesisingsceneobjectswhich would leadto the perceived
image. Poole demonstrates that this perspective gives the same results @sudhienageryresearchers
(Poole 1990).

6.5. Model Extraction

The list of applicationsthat canbe processedy abductionis surprisinglylong. In retrospecthowever,it is a
requiremenbf our architecturethat it supportssucha long list. "Generalisedest" using test suite assessment
implies a generalisedexecutionmodule.If we could not map our test procedurento a wide rangeof inference
types, then our architecture would be a failure.

We believe that the wide-applicability of testing-as-abductioils no mere coincidence. Abduction directly
operationalises the subset extraction process thia¢ isore of Clancey'smodelconstructionoperators(Clancey

1992) and Breukersomponents of problem solvitgpes (Breuker1994). Clanceycharacterisesxpertsystem
inferenceas constructingthe system-specifienodel (SSM) from a generalqualitativemodel (QM) in the KB.
Breukerexploresthe relationshipsbetweenproblemsolving techniquesisedin expertsystems(i.e. modelling,
planning, design,assignmentprediction,assessmentnonitoring and diagnosis)(Breuker 1994). He offers an
abstractdescriptionof the "componentsof a solution" generatedby thesetechniquesAn argumentstructureis
extracted from @ase modelanalogous to Clancey's SSM) represents some understanding of a problem. This case
modelis generatedrom some genericdomain model (analogousto Clancey'sQM). A conclusionis some



portion of the argument structure that is relevant to the usethe casewhereall the solution componentsare
represented as a ground theory of literals whose dependency graph h&s duges
edges(answer)/ edges(argument structurg) edges(case modéel) (edges(generic domain model) = E)

whereedges(X@enotes the edges of the dependency graph presentlote the commonality betwedlancey's
and Breuker's view: expert system inference is the extraction of some subset theory from a super theory.

Returning now to HT4, we note that this algorithm also extracts sub-models from super-models (e.@. Bigure
a subset of Figure 2). However, what we call "worlddgnceycalls "SSMs" and Breukercalls "casemodels".
The extractedmodels(worlds) arerelevantto a particularproblem,definedas <<IN;, OUT;>, BEST>, andis
guaranteed to be consistent. Note that each solution is some subset of thedgemanenodel M which is the
spaceof all possiblesolutions. Also, deductionover an HT4 world can generatea Breuker-styleargument
structurefor a particulacconclusion(some vertexn M). Further,abduction/HTprovidesa uniform structurefor
processing of many of problem solving types listed by Breukserch uniformity simplifies the constructionof
interfaces between the inputs and outputs of different problem solving types. Breuketlzaggeshinterfacing

is essential since most problem solving types are used in combination to perform some task.

6.6. Discussion

Generalisedest requiresan inferenceenginethat (i) inputs dependencknowledgeand contradictionknowledge
between a set of literals, then (ii) executes its inferences in separate, internally congistéatFormally, this
is abduction.We haveseenabovethat an inferenceenginethat supportsabductionis a useful tool for KBS
validation, prediction, set-covering model-based diagnosis, consistencyrbadeldbasedliagnosis.explanation,
classification,learning, case-baseceasoningfinancial reasoning naturallanguagecomprehensiongesign, and
recognition. Table 3 contrasts this list with the inference models proposed by knowledge-level methodologies.

System Anal ysi s Abducti on
-- D agnosis -- Validation
----- Singl e Model D agnosi s -- Prediction
------ Systemati ¢ Di agnosi s -- Qassification
-------- Local i sation ---- Sinple classification
-------- Causal Tracing ---- Heuristic classification
-- Verification -- Explanation
-- Qassification -- D agnosis
---- Sinple dassification ---- Set-covering-based di agnosi s
---- Heuristic Aassification ---- Consi stency-based di agnosi s
-- Prediction -- Design
---- Prediction of Behaviour -- Recognition
---- Prediction of Values -- Case-based reasoni ng
Syst em Synt hesi s -- MNatural |anguage understandi ng
-- Design
0] (i)

Table 3: Comparison of (i) knowledge-level inference modedsn conventionalknowledge-level
modelling (from (Tansleyand Hayball 1993) and (ii) knowledge-leveinferencemodelsbasedon
our symbol-level abductive inference.

We approve of some of the clusterings in the hierarchy of Table 3.i. For example, localisation anmacingal
are basically the sameinference,exceptthe former using part-of knowledge while the latter uses causal
knowledge. In terms of or framework, both execute over the same and-or graph but the user's integfrétation
edges differs. However, we doubt (e.g.) the separation of design from diagnosis irBHigimeewe haveseen
above that they are closely connected.

To be fair, the authorsof Table 3.i acknowledgghat many of their distinctionshave an arbitrary nature. For
example, they note that (i) heuristic classification could be usadidgnosis; or (ii) that scheduling planning,
and configurationare actually the sameproblem, divided on two dimensions("goal statesknown or not" and
""temporalfactorsconsideredr not"- seeFigure 12.3 of (TansleyandHayball 1993)). However,they do not
take the next stepandsimplify their hierarchyaccordingto theseobservedsimilarities in the processing.We



believe that such a simplification would remove certain complexities from conventional knowledge-level
modelling:

. Table 3.ii is broaderandflatter than Table 3.i; i.e. a hierarchyof inferencemodelsbasedon abduction
requires fewer distinctions than conventional knowledge-level modelling.

. When wecomparethe differencesbetweensub-hierarchiebetweenTable 3.ii and Table 3.i, we seethat
our sub-hierarchiesare much smaller variants of their roots than in conventional knowledge-level
modelling. For example,the difference between set-covering-basedliagnosis and consistency-based
diagnosis is very smaf(seeTable 2). In contrast,sibling inferencemodelsin conventionaknowledge-
level modelling may havetotally differentinferencemodels(e.g. KADS hastotally different inference
models forcorrelation andverification even though they are both sub-typeglehtification).

7. RELATED WORK
71. Ripple-Down Rules

We have arguedabovethat generalised test replacesrather than merely augmentsexisting KBS practice.
Compton'sripple-down-rule§RDR) approachis anotherexamplewherea comprehensivéest programreplace

the need for other methodologies (Compton and Jansen 1990). RDR is interesting in that, to our knovdedge, it
the only KA techniquewe know that ensures100% behaviourcoverageas the systemevolves. Compton's
design is optimised for maintenance of propositiantd-basenly. Expertscannotbrowseand recognisetheir
models inside the patch tree. Our work here began as an experirgntintenancesnvironmentwhereexperts

could browse and freely modify the knowledge. Despitetheserestrictions,RDR has beenusedto develop
systems that are larger and more successful than other techniques tapglieedamedomains(Preston,Edwards

et al. 1993; Menzies and Compton 1994).

7.2.  Other KB Test Regimes

We havementionedabovethe work of the V&V communityon KBS assessmerdnd notedtheir emphasison
internal testing. For reviews of the state of the art in V&V, see (Preece 1992; Zlatereva and Preece 1994).

Gaines & Shaw explore techniquies resolvingconflicts in terminology using repertorygrids. The conceptual
systemsof different expertsare explicatedand comparedusing the grids (Gainesand Shaw 1989). Their work

focuses on resolving conflicts in the meaning of individual terms, not on conflicts in the semantics of the models
built using those terms as primitives.

Booseet al. describegyroup decisionsupportenvironmentontainingsuitesof tools combineto form a KA
environment (Boose, Bradshaw et al. 1992). Boetels system focuses on thldevelopmenbf modelsof the
group decision support process. Theivironment lacks an execution module for the generatadklsas part of
the group decision support environment; i.e. Baisd assume that once the group's mode is elicited;jll be
subsequentlgxportedinto an executablorm. We believethat an active abductiveevaluationmodule would
enhance their architecture. Groups could execute their under-specified intuitions to gain feedback on their ideas.

Silverman advises that attached to an expert systemeigpant critiquing systemhich he defines as:
...programs that first cause their user to maximise the falsifiability of their statements anuidtesdto
check to see if errors exist. A good critic program doubts and traps its user into revealindnbisoors.
It then attempts to help the user make the necessary répai8ilverman 1992)

Silverman divides an expert critiquing systeminto (i) a deepmodel which can generatebehaviour; (i) a

differential analyser which compareghe generatedehaviourwith the expectedoehaviour;and (iii) a dialogue

generatorthat explains the errors and assists in correcting them. Silverman's resssardo be focusedon an
implementation-independemtnalysisof the processof "critiquing” a program. His focus appearsto be on
defining "critiquing” as an add-on to existing systems. We believe that critics shouldd tackedon as an after
thought sincebuilt-in critics could guidethe KA process. Our work could be describedas the developmenbf

24 ECSsarethereforemuch broaderthan the definition instantiatedby ATTENDING (Miller 1986) which hadno
mechanism for doubting its own internal knowledge base.



generalimplementationprinciples for deep models and differential analysers Mahidadia explores dialogue
generationin this domainusing inductive logic programming(Mahidadia, Sammut et al. 1992; Mahidadia,
Sammut et al. 1994).

7.3. World Assessment

Operatordor implementingpreferencecriteria for assessingpossibleworlds has beenwidely discussedn the

literature. Most researchers argue that the best worlds must at least cttvekatiwn output. Somearguethat

the "best" explanation is the smallest ofeg. (Reggia,Nau et al. 1983; Console,Dupreet al. 1991)). Poole

(Poole 1985) and Consodt. al.(Console, Dupre et al. 1991) have proposed the additional criteria tHaette
explanation also uses the most specific terms from a taxonomic hierarchy; e.g. they prefer explanationss
of emurather than in terms of the more general tbim.

We prefer noto hard-wireworld assessmerihto our formalism. We take the line of Leakeand Paristo argue
that "best" is goerson-specifi@and goal-specificcriteria. While expertsmay preferexplanationsn termsof the
most specific term in a hierarchy, novices may prefer more general explanations. Véeghadabovemaximal
output coveragemay be a more importantworld assessmertriteria than parsimonyor total output coverage.
World assessment knowledge is still domain-specific knowledge and should be customisable.

74. SOAR

We have argued that abduction is an appropriate sinfgleenceprocedurefor a wide-varietyof knowledge-based
tasks. The designers of SOARakea similar claim regardingtheir statespacetraversal(RosenbloomLaird et
al. 1985; Laird, Newell et al. 1987). SOAR was built to operationalismNewell's original notion of the
knowledgelevel (Newell 1982). The primitives of the SOAR rule-basedanguageexplicitly representNewell's
model of human cognition assgarchfor appropriateoperatorghat convertan agent'scurrentstateto a desired
goal state. Like our abductive approach, minor manipulatiol®O#R's operatorspace(which is controlledby
rules)areall thatis requiredto fundamentallychangethe inferencing(Laird, Newell et al. 1987). Also, like
SOAR, we do not build knowledgebasesaroundthe knowledge-levelinferencemodelsusedby conventional
knowledge-level modelling techniques (e.g. KADS). Dhservatiorthat a knowledgebaseis performing(e.g.)
classification is a user-interpretation of a lower-level inference (Yost and Newell 1989).

Generalised-test-as-abduction differs from SOAR in two ways. (i) SOAR's executes awgliait and-orgraph
while we prefer to execute over an explicit andyoaph. Efficiency is a non-trivial issuein generalisedest (see
the remarks in the last section regarding the NP-hard natweduction).Building and cachingthe searchspace
prior to inferencingis one techniquefor taming complexity”®. (i) Given a vertex with N out edges(or, in

SOAR-speak, a state space whtlassociated operators), generalised test assesses theotidgghedgeusing a
deferred global analysis. SOAR must make its operator assessmenipatthevel. SOAR's run-time selective
generation of thend-orgraphhasefficiency advantagesinceit culls unacceptablalternativesasthey arefirst

encountered. Our approach is slower, butekglicit representationf all alternativegpermitsallows for global
assessment criteria (eBEST).

7.5. Belief Networks

Belief networks (BNs) deduce causality from a statisticellysisof the frequencydistributionsof variablesin a
sample to deduce acyclic "networks" (white really trees)of causalrelationshipsbetweenvariables(Pearland
Verma 1991). BNs assumesufficient measurementare availablefor the statistical analysis;i.e. they are
inappropriate for vagudomains.Also, currentstate-of-the-arBNs assumescyclic models(Geigner,Pazet al.

1993) and modelm our test domainare usually cyclic (e.g. Figure 1). Further,the theoriesgeneratedy BNs

make do not preserve current beliefs (see above remarks regarding preserving the battkgpogind/Ve foresee
that various userswould treasuretheir favourite portions of their model(s) (typically, the ones they have
developedand successfullydefendedrom all critics). It would be unacceptabléo permit a learning algorithm

25 Note that this is only practical for finite theories An exampleof aninfinite theoryis the spaceof all even
numbers; e.g.even(2). even(X) :- even(Y), X is Y * 2.



scribble all over this knowledge. Learning programsfor this domain must strive to preservethe current
background theory (hence Mahidadia's interest in ILP for this domain).

7.6.  Default Logic

Our basecontroversialassumptionsand worlds are akin to ATMS labels (DeKleer 1986) and default logic
extensiongReiter 1980) respectively However,we differ from ATMS/ default logic in that our worlds only
containrelevantliterals (i.e. only those literals that exist pathwaysbetweeninputs and outputs). This means
that, unlike default logic extensions, not all consequences of a literal egistarld containingthat literal. For
example, consider the following example:

a, eif (bor c);

nodel : b i
i c, zify.

i f

d if
contradicts: {d,f}
<IN, QUT> = <{a}, {e}>

Generalised test would generate two proofs which could exist ionevorld, i.e. W1 = {P1, P2}, P1={a,b,e},

Po={a,c,e}. Standard ATMS/ default logic would analyse all literals in the model to generate two extensions (one

with d and the other witf). Both of these extensions would contain the same pro&mderms ofa. We view

these two worlds as irrelevant and wasted computation.

8. CONCLUSION

We have arguedthat testingis fundamentalto the KBS process.Given the modernview of KA as the
construction of approximate models, it follows that the contents of ourdfBzotentially inaccuratereflections

of the entitiesbeing modelled. Potentially inaccurate modelsmust be testedprior to their wide-spreaduse.
Further,we havearguedthatin orderto preventmodelsmoving inappropriately "out of context", we must
continually and routinely test delivered models whenever new data is available on the entity that they are trying to
model. Automatic test engines are required for such a continuous test regime.

Viewed in its most general form, "test" in vague domains is not neutral to KBS practice:

. Limits to testarethe limits to model constructionin vague domains.Experimentally,we have seen
testing limits offV| = 1000 (approx) antE|/|V| = 7. We have argued that m&&S domainsare vague;
i.e. most of KBS practice is similarly limited.

. From a pragmatic engineering viewpoint, we have argued that is useful to nepltigge single-purpose
mechanisms with one general-purpose mechanism, particularly when (i) the services offeregebgrtie
mechanismis a supersetof the servicesoffered by the multiple mechanisms;and (ii) the general
mechanismis simpler than the single-purposemechanisms.Current KBS inference enginesdo not
support generalised test while generalised test also supports theaxidetionprocesshat Breukerand
Clancey argue is at the core of expert systems inference. That is, we should exeicf@éeenaemodules
with generalised test modules.

If testing is such a fundamentally limiting process as we have argued above, thkastiig not beenreported
previously in the literature? Clearly, testing is the exception raftzerthe rule in the KA community. This is
an observabldact which we find surprising.To us, the needfor "test" follows inevitably from the knowledge
modelling approachWe suspecthat many so-called"knowledge modellers”still believein expertise-transfer
since only in expertise-transfer are we so confiderdur modelsthat we do not needto testthen?S. We seek
here to discourage such beliefs.

Finally, we comment on the pessimism of some researchers who lament thetlemeggfof certainty’. If we
reject a Platonic view of the universe and its somewhat spurious belief in an absolute "truth", we need not plunge

26 O'Haranotes that someknowledgerepresentatiortheorists still make occasionalclaims that their knowledge
representationtheory has some psychological basis (even though, when pressed,their public line is that
representations are models/ surrogates only) (O'Hara and N. 1993).

27

For example, Agnewet. al. forcibly arguefor the non-absolutenatureof humanknowledge.However,between
the lines,we readthat they do not like their generalconclusion, but reluctantly acknowledgeits inevitability



into confusion. Our implementation experier@s beenthat structuredtesting environmentsuchas RDR and
generalised-test-as-abductiare highly orderedentities. Recall our comparativeanalysisof abductiveinference
modelsversusknowledgelevel inferencemodules.We arguedthat abductiveinferencemodulescan unify and
clarify knowledgelevel inferencemodels. That is, non-Platonicarchitecturesare still amenableto rigorous
analysis. The opposite to Platonic certainty need not be chaos.
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