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Abstract: We argue that adding a requirement of evaluation and testing fundamentally changes KBS practice. In
particular: (i) a fundamental change to the symbol-level representation in KBS;  (ii) a rejection of certain
unnecessary knowledge-level distinctions; (iii) a fundamental change to the inference engine of KBS; and (iv) a
basic computational limit to the size and internal complexity of the models we create via knowledge acquisition.
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It  would be convenient if KBS evaluation was neutral with respect to KBS practice. If an evaluation module was
merely a post-hoc bolt-on, then its design could be deferred until after a system was developed. However, if
evaluation adds extra requirements and restrictions to the KBS process, then the design of an evaluation module
must be integrated with the system it will test.

This paper argues for the inconvenient latter position. Models constructed in vague domains (defined below) are
possibly inaccurate. Possibly inaccurate models must be tested, lest they produce inappropriate output in some
circumstances.  We will develop a general abductive1 definition for "test" in such vague domains.  This
characterisation leads us to two unexpected results: 

• At a symbol-level, abduction executes over an and-or network with edges E and vertices V.
Experimentally, we show that the limits to test  are 1000 (approx) vertices (|V|) and average fanout
(|E|/|V|) less than 7.  The fanout limit seems fundamental to abduction while the |V| limit could be
increased via optimisations of our current implementation. However, given the fundamentally exponential
nature of abduction, we do not expect large increases in the |V| limit.  Since we can't test models that are
larger than  |V| = 1000 (approx) and |E|/|V| = 7, we should not build models larger than these limits.

• A generalised validation module can serve as the inference module a range of knowledge-level tasks
including KBS validation, prediction, model-based diagnosis,  explanation, classification, learning, case-
based reasoning, financial reasoning, natural language comprehension, design, and recognition. More
generally, we find that abduction directly operationalises the model extraction process that Breuker and
Clancey argue is at the core of expert systems inference. While we could separate inference and validation
modules, we would economise on our effort by using the validation module for the inferencing. That is,
our  definition of "generalised test" replaces rather than merely augments the inference module of a KBS.

These results are restricted to vague domains. However, we will argue that most domains tackled by modern KBS
are vague; i.e. these results are widely applicable.

This paper is structured as follows. Sections 2 and 3 defines vague domains and models respectively.  Section 4
discusses what should be tested. Section 5 characterises testing in vague domains as abduction and describes our

                                                
1 Consider a system with two facts a,  b and a rule R1: If a  b. Deduction is the inference from a  to b. Induction is

the process of learning R1 given  examples of a and b occurring together. Abduction is inferring a,  given b
(Levesque 1989).  Abduction is a not a certain inference and its results must be checked by an inference
assessment operator (see BEST, below).



experiments with the limits to test-as-abduction. Section 6 discusses the applicability of abduction to knowledge-
level tasks.  Section 7  discusses related work. 
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A vague domain has one or more of the following properties:

• It is poorly measured; i.e. known data from that domain is insufficient to confirm or deny  that some
inferred internal state of its model is valid.

• Its models are hypothetical; i.e. the domain  lacks an authoritative oracle that can declare knowledge to be
"right" or "wrong"). Note that in a well-measured domain, the authoritative oracle could be a database of
measurements.

• Its models are indeterminate; i.e. the model cannot choose between a number of different possible outputs.
For example, the qualitative model of Figure 1 is indeterminate. In the case of a  & b  we have two
competing qualitative influences on c: (i) a can cause c  while (ii) b can cause c . Lacking
quantitative information about the relative size of these competing forces,  one world must be  created for
each possible value of c ; i.e. {c c c }2  (Iwasaki 1989).
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Figure 1: Connection between  entities with legal states up ,  down,
or steady. Edges denote acceptable explanations.  For example:  (1)  X --
Y iff Y being up or down could be  explained by X being down or up
respectively; (2)  X ++ Y iff Y being up or down could be  explained by
X being up or down respectively.

For an example of a vague domain, consider multiple expert knowledge acquisition (KA) for neuroendocrinology.
Model construction/revision in neuroendocrinology (the study of the interactions of nerves and glands) is
complicated by (i) the different paradigms of researchers in different countries3; (ii) the hypothetical nature of the
domain4;  (iii) and a lack of data5 which means that not all portions of known models may be exercised.
Consequently, correction of model anomalies may take months or even years. In the interim, researchers must
use the best available current models, even if they are known to contain unresolved anomalies.

We find that, with one partial exception (see below), all the domains we have  studied in detail in the last decade
are vague.  For example, neuroendocrinology, economics and ecology are very vague domains.  The (in)famous
"Limits to Growth" study attempted to predict the international effects of continued economic growth (Meadows,
Meadows et al. 1972).  Less than 0.1% of the data required for that study was available (Coles 1974). Puccia &
Levins comment on the utility of exhaustive data collection on ecological modelling:

 In a complex system of only a modest number of variables and interconnections, any attempt to describe
the system completely and measure the magnitude of all the links would be the work of many people
over a lifetime ((Puccia and Levins 1985), p5).

                                                
2 Notation: x = "the value of x has gone up";   x = "the value of x has gone down";  x = "the value of x is

steady". 
3 Feuding experts do not willing surrender controversial portions of their models.
4 Neuroendocrinological process may be controlled by minute levels of certain chemicals. Some of the values

measured are in the pico-MOLE range (10-12) and hard to detect. Detecting inter-relationships between entities is
therefore difficult.

5 Data collection in neuroendocrinology can be very expensive and, hence, incomplete. In one extreme case,
300,000 sheeps brains had to be filtered to extract 1.0 milligrams of purified thyroptin-releasing hormone
(Krieger 1980). In the usual case,  delicate measurements have to be made by skilled staff using expensive
equipment.  In the QMOD study used as our test suite, data on a  glucose model (Smythe 1989) was collected from
six journal articles. In all, none of the flow constants were known and only 34% of the variables were measured
(Feldman, Compton et al. 1989; Feldman, Compton et al. 1989).



They claim that this observation from ecological modelling also applies to sociological models. For example, it
is well known that many crimes go unreported. A literature review on crime statistics shows that the resources
required to gather empirical data on the level on unreported crime is prohibitively high (Menzies 1985).

In our other KBS work, we have built expert systems for process control  (Menzies and Markey 1987), farm
management (Menzies, Black et al. 1992), consumer lending, and medical applications (Compton, Horn et al.
1989; Preston, Edwards et al. 1993). All this work can be characterised as the construction of models in data-poor
domains:

• ICI Chemicals Australia required an automatic controller for one of its petrochemical plants. A
mathematical controller could have been constructed, but would have necessitated the purchase of a set of
parameter values from the engineering firm that built the plant.  The purchase price was so high that ICI
funded the development of a  heuristic rule-based controller (Menzies and Markey 1987).

• As of  1988,  Australia raised 4.8 million pigs a year (net worth $AUS 500 million). This represented
one-third of one percent of the international pig herd (1,440,000,000 pigs). Despite the enormity of the
international porcine enterprise, much of the internal physiology of the pig remains unmeasured. Building
and verifying an expert system for raising pigs required the collection of new data, especially for that
model  (Menzies, Black et al. 1992).  This data collection/ model development process took decades of
work by CSIRO's senior experts in pig nutrition. The package was then sold on a one-off basis to an
American manufacturer of feed stocks;  i.e. once the data was collected, it was promptly bought and hidden
by a private corporation for their exclusive use. 

• Our commercial experiments with machine learning for consumer lending  demonstrated that consumer
loan approval is a poorly-measured domain. One financial organisation we worked for had large databases
of prior loan approvals and defaulted loans.  Much of this data pre-dated certain crucial changes in Federal
legislation making it irrelevant for current use. Construction of expert systems for consumer lending was
therefore a process of creating new models for new domains that were yet to be measured.

Note that there is no theoretical barrier to the accurate measurement of any value in any of the poorly-measured
domains listed above.  However, model construction is a resource-bounded activity. Organisations have limited
staff, time, and money. The problems with data collection catalogued above may reflect a fundamental problem
with numbers; i.e. there exist useful numbers that we may wish to measure but lack the resources to collect.
Resource-bounded data collection implies a vague domain.

The one exception we are aware of to our general rule of "all non toy-domains are characterised by a lack of data
and are therefore vague" is the diagnosis of electrical circuits (Hamscher, Console et al. 1992). Electrical circuits
are an artificially constructed domain and it is theoretically possible to add instrumentation to circuitry to make
all values accessible. However, even in that domain, we can find some concern with handling incomplete models
(Console, Dupre et al. 1989; Abu-Hakima 1993).

We are not alone in this characterisation of the expert systems endeavour as "vague modelling". Clancey describes
as expert systems as imprecise/qualitative models6 (Clancey 1989). The knowledge modelling school (described
below) acknowledge the imprecision of the models created via KA (Bradshaw, Ford et al. 1991; Wielinga,
Schreiber et al. 1992; Davis, Shrobe et al. 1993). An acceptance of knowledge base models as context-dependant
constructs (Phillips 1984; Shaw 1988; Bradshaw, Ford et al. 1991; Agnew, Ford et al. 1993) tacitly implies
hypothetical domains (since non-hypothetical models would be context-independent).

Summary: Most KBS domains are vague. Indeed, if a domain can be characterised accurately, then the heuristic
approach that characterises KBS would not be required.

                                                
6 In using the phrase "qualitative model", Clancey is appropriating a term used extensively by the naive physics

community. Numerous researchers explored qualitative reasoning in the domain of first-order linear differential
equations. For more on this research, see (Coiera 1989; Iwasaki 1989). 
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We cannot make general statements about testing models unless we commit to some definition of a model. This
section gives our definition. This definition is in two parts: a symbol-level view and a philosophical view.
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We view a "model" M  as a device for generating explanations of  known behaviour B of the entity being
modelled. B is a set of pairs of known inputs and outputs <INi, OUTi > that represent measurements of the
entity being modelled.  An explanation of  <INi ,OUTi >  is the union of the  proof trees whose roots are in INi
and whose leaves are single members of OUTi.   

More precisely, M is a  directed, possibly cyclic graph whose edges E represent possible explanations and whose
vertices V are either (i) literals from the expert's domain of discourse or (ii)  and-vertices.  The graph may be
implicit or explicit. In the explicit case, all edges are pre-enumerated and cached.  In the implicit case, operators
exist that can generate new vertices or edges from existing vertices and edges7.  M  can represent (amongst other
things) the dependency graph between literals in a propositional theory, a rule-based expert system8, a unfolded
first-order system9, a declarative frame-based systems10, a qualitative reasoning system (see section 5), or some
vague sketch of how an expert sees their domain (Menzies 1994). Elements of B are subsets of V.  All proofs are
subsets of E. A proof that contains an and-vertex must also contain all the parents of that vertex. Proofs that use
non-and-vertices must contain zero or one parents of that vertex.

Devices that can produce explanations can also be used to predict behaviour11. In the case of explicit graphs, if
we set INj to the known input and OUTj to V - INj , then the generated "explanations" are predictions of what
could result  from INj.

Logical proofs can't contain loops. Hence, we cannot explain time-series data (e.g X went up, then later it went
down, then it went up again) without significantly increasing the size of our models  (i.e. create one vertex for
each literal in M at each measured time intervals).  

A model from a vague domain (Mv) may not necessarily be parsimonious, complete, deterministic, or consistent.
The model may be able to explain only  a subset of OUTi . Of the explainable outputs,  Mv may be able to

generate   1  ≤ N < ∞  explanations  (N = 0 means no explanation, N> 1 means multiple explanations). Further,

our explanations may be able to generate contradictions. Therefore:

• Generalised test's search for explanations is really the processing of extracting from M  a subset of E that
covers the greatest number of elements from OUTi .  

• Explanations must not violate a library of invariants I. For example, I1 says that we should not believe

the literal p and ¬p simultaneously. Also, a variable that can take one of N mutually exclusive states
generates N literals in Mv. I2 says that we should not simultaneously believe any more than one of those

states. For convenience, I is defined in the negative; i.e. I(x,y) is true when the combination of x and y
violate some constraint.

• In the case of  N > 1 explanations, some domain specific BEST operator chooses the preferred
explanations.  Example BESTs  include returning the explanations that require the least number of
unknown variables (BEST1);  with fewest number of inputs (BEST2); with shortest proof size (BEST3);
with the largest number of explained effects (BEST4:); or which avoid edges with low likelihood
(BEST5). BEST5  assumes that such meta-knowledge about edges is available; e.g. some edges were

                                                
7 E.G. in SOAR, operators can permit transitions from some current state to another newly created state

(Rosenbloom, Laird et al. 1985).
8 Less its conflict resolution strategy.
9 That is, unfolded until it is ground (i.e. all variables bound).
10 In partial-match systems, the disjunction of slots can lead to a frame. In total-match frame systems, the

conjunction of slots can lead to a frame. In both, inference to a subclass can lead to inference to the superclass
(e.g. if emu then bird).

11 An insight we first gained from Poole (Poole 1990).



proposed as part of a theory you wish to fault. BESTi may be indeterminate; i.e. some subset X of all

known explanations may be ranked as the "best" explanations and |X| > 1.  In the case of more than one
world being "best", then generalised test returns them all.

Our results regarding the limits to testing are taken from the easy case where (i) the graph is explicit; (ii) I has an
arity of two (i.e. given one literal, we can deterministically infer which other literals are inconsistent); and (iii) B
does not include time-series data. In this easy case, numerous optimisations are possible12. To extend our results
to full first-order theories/ implicit graphs/ invariants of arbitrary arity/ testing time series data, simply increase
the runtimes. 

* � % � 0 � 	 � � � � � � 	 � � � & 	 � �

Models are synthetic constructs created by people which may or may not reflect some aspects of the  entity being
modelling. This view is consistent  with recent trends in knowledge acquisition (KA) away from expertise-
transfer13 to model-construction14 (Gaines 1992). In the modern KA view, knowledge bases are only ever an
approximate surrogates of reality (Bradshaw, Ford et al. 1991; Wielinga, Schreiber et al. 1992; Davis, Shrobe et
al. 1993). "Knowledge" extracted during KA from an expert is a report customised to the specific problem, the
specific justification, the expert, and the audience (Feldman, Compton et al. 1989; Compton and Jansen 1990).
"Truth" as expressed by human experts varies according to who says it (Phillips 1984; Bradshaw, Ford et al.
1991; Agnew, Ford et al. 1993) and even when they say it (Shaw 1988). 

Models are created by people and  people can often reason idiosyncratically or sub-optimally. Kuhn notes that
data is not interpreted neutrally, but (in the usual case) is processed in terms of some dominant intellectual
paradigm (Kuhn 1962). Silverman cautions that systematic biases in expert preferences may result in
incorrect/incomplete knowledge bases (Silverman 1992). Other writers issue similar warnings:

…expert-knowledge is comprised of context-dependent, personally constructed, highly functional but
fallible abstractions  (Agnew, Ford et al. 1993).

Human reasoning does not always correspond to the prescriptions of logic. People … fail to see as valid
certain conclusions that are valid, and they see as valid certain conclusions that are not15. ((Anderson
1985) p264)

The same decision can be framed in several different ways; different frames can lead to different
decisions16.  ((Kahneman and Tversky 1982) p139)

Apart from idiosyncrasies added by their authors, models will always exhibit one or more  behaviours that the
entity being modelled will not. This must be so since the model is different to the thing being modelled (the map
is not the territory). Puccia & Levins comment:

A model is an intellectual construct we study instead of studying the world. Every model distorts the
system under study in order to simplify it. ((Puccia and Levins 1985), p2)

                                                
12 E.G. (i) assign a unique integer id to each literal and use bitstring processing for all set manipulations; (ii) for

each literal Li, pre-compute and cache as a single bitstring the integer ids of  the other literals inconsistent with
Li.

13 E.G. The Feigenbaum perspective of "mining the jewels in the expert's head" (Feigenbaum and McCorduck
1983).

14 E.G. KADS (Wielinga, Schreiber et al. 1992). For a critique of KADS and KADS-like proposals, see (Menzies and
Compton 1994) and section 6.6.

15 When presented  a modus tollens syllogism  (i.e. P   Q,  not Q, therefore not P) 39% of subjects incorrectly
stated  it was only sometimes true while 4% wrongly stated that it was never valid  In another study,  90% of
subjects incorrectly understood a syllogism, including trained logicians; presumably, the most rational of all
human beings (Anderson 1985).

16 In one study, physicians consistently choose one of two options according to the way a problem was framed.
Both options were actually identical, but one was expressed in terms of absolute numbers and the other in terms
of percentages. The problem was framed in terms of lives-saved or lives-lost. Physicians presented with the
lives-saved frame were generally risk-avoiding; i.e. they elected to maximised the absolute number of lives
saved. Physicians presented with the lives-lost frame were risk-seeking; i.e. elected to minimise the percentage
of  lives lost (Kahneman and Tversky 1982).  



Our general thesis is that (i) the distortions added by the modelling process are non-trivial; and hence (ii) we must
always test models. If the reader remains unconvinced, they are invited to review a one-line mathematical model
of exponential population growth:  EQ1 : dN/dT = rN.   In EQ1,  r is a constant that is positive or negative if the

environment is benevolent or hostile respectively, T is time, and N is the population. Note that this model is
wrong17 since population growth must taper off as it approaches C the maximum carrying capacity of the
environment; i.e.  EQ2 : dN/dT = rN(1-(N/C)). If the reader can correctly answer the following question, then we
have anecdotal evidence for believing that humans can read and critique models:  is  EQ2  correct?  If the reader

cannot find all errors in a one-line model (which they probably studied extensively in high school), then we
should be suspicious of claims that the truth status of larger models can be accurately determined by people. 

EQ2  is incorrect18. Our experience has been that the error is not apparent to many people. Myers  and Feldman

& Compton provide us with more examples of models defying human critique:

• Myers reports controlled experiments in which 59 experienced data processing professionals hunted for
errors in a very simple text formatter (63 line of PL/1 code). Even with unlimited time and the use of
three different methods19, the experts could only find (on average) 5 of the 15 errors  in this 63 line model
(Myers 1977).  

• Feldman & Compton used a technique called hypothesis testing to show that neuroendocrinological
theories published in international referred journals contain a surprisingly high percentage of errors. In one
study,  109 of 343 (32%) of the known data points from six studied papers could not be explained using a
glucose regulation modelled developed from international refereed publications (Feldman, Compton et al.
1989; Feldman, Compton et al. 1989; Smythe 1989). A subsequent study (Menzies 1995) corrected some
modelling errors of  Feldman & Compton to increase the inexplicable percentage from 32% to 45%. A
similar study successfully faulted another smaller published scientific theory (Menzies, Mahidadia et al.
1992). Menzies' generalisation of the hypothesis testing technique is the generalised-test-as-abduction
algorithm described below.

Puccia & Levins  (Puccia and Levins 1985) use EQ1   and EQ2  to argue that models are not universal truths,

but are merely useful constructs for a particular context.  Demonstrating the universal truth of any model is
impossible. All proofs of "truth" terminate in some premises which must be accepted on faith (Popper 1963)20.
Note that this pessimism about the truth status of models  is not justified for all models. Models tested over long
periods of time may asymptote to some satisfactory competency. However, most of the knowledge inserted into
expert systems does not fall into this category. Gaines & Shaw comment:

In a well-established scientific domain it is reasonable to suppose that there will be consensus among
experts as to the relevant distinctions and terms- that is objective knowledge that is independent of
individuals. However, the "expert systems" approach to systems development has been developed for
domains where such objective knowledge is not yet available. (Gaines and Shaw 1989)

For example non-objective domains, consider a sample of problems tackled by modern expert systems: how to
configure a computer (Bachant and McDermott 1984); where  to dig for minerals (Campbell, Hollister et al.
1982); how to diagnosis biochemical disorders (Preston, Edwards et al. 1993);  how to best run a petro-chemical

                                                
17  If you cannot detect the error before reading on, then Q.E.D.
18 In the case of a hostile environment and over-population, N > C, r < 0, and our intuition is that the population

will fall. However,rN(1-(N/C)) > 0; i.e. the maths says that population will increase! (Puccia and Levins 1985)
19 (i) Reading the 30 line specification, then generating test cases which were run through an executable version of

the program; (ii) As before, but also reading the 63 line code listing; (iii) As with (ii), but testing was done via
manual walk-throughs/inspections. Programmers only used one of (i), (ii) or (iii).  Programmers using (i) and (ii)
worked alone. Programmers using method (iii) worked in groups of three. 

20 For example, consider one individual trying to reproduce all the experiments that lead to our current
understanding of atomic physics. Such an undertaking could longer than a lifetime and would be beyond the
resources of most individuals (e.g. building an five kilometre linear accelerator). Such a task has to be divided up
and, sooner or later, our single researcher would have to accept on faith the validity of another researcher's
statement that "while you were busy elsewhere, I did this, and I saw that. Trust me.".



plant, (Menzies and Markey 1987); what antibiotics we should prescribe (Buchanan and Shortliffe 1984);  and our
test domain of multiple expert KA for neuroendocrinology.  

Our general claim is that any model is only trustworthy in the same context where it was developed and tested.
As soon as a model moves "out-of-context", it may generate inappropriate results. Sadly, models are rarely
labelled with their context boundaries. When all available knowledge and examples is used to generate a model,
out-of-context is never indicated since it represents the area(s) unexplored during development.   We believe that
all models should be tested whenever new data is available regarding its proper behaviour. Pragmatically, this
means that every working expert system should be accompanied by a test engine continually in operation.

Summary: Knowledge bases containing non-objective knowledge are hypothetical constructs which may generate
inappropriate behaviour in certain contexts. Therefore, we need to test these knowledge bases as best we can prior
to use. Note that these tests will never certify a model as correct (Popper 1963). We must always re-test a model
when new data becomes available on its appropriate behaviour. This implies that "test" must be an on-going
procedure for the entire life-cycle of a model. 
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Any program can be assessed according to (i) an internal assessment of its internal structures or (ii) an external
assessment of its ability  to fulfil some function. Our preferred definition of "test" focuses on the ability of a
model to provide explanations of known behaviour (i.e. BEST4).  This definition of "test" is silent regarding the

"best" internal form of  the model. This section defends that position.

The KBS verification and validation (V & V) community have numerous techniques for internal assessment.
After constructing a dependency network between rules in a knowledge base, an automatic process can detect
circularities, inappropriate dead-ends, missing logic (seen as isolated literals), repeated logic, and redundant/
subsumed logic (Suwa, Scott et al. 1982; Nguyen, Perkins et al. 1987; Preece and Shinghal 1992).  More
sophisticated systems import the rule-base into a truth maintenance system (TMS) and compute the worlds that
include each conclusion. Zlatareva  uses a JTMS-variant (Doyle 1979; Zlatareva 1992; Zlatareva 1993) while
Ginsberg uses an ATMS (DeKleer 1986; Ginsberg 1987; Ginsberg 1990). For example, if no ATMS context
includes a conclusion, then it can never be made.  With their detailed knowledge of inter-dependencies, these
TMS-style validation tools can also critique a test suite or propose new test cases. For example, if the minimum
labels of the worlds within a KBS are not represented  in a test suite, then the test suite is incomplete. Test cases
can then be automatically proposed to fill any gaps.  The advantage of this technique is that it can be guaranteed
that test cases can be generated to exercise all branches of a knowledge base. The disadvantage of this technique is
that, for each proposed new  input, an expert must still decide what constitutes a valid output. This decision
requires knowledge external to the model, lest we introduce a circularity in the test procedure (i.e. we test the
structure of M  using test cases derived from the structure of M).  Further, auto-test-generation focuses on
incorrect features in the current model.  We prefer to use test cases from a totally external source since such test
cases can highlight what is absent from the current  model. For these reasons, we caution against automatic test
case generation.

The standard external assessment technique is test suite assessment.  The inputs and outputs of the rule base are
identified and a library is built of input/output pairs representing the expected output given the input. The inputs
are then run against the model and the output compared with the expectation. External testing is harder than
internal testing since it implies making a decision about the correct behaviour of a system in a wide range of
circumstances. This is an expert task and a lengthy analysis process. Further, in vague domains,  information for
test suite construction is limited. External testing is therefore harder to apply and is rarely reported in the
literature (exceptions: MYCIN (Yu, Fagan et al. 1979), CASNET  (Weiss, Kulikowski et al. 1978), Garvin ES1
(Compton, Horn et al. 1989), PEIRS (Preston, Edwards et al. 1993), PIGE  (Menzies, Black et al. 1992),
QMOD (Feldman, Compton et al. 1989; Feldman, Compton et al. 1989; Menzies, Mahidadia et al. 1992)).
Nevertheless, external testing is better than internal testing:

• We have stressed above the hypothetical nature of expert system models. The crucial test of such models
is not some report of their internal structure. Rather, we must assess the connection of such vague models
to the entities they are trying to mimic.



• Programs in routine use can fail internal tests, yet still be deemed useful.  Preece & Shingal detected
multiple internal test failures in fielded expert systems  (Preece and Shinghal 1992) (see Table 1). Yet
these systems were passing their day-to-day external operational test (i.e. their behaviour was
acceptable)21.

Application
MMU TAPES NEURON DISPLAN DMS1 Hit

Size (literals) 105 150 190 350 540 Rate
Subsumption 0 5/5 0 4/9 5/59 14/73 = 19%
Missing rules 0 16/16 0 17/59 0 33/75 = 44%
Circularities 0 0 0 20/24 0 20/24 = 83%
Table 1. Some internal errors detected in fielded expert systems. Fractions represent
anomalies/faults. Anomalies were detected automatically. Faults are anomalies that were
assessed by the experts to be true errors. The hit rate is the fraction of all anomalies divided
by all errors. Note that the  hit rate is much less than 100%., From  (Preece and Shinghal
1992).

Zlatareva & Preece comment:

It is widely accepted that the only direct way to measure the actual level of KBS performance is to test
the KBS on a set of test cases with known solutions  (Zlatereva and Preece 1994).

Opponents of this view may argue that (i) the validity of a model can be measured by more than just its ability
to cover certain test cases; (ii) other measures such as parsimony, succinctness, and clear use of existing domain
concepts  are just as important as performance; and (iii) a narrow focus merely on performance could give rise to
incorrect and truly bizarre models indeed. We have argued previously that tacit in this objection is a belief in the
now-out-dated knowledge-transfer approach (Menzies and Compton 1994).  We endorse the new knowledge
modelling perspective and believe that it is folly to aim for the "right" or "correct" knowledge base for an expert
system. More pragmatically, we note that external testing can resolve arguments faster than internal tests.
Feuding experts may not decide between alternative models if they all cover the same number of cases. However,
an expert will concede defeat when their favoured model explains less of the known behaviour than the
opposition's model.  

Summary:  Coverage of a test suite (e.g. BEST4) is a more important test than internal assessment.
2 � ( �  � ! ' - � � � � � � � � �  ( �  & ' ( # � � " ) ' �  �

This section develops a generalised computational model of "test" for vague domains.

External testing in non-vague domains is very simple (using a process we call TEST0). First, we compute  the

transitive closure of INi (IN* ).  If any inconsistencies are detected (i.e. violations of I) or if OUTi is not covered

(OUTi - IN*  ≠ ) then the model is definitely wrong.

External testing in vague domains is more complicated. A model may generate inconsistencies or not cover OUTi
while still representing our best understanding of the domain to date. One model may be "better" than all others
without being able to reproduce all known behaviours.  While the entire model may generate inconsistencies,
some subset of  the model may still be able to offer consistent explanations of some subset of OUTi.  In vague

domains, the goal of testing is not "is this model the absolutely correct" but "what contribution do portions of
this model make to explaining portions of the known behaviour?".  

Testing in  vague domains is complicated by their poorly measured and indeterminate nature. In indeterminate
models,  assumptions must be made. In data poor domains, these guesses cannot be checked. Mutually exclusive
assumptions must be maintained in separate worlds; i.e. maximal subsets of compatible proofs. Any world Wx

                                                
21 Preece and Shinghal discuss how this might occur. A rule base's inference engine can tame a subsumption

anomaly (e.g.) by always picking the rule with the largest satisfied condition. Missing logic may reflect the "do
nothing" default case or reflect some reasoning that is out-of-scope for a particular domain. Circularities may
exist as part of some looping process that terminates in a special condition (e.g. prompting the user for input
until they provide us with a satisfactory answer) (Preece and Shinghal 1992) .



contain a set of literals Lx and can be characterised by (i) its inputs (Lx   INi ); (ii) the number of outputs it

covers  (Lx   OUTi); (iii) the assumptions it make (Lx  - IN i  - OUTi); and (iv) their base controversial

assumptions, i.e. the assumptions in a proof that can violate the invariants I, but are not dependant on other
controversial assumptions. 

For example, consider the explicit and-or graph tacit in Figure 1 (see Figure 2)  and the case of <IN1, OUT1> =

<{a ,b }, { d , e ,f }>. All states incompatible with IN  OUT are marked FORBIDDEN, i.e. cannot be used
in proofs22. Applying I2, the FORBIDDEN set is {a ,a ,b ,b ,d ,d , e ,e ,f ,f } .
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Figure 2: The tacit and-or graph within Figure 1
assuming that (i) a  vertex can go either up, down, or
steady;  (ii) the conjunction of an up and down can
explain a steady; (iii) no change can be explained in
terms of a steady (i.e. steady vertices have no children).
And-vertices are denoted "&"; for example, a  & b  
c (see far left-hand-side of diagram).  Steady nodes that
do not connect to the rest of the graph are shown bottom-
left.

The possible explanations are the proof trees P from Figure 2; i.e.:  P1={a ,x ,y ,d }, P2={a ,c ,g ,d },

P3={a ,c ,g ,e }, P4={b ,c ,g ,f }, and P5={b ,f }. The literals of P that do not appear in <IN1,OUT1> are

the assumptions A = { x ,y ,c ,g c ,g  }. Applying I2, we see that the controversial assumptions Ac are

{c ,g c ,g }. Since g depends on c (see Figure 1), the base controversial assumptions Ab are {c ,c }.  

The minimal environments (MinEnv) are defined to be the empty set, plus all the maximal consistent subsets of
Ab; i.e. MinEnv0 =  {} , MinEnv1 = {c }, MinEnv2 = {c }. Each MinEnvi has an associated exclusion Xi

being all members of Ab  which, when combined with Xi , would violate I; i.e. X0={c ,c }, X1={c },

X2 ={ c }. A proof belongs in world Wi if it does not intersect the assumptions that are illegal in that world; i.e.
Xi. For example: (i) P1 and P5 belong in all worlds since they do not overlap with any member of X; (ii) P2
does not belong in W0 or W1 since it uses c . Note that W0 represents the world where no controversial

assumptions are made.

Our computed worlds are hence W0={P1,P5}, W1=W0+{P2,P3}, and W2=W0+{P4}. The proofs in these worlds

explain (cover) different numbers of outputs; i.e. cover(W0)=|d f |=2, cover(W1)=|d f e |=3,

cover(W2)=|d f |=2.  Applying BEST4, we would declare that the model can fully explain <IN1, OUT1> using

W1 (i.e. assuming c

More intuitively, we characterise generalised test as the extraction of some subset of the total knowledge base
which can connect INi to OUTi. Multiple subsets (worlds) are possible. We favour the subset that can reaches the

largest subset of the outputs (see Figure 3).

a

b c

d
e

f

++

g++
++

++

x y
++

++
++

--

Figure 3: The subset of figure 2 contained in W1; i.e. the edges that

offer explanations of the largest subset of  OUT1 ={d ,e ,f }  given

IN1={a ,b }.  Note while figure 2 condones inferences between b & c, g
& f,  and d & x, generalised test has elected not to use these connections.

Note the difference between testing in vague  and non-vague domains. The model of Figure 1 plus <IN1,OUT1>

can generate inconsistencies (e.g. c  and c ) and would be categorically rejected  by TEST0. Generalised test is

                                                
22 A knowledge engineer can add other vertices to FORBIDDEN in order to cull the search space.



more fine-grained. While all of Figure 1 is not correct, it is incorrect to say that it is entirely useless (i.e. as
implied by TEST0). The subset of Figure 1 shown in Figure 3 is useful for explaining known behaviour.  If an

expert wished to change Figure 1, then generalised test gives them a principled basis for deciding which sections
of Figure 1 are useful or useless. 

Generalised test cannot be fully characterised in terms of classical deduction which demands that if the rule x if y
exists, then in every world where x is true, y is also true (Poole 1990). Generalised test is abductive: from the
space of possible inferences supplied by the user, a subset has been selected according to some criteria in order to
fulfil a certain task. More precisely:

Generalised test (abduction) using BEST4 is the generation all worlds  Wx ⊆ E that are the union
of edges in a subset of explanatory proofs  P such that (i) COVERED ⊆ OUTj; (ii) CAUSES ⊆
INj;  (iii) Wx ∪ CAUSES COVERED using the edges in Wx;  (iv)  Wx ∪ USED false i.e.
does not violate I; (v) Wx  is maximal with respect to number of included proofs; (vi) COVERED

is maximal with respect to set size. 

We find that this definition of abduction is compatible with the standard definition of abduction as proposed by
Poole (Poole 1990; Poole 1990), Eshghi (Eshghi 1993), and Selman & Levesque (Selman and Levesque 1990).
Standard abduction generates any world that satisfies points (i) to (v). Generalised test is exhaustive abduction
(Menzies 1994); i.e. all worlds are generated, then assessed. Recognising the connection between generalised test
and abduction  allows us to use complexity results from the abductive literature to make strong claims regarding
the limits to abductive inference/ testing.

Abduction is known to NP-hard; i.e. very likely to be computational intractable in the worst-case.  Recall that
generalised test is a search for a subset of the supplied model which can explain the largest subset of known

behaviour. Given a model with |E| edges, then there are 2|E| possible subsets; i.e. the number of subsets varies
exponentially with model connectivity.  For more formal proofs of the NP-hard nature of abduction, see  (Selman
and Levesque 1990; Bylander, Allemang et al. 1991).

An interesting feature of abduction is that this worst-case behaviour is often the usual case: most known
abductive inference engines exhibit exponential runtimes for real-world inputs, even for sophisticated algorithms
(e.g. the ATMS (Selman and Levesque 1990)). Hence, many of the articles in (O'Rourke 1990) are concerned
with heuristic optimisations of abduction. Eshghi report a class of polynomial-time abductive inference
problems, but this class of problems requires at least a non-cyclic and-or graph. (Eshghi 1993). Bylander reports
techniques for tractable abduction (Bylander, Allemang et al. 1991), but many of these techniques (e.g. rule-out
knowledge to cull much of the search space) are not applicable to hypothetical models in poorly measured
domains (e.g. neuroendocrinology).

Early versions of our generalised test used a basic chronological backtracking approach (i.e. no memoing) that
was very slow. Basic chronological backtracking has the disadvantage that any feature of the space learnt by the
search algorithm is forgotten when backtracking on failure. The current abductive implementation, HT4, deduces
the base controversial assumptions as a side-effect of proof-tree generation. That is, the system learns features of
the search space without backtracking. This system runs 130 times faster than our previous Feldman & Compton
system (Feldman, Compton et al. 1989; Feldman, Compton et al. 1989) since  world switching does not require
extensive further computation.    The runtime behaviour of HT4 has been studied extensively in (Menzies 1995).
Two experimental results from that study are relevant here:

• The Changing N study artificially generated 94 models of varying numbers of vertices (N= |V|) while
keeping B (|E|/|V|) constant at 2.25. Changing B (other models) study used the Changing N study model
generator to produce six new models. These new models were then mutated between a fanout of 2 ≤ B ≤
10.

• Two statistics were collected: runtime and % explicable.  Runtimes were collected to see if generalised
test was indeed exponential as predicted by the formal complexity results of abduction. The maximum
number of explainable outputs (% explicable) was collected since it was suspected that  an indeterminate
non-trivial model could offer an explanation for any behaviour at all. If so, then generalised test would
"pass" all models; i.e. it losses its ability to distinguish between different types of models.



Figure 4 shows the results. Experimentally, we see that HT4 is limited to  N < 850 and B < 7 (though after B >
4.5, critiquing power is very low). B = 7 seems to be the limit, beyond which a model can explain all
behaviours.  We call B = 7 the Pendrith limit and argue that it is a fundamental limit to testing. The exponential
behaviour seen in Figure 4.i indicates that HT4 does not avoid the NP-hard nature of abductive inference. Note
that these runtimes were not a result of a naive implementation. HT4  is the fourth generalised test engine we
have constructed and contains numerous optimisations including: (i) avoiding chronological backtracking; (ii)
discovering the definitions of the minimal worlds (the base controversial assumptions); (iii) pre-computing and
caching the search space (the explicit and-or graph) prior to timing the inference runs; and (iv) using bitstrings to
optimise the set processing  (for details, see (Menzies 1995)). The N limit is only an approximation which may
be broken by (e.g.) faster machines and faster languages. However, due to the exponential nature of the process,
we would not expect orders of magnitude increases in N.  Therefore we hesitate to place a firm limit on the model
size that is testable (hence our earlier statement that generalised test is limited to models with less than
N = |V| = 1000 (approx) vertices).
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 Figure 4.i: Runtimes for 1991 <INi,OUTi>
pairs. Language: Smalltalk/V. Machine: Macintosh
Powerbook 170.  None of the models over |V|=800
terminated within the built-in "give-up" time limit of
14 minutes. Conclusions: (i) the average runtime at
|V| = 850 is > 14 minutes;  (ii) the runtime curve
grows into the gray area shown on the right; (iii) the
runtime curve seems exponential.

Figure 4.ii: % effects explainable for 1631
<INi,OUTi> pairs. Conclusions: (i) Most behaviours
can be explained after a fanout = 4.4; (ii) nearly all
behaviours can be explained after fanout = 6.8.

On the positive side, based on known sizes of fielded expert systems (Preece and Shinghal 1992), we have argued
elsewhere that these N and B limits are larger than models we see in contemporary knowledge engineering
practice; i.e. we can use generalised testing for knowledge bases at least as big as those seen in current practice
(Menzies 1995).  Further, the level of critique offered by generalised test can be non-trivial. Figure 4.ii  shows
that at low B values, up to 75% of behaviour may be falsifiable.
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The previous section noted that the computational kernel of generalised test is abduction. We have discussed
above how to use generalised test for verification and prediction. In this section we will argue that at a pragmatic
engineering level, it is useful to view inference in various domains as abduction (i.e. as being isomorphic with
generalised test). 
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The connection between abduction and model-based diagnosis is well documented. Pople and Reggia acknowledge
that their "diagnosis" systems are really abduction (Pople 1973; Reggia 1985). Poole's abductive framework
THEORIST can be used as a diagnosis tool (Poole 1988; Poole 1989; Poole 1990). Console and Torasso
characterise the two main types of diagnosis as variants of the same abductive inference algorithm (Console and
Torasso 1991). Both types of diagnosis input (i) a system description of the system to be diagnosed (i.e. a



model23); (ii) a set of observations OBS; (iii) and a context CXT in which the OBS were made. Two sets are then

deduced: (i) a set of observables that must be avoided Ψ− (i.e. any observables inconsistent with OBS); and (ii) a

set of observables that must be covered Ψ+.   Consistency-based diagnosis (e.g. (Genesereth 1984; DeKleer and

Williams 1987; Reiter 1987)) sets  Ψ+ =   while set-covering diagnosis (e.g. (Console, Dupre et al. 1989;

Poole 1989)) sets Ψ+ to OBS.   Set-covering diagnosis is best when the knowledge base contains knowledge of
faulty operations while consistency-based diagnosis is best for knowledge bases containing knowledge of normal
operation. For a comparison of the two approaches, see Figure 5.

holed(oil_cup)

oil_below_car(present)

oil_level(low)

correct(oil_cup)

oil_level(normal)

engine(on)
&

engine_
temperature(high)

engine_
temperature(normal)

&

Figure 5: If OBS ={oil_below_car(present)}, and
CXT = {engine(on)}, and we restrict the diagnosis to
oil_cup, then set covering diagnosis returns
{holed(oil_cup)} while consistency-based diagnosis
returns {holed(oil_cup)} or {correct(oil_cup)}.
Example from (Console and Torasso 1991).

Konologie argues for the primacy of set-covering diagnosis. He notes that consistency-based diagnosis returns
answers that may not be relevant to causal explanations of OBS (Konoligue 1992) (e.g. correct(oil_cup) from
Figure 5 has little bearing on the problem of oil_below_car(present)).

Having stressed the differences, we note that generalised-test can be used for either consistency-based or set-
covering diagnosis (see Table 2).

Generalised test configured for
set-coverage diagnosis

Generalised test configured for
consistency-based diagnosis

IN CXT CXT
OUT OBS V - CXT

FORBIDDEN Ψ− =  {x | x ∈ V, y ∈ CXT OBS ,I(x,y)} Ψ− =  {x | x ∈ V, y ∈ CXT OBS ,I(x,y)}
BEST all world(s) that cover all of Ψ+ = OBS all worlds

Table 2: Generalised test configured for different model-based diagnosis tasks of a model with
vertices V.  For set-coverage, explanations are attempted for all OBS. For consistency-based
diagnosis, explanations are attempted for all non-input vertices. The FORBIDDEN definition says
that any vertex that contradicts  CXT OBS is forbidden. Note that generalised test is a
generalisation of model-based diagnosis since (i) BEST permits the generation of worlds with
partial coverage of OBS; and (ii) the BEST operator allows for the customisation of the  world
preference criteria.
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 Leake (Leake 1991) and Paris  (Paris 1987; Paris 1989) discuss explanation algorithms where explanation
presentation is constrained to those explanations which contain certain significant structures. Paris's significant
structures are determined at design time while Leake assigns significance at runtime.

• Paris's experimental results suggest that expert's use parts-based explanations while novices use process-
based explanations. Edges in her system are tagged as being part either process-based or parts-based.
Knowledge of the expertise of the audience is used to tag each vertex as "known to user" or "unknown to
user". When faced with a choice of edges to be used in an explanation, Paris's explanation algorithm
selects either a process-based trace or a parts-based trace according to an examination of the local vertices
in the network. If the local vertices are "unknown", then the process-based descriptions are preferred. 

• Leake assigns significance at runtime according to a set of eight pre-defined algorithms. For example,
when the goal of the explanation is to minimise undesirable effects, the runtime significant structures are
any pre-conditions to anomalous situations .

                                                
23 Console and Torasso further divide a model into  a set of components COMP and knowledge of the behavioural

modes  BM of those components.  We would input <BM,COMP> and output our and-or graphs.



Leake clearly acknowledges  the connection of his work with abduction (Leake 1993). Note that both Leake's and
Paris's algorithms can be characterised in terms of  operators that select some subset of the possible inferences
according to a user/goal-specific criteria; i.e. they are compatible with our BEST formalism.
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Applying the same notion of "significant structures", we can adapt our symbol-level algorithm to a variety of
classification algorithms. Consider the dependency graph of a rule-base developed for classification purposes. The
possible output classification CLASSES are a subset of all the literals in the knowledge base (e.g. all the literals
with in-edges, but no out-edges).

•  To perform simple classification with generalised test, we use the prediction algorithm described above,
plus a  BEST that favours the worlds with the most number of CLASSES. Note that this would be a
single and multiple-classification system. Multiple classifications that were specified as incompatible
would appear in separate worlds. Therefore, the N classifications in a world would be mutually compatible
(N=1 means single classification, N >1 means multiple classification).

• To perform a style of heuristic classification, we add is-a edges to the knowledge base from sub-classes to
super-classes (e.g. animal if dog; organicThing if animal or plant). Now we use a BEST that uses favours
the worlds with the most number of CLASSES and is-a edges.
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Leake characterises case-based reasoning as an abductive process where the possible explanations are assessed via
a library of prior cases (Leake 1993). Hamscher notes that certain sub-tasks in financial reasoning (financial
assessment, going concern evaluation, auditing, and the explanation of unexpected financial results) are all
abductive tasks (Hamscher 1990).   Numerous papers in (O'Rourke 1990) describe natural language
comprehension in terms of abduction.

Hirata characterises inductive logic programming (a technique for learning first-order theories) as an abductive
process where the search space for explanations is either in the current theory (selecting abduction), an analogous
theory (finding abduction), or a theory especially created from a generalisation of known theories (generating
abduction). More generally, Hirata argues that scientific theory formation is an abductive process (Hirata 1994).

Poole maps design and recognition into abduction:

• Design is the process of hypothesising components which would imply a design goal (Poole 1990).

• Visual pattern recognition is a process of hypothesising scene objects which would lead to the perceived
image. Poole demonstrates that this perspective gives the same results as other visual imagery researchers
(Poole 1990).
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The list of applications that can be processed by abduction is surprisingly long. In retrospect, however, it is a
requirement of our architecture that it supports such a long list. "Generalised test" using test suite assessment
implies a generalised execution module. If we could not map our test procedure into a wide range of inference
types, then our architecture would be a failure.

We believe that the wide-applicability of testing-as-abduction is no mere coincidence. Abduction directly
operationalises the subset extraction process that is the core of Clancey's model construction operators (Clancey
1992) and Breuker's components of problem solving types  (Breuker 1994). Clancey characterises expert system
inference as constructing the system-specific model (SSM) from a general qualitative model (QM) in the KB.
Breuker explores the relationships between problem solving techniques used in expert systems (i.e. modelling,
planning, design, assignment, prediction, assessment, monitoring and diagnosis) (Breuker 1994). He offers an
abstract description of the "components of a solution" generated by these techniques. An argument structure is
extracted from a case model (analogous to Clancey's SSM) represents some understanding of a problem. This case
model is generated from some generic domain model  (analogous to Clancey's QM). A conclusion is some



portion of the argument structure that is relevant to the user.  In the case where all the solution components are
represented as a ground theory of literals whose dependency graph has edges E, then:

edges(answer) ⊆  edges(argument structure) ⊆  edges(case model) ⊆  (edges(generic domain model) = E)

where edges(X) denotes the edges of the dependency graph present in X. Note the commonality between Clancey's
and Breuker's view: expert system inference is the extraction of some subset theory from a super theory. 

Returning now to HT4, we note that this algorithm also extracts sub-models from super-models (e.g. Figure 3 is
a subset of Figure 2).  However, what we call "worlds", Clancey calls "SSMs" and Breuker calls "case models".
The extracted models (worlds) are relevant to a particular problem, defined as <<IN i, OUTi>, BESTj>, and is

guaranteed to be consistent. Note that each solution is some subset of the generic domain model M  which is the
space of all possible solutions. Also, deduction over an HT4 world can generate a Breuker-style argument
structure for a particular conclusion (some vertex in M). Further, abduction/HT provides a uniform structure for
processing of many of problem solving types listed by Breuker.  Such uniformity simplifies the construction of
interfaces between the inputs and outputs of different problem solving types. Breuker argues that such interfacing
is essential since most problem solving types are used in combination to perform some task.
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Generalised test requires an inference engine that (i) inputs dependency knowledge and contradiction knowledge
between a set of literals, then (ii) executes its inferences in separate, internally consistent, worlds. Formally, this
is abduction. We have seen above that an inference engine that supports abduction is a useful tool for KBS
validation, prediction, set-covering model-based diagnosis, consistency-based model-based diagnosis, explanation,
classification, learning, case-based reasoning, financial reasoning, natural language comprehension, design, and
recognition. Table 3 contrasts this list with the inference models proposed by knowledge-level methodologies. 

System Analysis
-- Diagnosis
----- Single Model Diagnosis
------ Systematic Diagnosis
-------- Localisation
-------- Causal Tracing
-- Verification
-- Classification
---- Simple Classification
---- Heuristic Classification
-- Prediction
---- Prediction of Behaviour
---- Prediction of Values
System Synthesis
-- Design  

Abduction
-- Validation
-- Prediction
-- Classification
---- Simple classification
---- Heuristic classification
-- Explanation
-- Diagnosis
---- Set-covering-based diagnosis
---- Consistency-based diagnosis
-- Design
-- Recognition
-- Case-based reasoning
-- Natural language understanding

(i) (ii)

Table 3: Comparison of (i) knowledge-level inference models from conventional knowledge-level
modelling (from (Tansley and Hayball 1993)) and (ii) knowledge-level inference models based on
our symbol-level abductive inference.

We approve of some of the clusterings in the hierarchy of Table 3.i. For example,  localisation and causal tracing
are basically the same inference, except the former using part-of knowledge while the  latter uses causal
knowledge. In terms of or framework, both execute over the same and-or graph but the user's interpretation of the
edges differs. However,  we doubt (e.g.) the separation of design from diagnosis in Figure 3.i since we have seen
above that they are closely connected. 

To be fair, the authors of Table 3.i acknowledge that many of their distinctions have an arbitrary nature. For
example, they note that (i) heuristic classification could be used for diagnosis;  or (ii) that scheduling, planning,
and configuration are actually the same problem, divided on two dimensions ("goal states known or not" and
""temporal factors considered or not"- see Figure 12.3 of (Tansley and Hayball 1993)).  However, they do not
take the next step and simplify their hierarchy according to these observed similarities in the processing. We



believe that such a simplification would remove certain complexities from conventional knowledge-level
modelling: 

• Table 3.ii is  broader and flatter than Table 3.i; i.e. a hierarchy of inference models based on abduction
requires fewer distinctions than conventional  knowledge-level modelling.

• When we compare the differences between sub-hierarchies between Table 3.ii and Table 3.i, we see that
our sub-hierarchies are much smaller variants of their roots than in conventional knowledge-level
modelling. For example, the difference between set-covering-based diagnosis and consistency-based
diagnosis is very small (see Table 2).  In contrast, sibling inference models in conventional knowledge-
level modelling may have totally different inference models (e.g. KADS has totally different inference
models for correlation and verification, even though they are both sub-types of identification).
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We have argued above that generalised  test replaces rather than merely augments existing KBS practice.
Compton's ripple-down-rules (RDR) approach is another example where a comprehensive test program replace
the need for other methodologies (Compton and Jansen 1990). RDR is interesting in that, to our knowledge, it is
the only KA technique we know that ensures 100% behaviour coverage as the system evolves. Compton's
design is optimised for maintenance of propositional rule-bases only. Experts cannot browse and recognise their
models inside the patch tree. Our work here began as an experiment in a maintenance environment where experts
could browse and freely modify the knowledge.  Despite these restrictions, RDR has been used to develop
systems that are larger and more successful than other techniques applied to the same domains (Preston, Edwards
et al. 1993; Menzies and Compton 1994).
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We have mentioned above the work of the V&V community on KBS assessment and noted their emphasis on
internal testing. For reviews of the state of the art in V&V, see (Preece 1992; Zlatereva and Preece 1994).

Gaines & Shaw explore techniques for resolving conflicts in terminology using repertory grids. The conceptual
systems of different experts are explicated and compared using the grids (Gaines and Shaw 1989). Their work
focuses on resolving conflicts in the meaning of individual terms, not on conflicts in the semantics of the models
built using those terms as primitives.  

Boose et al. describes group decision support environments containing suites of tools combine to form a KA
environment (Boose, Bradshaw et al. 1992).   Boose's et al. system focuses on the development of models of the
group decision support process. Their environment lacks an execution module for the generated models as part of
the group decision support environment; i.e. Boose et al assume that once the group's mode is elicited, it will be
subsequently exported into an executable form.  We believe that an active abductive evaluation module would
enhance their architecture. Groups could execute their under-specified intuitions to gain feedback on their ideas.

Silverman advises that attached to an expert system is an expert critiquing system which he defines as:

…programs that first cause their user to maximise the falsifiability of their statements and then proceed to
check to see if errors exist. A good critic program doubts and traps its user into revealing his or her errors.
It then attempts to help the user make the necessary repairs24.  (Silverman 1992)

Silverman divides an expert critiquing system into (i) a deep model  which can generate behaviour; (ii) a
differential analyser  which compares the generated behaviour with the expected behaviour; and (iii) a dialogue
generator that explains the errors and assists in correcting them.  Silverman's research seems to be focused on an
implementation-independent analysis of the process of "critiquing" a program. His focus appears to be on
defining "critiquing" as an add-on to existing systems. We believe that critics should not be tacked on as an after
thought since built-in critics could guide the KA process.  Our work could be described as the development of

                                                
24 ECSs are therefore much broader than the definition instantiated by ATTENDING  (Miller 1986) which had no

mechanism for doubting its own internal knowledge base.



general implementation principles for deep models and differential analysers.  Mahidadia explores dialogue
generation in this domain using inductive logic programming (Mahidadia, Sammut  et al. 1992; Mahidadia,
Sammut et al. 1994).
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Operators for implementing preference criteria for assessing possible worlds has been widely discussed in the
literature. Most researchers argue that the best worlds must at least cover all the known output. Some argue that
the "best" explanation is the smallest one  (e.g. (Reggia, Nau et al. 1983; Console, Dupre et al. 1991)). Poole
(Poole 1985) and Console et. al. (Console, Dupre et al. 1991) have proposed the additional criteria that the "best"
explanation also  uses the most specific terms from a taxonomic hierarchy; e.g. they prefer explanations in terms
of emu rather than in terms of the more general term bird.

We prefer not to hard-wire world assessment into our formalism. We take the line of Leake and Paris to argue
that "best" is a person-specific and goal-specific criteria. While experts may prefer explanations in terms of the
most specific term in a hierarchy, novices may prefer more general explanations. We have argued above maximal
output coverage may be a more important world assessment criteria than parsimony or total output coverage.
World assessment knowledge is still domain-specific knowledge and should be customisable.

8 � 1 � � " ' !

We have argued that abduction is an appropriate single inference procedure for a wide-variety of knowledge-based
tasks. The designers of SOAR make a similar claim regarding their state space traversal (Rosenbloom, Laird et
al. 1985; Laird, Newell et al. 1987). SOAR was built to operationalism Newell's original notion of the
knowledge level (Newell 1982). The primitives of the SOAR rule-based language explicitly represent Newell's
model of human cognition as a search for appropriate operators that convert an agent's current state to a desired
goal state. Like our abductive approach, minor manipulations of SOAR's operator space (which is controlled by
rules) are all that is required to fundamentally change the inferencing (Laird, Newell et al. 1987). Also, like
SOAR, we do not build knowledge bases around the  knowledge-level inference models used by conventional
knowledge-level modelling techniques (e.g. KADS). The observation that a knowledge base is performing (e.g.)
classification is a user-interpretation of a lower-level inference (Yost and Newell 1989). 

Generalised-test-as-abduction differs from SOAR in two ways. (i) SOAR's executes over an implicit and-or graph
while we prefer to execute over an explicit and-or graph. Efficiency is a non-trivial issue in generalised test (see
the remarks in the last section regarding the NP-hard nature of abduction). Building and caching the search space
prior to inferencing is one technique for taming complexity25. (ii) Given a vertex with N out edges (or, in
SOAR-speak, a state space with N associated operators), generalised test assesses the utility of each edge using a
deferred global analysis. SOAR must make its operator assessment at the local level. SOAR's run-time selective
generation of the and-or graph has efficiency advantages since it culls unacceptable alternatives as they are first
encountered. Our approach is slower, but the explicit representation of all alternatives permits allows for global
assessment criteria (e.g. BEST4).
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Belief networks (BNs) deduce causality from a statistical analysis of the frequency distributions of variables in a
sample to deduce acyclic "networks" (which are really trees) of causal relationships between variables (Pearl and
Verma 1991).  BNs assume sufficient measurements are available for the statistical analysis; i.e. they are
inappropriate for vague domains. Also, current state-of-the-art BNs assumes acyclic models (Geigner, Paz et al.
1993) and models in our test domain are usually cyclic (e.g. Figure 1). Further, the theories generated by BNs
make do not preserve current beliefs (see above remarks regarding preserving the background theory).  We foresee
that various users would treasure their favourite portions of their model(s) (typically, the ones they have
developed and successfully defended from all critics). It would be unacceptable to permit a learning algorithm

                                                
25 Note that this is only practical for finite theories. An example of an infinite theory is the space of all even

numbers; e.g.  even(2). even(X) :- even(Y), X is Y * 2.



scribble all over this knowledge. Learning programs for this domain must strive to preserve the current
background theory (hence Mahidadia's interest in ILP for this domain).
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Our base controversial assumptions and worlds are akin to  ATMS labels (DeKleer 1986) and default logic
extensions (Reiter 1980) respectively. However, we differ from ATMS/ default logic in that our worlds only
contain relevant literals (i.e. only those literals that exist on pathways between inputs and outputs). This means
that, unlike default logic extensions, not all consequences of a literal exist in a world containing that literal. For
example, consider the following example:

model: b if a; c if a; e if (b or c);  
d if b; f if c; z if y.

contradicts: {d,f}
<IN2,OUT2> =  <{a},{e}>

Generalised test would generate two proofs which could exist in the one world, i.e. W1 = { P1, P2},  P1={a,b,e},
P2={a,c,e}.  Standard ATMS/ default logic would analyse all literals in the model to generate two extensions (one

with d and the other with f). Both of these extensions would contain the same proofs of e in terms of a. We view
these two worlds as irrelevant and wasted computation.

9 � $ "  $ - # � � "  

We have argued that testing is  fundamental to the KBS process. Given the modern view of KA as the
construction of approximate models, it follows that the contents of our KBs are potentially inaccurate reflections
of the entities being modelled. Potentially inaccurate  models must be tested prior to their wide-spread use.
Further, we have argued that in order to prevent models moving inappropriately  "out of context", we must
continually and routinely test delivered models whenever new data is available on the entity that they are trying to
model. Automatic test engines are required for such a continuous test regime.

Viewed in its most general form, "test" in vague domains is not neutral to KBS practice:

• Limits to test are the limits to model construction in vague domains. Experimentally, we have seen
testing limits of |V| = 1000 (approx) and |E|/|V|  = 7.  We have argued that most KBS domains are vague;
i.e. most of KBS practice is similarly limited.

• From a pragmatic engineering viewpoint, we have argued that is useful to replace multiple single-purpose
mechanisms with one general-purpose mechanism, particularly when (i) the services offered by the general
mechanism is a superset of the services offered by the multiple mechanisms; and (ii) the general
mechanism is simpler than the single-purpose mechanisms. Current KBS inference engines do not
support generalised test while generalised test also supports the model extraction process that Breuker and
Clancey argue is at the core of expert systems inference. That is, we should execute our inference modules
with generalised test modules.

If testing is such a fundamentally limiting process as we have argued above, then why has this not been reported
previously in the literature? Clearly, testing is the exception rather than the rule in the KA community. This is
an observable fact which we find surprising. To us, the need for "test" follows inevitably from the knowledge
modelling approach. We suspect that many so-called "knowledge modellers" still believe in expertise-transfer
since only in expertise-transfer are we so confident in our models that we do not need to test them26.  We seek
here to discourage such beliefs.

Finally, we  comment on the pessimism of some researchers who lament the end of the age of certainty27. If we
reject a Platonic view of the universe and its somewhat spurious belief in an absolute "truth", we need not plunge

                                                
26 O'Hara notes that some knowledge representation theorists still make occasional claims that their knowledge

representation theory has some psychological basis (even though, when pressed, their public line is that
representations are models/ surrogates only) (O'Hara and N. 1993).

27 For example, Agnew et. al. forcibly argue for the non-absolute nature of human knowledge. However, between
the lines, we read that they do not like their general conclusion, but reluctantly acknowledge its inevitability



into confusion. Our implementation experience has been that structured testing environments such as RDR and
generalised-test-as-abduction are highly ordered entities. Recall our comparative analysis of abductive inference
models versus knowledge level inference modules. We argued that abductive inference modules can unify and
clarify  knowledge level inference models.  That is, non-Platonic architectures are still amenable to rigorous
analysis.  The opposite to Platonic certainty need not be chaos.
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