Situated Semantics is a Side-Effect of the
Computational Complexity of Abduction

Tim Menzies
Artificial Intelligence Laboratory,
School of Computer Science and Engineering, University of New South Wales
PO Box 1, Kensington, NSW, Australia, 2033
timm@cse.unsw.edu.au

ABSTRACT: We developa generalabductive
descriptionof testing models.We find that this
testing processs fundamentallyslow and cannot
be conducted exhaustively. Consequently, we
argue that the usual case for model testinpis-
exhaustive testing; i.e. some subset of the
possibletestsare chosenand executedNote that
if the tests result in model refinement, then
different tests can result in different modelghis
leadsto the hypothesisthat different individuals
form different "opinions” (i.e. models)about the
world as a result of the different examplesthey
push through their models. We prefer this
symbolic explanationfor situated semanticsto
non-symbolic proposals (e.g. neural) .

1. Introduction

We endorseand continue an argument begun
elsewhere; i.e.

...there is nothing wrong with classical
logics in  representing commonsense
knowledge;there is, however, a problem
with the assumptionthat to use logic we
have to do deductiorDavid Poolg30].

We agree with Poole and Wang [41] tihaany of
the argumentsagainstlogical/symbolic Al (e.g.
Birnbaum [2]) are actually argumentsagainsta
more specifictarget;i.e. classicaldeduction.We
disagreewith (e.g.) Birnbaumthat the obvious
alternative to logical Al is some type of
situated/functional cognition, theatureof which
is yet to be explicate(but is exploredin [5, 8]).
Further, methodologicaly,we believe that is
betterto explore Al using a small number of
general, well-understood and reproducible
symbolic mechanismthan an indeterminatgbut
large) number of poorly understood domain-
specific mechanisms [24].

In orderto supportour Al-logicist position, we
seekexplanationdor human cognition in terms
of the behaviour of non-deductive theorem
provers. Wang's theorem prover, for example,
selectivelyforgetsunusedtheorems. Our work,
like Poole's,focuseson abductivelogicsl. We

Considera systemwith two factsa, b anda rule Ry:

Ifa= b. Deductionis the inference from a to b.
Inductionis the process of learnirigy given examples
of a andb occurring togetherAbductionis inferring a,
givenb [19]. Abductionis a not a certaininference
and its results must be checked by an inference
assessmentperator (see BEST, below). For more on

present here an abductive model of situated
semanticg i.e.

The conclusionsdrawn from a model may
vary accordingto the history of that model,
who wrote the model, and the TASK at
hand(TASK defined below).

Such relativist knowledge is difficult to
understandn termsof classicaldeductionwhich
seeks context-free theorems. to represent
knowledgé.

Using our abductive modelye describea general
computational device faiesting models.We find
that this test processis fundamentallyslow and
cannotbe conductedexhaustively.Consequently,
we arguethat the usual casefor modeltestingis
non-exhaustiveaesting; i.e. some subsetof the
possibletestsare chosenand executedNote that
test results can lead to model revisions (@tgen
a model fails a test, it is repairedifferent tests
can result in differentnodelrevisions. This leads
us to conjecturethat individual form different
opinions (i.e. models) about theorld as a result
of the differentexampleghey pushthroughtheir
models.We offer this hypothesisas a symbolic
explanation for situated semantics.

The structure of this article is &sllows. Section
2 explores situatedemanticsSections3 & 4 of
develops and appliesur abductiveframeworkfor
testing models. Section 5 discusses the
computational complexity of this framework.
Section 6 discussescognitive implications and
section 7 discusses related work.

2. Situated Semantics

The conceptof situation/contexthas becomea
key issuein contemporarymodels of scientific
development,decision making, and knowledge
acquisition (KA). Human knowledgeappearsin

abduction, see [21, 26, 30].

Note thatwe avoid the similar term situatedcognition.
By situated semantics, wdo NOT meanthat symbolic
representationsire a post-hocreport of the physical
interactionsof the of the inferencing entity with its
internal and external environment [7, 8].
Functional/situateaognition as discussedby Clancey
and Birnbaum is a non-symbolic explanation for
situated semantics. This paper explores symbolic
explanations.

Birnbaum offers this as a dimunative summary of
Nilsson'sdeclarative knowledge proposal[25]. Our
readingis that Nilsson seeksknowledgethatis as re-
usable as possible and not (as Birnbaum seemsto
beleive) that is always re-usable in all contexts.



somesaocial situation and that context seemsto
effect the generated knowledge:

e Kuhn notes that data is not interpreted
neutrally, but (in the usualcase)processedn
terms of some dominant intellectual
"paradigm" (which, if we represented it
computationally, would be a model) [17].

Phillips [27] and Bradshawt. al. [3] describe

from the past (as shown the Agreescolumn of
Table 2).

Understands Agrees
Expert (max = 100) (max = 100)
E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

model construction as a communal process t
generates structure that explicate a
community'sunderstandof a problem. If the
community changes thethe explicit recordof
the communities shared understandingalso
changes; i.e. "truth" is socially constructed.

Silverman cautionsthat systematichiasesin

expert preferences may  result in

incorrect/incompleteknowledge bases (KBs)

[39].

Compton [11] argues that the symbolic
representationfound in our knowledgebases
arenot recordsof structuresnside the headof

an expert. Rather, this "knowledge" is a
situated report customisedto the specific
problem,the specificjustification, the expert,
andthe audience. Like Phillips and Bradshaw
et.al, Compton argues that "truth" as

expressed by human experts varies accortting

who says it.

thinking in this area as:

...expert-knowledge is compriseti context-
dependent, personally constructed, highly
functional but fallible abstractions [1].

Two experimentglemonstratesituatedsemantics.
Shaw[38] took a group of geology expertsand
had them construct knowledgpasedor the same
problem. The expertsthen reviewed each other's
knowledgebaseand, after 12 weeks,their own.

Table 1 shows that experts strongly disagreed
with each other. For example, experts oatyeed
with each other, at best one-third of the time.

Expert pairs | % Understandd % Agrees
E1,E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3.E1 42.9 33.3
E2,E3 44.4 20.0
E3.BE2 71.4 33.3

Table 1: ExpertEx reveiwngEy's rules.

Table 2 showsthe expert'sassessmendf their
own knowledgebase,12 weeks after they wrote
it. Overtime,as an expert'ssituation changesso
does their view on "correct" knowledge. This
change may be very dramatic. For example,
expert1l could only understand62.5% of what
he'd written 12 weeks before. All experts
disagreedto some extent) with their own ideas

< Table 2 Self-review of a specification, 12
weeks after it was written.

Our second demonstration of situated semaiics
a small thoughtexperiment.Considera one-line
mathematicalmodel of exponential population

growth:
L

where T is time, N is the populationandr is
negative or positive in hostile or benign
environmentgespectively.This model is wrong
since population growth must taper off as it
approache€ the maximum carrying capacity of

the environment; i.e.
L

EQ: dN/T =
In the caseof a hostile environmentand over-

EQq : dN/AT =rN.

C
rN(1-(N/C))

will fall. However in such circumstances,
N > C, r < 0, and rN(1-(N/C))> 0; i.e. the
maths says that population will increase[34].
EQ is therefore also incorrect.

We ask the reader, when did ybecomeawareof
the errorsin EQq1 and EQp; before or after we

presentedour examplesof population growth
taperingoff asN approache€ (EGjp) and over-

populationin hostile environments(EGp)?  If

after, then we have anecdoidencefor situated
semantics; i.e. models asguatedin the history
of their development{more precisely,situatedin
the examplesusedfor their development) As to
our own experiencewe studied EQ1 and EQy
extensively without detecting any errors. Yet
when presentedvith EG1 and EGy, the errors

wereobvious. EQq and EQy are not universal

truths. Rather, they true in restricted contexts (i.e.
not EG1 , not EGy andnot every other context

wheretheseequationdail). Elsewherewe have
arguedthat as soon as a model moves "out-of-
context", it may generateinappropriateresults.
Sadly, models are rarely labelled with their
contextual boundaries. When all available
knowledgeand examplesare usedto generatea
model, out-of-contextis never indicatedsince it
represents the area(s) unexplored during
development [22].
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3. Abductive Models

3.1. Optional Inferences & Explanations

We view a model as the source of optional
inferenceswhich we could make, if it proved
usefulandpossibleto do so. This view is very

different to the classical deductive interpretation of

a model. Deductive rules suchifa then barein
no sense optional; in all worlds whexés true, b
is alsotrue. Our view of modelsas the spaceof
possibleinferenceshas much in common with
the RSpace of Clark & Matwin (i.e. a
specificationof the spaceof rules from which
ideal domain rules can be learnt [10]); or the
scenarioof Poole:

The user gives true facts and a pool of
possible hypothesisthey are prepared to

accept as part of an explanation to predict the

expected behavioui29].

More precisely,we define an abductivemodel to
be a directed,possibly cyclic graph of edgesE,
verticesV, and invariants. V is either (i) literals
referring to entities that the model author is
familiar with; or (i) and-nodegdescribedbelow).

¢ Whoserootsarefrom IN; and whoseleaves

are members dDUT;
« Which have the right numberof parentsfor

each vertex in a proof. And-nodesust sharea
proof with all their parents.In general, all

other vertices must share a proof with 1 parent.

Exceptions: INj vertices and DEFAULT
vertices. ADEFAULT vertex has ngarents
and is in IN; - FACTS (FACTS =
INj O OUTj). These vertices need no
parents in a proof.
e That contain no vertex that contradicts the
FACTS or any other vertex in that world.
M may not be parsimonious, complete,
deterministic,or consistent. In the generalcase
we can generatd consistenexplanations (& N
< o) for some subset of OUT; using some
subset oE (see example, below).

3.2. An Example

Supposehat an expertsketchedrigure 1a using
the notation that- denotesdiscouragesand ++
denotesencouragesLet us assumethat (i) the
vertices{A,...,I} in Figure 1a have the states,

I is an invariant predicate that is satisfied iff somelown, steady} (ii) a conjunctionof anup and a

set of verticescannotbe believedsimultaneously
without violating some constraint;e.g. | (p,—p),

| (day=monday,day=tuesday) | (A=up, A=down)
E is the union of the explanationsthat are
acceptable to the model author(g)g. e(rain=yes,
grass=wet) means that rain is an acceptable
explanation for wet grass.

The library of known behaviol8 of M is a set
of pairs 4Nj,OUT;> whereINj andOUT; are

subsetof V. The TASK of our model M is,
roughly speakingto explainOUTj in terms of

INj. Explanations (also knowasworlds W) are

maximal unions (with respecto size)of acyclic
proof tree<P:

down can explain a steady and (iii) a steady
cannot explain anything else. Figutais like a
graphical macro language that we @xpandinto
the model of Figure 1b. In the case of
<IN 1,0UT 1>= <{C=up, H=up}{ B=up, D=up,
G=up, I=dowr}> andthe invariantthat the states
{up, down, steady}are mutually exclusive,then
we can generate the following proofs:



H=up- E=down= F=down- | =down

H=up- | =down
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C=up- E=up- F=up- D=up- A=up- B=up
An assumptiom; is a vertex irP thatis not in

in FACTS. In our example, P contains
assumptionsA for vertices {A,B,E,F}. An
interesting subset of A are the controversial
assumptiondA ¢ that are base(i.e. are dependant

on no otherA¢). TheexclusionsX of the base
controversial assumptions Ap are the

assumptions that contradict the maximal
consistentsubsetf Ap. A proof belongsin a

world if it doesnot use the base contraversial
assumptionsexcludedfrom that world. For our
example,A = {A=up, B=up, E=up, E=down,
F=up, F=down}, A = {E=up, E=down, F=up,

F=down}, andAp = {E=up, E=down} (sinceF is

fully dependant of). Our exclusions are X 1 =
{E=down}, andX2 = {E=up}. Each exclusiorX;

definesone world W (seeFigure 2). We also
defineWg to be the world that excludesall Ap;

i.,e. Xg = {E=up,E=down,F=up,F=down} (see
Figure 2a).
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Formally, this process is abducti¢2l]. Given a
theoryM, some assumables, a goalOUT; and

invariantknowledgel , abductionis the inference

to explanations that cover OUT; without
generating inconsistencies; i.e.
A" O0A,CAUSESOINj, COVERED O

OUT;
M O CAUSESO A' = COVERED
M O CAUSESO A' F false (i.el).

Abduction is not a certain inferend®ur example

above generated three worlaisdwe must choose

betweenthem using some BEST assessment
operator. Example BESTs include BEST1:

returning all W; with fewest assumptions;
BEST>: with the smallest number of inputs
|[CAUSES|; BEST3: with shortestproof size
(YPij € Wi,3|Pj|); BEST4: with the largest
numberof outputs |COVERED]|; or BESTg

which avoids edges with low likelihood
(assuming thasuchmeta-knowledgeboutedges
is available;e.g. some edgeswere proposedas
part of a theory you wish to fauft)

3.3. Plausible

In this section,we arguefor the plausibility of
our abductive modeds a psychologicalttheory of
expert reasoning.

We havecharacteriseéhferenceover a model as
the extraction of consistentbeliefs (W;) from

some backgrounéinowledge(M) thatis relevant
to someTASK (which we defingo be the tuple
<<INj,OUT;>, BEST;j>). Numerous

commonly-usedrepresentationsan be mapped
into our definition of a model; e.g. the
dependency graph between literals in a
propositional theory, a rule-basedpertsystent,

a unfolded first-order systenf, and declarative
frame-basedsystem$ satisfy our M definition.

Elsewhere we have arguedthat this extraction
process is the core inference underlying
prediction, classification,explanation,diagnosis,
gualitative/causateasoning,design, recognition,
case-based reasoning, and natural language
understanding [22]. Faexample,single-faultset-
covering diagnosisis just a specialisation of

BEST> (i.e. |CAUSES]| = 1). More generally,
we find that abductionlirectly operationaliseshe
model extractionprocesswhich Clancey[9] and
Breuker[4] argueis at the core of expertsystem
inference [21].

4 Bylanderet. al. call BEST the plausibility operator pl
(6].

5 Lessits conflict resolution strategy.

6 That is, unfolded until it is ground (i.e. all variables
bound).

7

In partial-match systems,the disjunction of slots can

lead to a frame. In total-match frame systems,the

conjunction of slots can lead toframe. In both cases,
infering a subclasscan lead to infering the superclass
(e.g. f emu then bird



We find that this inferencmodel offers symbolic
explanationsfor certain idiosyncraciesnoted in
humanreasoning.Considerhow certain special
casesof this abductiveinferencewould appearto
an outside observer:

i) In certain cases, world generation is
indeterminateConsiderFigure 2 in the case
where (somehow)W 1 did not occur.In this
case BEST4 cannot decide betweétig and
W 2 sincethey both coverthe samenumber
of OUT;. Yet these worldgondonedifferent
beliefs (W > condonesa belief in {E=down,
F=down} while Wy does not). When
inference  assessment operators are
inconclusive, an abductive model-based
reasoningsystem(hereafter AMBRS) could
not decideif certain literals are believed or
not. An outside observevould note that the
AMBRS was undecidedaboutcertainissues,
even after due deliberation.

ii) Checking that inferences deducedfrom an
abductive modelss hard(to be preciseiit is
NP-hard [6, 37]). An AMBRS may not
allocatesufficient resourcego completethat
inference. An outside observerwould note
that such an AMBRS held certain
inconsistent beliefs.

Assuming that sufficient resources are
allocatedto world generation,it is still a
slow process.If someinferenceis required
during that generation time, then AMBRS
would producea conclusionthat they may
retract very soon afterwards. An outside
observer would note that sueimn AMBRS is
making mistakendecisionsthat it tries to
patch afterwards

Like AMBRS, human beings (ixppearundecided
aboutcertainissues,even after due deliberation;
(i) hold inconsistentbeliefs; and/or (iii) make
mistaken decisionsthat they patch afterwards.
Hence, we conjecture that certain aspects of
human cognition can be modelled by our
symbolic formalism.

We viewthis as a plausible,but not conclusive,
argument.An alternative symbolic explanation
for thesebehavioursis simply that the human
theorem-proveiis non-abductive(e.g. deductive)
somehow resource limite@.g. dueto short-term
memory limitations). For a more convincing
argument for humans-as-AMBRS, see our
subsequent discussion regarding situated
semantics (see section 6).

ii)

4. How to Test a Model

In this sectionwe discussmethodsof testing a
modelM.

In generaltherearetwo categoriedor testsof a
model: we can look at itsiternal structureor we
can assessit on some external criteria. KB

verification tools detectanomalieswith internal
syntactic structures such as contradiction,
tautologies, circularitiegndlogical subsumption
[32]. KB validation tools apply some external
semanticcriteria such as test suite assessment.
The test suite malpe naturally occurringor may
be generatedvia an analysisof the dependencies
within the KB [16, 42].

We argue that external semantic criteria takes
precedenceover internal syntactic criteria. The
modelif a then bcontains ncsyntacticanomalies
yet may be irrelevantto the task of inferencing
over important domain entities (e.g. {c,d,...})).

Further,it is known that fielded expert systems
may contain internal syntactic anomalies, yet
perform adequatelyPreece Shinghaldocument
fielded expert systemsthat contain numerous
logical anomalies such as unused inputs,
unsatisfiable  conditions  and unusable
consequencef33]. These expert systems still

work, apparentlybecausen the context of their

day-to-day use, this erroneouslogic is never
exercised.

Our preferredexternalsemantictest is test suite
assessment.If a model cannot reproduce
behaviour some required behaviour, and/or the
behaviourof the thing thatit is modelling, then
it is definitely wrong. Hence, we propose
BEST4 (maximal B-coverage)as the definitive

test for a modef. BEST,4 is an exhaustive

relative measure suitable for under-specified
models

ExhaustiveGiven a single model, we cdault it
iff after generating all possible consistent
explanations, we still cannot cover known
behaviour. Notehat this searchcannotbe culled
at the local propagationlevel. The utility of
using each local inference (some edgE)ias to
be assessed by a meta-interpretgng the global
criteria: "will it eventually lead to maximal
coverage?". This globaliteria cannotbe applied
till after all possible paths are collectedVe will
return to this point below.

Relative: Given a selectionof possible models,
we can rank them according BEST,4. The best

models cover the highest percentageof OUT;j.

Note that we do not demand toBcoverage We
know of casesin neuroendocrinologywhere
existing models arknown to be faulty, yet they
arestill beingusedsince(i) it takestoo long to
removeall bugs from the modelsand (i) these
modelsrepresenthe current high-watermark in
that domain.

Under-specifiedmodels:Given an under-specified
indeterminatemodel, we canstill assess$t using

This definition of test was originally inspired by
Popper'sview that ideas are never "true" in some
absolute sense. Rather, the models we currdmlieve

are the ones that have survived active attempts to refute

them [31].



BEST4. Inference over indeterminate models

requires making assumptionsand maintaining
those assumptions mutually exclusiveworlds;
i.e. the abductiveprocessdescribedabove. The
ability to processindeterminatemodels is an
important feature of real-worlchodelassessment.
Many KB domains are poorly-specified and,
hence,indeterminatelf they it were otherwise,
then algorithmic approaches would sufffoe KB
problems.

5. Complexity of BEST4

This section discusses the computational
complexity of applying BEST4. We will find
that both theoretically and experimentally that
this process has significant computational limits.

The complexity of testing a model usiB&ES T4

is at least the complexity of the abductp®cess
describedn Section3. Most known abductive
inference engines exhibit exponential runtimes fo
real-world inputs, even for sophisticated
algorithms.Hence,many of the articlesin [26]
are concernedwith heuristic optimisations of
abduction.Eshghireport a classof polynomial-
time abductivanferenceproblems,but this class
of problems require a non-cyclic background
theory [15]. Bylander reports techniques for
tractable abduction [6], but many of these
techniques (e.gule-outknowledgeto cull much
of the search space) are aqiplicableto arbitrary
models developedin poorly-measureddomains
(e.g. our test domain of neuroendocrinology).

Selman& Levesqueshow that evenwhen only
oneexplanation is required, amdl is restrictedto
acyclic theories, theabductionis NP-hard[37]°;
i.e. very likely to becomputationalntractablein
the worst-case.Recall that our searchis for
inexplicablebehavioursj.e. we must searchfor
all explanationdecauseonly then canwe decide
what behaviours are inexplicable. This
exhaustive searchis hence even slower than
standard abduction.

Theoreticaldiscussionsaside, experimentshave
shown our abductive B-coveragesemanticsis a
practical model validation tool for models with
V] < 850 and [E|/V| < 7 [21]. For these

memoing) that only terminatedfor very small
models. Basichronologicalbacktrackinghasthe
disadvantagehat any feature of the spacelearnt
by the search algorithm is forgotten when
backtracking on failure[13, 20]. HT4 learnsand
caches as much as it can about the search sgace
it executes.

* Forward sweep A is inferredas a side-effect
of forward chaining from IN; (ignoring 1).
Once this sweep terminates, a linear-tipost-
processor can find allc.

Backward sweep\p, is inferredas a side-effect
of growing proofs back from OUT; through

the spacefound by the forward sweeptowards
INj. EachP;j stores(i) its ROUTE (the set

of verticesit uses);its own FORBIDDEN
set(i.e. the verticesthat, with the ROUTE,
would violate 1); and the upper-mostA

verticies found during proof generatiof.
Candidate vertice¥; for inclusion inP; must

satisfy Vj U Pi.ROUTE (loop detection)
and Vj U P;.FORBIDDEN (consistency
check). After all proofs are generated, the union
of all Pj.A¢ is Ap.
Worlds sweep Once A is known then the
worldsW can be calculated by looping ovei
proofs and all exclsions as follows:
i <« 0;
for X; O exclusionsfp) do begin

i<i+1, W« [O;

for PjOPdo

if Xi N Pi =0 t hen Wi « Wi+ Pi

r

L]

end;
Figures4 showsthe results of executing HT4
with BEST4 for 94 models and 1991 <IN,
OUT ;> pairs. Note the aborttime shown in
Figure 3. Exhaustivabductionis slow and,in a
resource-bounded environment, thigplies some
"give-up" time. None of the modelsover |V| =
850 terminated within thiime frame andso the
averageruntime curve lies somewhereinto the
grey area to the righdf Figure 4. Our readingof
Figure 4 is that (i) runtimes are exponentialon

experiments, we used our HT4 abductive inferencgiodel size and (i) the knee of an exponential
engine. For reasons of efficiency, HT4 makes tweurve for HT4 is found arountf| = 800.

assumptions abow! : (i) the modelis generated
and cached priato inferencing;(ii) | is restricted
to symmetric invariants of arity of 2.
Assumption(i) lets us use fixed-sizedbitstrings
to represent much of the sets processing.
Assumption(ii) lets us quickly pre-computeand
cache with each vertex a list of other
FORBIDDEN vertices.

Earlier versions of HT4 [23] used a basic
chronological backtracking approach (i.e. no

9 Aresult endorsed by Bylandet al [6].

10 Note that at and-nodesthe proof generationis more
intricate sinceall consistenttombinationsof all proofs
for all parentsmust be computed.Combining proofs
also implies combiningthe Pj.A ¢ sets.See [21] for

details.
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6. Cognitive Implications

An AMBRS that usesa modelbigger than our
limits cannot rigorously explore all the test cases
available to it. Some subsatust be chosenWe
know of no general principles for a priori
selecting significant test cases.

Lacking suchguidancean AMBRS will selecta
subset test casesthat appear to be more
important (possibly using some selfish criteria
that satisfy some local agenda). Given a
community of AMBRSs working on the same
problem, they may alelecta different subsetof
test cases.

Testinga modelcanleadto a modification of a

model. Testing with different cases daencelead

to different models. Our AMBRS community
could all developdifferent models of the same
thing.

If we can find evidence for communities of

humans that evolve differemiodelsfor the same
thing, then we havesomeevidencethat humans
are AMBRS. We believethat situatedsemantics
is such evidence. For example, a@njecturethat

Shaw's geology experts learnt their knowledge

Figure 5: AverageB-coverage for seven models phase tool in their own way and used thdifferent

of varying fanout.
Figure 4 is experimental confirmation of the

experienceg(instantiatedas their own personal
models) to build their knowledge basé2. weeks

theoretically prediction that testing-as-abduction later, their local models hazhanged Perhapsiue

is intractrablefor large models.Figure 5 shows
another limit-to-testing. In the Figure 5
experiment, edges were randomly added to 7
models to increase their fanolE|(]V|) from 2 to
10. Thesemodelswerethen run using randomly
generateckIN j,OUT > pairs. Note that after a

fanout of 4.4, 89% of all behaviours were
explicable.Further, after a fanout of 6.9, nearly
all behaviourswere explicable.Note that a test
that cannotdistinguish betweendifferent models

is a useless test; i.e. our generalised test proced

is only applicable for models withE|J|V| < 7.
In order to place the |V| and |[E|/V]| limit in

perspective, we include here figures for mod4l |

and |[E|/\V| in somefielded expert systems (see
Table 3).

Application V| E|/V]
mmu 65 7
tape 80 4
neuron 155 4
displan 55 2
DMS-1 510 6

Table 3: Model size and average fanout from
real-world expert systems. From [33].

Table 3 is telling us that we are alreadyusing

to their professionakexperiencesincethe initial
study, their personalmodelshadagain changed.
Hence, Shaw's reported intra- and inter-expert
disagreements.

7. Related Work

To our knowledge the cognitive implications of

the computationalcomplexity of abductivelogic

has not been previously discussed in the

litgrature. While Poole explores non-deductive
ogics, he as (to date anyway) refrained from

exploring the cognitive implications of his

abductive frameworks.

We prefer our simple abductive inference model to
Wang's more elaborate architecture. Our
experimentshave convincedus of the practical
utility and insightfullnessof our approach.To
our knowledge, Wang has not entered the
experimental state.

Operators for implementingreferencecriteria for
assessingpossible worlds has been widely
discussed in théterature.Most researcherargue
that the best worlds must at least cover all the
known output. Some argue that the "best"
explanationis the smallestone (e.g. [12, 35]).
Poole [28] and Consolet. al.[12] have proposed
the additionalcriteria that the "best" explanation
also usesthe most specific terms from a

models near our limits. Systems larger than Tablgixonomic hierarchy; e.g. they prefer explanations
3 (e.g. [18, 40]) are clearer well beyond our limit§n terms ofemuratherthanin termsof the more

to testing.

generalterm bird. We prefer not to hard-wire



world assessmeninto our formalism. World
assessmenknowledge is still domain-specific
knowledge and should be customisable.

We assumeéhat all worlds will be generatedAn
alternativeapproachs to geeratea single world
and only move from thagingle world if it's base
assumptions someholreakdown [14]. Our all-
worlds approachis closerto DeKleer'sATMS
[13] anddefaultlogic extensions[36]. However,
we differ from ATMS/ default logic in that our
worlds only contain relevant literals (i.e. only
those literals thaéxist on proofs betweeninputs
and outputs). This means that, unlike default
logic extensions, not atonsequencesf a literal
exist in a world containing that literal. For
example, consider the following example:

nodel : bif a cif a
eif (bor c);
dif b; fifec zify.
contradicts: {d,f}
<IN2,OUT2> = <{a},{e}>

Our approachwould generatetwo proofs which
could exist in the one world, i.e. W1 = {P1,
P2}, P1={a,b,§, Pp>={a,c,§. StandardATMS/
default logic would analyseall literals in the
model to generate two extensions (avith d and
the other withf). Both of theseextensionswvould
containthe sameproofsof e in terms of a. We
view thesetwo worlds as irrelevant and wasted
computation.

For further notes on related work, see [21, 22].

8. Conclusion

We have argued thBEST, (test-suite coverage)
is the definitive test for a model and have exploreg

its theoreticaland experimentallimits. We have
found those limits to be |E|/M] < 7 and
V| < 850. While the |E|/V| limit seems
fundamentalto the problem of generalisedtest,
the [V| limit could be increasedy using faster
platformdl. However, given the fundamentally
exponentialnature of the proces¥, we do not
expect significant increases to thg |limit to be
achieved in this manner.

We note that testing models bigger than these
limits necessitates exploringsaibsetonly of the
possibletest cases.Communities of AMBRS
exploring different subsetscan lead to different
modelsbeing generatedfor the same problem.
Such a community would exhibit situated
semantics.Hence,we offer this symbolic test-
based explanation for this phenomena.

Finally, we return to thelaim at the start of the
paper that imothing wrong with classicallogics

11 HT4 was buil using Smalltalkk on a Macintosh

Powerbook 170.

12 Recall thatBEST, is exhaustiveabductionand Selman

& Levesque have shown thabn-exhaustiveabduction
is NP-hard.

in representingommonsenseeasoningWe find
that if we refrain from simpleleductivelogic, we
can explain certain observed cognitpeenomena
(situated semantics)without recourseto non-
symbolic approachegqe.g. connectionism).We
prefer our symbolic model of human cognitid,
only because it permits a precise description of its
theory, implementation,and limitations in this
short paper. We woulte more convincedby the
non-symbolic school if they could deliver a
similar description.
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