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ABSTRACT: We develop a general abductive
description of testing models. We find that this
testing process is fundamentally slow and cannot
be conducted exhaustively. Consequently, we
argue that the usual case for model testing is non-
exhaustive testing; i.e. some subset of the
possible tests are chosen and executed. Note that
if the tests result in model refinement, then
different tests can result in different models.  This
leads to the hypothesis that different individuals
form different "opinions" (i.e. models) about the
world as a result of the different examples they
push through their models. We prefer this
symbolic explanation for situated semantics to
non-symbolic proposals (e.g. neural) . 

� � � � � � � � �  � ! � �

We endorse and continue an argument begun
elsewhere; i.e.

…there  is nothing wrong with classical
logics in representing commonsense
knowledge; there is, however, a problem
with the assumption that to use logic we
have to do deduction.  David Poole [30] .

We agree with Poole and Wang [41] that many of
the arguments against logical/symbolic AI (e.g.
Birnbaum [2]) are actually arguments against a
more specific target; i.e. classical deduction. We
disagree with (e.g.) Birnbaum that the obvious
alternative to logical AI is some type of
situated/functional cognition, the nature of which
is yet to be explicated (but is explored in [5, 8]).
Further, methodologicaly, we believe that is
better to explore AI using a small number of
general, well-understood and reproducible
symbolic mechanisms than an indeterminate (but
large) number of poorly understood domain-
specific mechanisms [24].

In order to support our AI-logicist position, we
seek explanations for human cognition in terms
of the behaviour of non-deductive theorem
provers. Wang's theorem prover, for example,
selectively forgets unused theorems.  Our work,
like Poole's, focuses on abductive logics1.  We

                                                
1 Consider a system with two facts a,  b and a rule R1:

If a  b. Deduction is the inference from a  to b.
Induction is the process of learning R1 given  examples
of a and b occurring together. Abduction is inferring a,
given b  [19].  Abduction is a not a certain inference
and its results must be checked by an inference
assessment operator (see BEST, below). For more on

present here an abductive model of situated
semantics2; i.e.

The conclusions drawn from a model may
vary according to the history of that model,
who wrote the model, and the  TASK  at
hand (TASK  defined below).

Such relativist knowledge is difficult to
understand in terms of classical deduction which
seeks context-free theorems. to represent
knowledge3.

Using our abductive model, we describe a general
computational device for testing models. We find
that this test process is fundamentally slow and
cannot be conducted exhaustively. Consequently,
we argue that the usual case for model testing is
non-exhaustive testing; i.e. some subset of the
possible tests are chosen and executed. Note that
test results can lead to model revisions (e.g. when
a model fails a test, it is repaired).  Different tests
can result in different model revisions. This leads
us to conjecture that individual form different
opinions (i.e. models) about the world as a result
of the different examples they push through their
models. We offer this hypothesis as a symbolic
explanation for situated semantics.

The structure of this article is as follows. Section
2 explores situated semantics. Sections 3 & 4 of
develops and applies our abductive framework for
testing models. Section 5 discusses the
computational complexity of this framework.
Section 6 discusses cognitive implications and
section 7 discusses related work.
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The concept of situation/context has become a
key issue in contemporary models of scientific
development, decision making, and knowledge
acquisition (KA). Human knowledge appears in

                                                                   
abduction, see [21, 26, 30].

2 Note that we avoid the similar term situated cognition.
By situated semantics, we do      NOT     mean that symbolic
representations are a post-hoc report of the physical
interactions of the  of the inferencing entity with its
internal and external environment  [7, 8].
Functional/situated cognition as discussed by Clancey
and Birnbaum is a non-symbolic  explanation for
situated semantics. This paper explores symbolic
explanations.

3 Birnbaum offers this as a dimunative summary of
Nilsson's declarative  knowledge proposal [25].  Our
reading is that Nilsson seeks knowledge that is as re-
usable as possible and not (as Birnbaum seems to
beleive) that is always re-usable in all contexts.  
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some social situation and that context seems to
effect the generated knowledge:

• Kuhn notes that data is not interpreted
neutrally, but (in the usual case) processed in
terms of some dominant intellectual
"paradigm" (which, if we represented it
computationally, would be a model) [17].

• Phillips [27] and Bradshaw et. al.  [3] describe
model construction as a communal process that
generates  structure that explicate a
community's understand of a problem. If the
community changes then the explicit record of
the communities shared understanding also
changes; i.e. "truth" is socially constructed.

• Silverman cautions that systematic biases in
expert preferences may result in
incorrect/incomplete knowledge bases (KBs)
[39].

• Compton [11] argues that the symbolic
representations found in our knowledge bases
are not records of structures inside the head of
an expert. Rather, this "knowledge"  is a
situated report customised to the specific
problem, the specific justification, the expert,
and the audience.  Like Phillips and Bradshaw
et.al., Compton argues that "truth" as
expressed by human experts varies according to
who says it.   

• Agnew, Ford & Hayes sumarises contemporary
thinking in this area as:

…expert-knowledge is comprised of context-
dependent, personally constructed, highly
functional but fallible abstractions  [1].

Two experiments demonstrate situated semantics.
Shaw [38] took a group of geology experts and
had them construct knowledge bases for the same
problem. The experts then reviewed each other's
knowledge base and, after 12 weeks, their own.
Table 1 shows that experts strongly disagreed
with each other. For example, experts only agreed
with each other, at best one-third of the time. 

Expert pairs % Understands % Agrees
E1,E2 62.5 33.3
E2,E1 61.1 26.7

E1,E3 31.2 8.3
E3,E1 42.9 33.3

E2,E3 44.4 20.0
E3,E2 71.4 33.3

Table 1: Expert Ex reveiwng Ey's rules.

Table 2 shows the expert's assessment of their
own knowledge base, 12 weeks after they wrote
it. Overtime, as an expert's situation changes so
does their view on "correct" knowledge. This
change may be very dramatic. For example,
expert 1 could only understand 62.5% of what
he'd written 12 weeks before. All experts
disagreed (to some extent) with their own ideas

from the past (as shown in the Agrees column of
Table 2).

Understands Agrees
Expert (max = 100) (max = 100)

E1 62.5 81.2

E2 77.8 94.4

E3 85.7 78.6

Table 2 Self-review of a specification, 12
weeks after it was written.

Our second demonstration of situated semantics is
a small thought experiment. Consider a one-line
mathematical model of exponential population
growth:

EQ1 : dN/dT = rN.   
N

T

where T is time, N is the population and r is
negative or positive in hostile or benign
environments respectively. This model is wrong
since population growth must taper off as it
approaches C the maximum carrying capacity of
the environment; i.e. 

EQ2 : dN/dT =
 rN(1-(N/C)).

N

T

C

In the case of a hostile environment and over-
population, our intuition is that the population
will fall. However in such circumstances,
N > C, r < 0, and rN(1-(N/C)) > 0; i.e. the
maths says that population will increase [34].
EQ2 is therefore also incorrect.

We ask the reader, when did you become aware of
the errors in EQ1 and EQ2; before or after we
presented our examples of population growth
tapering off as N approaches C (EG1) and over-
population in hostile environments (EG2)?  If
after, then we have anecdotal evidence for situated
semantics; i.e.  models are situated in the history
of their development (more precisely, situated in
the examples used for their development). As to
our own experience, we studied EQ1 and EQ2
extensively without detecting any errors. Yet
when presented with EG1 and EG2, the errors
were obvious.  EQ1 and EQ2 are not universal
truths. Rather, they true in restricted contexts (i.e.
not EG1 , not EG2 and not every other context
where these equations fail).  Elsewhere, we have
argued that as soon as a model moves "out-of-
context", it may generate inappropriate results.
Sadly, models are rarely labelled with their
contextual boundaries. When all available
knowledge and examples are used to generate a
model, out-of-context is never indicated since it
represents the area(s) unexplored during
development [22].   
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Figure 1a: A sketch of
a domain.

Figure 1b: The model M  implicit in Figure 1a. "&" denotes an and-
node. This model  represents the search space  that is tacit in Figure 1a.
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We view a model as the source of optional
inferences which we could make, if it proved
useful and possible to do so. This view is very
different to the classical deductive interpretation of
a model. Deductive rules such as if a then b are in
no sense optional; in all worlds where a is true, b
is also true. Our view of models as the space of
possible inferences has much in common with
the RSpace  of Clark & Matwin (i.e. a
specification of the space of rules from which
ideal domain rules can be learnt [10]); or the
scenarios of Poole: 

The user gives true facts and a pool of
possible hypothesis they are prepared to
accept as part of an explanation to predict the
expected behaviour  [29] .

More precisely, we define an abductive model to
be a directed, possibly cyclic graph of edges E,
vertices V, and invariants I . V is either (i) literals
referring to entities that the model author is
familiar with; or (ii) and-nodes (described below).
I  is an invariant predicate that is satisfied iff some
set of vertices cannot be believed simultaneously
without violating some constraint; e.g. I (p,¬p),
I(day=monday, day=tuesday), I (A=up, A=down).
E is the union of the explanations that are
acceptable to the model author(s); e.g. e(rain=yes,
grass=wet) means that rain is an acceptable
explanation for wet grass.

The library of known behaviour B  of M  is a set
of pairs <IN i,OUT i> where IN i  and OUT i are
subsets of V .  The TASK  of our model M  is,
roughly speaking, to explain OUT i in terms of
IN i. Explanations (also known as worlds W) are
maximal unions (with respect to size) of acyclic
proof trees P:

• Whose roots are from IN i   and whose leaves
are members of OUT i

• Which have the right number of parents for
each vertex in a proof. And-nodes must share a
proof with all their parents. In general, all
other vertices must share a proof with 1 parent.
Exceptions: IN i  vertices and DEFAULT
vertices.  A DEFAULT  vertex has no parents
and is in IN i  - FACTS (FACTS =
IN i  ∪  O U T i ). These vertices need no
parents in a proof.

• That contain no vertex that contradicts the
FACTS or any other vertex in that world. 

M may not be parsimonious, complete,
deterministic, or consistent.  In the general case
we can generate N consistent explanations (0 ≤ N
≤ ∞) for some  subset  of OUT i using some
subset of E  (see example, below). 
. / B / C 6 @ A 7 D 2 8 ;
Suppose that an expert sketches Figure 1a using
the notation that-- denotes discourages and ++
denotes encourages. Let us assume that (i) the
vertices {A,…,I} in Figure 1a have the states {up,
down, steady}; (ii) a conjunction of an up and a
down can explain a steady; and (iii) a steady
cannot explain anything else.  Figure 1a is like a
graphical macro language that we can expand into
the model of Figure 1b. In the case of
<IN 1,OUT1>= <{C=up, H=up},{ B=up, D=up,
G=up, I=down}> and the invariant that the states
{up, down, steady} are mutually exclusive, then
we can generate the following proofs:
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P1: H=up E=down F=down I=down

P2: H=up I=down 

P3: C=up E=up F=up  G=up  

P4: C=up A=up B=up D=up 

P5: C=up E=up F=up D=up 

P6: C=up A=up B=up

P7: C=up E=up F=up D=up A=up B=up

An assumption A i is a vertex in P that is not in
in FACTS .  In our example, P contains
assumptions A  for vertices {A,B,E,F}. An
interesting subset of A  are the controversial
assumptions A c that are base (i.e. are dependant
on no other A c).  The exclusions X of the base
controversial assumptions A b are the
assumptions that contradict the maximal
consistent subsets of A b. A proof belongs in a
world if it does not use the base contraversial
assumptions excluded from that world. For our
example, A  = {A=up, B=up, E=up, E=down,
F=up, F=down}; A c = {E=up, E=down, F=up,
F=down}; and Ab = {E=up, E=down} (since F is
fully dependant on E). Our exclusions are   X 1 =
{E=down},  and X2 = {E=up}. Each exclusion Xi
defines one world W i  (see Figure 2). We also
define W0 to be the world that excludes all A b;
i.e. X 0 = {E=up,E=down,F=up,F=down} (see
Figure 2a).

C=up

A=up B=up

D=up

H=up

I=down

Figure 2a:  W o :  All  Pi that avoid  X o .

C=up

A=up B=up

D=up

E=up

H=up

F=up G=up

I=down

Figure 2b: W1: All  Pi that avoid X 1.

C=up

A=up B=up

D=up
E=down

H=up
F=down

I=down

Figure 2c: W2: All  Pi that avoid  X 2

Formally, this process is abduction [21]. Given a
theory M , some assumables A, a goal OUT i and

invariant knowledge I , abduction is the inference
to explanations that cover OUT i without
generating inconsistencies; i.e. 

A'  ⊆ A , CAUSES ⊆ IN i,   COVERED  ⊆
OUT i

M  ∪ CAUSES ∪ A'    COVERED
M  ∪ CAUSES ∪ A'   false (i.e. ¬I ).

Abduction is not a certain inference. Our example
above generated three worlds and we must choose
between them using some BEST assessment
operator. Example BESTs include BEST1:
returning all W i  with fewest assumptions ;
BEST2: with the smallest number of inputs
|CAUSES|; BEST3: with shortest proof size

( P i j  W i,∑|Pj |); BEST4: with the largest
number of outputs |COVERED |; or BEST5
which avoids edges with low likelihood
(assuming that such meta-knowledge about edges
is available; e.g. some edges were proposed as
part of a theory you wish to fault)4.
. / . / E 8 7 F > 4 G 8 ;
In this section, we argue for the plausibility of
our abductive model as a psychological theory of
expert reasoning.

We have characterised inference over a model as
the extraction of consistent beliefs (W i) from
some background knowledge (M ) that is relevant
to some TASK  (which we define to be the tuple
<<IN i ,OUT i>, BESTj>). Numerous
commonly-used representations can be mapped
into our definition of a model; e.g. the
dependency graph between literals in a
propositional theory, a rule-based expert system5,
a unfolded first-order system6, and declarative
frame-based systems7 satisfy our M  definition.
Elsewhere, we have argued that this extraction
process is the core inference underlying
prediction, classification, explanation, diagnosis,
qualitative/causal reasoning, design, recognition,
case-based reasoning, and natural language
understanding [22]. For example, single-fault set-
covering diagnosis is just a specialisation of
BEST2 (i.e. |CAUSES| = 1). More generally,
we find that abduction directly operationalises the
model extraction process which Clancey [9] and
Breuker [4] argue is at the core of expert system
inference [21]. 

                                                
4 Bylander et. al. call BEST the plausibility operator pl

[6].

5 Less its conflict resolution strategy.

6 That is, unfolded until it is ground (i.e. all variables
bound).

7 In partial-match systems, the disjunction of slots can
lead to a frame. In total-match frame systems, the
conjunction of slots can lead to a frame. In both cases,
infering a subclass can lead to infering the superclass
(e.g. if emu then bird).
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We find that this inference model offers symbolic
explanations for certain idiosyncracies noted in
human reasoning. Consider how certain special
cases of this abductive inference would appear to
an outside observer:

i) In certain cases, world generation is
indeterminate. Consider Figure 2 in the case
where (somehow) W 1 did not occur. In this
case, BEST4 cannot decide between W0 and
W 2 since they both cover the same number
of OUT i. Yet these worlds condone different
beliefs (W 2 condones a belief in {E=down,
F=down} while W 0 does not). When
inference assessment operators are
inconclusive, an abductive model-based
reasoning system (hereafter, AMBRS) could
not decide if certain literals are believed or
not. An outside observer would note that the
AMBRS was undecided about certain issues,
even after due deliberation.

ii) Checking that inferences deduced from an
abductive models is hard (to be precise, it is
NP-hard [6, 37]). An AMBRS may not
allocate sufficient resources to complete that
inference.  An outside observer would note
that such an AMBRS held certain
inconsistent beliefs.

iii) Assuming that sufficient resources are
allocated to world generation, it is still a
slow process. If some inference is required
during that generation time, then an AMBRS
would produce a conclusion that they may
retract very soon afterwards.  An outside
observer would note that such an AMBRS is
making mistaken decisions that it tries to
patch afterwards

Like AMBRS, human beings (i) appear undecided
about certain issues, even after due deliberation;
(ii) hold inconsistent beliefs; and/or (iii) make
mistaken decisions that they patch afterwards.
Hence, we conjecture that certain aspects of
human cognition can be modelled by our
symbolic formalism. 

We view this as a plausible, but not conclusive,
argument. An alternative symbolic explanation
for these behaviours is simply that the human
theorem-prover is non-abductive (e.g. deductive)
somehow resource limited (e.g. due to short-term
memory limitations). For a more convincing
argument for humans-as-AMBRS, see our
subsequent discussion regarding situated
semantics (see section 6). 
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In this section we discuss methods of testing a
model M .

In general, there are two categories for tests of a
model: we can look at its internal structure or we
can assess it on some external criteria. KB

verification tools detect anomalies with internal
syntactic structures such as contradiction,
tautologies, circularities and logical subsumption
[32].  KB validation tools apply some external
semantic criteria such as test suite assessment.
The test suite may be naturally occurring or may
be generated via an analysis of the dependencies
within the KB [16, 42].

We argue that external semantic criteria takes
precedence over internal syntactic criteria. The
model if a then b contains no syntactic anomalies
yet may be irrelevant to the task of inferencing
over important domain entities (e.g. {c,d,...}).
Further, it is known that fielded expert systems
may contain internal syntactic anomalies, yet
perform adequately. Preece & Shinghal document
fielded expert systems that contain numerous
logical anomalies such as unused inputs,
unsatisfiable conditions and unusable
consequences [33]. These expert systems still
work, apparently because in the context of their
day-to-day use, this erroneous logic is never
exercised.

Our preferred external semantic test is test suite
assessment. If a model cannot reproduce
behaviour some required behaviour, and/or the
behaviour of the thing that it is modelling, then
it is definitely  wrong. Hence, we propose
BEST4 (maximal B-coverage) as the definitive
test for a model8. BEST4 is an exhaustive,
relative measure suitable for under-specified
models:

Exhaustive: Given a single model, we can fault it
iff after generating all possible consistent
explanations, we still cannot cover known
behaviour. Note that this search cannot be culled
at the local propagation level. The utility of
using each local inference (some edge in E) has to
be assessed by a meta-interpreter using the global
criteria: "will it eventually lead to maximal
coverage?". This global criteria cannot be applied
till after all possible paths are collected.  We will
return to this point below.

Relative: Given a selection of possible models,
we can rank them according to BEST4. The best
models cover the highest percentage of OUT i.
Note that we do not demand total B-coverage. We
know of cases in neuroendocrinology where
existing models are known to be faulty, yet they
are still being used since (i) it takes too long to
remove all bugs from the models and (ii) these
models represent the current high-water mark in
that domain.

Under-specified models: Given an under-specified
indeterminate model, we can still assess it using

                                                
8 This definition of test was originally inspired by

Popper's view that ideas are never "true" in some
absolute sense. Rather, the models we currently believe
are the ones that have survived active attempts to refute
them [31].
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BEST4. Inference over indeterminate models
requires making assumptions and maintaining
those assumptions in mutually exclusive worlds;
i.e. the abductive process described above. The
ability to process indeterminate models is an
important feature of real-world model assessment.
Many KB domains are poorly-specified and,
hence, indeterminate. If they it were otherwise,
then algorithmic approaches would suffice for KB
problems.   

L � M � & N - % O ! � P � Q
BEST4

This section discusses the computational
complexity of applying BEST4. We will find
that both theoretically and experimentally that
this process has significant computational limits. 

The complexity of testing a model using BEST4
is at least the complexity of the abductive process
described in Section 3.   Most known abductive
inference engines exhibit exponential runtimes for
real-world inputs, even for sophisticated
algorithms. Hence, many of the articles in [26]
are concerned with heuristic optimisations of
abduction. Eshghi report a class of polynomial-
time abductive inference problems, but this class
of problems require a non-cyclic background
theory [15]. Bylander reports techniques for
tractable abduction [6], but many of these
techniques (e.g. rule-out knowledge to cull much
of the search space) are not applicable to arbitrary
models developed in poorly-measured domains
(e.g. our test domain of neuroendocrinology).

Selman & Levesque show that even when only
one explanation is required, and M  is restricted to
acyclic theories, then abduction is NP-hard [37]9;
i.e. very likely to be computational intractable in
the worst-case. Recall that our search is for
inexplicable behaviours; i.e. we must search for
all explanations because only then can we decide
what behaviours are inexplicable.  This
exhaustive search is hence even slower than
standard abduction.

Theoretical discussions aside, experiments have
shown our abductive B-coverage semantics is a
practical model validation tool for models with
|V | < 850 and |E|/|V | < 7 [21]. For these
experiments, we used our HT4 abductive inference
engine. For reasons of efficiency, HT4 makes two
assumptions about M : (i) the model is generated
and cached prior to inferencing; (ii) I  is restricted
to symmetric invariants of arity of 2.
Assumption (i) lets us use fixed-sized bitstrings
to represent much of the sets processing.
Assumption (ii) lets us quickly pre-compute and
cache with each vertex a list of other
FORBIDDEN  vertices.

Earlier versions of HT4  [23] used a basic
chronological backtracking approach (i.e. no

                                                
9 A result  endorsed by Bylander et al [6].

memoing) that only terminated for very small
models. Basic chronological backtracking has the
disadvantage that any feature of the space learnt
by the search algorithm is forgotten when
backtracking on failure  [13, 20]. HT4 learns and
caches as much as it can about the search space as
it executes. 

• Forward sweep: A c is inferred as a side-effect
of forward chaining from IN i  (ignoring I ).
Once this sweep terminates, a linear-time post-
processor can find all Ac.

• Backward sweep: Ab is inferred as a side-effect
of growing proofs back from OUT i through
the space found by the forward sweep towards
IN i . Each P i  stores (i) its ROUTE  (the set
of vertices it uses); its own FORBIDDEN
set (i.e. the vertices that, with the ROUTE ,
would violate I ); and the upper-most A c
verticies found during proof generation10.
Candidate vertices V j  for inclusion in Pi must
satisfy V j  ∉  Pi .ROUTE (loop detection)
and V j  ∉  Pi .FORBIDDEN  (consistency
check). After all proofs are generated, the union
of all Pi.A c  is  A b.

• Worlds sweep: Once A b is known then the
worlds W can be calculated by looping over all
proofs and all exclsions as follows:
i  0;
for X i  ∈ exclusions(Ab)  do begin 

i  i + 1;  W i  ∅;

  for Pi ∈ P do

    if X i  ∩ Pi  = ∅ then  Wi    W i +  Pi
;   
end;

Figures 4 shows the results of executing HT4
with BEST4 for 94 models and 1991 < IN i ,
OUT i> pairs.  Note the abort time shown in
Figure 3. Exhaustive abduction is slow and, in a
resource-bounded environment, this implies some
"give-up" time. None of the models over |V | =
850 terminated within this time frame and so the
average runtime curve lies somewhere into the
grey area to the right of Figure 4. Our reading of
Figure 4 is that (i) runtimes are exponential on
model size and (ii) the knee of an exponential
curve for HT4 is found around |V| = 800.

                                                
10 Note that at and-nodes, the proof generation is more

intricate since all consistent combinations of all proofs
for all parents must be computed. Combining proofs
also implies combining the Pi .A c sets. See  [21] for
details.
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of varying fanout.

Figure 4 is experimental confirmation of the
theoretically prediction that testing-as-abduction
is intractrable for large models. Figure 5 shows
another limit-to-testing. In the Figure 5
experiment, edges were randomly added to 7
models to increase their fanout (|E|/|V|) from 2 to
10. These models were then run using randomly
generated <IN i ,OUT i> pairs. Note that after a
fanout of 4.4, 89% of all behaviours were
explicable. Further, after a fanout of 6.9, nearly
all behaviours were explicable. Note that a test
that cannot distinguish between different models
is a useless test; i.e. our generalised test procedure
is only applicable for models with  |E|/|V | < 7.

In order to place the |V | and |E|/|V | limit in
perspective, we include here figures for model  |V|
and |E|/|V | in some fielded expert systems (see
Table 3).

Application  |V |  |E|/|V |

mmu 65 7

tape 80 4

neuron 155 4

displan 55 2

DMS-1 510 6

Table 3: Model size and average fanout from
real-world expert systems. From [33].

Table 3 is telling us  that we are already using
models near our limits. Systems larger than Table
3 (e.g. [18, 40]) are clearer well beyond our limits
to testing.

R � M � S � ! � ! + % � & N - !  $ � ! � � '

An  AMBRS that uses a model bigger than our
limits cannot rigorously explore  all the test cases
available to it. Some subset must be chosen. We
know of no general principles for a priori
selecting significant test cases.

Lacking such guidance, an AMBRS will select a
subset test cases that appear  to be more
important (possibly using some selfish criteria
that satisfy some local agenda). Given a
community of AMBRSs working on the same
problem, they may all select a different subset of
test cases.

Testing a model can lead to a modification of a
model. Testing with different cases can hence lead
to different models. Our AMBRS community
could all develop different models of the same
thing.

If we can find evidence for communities of
humans that evolve different models for the same
thing, then we have some evidence that humans
are AMBRS. We believe that situated semantics
is such evidence. For example, we conjecture that
Shaw's geology experts learnt their knowledge
base tool in their own way and used their different
experiences (instantiated as their own personal
models) to build their knowledge bases. 12 weeks
later, their local models had changed. Perhaps due
to their professional experiences since the initial
study, their  personal models had again changed.
Hence, Shaw's reported intra- and inter-expert
disagreements.

T � U % - $ � % � V � � W

To our knowledge, the cognitive implications of
the computational complexity of abductive logic
has not been previously discussed in the
literature. While Poole explores non-deductive
logics, he as (to date anyway) refrained from
exploring the cognitive implications of his
abductive frameworks.

We prefer our simple abductive inference model to
Wang's more elaborate architecture. Our
experiments have convinced us of the practical
utility and insightfullness of our approach. To
our knowledge, Wang has not entered the
experimental state.

Operators for implementing preference criteria for
assessing possible worlds has been widely
discussed in the literature. Most researchers argue
that the best worlds must at least cover all the
known output. Some argue that the "best"
explanation is the smallest one  (e.g. [12, 35]).
Poole [28] and Console et. al. [12] have proposed
the additional criteria that the "best" explanation
also  uses the most specific terms from a
taxonomic hierarchy; e.g. they prefer explanations
in terms of emu rather than in terms of the more
general term bird.  We prefer not to hard-wire
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world assessment into our formalism.  World
assessment knowledge is still domain-specific
knowledge and should be customisable. 

We assume that all worlds will be generated. An
alternative approach is to geerate a single world
and only move from that single world if it's base
assumptions somehow break down [14]. Our all-
worlds approach is closer to  DeKleer's ATMS
[13] and default logic extensions [36]. However,
we differ from ATMS/ default logic in that our
worlds only contain relevant literals (i.e. only
those literals that exist on proofs between inputs
and outputs). This means that, unlike default
logic extensions, not all consequences of a literal
exist in a world containing that literal. For
example, consider the following example:

model:        b if a; c if a;
              e if (b or c);  
              d if b; f if c; z if y.
contradicts: {d,f}
<IN2,OUT2> =  <{a},{e}>

Our approach would generate two proofs which
could exist in the one world, i.e. W 1 = { P1,
P2}, P1={a,b,e}, P2={a,c,e} .  Standard ATMS/
default logic would analyse all literals in the
model to generate two extensions (one with d and
the other with f). Both of these extensions would
contain the same proofs of e in terms of a. We
view these two worlds as irrelevant and wasted
computation.

For further notes on related work, see [21, 22].

X � M � �  - � ' ! � �

We have argued that BEST4  (test-suite coverage)
is the definitive test for a model and have explored
its theoretical and experimental limits. We have
found those limits to be  |E|/|V | < 7 and
|V | < 850. While the  |E|/|V | limit seems
fundamental to the problem of generalised test,
the |V |  limit could be increased by using faster
platforms11. However, given the fundamentally
exponential nature of the process12, we do not
expect significant increases to the |V|  limit to be
achieved in this manner.

We note that testing models bigger than these
limits necessitates exploring a subset only of the
possible test cases. Communities  of AMBRS
exploring different subsets can lead to different
models being generated for the same problem.
Such a community would exhibit situated
semantics. Hence, we offer this symbolic test-
based explanation for this phenomena.

Finally, we return to the claim at the start of the
paper that is nothing wrong with classical logics

                                                
11 HT4 was built using Smalltalk on a Macintosh

Powerbook 170.

12 Recall that BEST4 is exhaustive abduction and Selman
& Levesque have shown that non-exhaustive abduction
is NP-hard.

in representing commonsense reasoning. We find
that if we refrain from simple deductive logic, we
can explain certain observed cognitive phenomena
(situated semantics) without recourse to non-
symbolic approaches (e.g. connectionism). We
prefer our symbolic model of human cognition, if
only because it permits a precise description of its
theory, implementation, and limitations in this
short paper. We would be more convinced by the
non-symbolic school if they could deliver a
similar description. 

Y � )  W � � J - % � S % & % � � '

Hugh Clapin, ANU, was kind enough to critic
early drafts of this paper.
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