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ABSTRACT

Models should be able teproducethe known behaviour
of whateverit is they are trying to model. In its most
general form, this test mbduction i.e. thegeneratingan
internally-consistent scenarthat entails somesubsetof
known observationsgiven certain inputs. Exhaustive
abduction(EA) is the generationof all such scenarios.
EA canbe usedto verify a model. If all of the known
behaviour cannot be found in any of the generated
scenariosthen the model must be faulty. Given that
abduction is known to be slow, a reasonablepre-

experimental intuition is that EA would not be a practical

techniquefor large models.In the study presentechere,
EAs were executedfor a variety of modelsof different
sizesand internal fan-outs. The limits of EA for the
currentimplementationand the studied models implied

that EA has some practical utility as a validation tool.

Keywords: validation, abduction, hypothesistesting,
gualitative reasoning, neuroendocrinology.

1. INTRODUCTION

Models should be able teproducethe known behaviour
of whateverit is they are trying to model. In its most
generalform, this testof a modelis abduction i.e. the
generatingan internally-consistenscenariothat entails
some subset of known observations given certain
inputst. Exhaustiveabduction(EA) is the generatiornof
all such scenarios.

The QMOD project used EA (which they called
hypothesis testing (HT)) to verify qualitative
neuroendocrinologicamodels of glucose regulation. In
the original QMOD study (which we call HT1) it was
found that a glucosemodel developedrom international
refereedpublications [28] could not reproduce known
behaviour.In all, 109 of 343 (32%) of the known data

1 considera systemwith two factsa, b and a rule if a then b.
Deductionis the inference froma to b. Inductionis the processof
learningif a then bgiven examples cd andb occurring together.
Abduction is inferring a, given b. Abduction is a plausible
inference only since other rules may have concluded b using
another premise. Hence abduction requires some inference
assessment operator. See [2] fogheort tutorial introduction.See
[20] for an extensive overview. For a formal analysis of
abduction, see[1, 11, 27]. For a list of applications,see the
conclusion.

points from six studied paperscould not be explained
with referenceto this model. Of thesedetectedfaults, at
least one representedan insight into the process of
glucose regulation that had been invisible to conventi
scientific review process [6, 7].

HT1 was not broad in its scope: it reported one
experimentcomprising24 EAs seekingexplanationsof
one to five observations itermsof a single causeover
one. In this study, the generality @MOD-style model
validation is explored by studying models ranging in
number of nodebl from 150 to 125(odeswith average
numberof childrenper nodeB of 1 to 10. Section2
defines this QMOD algorithm and its connection to
abduction and EA. Section 3 discusses theoretical
problems with EA. Section4 describeghe experiments
that detectedlimits to the currentEA implementation.
These limits seento be greaterthan the modelswe find
constructedin the neuroendocrinologicaldomain and
someof contemporankB practice (definedin table 1).
The conclusion, therefore, is that EAassomepractical
utility as a validation tool.

Application N B
mmu 65 7
tape 80 4
neuron 155 4
displan 55 2
DMS-1 510 6

Table 1: Modelsize N and averagefan-outB in the
and-or graph of real-world expert systeingrom [23]. A
practical validation algorithm must work at leastfor the
range 50<=N<=510 and 2<=B<=7.

2. OMOD =EA = VALIDATION

This section describes tii@MOD-style validation andits
connection to abductioandEA. We begin by adopting
the following apparently simple validation algorithm:

2 This samplesize shouldbe larger. However, there is very little
publishedinformation on the size of real-world expert systems.
We usetable 1 sinceit is consistentwith the author'sknowledge
engineering experience [18, 19, 24] and the
neuroendocrinological models we are aware of.



ALGORITHM 1: Generate all possible behaviours from a

model, then check that the known behaviour cafobed
amongst thegossiblebehaviours If not, thenthe model
is faulty.

Note that this algorithm is silent on the best internal
form of the modellt assumeghat issuessuchas(e.g.)
the presence of loops, tautologies, redundancies,

inconsistencies are secondary to the basic requirement that

a modelmust be ableto reproducethe known behaviour
of the thing that it is modelling. For algorithms that
critique theseinternal model features,see[23, 29, 30].
EA is closestin internal datastructuresto the CTMS-
validation procedure of [30]. HoweveZ, TMS validation
assumes that the modelsting processcan dictateto the
environmentwhat test datais to be supplied.Here, we
explore domainswhere data collection is prohibitively
expensive (e.g. neuroendocrinology, ecology, and
economicslandwe must makedo with whateverdatais
currently availableln suchdata-starvediomains,models
and inference engineust include a qualitative (i.e. non-
numeric) component.

Algorithm 1 is naivefor qualitative domains.Consider
the links betweena b, andc in the qualitativemodel of
figure 1.
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Figure 1: Connectionbetween entities with legal
statesup, down or steady Links suchas++ and-- are
defined by tables of valid stateansitions. For example:
(1) X -- Y iff Y being up or down could be explainbg
X being down or up respectively;(2) X ++ Y iff Y
being up ordowncould be explainedby X beingup or
down respectively.

In the case of causesC :{aT,b¢}3 we have two

competingqualitative influenceson c: (i) arcan cause
ct while (i) bt cancauseci. Lacking quantitative

3 Terminology:C = a set of cause&X = a setof effects. M isa
model whose nodesmay take one of several mutually exclusive

valuesM'is a model generatedfrom M which hasone node for
each combination dfi node/values. The numberof nodesand

average fanout ' isN and B respectively.All membersof C
andFX areM nodes. = model invariants of arity 2 that accept as
inputM' nodesP = paths from members ¢tX to membersof C
acrossM' . W = worlds = subsets ¢ that do not violaté. Lower
cases italidettersin the text denotenode/valueassignmentse.g.

X1 = "the value of x has gone up"x! = "the value of x has gone
down"; x@= "the value of x is steady".

information about the relative size of these competing
forces, one world must be createdfor each possible

value of c ; i.e. {m,c@,cr} [10]. This branching of

behaviouramay becomecomputationallyintractableand
is an unsolved problem in qualitative physics [8],

particularly in model with loops (e.gxyd in figure 1 or

any model with a control feedbackloop). Explanations
with loops (e.ca wentup, thenlaterit went down, then
it went up again) are only required for time-variant
behaviour. TheC andFX sets from HT1 dichot mention
time andso HT1 could banloops from its explanations
(heuristic #1). As anothertechnique for reducing the
search space across indeterminatemodels, HT1 also
restricted its processing to explanationkidwn effects
resulting from known causes(heuristic #2). We adopt
thesetwo heuristicssincewe will later demonstratehat
EA is fundamentally a slow process.

ALGORITHM 2: Generate all possible non-cyclic
behavioursfrom a (possibly cyclic) modelM that (i)
result from known causesC; and (ii) includes some
subset of thesffectswe wantto explain FX. Checkthat
known behaviour can be found amongstthe possible
behaviours. If not, then the model is faulty.

Algorithm 2 containsa bug. Returningto figure 1,
considerthe casewherethe effects FX ={d 7,e7,f.} and
causeL ={a’,bT}. Non-cyclic pathwaydinking FX to
C are:

P1={aT,XT,yT,dT} P2={aT,CT,gT,dT}

P4={bT,Cl,gl,fi}
P5 :{bT,fi}

Note thatP1...Ps have to makassumptiongboutnode
valuesthat do not existin FX or C (e.g.b,g,x, andy).

While we canfind explanationsf all of FX, some of

the explanations use inconsistent assumptions. For
example, in a domain of measured continuous variabl
andg can't be both up anddown in the samescenario.
P2, P3, and P4 explain all of E but only in the
impossible situation that ¢ and g go up and down
simultaneously. Assumptions that contradict
assumptions in other paths are catiedtroversial

P3={aT,CT,gT,eT}

Algorithm 3 fixes this bug by insisting that the genere
explanations are internally consistent.

ALGORITHM 3: Generate all possible non-cyclic
behavioursfrom a (possibly cyclic) modelM that (i)

result from known causesC; and (ii) includes some
subset of the effects we want to expkai Divide these
explanationsinto "worlds": sets of explanatory paths
which do not violate domaininvariants,|. Now seeif

the known behavioutan be found amongstthe possible
behaviour subsetdf not, then the model is faulty.



When paths are groupedinto worlds, these groups are
defined in terms of thbase assumptionse. the highest
controversial assumptionin each path. For Pj...Ps

above, we could explore different worlds for each
combination of{m,m}&{gr,gl}. However,sinceg is

fully dependant ow, g will always have the same state as
c andwe canignoreg exploringworlds*. We therefore
have 3 worldgontainingthosepathsthat are compatible
with c¢t, ci, and with no value for c. That is:

Wo ={P1.Ps}5  Wi=Wo +{Pp,P3}, Wy =Wq+{Py}.
The cover of a world is the number of effects in it:
cover(Wo)=|d1, f +| =2; cover(wy)= |d1,er, f 1| =3; and

cover(W,)=|d1, f 1| =2. We chooseto believethe W,

baseassumptionssincethis permitsexplanationof the
most number of effects. In effect, algorithm 3 has
selected a subset of figure 1 (shown in figure 2).

/ X7 $y7\++

++
ar
al X +W el
++ +

0

Figure 2: The subset of figure 1 selectby algorithm
3 that explains the most effectsFX ={d7,e7,f/} given
causesC ={a7’,b7}. Note while figure 1 condones

inferencesbetweenB & C, G & F, andD & X,
algorithm 3 has elected not to use these connections.

Algorithm 3 cannot be viewed in terms of classical
deductionwhich demandghat if the rule x if y exists,
thenin everyworld wherex is true,y is alsotrue [22].
Algorithm 3 is abductive from a space of possible
inferences supplied by the user, a subset has dmected
according to some criteria orderto fulfil a certaintask
(in the case o)MOD: maximal cover of a set of effects).
Indeed,if re-write algorithm 3 in termsof its equivalent
logic, we arriveat the formal definitions of abductionas
proposed by [5, 21, 27] (see 4.2 of algorithm 4).

ALGORITHM 4 (exhaustiveabduction): 4.1) Partially
evaluatea FOPC (possibly cyclic) theory M w.r.t.. its

inferenceengineto generateM ', a finite propositional
(possibly cyclic) with no negation. 4.2) (abduction)

Computeall the non-cyclicmodels M " that satisfy (i)

4 This approach was inspirday the minimal environmentlabels of
the ATMS [4]. We differ from the ATMS in that wenly compute
labels for propositions on paths between causes and effects.

Wg denotes thempty set baseassumptionsvorld; i.e the world
with no controversial assumptions.

M e M; (i) M" & C F (FX1 € FXJ; (i)=(M" &
C  false) (i.e. doesnot violate I); and (iii) is maximal
(i.e. is not a subsetof anotherM " that satisfies (i) and

(i)). 4.3) Passall the generated M~ models to an
assessment operatBEST. If the BEST explanationsdo
not completely covefX, then the model is faulty.

Algorithm 4 partially evaluatesVl to generateM’ since
our currentimplementation (HT4) uses bit-strings to
optimise its internal processirandit assignsonebit to
eachpossiblestate of eachM node (which would be

distinctM nodes).For example figure 3 showsthe M’
generated fronM . In effect,M' is the searchspacetacit
inM . M mustbefinite since(i) HT4 will searchfor

all pathways from effects back to causesl (ii) if M is
infinite, then this search will never terminate.

Isolated nodes:
apboeogovye
Figure 3: M’ generatedfrom the M of figure 1
assumingthat (i) M nodecan haveone of three values:
1 (up), ¢ (down,) or © (steady); (ii) the conjunction of a
up and down can explaia steady;(iii) no changecan be
explained in term®sf a steady(i.e. steadynodeshaveno
children). And-nodes are denoted "&"; for example,
at&bt - c@. All other nodesare or-nodes. Steady
nodes that cannot be explained are shown bottom-left

Table 2 shows how andB can vary betweeM andM’

models in the neuroendocrinological domain. Nzt N

increasesyy a very large percent(dueto the addition of

the and-nodes required for explaining steadies) whil@&t
increase is much smaller.



N B

Model [M |m |4N |[M [m |28

Figure 1 9 35 | 389%( 1.2 | 1.26] 105%

HT1 80 | 5541 692%)| 1.7 ]2.25 130%

Table 2: Changesin size (N) and averagefanout (B)
between M and M models from  the

neuroendocrinologicatiomains. Figure 3 showsthe M’
generated from this! of Figure 1.

How large are th&l andB changegesultingfrom the M

toM' translation of a propositional rule-base? ®@ode
must be createdfor every literal and its negation.
However, given that non-monotonicreasoningis not
widely used in commercial practice (e.g. the domains
surveyed in Table 1), then only thegatediterals inside
nested disjunctions antegationsin rule premiseswould
be used. For example, thMeto M’ translationof if @
and not (b and ¢)) or d thenigshown in figure 4.

Lb=true | La=true |Ld=true
=Talse [=Tase] ‘_c?ase\
[e=true ]
=
c=tfalse or H &

Figure 4: M’ for the M propositional modelfor if (a
and not (b and c)yr d thene. Note the isolatednegated
literals for a, d& e.

We can now defin@MOD-style validation.

ALGORITHM 5 (QMOD): Call algorithm 4. Use the
following BEST operator. Set MAX_COVER to the

largest sizeof FX7in anyM" . Returnall M" models
with MAX_COVER. The EXPLAINED effectsare the
union of the FX1 of theseM" with maximum cover. If
|[EXPLAINED| <> | FX|, then the model is faulted.

That is, a model fails QMOD-style validation if after
making every assumptiorwe could to explainthe most
number of effects, there remains some inexplicable
effects. WhileQMOD-BESTseems weakvhenthe cover
of the worlds are nearlythe same,it is more reasonable
whenthe coveragesre more divergent.For example,in
the casewhere 100 effects can be explainedin W, and
only one effect can be explainedin W, then QMOD
reportsa failure to explainthe single effectin W,. We
justify the useof this definition of BESTasfollows. In
terms of theory repair, starting with a partially useful
incorrect theory is better than starting with nothing
(theory repair in this domain is discussed in [15, 16]).

The implementationof an efficient algorithm 5 is non-
trivial. HT1 took 2 days to execute 24 EAs. H&2HT3
used a basic chronologiclbhcktrackingapproach(i.e. no
memoing) that only terminatedfor very small models.

Basic chronological backtrackinghas the disadvantage
that any feature of the space learnt by the search
algorithmis forgottenwhen backtrackingon failure [4,

14]. The currentimplementation HT4 learnsand caches
asmuchasit canaboutthe searchspaceasit executes
The data required to switch betwesnorlds is also cached
S0 context switching doesnot require extensivefurther
computation.Also, bit-strings are usedto optimise set
processing. For more details, see [17].

3. IS EA VALIDATION PRACTICAL?

One pre-experimentalpessimistic prediction about EA
would be that any behaviourcan be generatedfrom a
searchthrough indeterminatemodels. If so, then the
validation power of EA would be zero since it would
"verify" every model given to it. This is the Pendrith
limit to EA validation (hamedafter the doctoral student
who first succinctly articulated it).

Another pessimistic prediction is that EA validation
would be too slow for real-world sizedmodels.EA uses
abduction, and abduction is known to be NP-Hard27];
i.e. very likely to be computationalintractablein the
worst-case An unfortunatefeature of abductionis that
this worst-casébehaviouris often the usual case:most
known abductiveinference enginesexhibit exponential
runtimes for real-world inputs, even for sophisticatec
algorithms. Hence, many of the articles in [20] are
concernedwith heuristic optimisations of abduction.
Eshghi report a class of polynomial-time abductive
inferenceproblems,but this classof problemsrequire a
non-cyclic background theory [5]. Bylander reports
techniques fotractableabduction[1], but many of these
techniquege.g. rule-outknowledgeto cull much of the
search space) are not applicable to arbitrary models
developed in  poorly-measured domains (e.qg.
neuroendocrinology).

In the caseof HT4, the implementationtricks described
above (end of 82) do not addressthe fundamental
complexity of the EA task. Thatis, given the under-
specifiednatureof the modelsandthe exhaustivenature
of the inference the searchcannotbe culled at the local

propagation level. Thatility of eachlocal inferencehas
to be assessedy a meta-interpreterusing the global
criteria: "will it eventuallylead to maximal coverage?"
This global criteria cannot be applied till after all

possible paths are collected (i.ecénnotbe usedto cull

the search space).

4. EXPERIMENTS WITH HT4

The previous sectionsmotivatedthe EA algorithm and
noted that there were 2 theoretical limits to EA
validation: (1)the Pendrithlimit to the critiquing power
of the process; and (2) a runtime limit due to the pos:



intractablenature of the search.We therefore collected

data on how HT4 managed these limits. Two studies were

performed comprising 299 models and 4504 EA runs:

1) The changing model size studyhe HT1modelhad
554 nodes in it (N=554), anaveragefanoutB of
2.25, and processed®?4 EA runs with |C| =1 and
1<=[FX| <=7. TheseFX andC sizelimits werean
artefact of certain implementation decisionadethe
QMOD designersthe actualFX andC rangeswere
1<=|FX| <= 10 and 1<=|C| <=4. In the changing
model size study, nodes were created/removedto
produce 94 models with  150<=N<=1250. Links
were added/ deleted to keep the fanout constdht=at
2.25.1991 EAs for thesemodelswere executedfor
1<= FX| <= 10 and 1<€}| <=4. EA runs thatook
longer than an arbitrary "give-upime of 5 minutes
were aborted, and that run assigneda time of 5
minutes.

2) The changing fanowtudy: Again, startingwith the
HT1 model, links wereddedto produce205 models
with 2 <=B <= 10 andN constantat N=554. 2513
EAs for these models were execufed 1<= |FX| <=
10 and 1<=| <=4.

For each study, two graphswere generated: average
runtimes and percentage explainabiects.HT4 wasto
be accepted as a practical validation tool if inrdregeof
2<=B<=7 and 50<N<=510 (i) the Pendrith limit was not
prohibitive; i.e.the percentexplainablewas usually less

than 100%; and (ii) the runtimes were acceptable (i.e. less

than some "too-slow" time which we will set to five
minutes).

300

. sy,

RYLLULLLLTFA
RLPRRLLPRA s
s’ H H

<

Ll

o}

o

S 200

o

< 1004

[%2]

©

5 ; :

g O { ] ] i

n B=5 B=10
N=750 N=1250

Figure 5: Runtimesfrom the changingmodelsize N
study and changingfanout B study. Note that the
plateauafter N=800 is an artefactof the "give-up" time
limit of 5 minutes (300 seconds).

The runtimes shown in figure 5 satisfy our runtime

requirements. The variance in the data on the chamgjing

curve prevent a definitive statement regarding the
experimentallyobservedcomplexity (i.e. exponentialor
otherwise).Experimentscontinueto confirm/ refute the
exponential nature of HT4's EA inference.

The changing B result of figure 5 is somewhal
surprising. The pre-experimentalintuition was that
runtimes would be exponential on fanout simgereasing
fanout in a graph containing two nodes X and Y
increaseexponentiallythe number of paths betweenX
and Y. The observed B increase was therefore
surprisingly small. However, several factors could
counterany increase.(i) Frequentincompatibilities of
nodes on possiblpaths would cull the total numberof
paths generated (i.e. violationslafull the searchspace).
(i) Adding links aroundan and-nodeincreaseshe pre-
conditionsto propagationof the searchover that and-
node. That is, sometimes adding links adds extra
constraints which restricts the number of possible pa
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Figure 6: % effectsexplainable from the changing
model size N study and changing fanout B study.
Figure 5 showsthat after N=800, most of the runs did
not terminatebeforethe "give-up" time of 300 seconds
Hence,the changingN curve in this figure drops off
suddenly afteN=800 .

Figure 6 demonstratedwo interesting featuresof EA
search. Firstly, after aaveragefanoutof 4, the Pendrith
limit is reachedand the model can explain all supplied
behaviours.Secondly, for models below the Pendrith
limit, between 45% to 75% of the effects from 25L8s
were inexplicable; i.eEA providesa significantlevel of
critique.

This B=4 Pendrithlimit is lessthanthe Table 1 figures
of fanout in real-world propositional expert systems.
Hence,the Pendrithlimit appeardo restrictsthe utility

of EA in that domain. However, Table 3 demonstrate:

that for domainswhich use a non-simpleM to M’

translation (e.g. neuroendocrinologyYhat certain node
typesmay have a fanout much larger than the average
fanout. The strengthof this observationis that, for the
neuroendocrinology domaiv) models are built in term
of changes i.e. the domain expert's natural idiom

contains phrases like "if X goes up then Y goes dow

To assess the impact of tRendrithlimit on modelling,
we shouldcheckthe averageganoutfor expert-createdvi
nodesin the M model. Table 4 shows us that at an
averageB=4 for the 205 changing fanout models, the



fanout of the expert-created nodése changes)vas B=9;
i.e. higher than our Table range.We thereforeconclude
that the Pendrithlimit is not a practicallimit to EA in
neuroendocrinology.

Node Type | changed steadie§ ands all
E.G. at ai| a® & at al
,30 &
N = Number of| 18 9 8 35
nodes
> =Total 36 0 8 44
number of kidg
S/N= 2 0 1 1.26
Average B

Table 3: Averagefanout(B) for differentnodetypesin
figure 3. Note that the averagetotal fanout may be
different to the average fan out of different node types.

Node Type | changed steadie§ ands all

Average B 9 0 2.5 4

Table 4: Average fanoutB) for differentnodetypesin
the changingfanout study at the Pendrith Limit. Note
that at an averagefanoutof 4, the fanoutof the expert-
creatednodes(i.e. the changes)s 9 and thereforegreater
than our Table 1 boundaries.

5. CONCLUSION

We have explored the link between knowledge-base
validation and abductive inference. Validation-as-
abduction has a natural applicatitmany modelbuilt in
an abductivedomain; e.g. model-basedliagnosis [3];
natural languageprocessing(see multiple examplesin
[20]); explanationgeneration [12]; visual pattern
recognitionanddesign [21, 22]; frame-basedeasoning
[25, 26] and case-basedeasoning13]. Evenin domains
that are apparently non-abductive (e.g. qualitative
reasoning in neuroendocrinology or deduction in
propositional rule bases),exhaustive abduction neatly
characterisethe processof validating that a model can
somehow explain known behaviour.

Two disadvantageswith characterising validation-as-
abductionare: (i) slow runtimesand (ii) the multiple-
worlds nature of the inference permitting a possible
explanationof any behaviour.In the studies described
here, we have seen that the runtimesrateunacceptably
slow for the modelswe see in contemporarypractice.
However, after an averagefanout of 4, validation-as-
abduction losses its critiquing powekmn practicalterms,
this implies a limit of the validation-as-abductiorof
somepropositionalsystems. For domainswith a more
complex semantics (e.g. qualitative physics), this

Pendrith limit appearsnot to be so critical (see the
discussion around table 4).

These conclusionsare basedon a less-than-optimun
sample size. Our definition of "real-world expert syste!
comes from a single source (see TableAll of the 299
models usedin our studies were generatedfrom the
internal parametersof a single neuroendocrinologice
model. We are sensitive the criticism that this sample
size is too small to make a genecahclusion.However,
we believe that we mutated that modegkr a sufficiently
wide rangeto claim that our experimentalresults have
some generality.

EA is not the first validation algorithm defined using a
multi-worlds logic (see[9, 30] for others). However,to

our knowledge this is the first time that the limits to

such an algorithnhave beenexperimentallytestedusing
a large test suite. We notleat a lack of readily-available
modelsneednot be a restrictionto such testing. Any

number of models and data sets can be artificially

generatedising known models/data sets as a reference
point, then changing the parameters as required.
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