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Models should be able to reproduce the known behaviour
of whatever it is they are trying to model. In its most
general form, this test is abduction; i.e. the generating an
internally-consistent scenario that entails some subset of
known observations given certain inputs. Exhaustive
abduction (EA) is the generation of all such scenarios.
EA can be used to verify a model. If all of the known
behaviour cannot be found in any of the generated
scenarios, then the model must be faulty. Given that
abduction is known to be slow, a reasonable pre-
experimental intuition is that EA would not be a practical
technique for large models. In the study presented here,
EAs were executed for a variety of models of different
sizes and internal fan-outs. The limits of EA for the
current implementation and the studied models implied
that  EA  has some practical utility as a validation tool.

Keywords: validation, abduction, hypothesis testing,
qualitative reasoning, neuroendocrinology.
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Models should be able to reproduce the known behaviour
of whatever it is they are trying to model. In its most
general form, this test of a model is abduction; i.e. the
generating an internally-consistent scenario that entails
some subset of known observations given certain
inputs1.  Exhaustive abduction (EA) is the generation of
all such scenarios.

 The QMOD  project used EA (which they called
hypothesis testing (HT)) to verify qualitative
neuroendocrinological models of glucose regulation. In
the original QMOD  study (which we call HT1) it was
found that a glucose model developed from international
refereed publications [28] could not reproduce known
behaviour. In all, 109 of 343 (32%) of the known data

                                                

1 Consider a system with two facts a ,  b and a rule if a then b.
Deduction is the inference from  a to b. Induction is the process of
learning if a then b given  examples of a and b occurring together.
Abduction is inferring a, given b. Abduction is a plausible
inference only since other rules may have concluded b using
another premise. Hence abduction requires  some inference
assessment operator. See [2] for a short  tutorial introduction. See
[20] for an extensive overview.  For a formal analysis of
abduction,  see [1, 11, 27].  For a list of applications, see the
conclusion.

points from six studied papers could not be explained
with reference to this model. Of these detected faults, at
least one represented an insight into the process of
glucose regulation that had been invisible to conventional
scientific review process [6, 7].

HT1 was not broad in its scope: it reported one
experiment comprising 24 EAs seeking explanations of
one to five observations in terms of  a single cause over
one.  In this study,  the generality of QMOD-style model
validation is explored by studying models ranging in
number of nodes N from 150 to 1250 nodes with average
number of children per node B of 1 to 10.  Section 2
defines this QMOD algorithm and its connection to
abduction and EA. Section 3 discusses theoretical
problems with EA.  Section 4 describes the experiments
that detected limits to the current EA implementation.
These limits seem to be greater than the models we find
constructed in the neuroendocrinological domain and
some of contemporary KB practice (defined in table 1).  
The conclusion, therefore, is that EA  has some practical
utility as a validation tool.

Application N B
mmu 65 7
tape 80 4

neuron 155 4
displan 55 2
DMS-1 510 6

Table 1: Model size  N and average fan-out B in the
and-or graph of real-world expert systems2. From [23]. A
practical validation algorithm must work at least for the
range 50<=N<=510 and 2<=B<=7.
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This section describes the QMOD-style validation and its
connection to abduction and EA.  We begin by adopting
the following apparently simple validation algorithm:

                                                

2 This sample size should be larger. However, there is very little
published information on the size of real-world expert systems.
We use table 1 since it is consistent with the author's knowledge
engineering experience [18, 19, 24] and the
neuroendocrinological models we are aware of.



ALGORITHM 1: Generate all possible behaviours from a
model, then check that the known behaviour can be found
amongst the possible behaviours. If not, then the model
is faulty.

Note that this algorithm is silent on the best internal
form of  the model. It assumes that issues such as (e.g.)
the presence of loops, tautologies, redundancies,
inconsistencies are secondary to the basic requirement that
a model must be able to reproduce the known behaviour
of the thing that it is modelling. For algorithms that
critique these internal model features, see [23, 29, 30].
EA is closest in internal data structures to the CTMS-
validation procedure of  [30]. However, CTMS validation
assumes that the model testing process can dictate to the
environment what test data is to be supplied. Here, we
explore domains where data collection is prohibitively
expensive (e.g. neuroendocrinology, ecology, and
economics) and we must make do with whatever data is
currently available. In such data-starved domains, models
and inference engine must include a qualitative (i.e. non-
numeric) component.

Algorithm 1 is naive for qualitative  domains. Consider
the links between a b, and c in the qualitative model of
figure 1.
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Figure 1: Connection between  entities with legal
states up ,  down, or steady. Links such as ++ and -- are
defined by tables of valid state transitions.  For example:
(1)  X -- Y iff Y being up or down could be  explained by
X being down or up respectively; (2)  X ++ Y iff Y
being up or down could be  explained by X being up or
down respectively.

In the case of causes C = a↑,b↑{ } 3 we have two

competing qualitative influences on c: (i) a↑can cause
c↑  while (ii) b↑  can cause c↓ . Lacking quantitative

                                                

3 Terminology: C = a set of causes. FX = a set of effects.   M is a
model whose nodes may take one of several mutually exclusive
values. M' is a model generated from M which has one node for
each combination of M  node/values.   The number of nodes and
average fanout  of M'

  is N and B respectively. All members of C
and FX  are M' nodes. I = model invariants of arity 2 that accept as
input M'  nodes. P = paths from members of FX  to members of C
across M'

  .  W = worlds = subsets of P that do not violate I. Lower
cases italic letters in the text denote node/value assignments; e.g.

x↑ = "the value of x has gone up";  x↓ = "the value of x has gone
down";  xΘ= "the value of x is steady". 

information about the relative size of these competing
forces,  one world must be  created for each possible
value of c ; i.e. c↓,cΘ,c↑{

.
}  [10]. This branching of

behaviours may become computationally intractable and
is an unsolved  problem in qualitative physics [8],
particularly in model with loops (e.g.  xyd in figure 1 or
any model with a control feedback loop). Explanations
with loops (e.g a went up, then later it went down, then
it went up again) are only required for time-variant
behaviour. The C and FX sets from HT1 did not mention
time and so HT1 could ban loops from its explanations
(heuristic #1). As another technique for reducing the
search space across indeterminate models, HT1 also
restricted its processing to  explanations of known effects
resulting from known causes (heuristic #2). We adopt
these two heuristics since we will later demonstrate that
EA is fundamentally a slow process.

ALGORITHM 2: Generate all possible non-cyclic
behaviours from a (possibly cyclic) model M  that  (i)
result from known causes C; and (ii) includes some
subset of the effects we want to explain FX. Check that
known behaviour can be found amongst the possible
behaviours. If not, then the model is faulty.

Algorithm 2 contains a bug. Returning to figure 1,
consider the case where the effects FX ={d ,e ,f } and
causes C ={a ,b }.  Non-cyclic pathways linking FX to
C are:

P1 = a↑, x↑, y↑,d ↑{ } P2 = a↑,c↑,g↑,d ↑{ }
P3 = a↑,c↑,g↑,e↑{ } P4 = b↑,c↓,g↓, f ↓{ }

P5 = b↑, f ↓{ }
Note that P1…P5  have to make assumptions about node
values that do not exist in FX or C (e.g. b,g,x, and y).
While we can find explanations of all of FX,  some of
the explanations use inconsistent assumptions. For
example, in a domain of measured continuous variables, c
and g can’t be both up and down in the same scenario.
P2, P3, and P4 explain all of E  but only in the
impossible situation that c and g go up and down
simultaneously. Assumptions that contradict
assumptions in other paths are called controversial.

Algorithm 3 fixes this bug by insisting that the generated
explanations are internally consistent.

ALGORITHM 3:  Generate all possible non-cyclic
behaviours from a (possibly cyclic) model M  that  (i)
result from known causes C; and (ii) includes some
subset of the effects we want to explain FX. Divide these
explanations into "worlds": sets of explanatory paths
which do not violate domain invariants, I.  Now see if
the known behaviour can be found amongst the possible
behaviour subsets. If not, then the model is faulty.



When paths are grouped into worlds, these groups are
defined in terms of the base assumptions; i.e. the highest
controversial assumption in each path. For P1…P5
above, we could explore different worlds for each
combination of c↑,c↓{

.
}& g↑,g↓{ } . However, since g is

fully dependant on c, g will always have the same state as
c and we can ignore g  exploring worlds4. We therefore
have 3 worlds containing those paths that are compatible
with c↑ , c↓ , and with no value for c.  That is:
W0 = P1, P5{ } 5, W1=W0 + P2 , P3{ } , W2 = W0 + P4{ } .

The cover of a world is the number of effects in it:
cover(W0)= d↑, f ↓ = 2 ; cover(W1)= d↑,e↑, f ↓ = 3; and

cover(W2)= d↑, f ↓ = 2 . We choose to believe the W1

base assumptions since this permits explanations of the
most number of effects. In effect, algorithm 3 has
selected a subset of figure 1 (shown in figure 2).
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 Figure 2: The subset of figure 1 selected by algorithm
3 that explains  the most effects FX ={d ,e ,f }  given
causes

 
C ={a ,b } .  Note while figure 1 condones

inferences between B & C, G & F,  and D & X ,
algorithm 3 has elected not to use these connections.

Algorithm 3 cannot be viewed in terms of classical
deduction which demands that if the rule x if y exists,
then in every world where x is true, y is also true [22].
Algorithm 3 is abductive: from a space of possible
inferences supplied by the user, a subset has been selected
according to some criteria in order to fulfil a certain task
(in the case of QMOD: maximal cover of a set of effects).
Indeed, if re-write algorithm 3 in terms of its equivalent
logic, we arrive at the formal definitions of abduction as
proposed by [5, 21, 27] (see 4.2 of algorithm 4).

ALGORITHM 4 (exhaustive abduction): 4.1) Partially
evaluate a FOPC (possibly cyclic) theory M  w.r.t.. its
inference engine to generate M ', a finite propositional
(possibly cyclic) with no negation. 4.2) (abduction)
Compute all the non-cyclic models  M '' that satisfy (i)

                                                

4 This approach was inspired by the minimal environment labels of
the ATMS [4]. We differ from the ATMS in that we only compute
labels for propositions on paths between causes and effects.

5 W0 denotes the empty set base assumptions world; i.e the world
with no controversial assumptions.

M '' M '; (ii) M '' & C (FX1 FX ; (ii)¬( M '' &
C false)  (i.e. does not violate I); and (iii) is maximal
(i.e. is not a subset of another M '' that satisfies (i) and
(ii)). 4.3) Pass all the generated  M '' models to an
assessment operator BEST.  If the BEST explanations do
not completely cover FX, then the model is faulty.

Algorithm 4 partially evaluates M to generate M' since
our current implementation  (HT4) uses bit-strings to
optimise its internal processing and it assigns one bit to
each possible state of each M  node (which would be
distinct M'  nodes). For example, figure 3 shows the M '

generated from M . In effect, M'  is the search space tacit
in M .  M'  must be finite since (i) HT4 will search for
all pathways from effects back to causes and (ii) if M'  is
infinite, then this search will never terminate. 
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Figure 3: M' generated from the M of figure 1
assuming that (i) M node can have one of three values:
↑(up), ↓(down,) or  Θ (steady); (ii) the conjunction of an
up and down can explain a steady; (iii) no change can be
explained in terms of a steady (i.e. steady nodes have no
children). And-nodes are denoted "&"; for example,
a↑& b↑ → cΘ . All other nodes are or-nodes.  Steady
nodes that cannot be explained are shown bottom-left.

Table 2 shows how N and B can vary between M  and M '

models in the neuroendocrinological domain. Note that N
increases by a very large percent (due to the addition of
the and-nodes required for explaining steadies) while the B
increase is much smaller.



N B
Model M M ' ∆N M M ' ∆B

Figure 1 9 35 389% 1.2 1.26 105%
HT1 80 554 692% 1.7 2.25 130%

Table 2: Changes in size (N) and average fanout (B)
between M and M'  models from the
neuroendocrinological domains. Figure 3 shows the M '

generated from the M of  Figure 1.

How large are the N and B changes resulting from the M
to M'  translation of a propositional rule-base?   One node
must be created for every  literal and its negation.
However, given that non-monotonic reasoning is not
widely used in commercial practice (e.g. the domains
surveyed in Table 1), then only the negated literals inside
nested disjunctions and negations in rule premises would
be used. For example,  the M  to M' translation of   if (a
and not (b and c)) or d  then e is shown in figure 4.

 a=true
 a=false

 b=true
 b=false

 c=true
 c=false

 d=true
 d=false

 e=true

 e=falseor &

Figure 4: M' for the M  propositional  model  for  if (a
and not (b and c)) or d  then e. Note the isolated negated
literals for  a, d &  e.

We can now define QMOD-style validation.

ALGORITHM 5 (QMOD): Call algorithm 4. Use the
following BEST operator. Set MAX_COVER to the
largest size of  FX1 in any M '' .  Return all M '' models
with MAX_COVER. The EXPLAINED effects are the
union of the FX1 of these M'' with maximum cover. If
|EXPLAINED| <> | FX|, then the model is faulted.

That is, a model fails QMOD-style validation if after
making every assumption we could to explain the most
number of effects, there remains some inexplicable
effects. While QMOD-BEST seems weak when the cover
of the worlds are nearly the same, it is more reasonable
when the coverages are more divergent. For example, in
the case where 100 effects can be explained in Wx and
only one effect can be explained in Wy, then QMOD
reports a failure to explain the single effect in Wy. We
justify the use of this definition of BEST as follows. In
terms of theory repair, starting with a partially useful
incorrect theory is better than starting with nothing
(theory repair in this domain is discussed in [15, 16]). 

The implementation of an efficient algorithm 5 is non-
trivial. HT1 took 2 days to execute 24 EAs. HT2 & HT3
used a basic chronological backtracking approach (i.e. no
memoing) that only terminated for very small models.

Basic chronological backtracking has the disadvantage
that any feature of the space learnt by the search
algorithm is forgotten when backtracking on failure  [4,
14]. The current implementation, HT4 learns and caches
as much as it can about the search space as it executes.
The data required to switch between worlds is also cached
so context switching does not require extensive further
computation. Also, bit-strings are used to optimise set
processing.  For more details, see [17].
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One pre-experimental pessimistic prediction about EA
would be that any behaviour can be generated from a
search through indeterminate models. If so, then the
validation power of EA would be zero since it would
"verify" every model given to it. This is the Pendrith
limit  to EA validation (named after the doctoral student
who first succinctly articulated it).

Another pessimistic prediction is that EA validation
would be too slow for real-world sized models. EA uses
abduction, and abduction is known to be NP-hard [1, 27];
i.e. very likely to be computational intractable in the
worst-case. An unfortunate feature of abduction is that
this worst-case behaviour is often the usual case: most
known abductive inference engines exhibit exponential
runtimes for real-world inputs, even for sophisticated
algorithms. Hence, many of the articles in [20] are
concerned with heuristic optimisations of abduction.
Eshghi report a class of polynomial-time abductive
inference problems, but this class of problems require a
non-cyclic background theory [5]. Bylander reports
techniques for tractable abduction [1], but many of these
techniques (e.g. rule-out knowledge to cull much of the
search space) are not applicable to arbitrary models
developed in poorly-measured domains (e.g.
neuroendocrinology).

In the case of HT4, the implementation tricks described
above (end of §2) do not address the fundamental
complexity of the EA task. That is, given the under-
specified nature of the models and the exhaustive nature
of the inference, the search cannot be culled at the local
propagation level. The utility of each local inference has
to be assessed by a meta-interpreter using the global
criteria: "will it eventually lead to maximal coverage?".
This global criteria cannot be applied till after all
possible paths are collected (i.e. it cannot be used to cull
the search space).
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The previous sections motivated the EA algorithm and
noted that there were 2 theoretical limits to EA
validation: (1) the Pendrith limit to the critiquing power
of the process; and (2) a runtime limit due to the possibly



intractable nature of the search. We therefore collected
data on how HT4 managed these limits. Two studies were
performed comprising 299 models and 4504 EA runs:

1) The changing model size study:  The HT1 model had
554 nodes in its M' (N=554), an average fanout B of
2.25, and processed 24 EA runs with |C| =1 and
1<=|FX| <= 7. These FX and C size limits were an
artefact of certain implementation decisions made the
QMOD designers; the actual FX and C ranges were
1<= |FX| <= 10 and  1<=|C| <=4. In the changing
model size study, nodes were created/ removed to
produce 94 models with  150<=N<=1250. Links
were added/ deleted to keep the fanout constant at B =
2.25. 1991 EAs for these models were executed for
1<= |FX| <= 10 and  1<=|C| <=4.  EA runs that took
longer than an arbitrary "give-up" time of 5 minutes
were aborted, and that run assigned a time of 5
minutes.

2) The changing fanout study: Again, starting with the
HT1 model, links were added to produce 205 models
with 2 <=B <= 10 and N constant at N=554.  2513
EAs for these models were executed for 1<= |FX| <=
10 and  1<=|C| <=4. 

For each study, two graphs were generated:  average
runtimes and  percentage explainable effects. HT4 was to
be accepted as a practical validation tool if in the range of
2<=B<=7 and 50<=N<=510 (i) the Pendrith limit was not
prohibitive; i.e. the percent explainable was usually less
than 100%; and (ii) the runtimes were acceptable (i.e. less
than some "too-slow" time which we will set to five
minutes).
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Figure 5:  Runtimes from the changing model size N
study and changing fanout  B study.   Note that the
plateau after N=800 is an artefact of the "give-up" time
limit of  5 minutes (300 seconds).

The runtimes shown in figure 5 satisfy our runtime
requirements.  The variance in the data on the changing N
curve prevent a definitive statement regarding the
experimentally observed complexity (i.e. exponential or
otherwise). Experiments continue to confirm/ refute the
exponential nature of HT4's EA inference. 

The changing B result of figure 5 is somewhat
surprising. The pre-experimental intuition was that
runtimes would be exponential on fanout since increasing
fanout in a graph  containing two nodes X and Y
increases exponentially the number of paths between X
and Y.  The observed B increase was therefore
surprisingly small. However, several factors could
counter any increase. (i) Frequent incompatibilities of
nodes on possible paths  would cull the total number of
paths generated (i.e. violations of I cull the search space).
(ii) Adding links around an and-node increases the pre-
conditions to propagation of the search over that and-
node. That is, sometimes adding links adds extra
constraints which restricts the number of possible paths. 
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Figure 6: % effects explainable  from the changing
model size N study and changing fanout  B study. 
Figure 5 shows that after N=800, most of the runs did
not terminate before the "give-up" time of 300 seconds.
Hence, the  changing N curve in this figure drops off
suddenly  after  N=800 .  

Figure 6 demonstrates two interesting features of EA
search. Firstly, after an average fanout of 4, the Pendrith
limit is reached and the model can explain all supplied
behaviours. Secondly, for models below the Pendrith
limit, between 45% to 75% of the effects from 2513 runs
were inexplicable; i.e. EA provides a significant level of
critique.

This B=4 Pendrith limit is less than the Table 1 figures
of fanout in real-world propositional expert systems.
Hence, the Pendrith limit appears to restricts the utility
of EA in that domain. However, Table 3 demonstrates
that for domains which use a non-simple M to M '

translation (e.g. neuroendocrinology) that certain node
types may have a fanout much larger than the average
fanout. The strength of this observation is that, for the
neuroendocrinology domain, M  models are built in terms
of changes; i.e. the domain expert's natural idiom
contains phrases like "if X goes up then  Y goes down".

To assess the impact of the Pendrith limit on modelling,
we should check the average fanout for expert-created M
nodes in the M ' model. Table 4 shows us that at an
average B=4 for the 205 changing fanout models, the



fanout of the expert-created nodes (the changes) was B=9;
i.e. higher than our Table 1 range. We therefore conclude
that the Pendrith limit is not a practical limit to EA in
neuroendocrinology.

Node Type changes steadies ands all
E.G. a↑, a↓ aΘ & a↑, a↓

, aΘ ,&
N = Number of

nodes
18 9 8 35

Σ = Total
number of kids

36 0 8 44

Σ / N =
Average B

2 0 1 1.26

Table 3: Average fanout (B) for different node types in
figure 3. Note that the average total fanout may be
different to the average fan out of different node types.

Node Type changes steadies ands all
Average B 9 0 2.5 4

Table 4: Average fanout (B) for different node types in
the changing fanout study at the Pendrith Limit. Note
that at an average fanout of 4, the fanout of the expert-
created nodes (i.e. the changes) is 9 and therefore greater
than our Table 1 boundaries.7
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We have explored the link between knowledge-base
validation and abductive inference. Validation-as-
abduction has a natural application to any model built in
an abductive domain; e.g. model-based diagnosis   [3];
natural language processing (see multiple examples in
[20]);  explanation generation  [12];  visual pattern
recognition and design  [21, 22]; frame-based reasoning
[25, 26] and case-based reasoning [13]. Even in domains
that are apparently non-abductive (e.g. qualitative
reasoning in neuroendocrinology or deduction in
propositional rule bases), exhaustive abduction neatly
characterises the process of validating that a model can
somehow explain known behaviour.

Two disadvantages with characterising validation-as-
abduction are: (i) slow runtimes and (ii) the multiple-
worlds nature of the inference permitting a possible
explanation of any behaviour. In the studies described
here, we have seen that the runtimes are not unacceptably
slow for the models we see in contemporary practice.
However, after an average fanout of 4, validation-as-
abduction losses its critiquing power.  In practical terms,
this implies a limit of the validation-as-abduction of
some propositional systems.  For domains with a more
complex semantics (e.g. qualitative physics), this

Pendrith limit appears not to be so critical (see the
discussion around table 4).

These conclusions are based on a less-than-optimum
sample size. Our definition of "real-world expert systems"
comes from a single source (see Table 1). All of the 299
models used in our studies were generated from the
internal parameters of a single neuroendocrinological
model. We are sensitive to the criticism that this sample
size is too small to make a general conclusion. However,
we believe that we mutated that model over a sufficiently
wide range to claim that our experimental results have
some generality.

EA is not the first validation algorithm defined using a
multi-worlds logic (see [9, 30] for others). However, to
our knowledge, this is the first time that the limits to
such an algorithm have been experimentally tested using
a large test suite. We note that a lack of readily-available
models need not be a restriction to such testing. Any
number of models and data sets can be artificially
generated using known models/ data sets as a reference
point, then changing the parameters as required.8
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