Understanding Machine Learning for Empirical Software Engineering tim@menzies.us http://menzies.us usa, wvu, csee, ai march 2012 This work is licensed under a Creative Commons Attribution 3.0 Unported License. See http://goo.gl/fki3. ## Do you understand data mining? - Can you map between data miners and business needs? - Can you make them run fast? Scale to large data sets? - Linear, or logLinear, approximations - Random sampling - Can you code them? - in 1,000 LOC (or less)? - Can you take M data mining methods and remix them? - Not M methods - But 2^{M!} Combos - Can you explain them to other people? - Empower them to explore new miners for new domains? - Can you avoid bogus complexity? ## More complex methods aren't making us better - Dejaeger, K.; Verbeke, W.; Martens, D.; Baesens, B.; , "Data Mining Techniques for Software Effort Estimation: A Comparative Study," Software Engineering, IEEE Transactions, doi: 10.1109/TSE. 2011 - Simple, understandable techniques like Ordinary least squares regressions with log transformation of attributes and target perform as well as (or better than) nonlinear techniques. - Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S.; , "A Systematic Review of Fault Prediction Performance in Software Engineering," Software Engineering, IEEE Transactions, doi: 10.1109/TSE.2011.103 - Support Vector Machine (SVM) perform less well. - Models based on C4.5 seem to under-perform if they use imbalanced data. - Models performing comparatively well are relatively simple techniques that are easy to use and well understood.. E.g. Naïve Bayes and Logistic regression ## And we aren't so good at the simpler methods - Data miners (WEKA, R, MATLAB, ...) - Quick and easy to use - Quick and easy to use ... poorly - Hall (2011) : - IEEE TSE pre-prints - Large survey on defect prediction via data mining. - What explain the variance in performance results? - A. How the data is mined (the algorithms)? - B. What data is mined - C. Who does the data mining - Overwhelmingly: - "C" - see Shepperd (2011) - Not enough to use these tools black box - Not enough to poke & pray # More "data mining" and less "algorithm mining" - We do data mining not to study algorithms. - But to study data - Our results should be insights about data, - not trivia about (say) decision tree algorithms - Besides, the thing that most predicts for performance is the data, not the algorithm, - Pedro Domingos and Michael J. Pazzani, On the Optimality of the Simple Bayesian Classifier under Zero-One Loss, Machine Learning, Volume 29, number 2-3, pages 103-130, 1997 Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test splits. "Bayes" is the Bayesian classifier with discretization and "Gauss" is the Bayesian classifier with Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the Bayesian classifier and the corresponding algorithm, using a one-tailed paired t test: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%. | Data Set | Bayes | Gauss | C4.5 | PEBLS | CN2 | Def. | |------------------|----------------|-------------------|-------------------|-----------------------|-------------------|------| | Audiology | 73.0±6.1 | 73.0±6.16 | 72.5±5.86 | 75.8±5.4 ³ | 71.0±5.15 | 21.3 | | Annealing | 95.3±1.2 | 84.3 ± 3.8^{1} | 90.5 ± 2.2^{1} | 98.8 ± 0.8^{1} | 81.2 ± 5.4^{1} | 76.4 | | Breast cancer | 71.6 ± 4.7 | 71.3 ± 4.3^{6} | 70.1 ± 6.8^{5} | 65.6 ± 4.7^{1} | 67.9 ± 7.1^{1} | 67.6 | | Credit | 84.5 ± 1.8 | 78.9 ± 2.5^{1} | 85.9 ± 2.1^{3} | 82.2 ± 1.9^{1} | 82.0 ± 2.2^{1} | 57.4 | | Chess endgames | 88.0 ± 1.4 | 88.0 ± 1.4^{6} | 99.2 ± 0.1^{1} | 96.9 ± 0.7^{1} | 98.1 ± 1.0^{1} | 52.0 | | Diabetes | 74.5 ± 2.4 | 75.2 ± 2.1^{6} | 73.5 ± 3.4^{5} | 71.1 ± 2.4^{1} | 73.8 ± 2.7^{6} | 66.0 | | Echocardiogram | 69.1±5.4 | 73.4 ± 4.9^{1} | 64.7 ± 6.3^{1} | 61.7 ± 6.4^{1} | 68.2 ± 7.2^{6} | 67.8 | | Glass | 61.9 ± 6.2 | 50.6 ± 8.2^{1} | 63.9 ± 8.7^{6} | 62.0 ± 7.4^{6} | 63.8 ± 5.5^{6} | 31.7 | | Heart disease | 81.9 ± 3.4 | 84.1 ± 2.8^{1} | 77.5 ± 4.3^{1} | 78.9 ± 4.0^{1} | 79.7 ± 2.9^3 | 55.0 | | Hepatitis | 85.3±3.7 | 85.2 ± 4.0^{6} | 79.2 ± 4.3^{1} | 79.0 ± 5.1^{1} | 80.3 ± 4.2^{1} | 78.1 | | Horse colic | 80.7 ± 3.7 | 79.3 ± 3.7^{1} | 85.1 ± 3.8^{1} | 75.7 ± 5.0^{1} | 82.5 ± 4.2^{2} | 63.6 | | Hypothyroid | 97.5 ± 0.3 | 97.9 ± 0.4^{1} | 99.1 ± 0.2^{1} | 95.9 ± 0.7^{1} | 98.8 ± 0.4^{1} | 95.3 | | Iris | 93.2±3.5 | 93.9 ± 1.9^{6} | 92.6 ± 2.7^{6} | 93.5 ± 3.0^{6} | 93.3 ± 3.6^{6} | 26.5 | | Labor | 91.3 ± 4.9 | 88.7 ± 10.66 | 78.1 ± 7.9^{1} | 89.7 ± 5.0^{6} | 82.1 ± 6.91 | 65.0 | | Lung cancer | 46.8 ± 13.3 | 46.8 ± 13.3^{6} | 40.9 ± 16.3^{5} | 42.3 ± 17.3^{6} | 38.6 ± 13.5^{3} | 26.8 | | Liver disease | 63.0 ± 3.3 | 54.8 ± 5.5^{1} | 65.9 ± 4.4^{1} | 61.3 ± 4.3^{6} | 65.0 ± 3.8^{3} | 58.1 | | LED | 62.9 ± 6.5 | 62.9 ± 6.5^{6} | 61.2 ± 8.4^{6} | 55.3 ± 6.1^{1} | 58.6 ± 8.1^{2} | 8.0 | | Lymphography | 81.6±5.9 | 81.1 ± 4.8^{6} | 75.0 ± 4.2^{1} | 82.9 ± 5.6^{6} | 78.8 ± 4.9^{3} | 57.3 | | Post-operative | 64.7 ± 6.8 | 67.2 ± 5.0^{3} | 70.0 ± 5.2^{1} | 59.2 ± 8.0^{2} | 60.8 ± 8.2^4 | 71.2 | | Promoters | 87.9 ± 7.0 | 87.9 ± 7.0^{6} | 74.3 ± 7.8^{1} | 91.7 ± 5.9^{3} | 75.9 ± 8.8^{1} | 43.1 | | Primary tumor | 44.2±5.5 | 44.2 ± 5.5^{6} | 35.9 ± 5.8^{1} | 30.9 ± 4.7^{1} | 39.8 ± 5.2^{1} | 24.6 | | Solar flare | 68.5 ± 3.0 | 68.2 ± 3.7^{6} | 70.6 ± 2.9^{1} | 67.6 ± 3.5^{6} | 70.4 ± 3.0^{2} | 25.2 | | Sonar | 69.4 ± 7.6 | 63.0 ± 8.3^{1} | 69.1 ± 7.4^{6} | 73.8 ± 7.4^{1} | 66.2 ± 7.5^{5} | 50.8 | | Soybean | 100.0 ± 0.0 | 100.0 ± 0.0^{6} | 95.0 ± 9.0^{3} | 100.0 ± 0.0^{6} | 96.9 ± 5.9^{3} | 30.0 | | Splice junctions | 95.4 ± 0.6 | 95.4 ± 0.6^{6} | 93.4 ± 0.8^{1} | 94.3 ± 0.5^{1} | 81.5 ± 5.5^{1} | 52.4 | | Voting records | 91.2 ± 1.7 | 91.2 ± 1.7^{6} | 96.3 ± 1.3^{1} | 94.9 ± 1.2^{1} | 95.8 ± 1.6^{1} | 60.5 | | Wine | 96.4 ± 2.2 | 97.8 ± 1.2^{3} | 92.4 ± 5.6^{1} | 97.2 ± 1.8^{6} | 90.8 ± 4.7^{1} | 36.4 | | Zoology | 94.4 ± 4.1 | 94.1 ± 3.8^{6} | 89.6 ± 4.7^{1} | 94.6 ± 4.3^{6} | 90.6 ± 5.0^{1} | 39.4 | ### Data mining = data "carving" - Data is like a block of marble, - waiting for a sculptor (that's you) - to find the shape within - To build a data miner, throw stuff away - Chip away the irrelevancies - To find what lies beneath. ### Understanding data mining for SE - SE information needs: - Uncovering trends in data; - Learning when to raise an alert; - Forecasting the future; - Summarizing the current situation; - Planning; - Modeling; - Benchmarking; - Running what-if queries. - Standard machine learning algorithms: - Clustering, - Dendograms, - Active learning - Multi-objective optimization - Data stream mining, - Anomaly detectors, - Discretization, - Decision-tree learning, - Contrast rule learning, - Bayes classifiers, - Scenario generation and simulation - While the above list of learning algorithms seems very long.. - Once an analyst understand a set of core functionality of ML - Straight-forward to combine and tune and apply these algorithms - to a wide range of software engineering tasks. #### For more information - For answers to these questions: - What software engineering tasks can be helped by data mining? - What kinds of software engineering data can be mined? - How are data mining techniques used in software engineering? - See Tao Xie's excellent Bibliography - "Mining Software Engineering Data" - http://goo.gl/14cAs ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End #### The world is a complex place, right? - If so, then ... - How do dumb apes (like me) managed to gain (some) control over a (seemingly) impossibly complex world? - So few Einsteins, so many Menziess ### Are some details superfluous? ### Why are some details superfluous? N-sphere: the size of the region of similar examples $$V_2 = \pi r^2$$ $V_3 = 4/3 \pi r^3$ $V_n = V_{n-2} * 2 \pi r^2 / n$ - Volume decreases after $n > 2\pi r^2$ - For the unit sphere (r = 1), size is zero after 2 dozen dimensions - Repeated effects can't use many dimensions: else, no supporting evidence - Lofti Zadeh: - As the complexity of a system increase, a threshold is reached beyond which precision and significance become mutually exclusive properties. 13 ### Data mining = data "carving" - Data is like a block of marble, - waiting for a sculptor (that's you) - to find the shape within - To build a data miner, throw stuff away - Chip away the irrelevancies - To find what lies beneath. ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ## So what are "the questions the user cares about"? - Instead of describing data miners as - Classifiers - Association rule learners - Contrast set learners - Clusterers - Etc etc - FIRST ask "what are the information needs of industrial managers?" - Then check how the miners fit the info needs. Information Needs for Software Development Analytics. - Raymond P.L. Buse, Thomas Zimmermann. - Proceedings of the 34th International Conference on Software Engineering (ICSE 2012 SEIP Track) - Zurich, Switzerland, June 2012. - Survey of 100+ developers and managers at Msoft ### The Busemann-9 | | Past | Present | Future | |-----------------------|-----------|----------------|-----------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | Summarize | Overlays | Goals | | Experiment (what-if) | Model | Bench
marks | Simulate | # Is it **sufficient** to automate Busemann-9 with machine learning? - Any sane analyst should - augment these automatic tools - with their own serious domain reflection - No survey is complete. - All surveys have sample biases. - It's a place to start - With some hope that these tools are relevant to something. # Is it <u>necessary</u> to automate Busemann-9 with machine learning? - Before spending months on algorithms... - ... try spending a few days just talking to people ### Are there **better ways** than the Busemann-9 to describe info needs? - Probably - But what? - Question to you: - Got surveys of info needs? - Challenge to me: - Map those needs to data mining tasks. ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End # Design principle #1: look before your leap - Report what is true about the data - Not trivia on how algorithms walk that data - Map the landscape - Reason on each part of map - E.g. IDEA - Unsupervised iterative dichotomization - Cluster, prune - Then generate rules - Different to "leap before you look" - i.e. skew learning by class variable - then study the results - E.g. C4.5, CART, Fayya-Iranni, etc - Supervised iterative dichotomization - E.g. 61% * 300+effort estimation papers - Algorithm tinkering, without end # Design principle #2 "data mining" = "data pruning" #### 1. Dimensionality reduction Fastmap (simple, linear time) #### 2. Row reduction - Cluster via recursive fastmap, - find centroids - IDEA v1.0 - Iterative Dichotomization on Every Attribute #### 3. Column reduction Ignore ranges found in many centroids #### 4. Rule reduction Constrast sets to generate tiny rules ## Preliminaries: Distance between rows - Two rows X,Y have columns col1, col2,... - Some cols are numeric - Some cols are goals (e.g. class variables) - Some rows have missing values - Aha (1991)'s unsupervised distance measure: - function diff (Xc, Yc) - If both missing, - return "1" (max value) - Else If non-numerics: - If one missing, return 1 - Else return Xc == Yc - Else if numeric - normalize each one via (one- min) / (max min) - If none missing return (Xc Yc)² - Else if present < 0.5 return (1 present)² - Else return (present)² ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ## Dimensionality reduction #### • Trick: Dimension of greatest interest is the line of most variance # Recursive dimensionality reduction = clustering ### But aren't I adding dimensions? - No - Consider a data set with 40 columns - Dimensionality = 40 + 1 class variable - At each level of the recursive Fastmap - Those 40 mapped to one ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End # Row Pruning via Clustering: keep on M rows per leaf #### Selection strategy - M=1. Use mean and mode of each feature - M = 2. Just use West, East (not recommended) - M ≥ 1. Select points equi-distance along East-West line • etc ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ### Column pruning via Entropy Sort columns by the probability they select for fewer clusters Delete the more ambiguous ones | analyst capability | | | | | | |--------------------|---|----|--|--|--| | 2 | 3 | c1 | | | | | 3 | 3 | c1 | | | | | 3 | 4 | c1 | | | | | 3 | 5 | c1 | | | | | 3 | 5 | c1 | | | | | 2 | 3 | c2 | | | | | 2 | 4 | c2 | | | | | 2 | 4 | c2 | | | | | 3 | 5 | c2 | | | | | capability | cluster | sum(r* sum(-p*log(p))) | |------------|---------|---------------------------------| | 2 | c1 | | | | | 0.44 * | | 2 | c2 | (-1/4*log(1/4) - 3/4*log(3/4)) | | 2 | c2 | = 0.107 | | 2 | c2 | | | | | | | 3 | c1 | | | | | 0.56 * | | 3 | c1 | (-1/5*log(1/5) - 4/5 *log(4/5)) | | 3 | c1 | = 0.132 | | 3 | c1 | | | 3 | c2 | entropy= $0.107+0.132 = 0.239$ | | Prog. capability | leaf cluster | entropy=
sum(r * sum(-p*log(p))) | |------------------|--------------|--------------------------------------| | • | | 0.33* | | 3 | c1 | (-1/3*log(1/3) -2/3*log(2/3)) | | 3 | c1 | = 0.091 | | 3 | c2 | | | | | | | | | 0.33* | | 4 | c1 | $(-1/3*\log(1/3) - 2/3*\log(2/3))$ | | 4 | c2 | = 0.091 | | 4 | c2 | | | | | | | | | 0.33* | | 5 | c1 | (-1/3*log(1/3) -2/3*log(2/3)) | | 5 | c1 | = 0.091 | | 5 | c2 | entropy = $0.091*3 = 0.273$ | Input: 93 rows * 24 cols Output: 13 rows * 11 cols | Cluster | effort a | арех | plex | pmat | rely | data | cplx | time | stor | kloc | асар | рсар | |---------|----------|------|------|------|------|------|------|------|------|-------|------|------| | [113] | 38 | 3 | 2 | 3 | 4 | 3 | 5 | 5 | 5 | 6.2 | 3 | 3 | | [112] | 37 | 3 | 3 | 4 | 4 | 2 | 4 | 3 | 3 | 8.1 | 3 | 3 | | [110] | 206 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 28.25 | 3 | 3 | | [120] | 300 | 5 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 28.3 | 5 | 5 | | [115] | 156 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 30.75 | 3 | 3 | | [121] | 192 | 4 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 35.5 | 5 | 3 | | [118] | 290 | 4 | 4 | 2 | 4 | 4 | 4 | 3 | 5 | 43.5 | 4 | 4 | | [116] | 166 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 66.25 | 4 | 3 | | [125] | 1645 | 4 | 4 | 4 | 5 | 4 | 5 | 6 | 6 | 70 | 4 | 4 | | [119] | 300 | 4 | 4 | 2 | 3 | 3 | 4 | 3 | 5 | 77.5 | 4 | 4 | | [114] | 304 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 84.5 | 4 | 4 | | [123] | 342 | 5 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 125 | 4 | 5 | | [122] | 144 | 4 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 131 | 4 | 4 | ### Overlay | | Past | Present | Future | |-----------------------|------|---------|--------| | Exploration (find) | | | | | Analysis
(explain) | | Overlay | | | Experiment (what-if) | | | | - For each cluster - Print the distributions of features of instances in that cluster #### Goals & Benchmarks | | Past | Present | Future | |-----------------------|------|-----------|--------| | Exploration (find) | | | | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | | - For each cluster - Benchmarks: compare its distributions to industrial standards - Goals: compare its distributions to desired outcomes | Cluste | r effort | apex | plex | pmat | rely | data | cplx | time | stor | kloc | асар | рсар | |--------|----------|------|------|------|------|------|------|------|------|-------|------|------| | [113] | 38 | 3 | 2 | 3 | 4 | 3 | 5 | 5 | 5 | 6.2 | 3 | 3 | | [112] | 37 | 3 | 3 | 4 | 4 | 2 | 4 | 3 | 3 | 8.1 | 3 | 3 | | [110] | 206 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 28.25 | 3 | 3 | | [120] | 300 | 5 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 28.3 | 5 | 5 | | [115] | 156 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 30.75 | 3 | 3 | | [121] | 192 | 4 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 35.5 | 5 | 3 | | [118] | 290 | 4 | 4 | 2 | 4 | 4 | 4 | 3 | 5 | 43.5 | 4 | 4 | | [116] | 166 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 66.25 | 4 | 3 | | [125] | 1645 | 4 | 4 | 4 | 5 | 4 | 5 | 6 | 6 | 70 | 4 | 4 | | [119] | 300 | 4 | 4 | 2 | 3 | 3 | 4 | 3 | 5 | 77.5 | 4 | 4 | | [114] | 304 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 84.5 | 4 | 4 | | [123] | 342 | 5 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 125 | 4 | 5 | | [122] | 144 | 4 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 131 | 4 | 4 | #### In numerous experiments: - Good predictions via - a simple k=1 nearest neighbor in this reduced space #### **Forecasts** | | Past | Present | Future | |-----------------------|------|----------------|-----------| | Exploration (find) | | | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Bench
marks | | Also, to get expectations for non-class variables, find nearest cluster and look at the column distributions of the M rows in that cluster ### BTW, forecasts takes linear time - Pre-processor : linear time - Generates tree of clusters - At each level: O(2N) search for East-West - At each level: find the median of the xvalues on the East-West axis O(N) - After the pre-processor - O(log(N)) to find your leaf cluster - If leaves have M=N^{0.5} rows, then O(N^{0.5}) to find nearest nearest neighbors - If leaves condensed to M=1 rows, then O(1) to find nearest nearest neighbors #### **Alerts** | | Past | Present | Future | |-----------------------|------|---------------|-----------| | Exploration (find) | | Alerts
(1) | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | | - IDEA's fast mapping recursively finds EAST-WEST point - Shows the extreme points of what data found too date - Anomaly detection: - report new data that falls outside these points ### Alerts (again) | | Past | Present | Future | |-----------------------|------|---------------|-----------| | Exploration (find) | | Alerts
(2) | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | | - Label data "old, new" - Apply IDEA, ignoring labels. - Look for clusters where things are mostly "new" ### **Trends** | | Past | Present | Future | |-----------------------|--------|-----------|-----------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | | - Time stamp data "jan, feb, mar, apr,..." - Apply IDEA, ignoring labels. - Look for clusters where one month predominates or is absent ### Simulate | | Past | Present | Future | |-----------------------|--------|-----------|-----------------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | Simulate
(1) | - Clusters map out the space of options - So to "simulate" just report all the forecasts in different clusters # Simulate (and this time, we mean it) | | Past | Present | Future | |-----------------------|--------|-----------|-----------------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | | Overlay | Goals | | Experiment (what-if) | | Benchmark | Simulate
(2) | - IDEA's fast mapping recursively finds EAST-WEST point - To replay old data (e.g. during regression testing) sample within EAST-WEST - When looking for new simulations, step outside the old EAST-WEST boundaries ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ### Intra-cluster contrast sets: Very small rules, found in logLinear time - Divide each cluster - best = one-third lowest effort; - rest = others - b = f(range|best) / 0.33*n - r = f(range|rest) / 0.66*n - Rank via b²/(b+r): best ranges more frequent in best than rest - Search over ranked ranges 1..n, - Use ranges "1..i" (i ≤ n) where no "i+1" isbetter than "I" | | ef | fort | | | | defect | | | | |--|------------------|-----------------------------------|--|---|---------------------------------|--|------------|--|---| | duster | NasaCoc | china | Jucene2.4 | xalan2.6 | jedit4.0 | velocity1.6 | synapsel.2 | tomcat | xerces1.4 | | global | kloc=1 | afp=1 | rfc=2 | loc=1 | rfc=2 | cam=7 | amc=1 | loc=2 | cbo=1 | | global
C0
C1
C2
C3
C4
C5
C6
C7 | rely=n
prec=h | added=4
deleted=1
deleted=1 | amc=7
ca=1
dam=5
mfa=1
moa=1 | amc=1
cam=2
cam=3
dit=2 or 4
<u>loc=1</u>
loc =1 or 2
moa=1 | ic=7
noc=1
amc=6
noc=1 | noc=1
dam=1 or 5
avg_cc=4
moa=1 | dit=4 | cbm=1
dam=1
noc=1
rfc=5
lcom3=5
max_cc=1
cbm=1 | dit=1
dam=1
ca=1 or 7
<u>cbo=1</u> | ### Summary | | Past | Present | Future | |-----------------------|---------|-----------|-----------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | Summary | Overlay | Goals | | Experiment (what-if) | | Benchmark | Simulate | - Intra-cluster contrast sets - Divide each cluster into best and worst results - Find what is difference about best and rest ### Inter-cluster contrast sets | Cluster | effort ap | ex | plex | pmat | rely | data | cplx | time | stor | kloc | асар | рсар | |---------|-----------|----|------|------|------|------|------|------|------|-------|------|------| | [113] | 38 | 3 | 2 | 3 | 4 | 3 | 5 | 5 | 5 | 6.2 | . 3 | 3 | | [112] | 37 | 3 | 3 | 4 | 4 | 2 | 4 | 3 | 3 | 8.1 | 3 | 3 | | [110] | 206 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 28.25 | 3 | 3 | | [120] | 300 | 5 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 28.3 | 5 | 5 | | [115] | 156 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 30.75 | 3 | 3 | | [121] | 192 | 4 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 35.5 | 5 | 3 | | [118] | 290 | 4 | 4 | 2 | 4 | 4 | 4 | 3 | 5 | 43.5 | 4 | 4 | | [116] | 166 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 66.25 | 4 | 3 | | [125] | 1645 | 4 | 4 | 4 | 5 | 4 | 5 | 6 | 6 | 70 | 4 | 4 | | [119] | 300 | 4 | 4 | 2 | 3 | 3 | 4 | 3 | 5 | 77.5 | 4 | 4 | | [114] | 304 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 84.5 | 4 | 4 | | [123] | 342 | 5 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 125 | 4 | 5 | | [122] | 144 | 4 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 131 | 4 | 4 | - What if you were building projects like cluster 121? - Lets look at all projects with similar klocs ### Inter-cluster contrast sets Q: What should worry you the most? | Cluster | effort ap | ex | plex | pmat | rely | data | cplx | time | stor | kloc | acap | рсар | |---------|-----------|----|------|------|------|------|------|------|------|-------|------|------| | [110] | 206 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 28.25 | 3 | 3 | | [120] | 300 | 5 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 28.3 | 5 | 5 | | [115] | 156 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 30.75 | 3 | 3 | | [121] | 192 | 4 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 35.5 | 5 | 3 | | [118] | 290 | 4 | 4 | 2 | 4 | 4 | 4 | 3 | 5 | 43.5 | 4 | 4 | A: Contrast with closest row with worst effort - What is being said here? - With a little more apex (application experience), highly capably programmers (pcap) will get very clever and greatly increase development time. - Management question: does this code deserve such cleverness? ### What-if | | Past | Present | Future | |-----------------------|---------|-----------|-----------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | Summary | Overlay | Goals | | Experiment (what-if) | What-if | Benchmark | Simulate | • What-if = inter-cluster contrast sets. | Cluster | effort | apex | plex | pmat | rely | data | cplx | time | stor | kloc | асар | рсар | |----------|--------|------|------|------|------|------|------|------|------|------|------|------| | [120] | 300 | 5 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 28.3 | 5 | 5 | | [121] | 192 | 4 | 2 | 4 | 3 | 5 | 4 | 5 | 5 | 35.5 | 5 | 3 | | Contrast | +108 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -7.2 | 0 | +2 | | | Past | Present | Future | |-----------------------|---------|-----------|-----------| | Exploration (find) | Trends | Alerts | Forecasts | | Analysis
(explain) | Summary | Overlay | Goals | | Experiment (what-if) | What-if | Benchmark | Simulate | ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End # Is it *insightful* to use the Busemann-9 to discuss machine learning? Insightful, and humbling (what-if) **Present Past Future Exploration Trends** Alerts **Forecasts** (find) **Analysis** Summarize **Overlays** Goals (explain) **Experiment** Model Bench Simulate marks oops: most ML evaluated on hold-out sets (to predict future performance) BUT: 2/3rs of these needs are about prior and current performance # Simulation and Multi-objective optimization - Speed up multi-objective optimization - Ostrouchov (2005): Fastmap's East-West are the vertices of the convex hull - Menzies (2013): Prune all except the non-dominated East-West values - For a GA, use these as parents for next generation - Work in progress # Working memory for active learning - Unsupervised discretization - Ask for class labels for medians of each each leaf cluster - Effective conclusions after a small number of labels # Working memory for incremental data mining - Rows at each leaf - a sample of things seen so far - Read (say) 1000 rows - Cluster, keeping (say) 20 rows at random on each leaf - Read one more row - If it falls to an existing leaf, replace at random anything - If it falls outside the east-west pairs, raise an anomaly alert. - If we get too many anomalies - Re-cluster using leafcontents & east-west pairs& anomalies # Learn local lessons; eschew trite generalities - Standard procedure: remove outliers - 10 to 30% of rows - But what it its all outliers? | | ef | fort | | | | defect | | | | |--|------------------|-----------------------------------|--|---|---------------------------------|--|------------|--|---| | duster | NasaCoc | china | lucene2.4 | xalan2.6 | jedit4.0 | velocity 1.6 | synapsel.2 | tomcat | xerces1.4 | | global | kloc=1 | afp=1 | rfc=2 | loc=1 | rfc=2 | cam=7 | amc=1 | loc=2 | cbo=1 | | Global
C0
C1
C2
C3
C4
C5
C6
C7 | rely=n
prec=h | added=4
deleted=1
deleted=1 | amc=7
ca=1
dam=5
mfa=1
moa=1 | amc=1
cam=2
cam=3
dit=2 or 4
<u>loc=1</u>
loc =1 or 2
moa=1 | ic=7
noc=1
amc=6
noc=1 | noc=1
dam=1 or 5
avg_cc=1
moa=1 | dit=4 | cbm=1
dam=1
noc=1
rfc=5
lcom3=5
max_cc=1
cbm=1 | dit=1
dam=1
ca=1 or 7
<u>cbo=1</u> | - Menzies (2011) - Let all data be one "cluster" and apply the same single-range learner - What is true globally is rarely true for specific projects - Same conclusion as Posnett (2011) and Hassan (2012) #### Aside: for educators - Top-down hierarchical clustering (a.k.a. divisive clustering) - Find a way to split the data, then split the splits | Algorithm | Split | Next splitter | |-----------|----------------------------------|----------------------------| | IDEA | Median of Fastmap's longest axis | longest axis of each split | # Fastmap = an approximation to PCA's first component - Fastmap finds an approximation to the eigenvectors of a matrix - FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms - John C. Platt, Microsoft Research, 2005, - http://goo.gl/DoMzg #### Aside: for educators - Top-down hierarchical clustering (a.k.a. divisive clustering) - Find a way to split the data, then split the splits | Algorithm | Split | Next splitter | |--|--|---| | IDEA | Median of Fastmap's longest axis | longest axis of each split | | PDDP (principle direction divisive partitioning) | ?median of principle component | principle components of each split | | KD-trees | At median | anything else | | Fayyad-Irani
discretiztion | To minimizes class attribute entropy | same attribute | | (C4.5, CART) | To minimizes class
attribute
(entropy, variance) | attribute that produces the best splits | ### Challenge questions How is IDEA same and different to Nbtrees? How to implement M5' using IDEA? ### Roadmap - Introduction - Throwing stuff away - Business info needs - IDEA - Dimensionality reduction - Row reduction - Column reduction - Rule reduction - Sanity Check - The End ### Data mining = data carving - Data is like a block of marble, - waiting for a sculptor (that's you) - to find the shape within - Chipping away the irrelevancies - To find what lies beneath - IDEA: - Dimensionality reduction via Fastmap - Row reduction via clustering - Column reduction via cluster reflection - Succinct reporting via contrast sets ### Throwing away stuff is a good idea #### Lofti Zadeh: As the complexity of a system increase, a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive properties. The greater the detail, the fewer the supporting examples - Data mining is data carving. "Throwing stuff away" - Is a model of human cognition - Is an engineering principle - Cures the curse of complexity ### IDEA v1.0 (my new data carver) - Mostly, it just throws away stuff - A framework where we can meet many mining methods. - A mapping of data miners to business information needs. - LogLinear time learning: suitable for rapid experimentation - A fruitful error? - So many paths not taken, begging to be visited #### Vilfredo Pareto: - "Give me the fruitful error any time, full of seeds, bursting with its own corrections." - "You can keep your sterile truth for yourself." #### Other comments - Start studying the data - The field is called "data mining" - Yet most folks do "algorithm mining" - Look before you leap - Map topology of data - Restrict learning to regions in the topology - More to business than classification, regression, etc. - These are "how", not "what" - Insightful to start with biz needs - Stop studying algorithms - Start studying connection between algorithms - Simplicity matters - K.I.S.S. - What can you do in linear time? - Then experiment with elaborations