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The use of ternary diagrams to represent normalised call graph directions permit
the succinct visualisations of object-oriented (OO) systems. Tmportant features of
such diagrams include (i) the ability to compare different object-oriented applica-
tions; and (ii) the potential ability to make value judgments about partially com-
pleted systems. Ternary diagrams also permit an overview of very large graphs.
For example, we present here a visualisation of five OO applications comprising
1,643 vertices and 194,451 edges.

1 Introduction

A call graph 1s a directed graph whose vertices represent basic data values
and whose edges represent how those basic data values are passed to sub-
routines. An anonymous call graph is a call graph where all the vertices have
been changed to anonymous variables (e.g. class0023) and the source of the call
graph is not recorded with the graph. Call graphs offer a uniform view for a
variety of programming systems. For example, the dependency network within
propositional expert systems, the patterns of functions calls in a procedural
program, or OO systems can all be viewed as call graphs. If we can develop
methods for making value judgments about software systems based on their call
graphs, then we will have a widely applicable software engineering technique.

Many systems, particularly those which present relational information, in-
clude an information visualization function. Examples include CASE tools '3,
idea organizing systems '8, reverse engineering systems'? and software design
systems . Such systems have motivated a great deal of research on algorithms
and systems for visualizing relational information (see the survey? for over 250
references). In this paper, we focus on call graphs from OO systems.

The problem with visualising call graphs is that they can be very large
(e.g. thousands of vertices and hundreds of thousands of edges). Classical
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graph models tend to become insufficient for visualising graphs this size. We
are limited either by the size of a window, or by the number of pixels available
to represent an entire large graph 23. Some more powerful graph formalisms
for representing information have been introduced, e.g. hypergraphs 4, com-
pound digraphs ??, cigraphs '*, higraphs ', and clustered graphs 78. These
graph types propose various ways of summarizing or hiding information via
recursive grouping of vertices. The problem of automatically drawing these
types of graphs appears difficult. To date only a few algorithms have been
proposed 7:8:22,20,

Call graphs (in the general case) are large digraphs, without a meaning-
ful way to determine a recursive grouping structure. Rather than displaying
all the details of such large graphs, we have sought a summary visualisation
which permits an overview of the entire application. We call this summary
representation ternary diagrams.

Section 2 describes OO call graphs and the problems we have visualising
them. Section 3 describes our novel visualisation technique. Using our tern-
ary diagrams, we can visualise a call graph with thousands of vertices and
hundreds of thousands of edges. Section 4 describes our experimental results.
Conclusions and directions for future work are discussed in Section 5.

2 0O Call Graphs

For OO systems, we define a call graph vertex to be a class. Each method ]\/[Jz

of a class C" contains:

o References to instance variables I, that are either instance variables
defined in C* or its parent classes.

o Calls to methods defined in some class X.

We add to our call graphs an edge for each such call and reference.
In terms of software engineering metrics research, call graphs have certain
useful properties:

e Call graphs can be generated by automatic tools; i.e. they require little
effort on the part of an organisation to generate them.

e We have argued previously for more experimentation in software engin-
eering research 7. One pragmatic restriction to such experimentation is
that most software development takes place behind closed (and probably
locked) doors. Organisations are reluctant to publish the details of their
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work. The time taken to prepare a publication may be better spent on de-
veloping more software. Further, such publications may give competitors
hints regarding how to improve their market share. Hence, we propose
that organisations share anonymous call graphs. Organisations can place
such anonymous call graphs in the public domain, without compromising
their commercial standing.

There are two practical issues with using call graphs. Firstly, the class
X of the methods that are called by method MJ’ must be computed. This is
called type inferencing. Using parsing tools, type inferencing in strongly-typed
languages (e.g. Eiffel, C++) is a relatively simple matter since the type can
be inferred from the type declarations for the variables and parameters used
by the methods. In un-typed languages (e.g. Smalltalk), no such type clues
can be found in the source code. For such languages, heuristic type inferencing
is required. While sophisticated schemes exist for detailed type inferencing
212 we have found that a simple “brute-force” approach suffices. Qur butterfly
heuristic 12 relies on certain Smalltalk-specific methods that, return the list of
method names used in a method. The butterfly algorithm:

e Collects lists of method names that are only defined in one class. Such
unique names can be used to quickly determine the class type X for the
method calls to the uniquely named methods.

e Parses for the special special Smalltalk variables self and super in order
to detect calls back into the current hierarchy.

e Uses a hand-built library of commonly-used method names to decide
where ambiguous edges points to ?.

o Assigns the class type X for any remaining unresolved calls heuristically
using the distributions computed from the above techniques.

Experimentally, we cannot detect any statistical differences between such auto-
matically generated call graphs and call graphs built manually by programmers
reading the code.

The second, previously unresolved, issue with call graphs is visualising
them. Such graphs can be very large. For example:

e In one off-the-shelf Smalltalk system, there were 216 classes whose mes-
sages called 18,614 other messages (i.e. at least 18,614 edges in the call

graph).

%For example, any call to “*”

is taken to be a call to the most general numeric class
“Number”; all calls to conditions (e.g. “ifTrue:”, “ifFalse:”) are taken to be a call to the

most general conditional class “Boolean”.



e In the studies presented below, we are working with a call graph with

1,643 classes/vertices and 194,451 calls/edges.
The rest of this paper explores the use of ternary diagrams as a visualisation
technique for call graphs.
3 Ternary Diagrams

3.1 Call Graph Fdge Categories

There is a directed edge in the call graph for each method call and instance
variable reference. The in-coming edges can be in one of six categories:

1. I, (local variable reference): A method references an instance variable
defined in its own class.

2. P, (parent variable reference): A method references an instance variables
defined in a superclass.

3. E, (external variable reference): A method references an instance variable
defined in another hierarchy via a get method. A get method is a simple
accessor that only returns the value of an instance variable.

4. I, (internal method call): A method calls a method in its own class.

5. Pp, (parental method call): A method calls a method in one of its super-
classes.

6. En, (external method call): A method calls a method in another hierarchy.

Our analysis ignores out-going edges as well as a class calling a method or
referencing a variable in a descendant class. Our intuition was that:

e The in-coming edges give the same information as the out-going edges;

e Calls down the hierarchy are a rare construct.

Elsewhere, we have experimentally confirmed these intuitions 5.
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3.2 Problems with Finding External Variable References

Categories I, and P, are simple to compute within a hierarchy (a parser
need only search for the instance variable name string). The situation is much
more complicated, however, when we consider external variable references. If
we could recognise get methods, then we could distinguish external method
calls into (i) “real” method calls and (ii) “get” calls. However, it is hard to
automatically recognise a get method. A common construct is to extend a get
method such that if a variable is not found, it is initialised. Is this still a get
method? Or is it a “real” method call?

Because of this problem we reduce the number of call graph edge categories
to three, and consider the following values:

1. I =|I,UL,]| - The number of Internal method calls and instance variable
references.

2. P = |P, U P,,| - The number of Parental method calls and instance
variable references.

3. E = |E, UE,,| - The number of Ezxternal method calls and instance
variable references.

We combine categories this way to avoid the following potential problem: If
we ignore get methods that access instance variables defined in other hierarch-
ies, are we adding an asymmetry into our analysis(i.e. we measure references
to local and parent variables, but ignore external variables)?

This is a complex issue which, for the moment, we will defer.

3.3 Normalised Call Patterns

We normalise I, P, and E by expressing them as ratios of the total number of
calls. Once normalised: 7+ P + F = 1. We can visualise these normalised
call patterns using ternary diagrams, a well-known technique in Chemistry.
Consider Figure 1. As we move from (e.g.) P = 1to P = 0, we are moving
from the point where all the call graph directions are to parent classes (and
E = I = 0) towards the point where none of the call directions are to parent
classes. A perpendicular to this line at z is the space of all numbers with P = z.
To locate the triple < i,e,p > on the ternary diagram, we find the intersection
cof the perpendiculars to the points I =i, E=e€, P = p.

Suppose an application APP, contains N classes. For each class C" €
APP,, we can compute < iy, €y, Py >. Once this is known, we can compute
the mean < ¢/, ¢’,p’ >, standard deviation < i,,e,,p, > and standard error
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Figure 1: Locating the point < 7,e,p > in a ternary diagram

=1

E=1

“P=1

of the mean < iy, ey,p, >° for APP,. We call < i’ ¢’ p' > the centroid ¢,
for APP,. Let max, be the maximum ofi,, e,, p,. We can then visualise the
N classes of APP, as follows. We draw the centroid ¢, =< #,¢/,p’ > on a
ternary diagram as a circle whose radius is max, and whose centre is ¢;. For

example, in Figure 2 we see that max, = % = 0.05.

Figure 2: Displaying a centroid plus its associated standard error
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When viewing ternary diagrams, it is useful to add tenths lines to assist in
reading off the position of a point. For example, in Figure 3, we see a centroid
at < 0.4,0.45,0.15 > with max, of 0.05.

We can contrast numerous applications by drawing on the same diagram
the centroids and max,. In Figure 4, we see three applications, labeled APP,

bRecall that ¢ = ]\‘;_1 .




Figure 3: ¢ =< 0.4,0.45,0.15 >, maxs = 0.05
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Figure 4: Comparing 3 applications
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APP5, APP3. Looking at the diagram, we can say that:

o APP; has the smallest max,. APP; appears to make little use of inher-
ited features or services defined in other hierarchies (i.e it makes most of

its calls to itself).

e APP5 uses equal amounts of calls to itself as calls to classes in other
hierarchies. Also, APP, makes little use of inheritance (compared to the

internal and external calls).

o Of the three systems, APP3 makes the heaviest use of inheritance.
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Figure 5: Mean call directions in five applications

APP N I T te e en €o p’ Pu Do
f:FinApp 313 0.44 0.29 0.02 0.47 0.26 0.01 0.09 0.10 0.01
e:Envy 123 0.28 0.18 0.02 0.57 0.22 0.02 0.16 0.16 0.01
v: 527 0.31 0.18 | 0.01 0.49 0.19 | 0.01 0.20 0.13 | 0.01
VisualAge
i:IBM 666 0.56 0.36 0.01 0.37 0.33 0.01 0.07 0.12 0.00
Smalltalk
m:Metric 14 0.31 0.26 0.07 0.60 0.24 0.07 0.08 0.11 0.03
a:All 1643 0.38 - - 0.50 - - 0.12 - -
sum mean mean mean

4 Experimental Results
The above technique was applied to five applications from the Smalltalk family:

o APP;: FinAppis an anonymous commercial applications for the financial
market.

APP.: Envyis a source code control system from Object Technology
International.

o APP,: VisualAgeis a general visual development tool with built-in data-
base hooks from IBM. VisualAge is built on top of IBM Smalltalk.

o APP;: IBM Smalltalk is a interactive Smalltalk development environ-
ment with an incremental compiler.

o APP,,: Metric is the metrics package that implements our butterfly
heuristic.

Note that:

¢ Not all the classes of these APPs were used in the analysis. Class with
a majority of methods with source code missing were excluded.

e The APPs can be categorised into young and mature applications. Fin-
App and Metric have only just been completed. IBM Smalltalk, Visu-
alAge and Envy are much more mature products that have been extens-
ively maintained.

The centroids for each APP are shown numerically in Figure 5. Note that
the p figures in Figure 5 are very large. If we want to claim that some newly
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analysed class is like one of the above APPs, we would have to check this using
' + 24 (to be 95% certain) and 2z’ + 3u (to be 99% certain). For the above
data, such a test would be very relaxed (e.g. for FinApp, i/ = 0.44, i, = 0.29
and 0 < (¢ &+ 2u) < 1). This is a disappointing result since we had hoped
to be able to use this technique interactively during the software development
process to find classes that were unusually designed.

Nevertheless, the results of Figure 5 do allow us to conclude statistically
that the call patterns of the studied applications were different. Applying a
two-tailed t-test, we explored the null hypothesis that APP,.2' = APPg.2’
fora,8 € {f, e,v,i,m} and 2’ € {i,e, p}. If we could reject the null hypothesis
that any of i',¢’,p’ was the same for two applications, then we rejected the
hypothesis that the centroid of the two applications was the same. In all cases,
we could reject the null hypothesis at the 0.05 level of significance.

The ternary diagram for the data in Figure 5 is shown in Figure 6. The
centroids, plus or minus max, are all distinct; i.e. our visual reading of Fig-
ure 6 is that the studied applications are different. Happily, this visual reading
concurs with the above statistical analysis.

Figure 6: Centroids from Figure 5

A

a=All

e=Envy
f=FinApp
i=IBM Smalltalk
m=Metric
v=VisuaAge

LINN

=1 /Q'V Q"}/ E=0 P=1
7

¢ ¢

We also studied the effects of including/ignoring the instance variable ref-
erences [, and P,. The data from Figure 5 was collected ignoring the instance
variable references. Figure 7 shows the effect on the centroids when we included
I, into i and P, into p’. In Figure 7, the columns marked ? show the results
of a two-tailed t-test of the null hypothesis that the mean values are the same
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Figure 7: Measuring centroids plus instance references

APP i iy ? e eu ? p' Dy ?
FinApp 0.48 | 0.28 0.42 | 0.25 0.093 | 0.11 | /
Envy 0.33 | 0.19 052022+ 016 | 0.16 |/
VisualAge 0.36 | 0.18 0.44 | 0.18 021 | 0.13 | /
IBMSmalltalk || 0.58 | 0.32 | 4/ || 0.33 | 0.29 0.094 | 0.11
Metric 0381024 |4/ |[054]0.24] ]| 0.08 |0.092 |

with and without instance variable references® Values where the null hypothesis
were accepted at the 0.05 significance level are marked with /. Note that most
values are not marked; i.e. the usual case is that the means are statistically
different.

While the statistics say that we cannot ignore the instance variable ref-
erences, pragmatically we note that the i',¢’,p’ values for Figures 5 & 7 are
nearly the same (differing only in the second decimal place). Hence, we elect to
ignore instance variable references. The alternative is to develop a parser that
recognises “get” methods in external classes. Qur belief is that such a parser
could only ever be approximately correct.

5 Discussion

5.1 Software Engineering Implications

We choose to explore call graph visualisations in order to assist us in our
software engineering research. This section discusses what software engineering
results we can extract from Figure 6.

One striking feature of Figure 6 is the relatively low use of inheritance
in the studied systems. The mean p’ was 0.12 (see the All row of Figure 5)
while the maximum p’ was only 0.20. Note also that, with the exception of
IBM Smalltall, the mature applications Fnvy and VisualAge had a higher p’
than the younger applications (i.e. Metric and FinApp. We speculate that as
developers get more experienced with OO, they use more inheritance. If this
is so, then we could evolve a “maturity measure” for OO applications based on
p’. That is, the larger the p’ figure, perhaps the more mature the classes are.

We have argued elsewhere ¢ that the primary advantage of QO languages
is their support for the many-to-one join across the ZSA link. While OO

“i.e. by comparing the means of Figure 7 with the means of Figure 5
4dIBM Smalltalk makes many calls to operating system functions. Hence, we suspect that
the low p’ value is a result of its functional nature.
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languages provide extensive automatic support for the ZSA link ¢, they are
usually record-at-a-time languages. Record-at-a-time languages are clumsy for
applications were the usual join is many-to-many. Unlike the ZS A link, external
calls (measured by e’) can be joins across links of arbitrary multiplicity. Codd
has argued ° that set-at-a-time languages (e.g. SQL, Prolog) are required to
support joins across links of arbitrary multiplicity. Since the average call in
the systems studied here is not inheritance, we suspect that that set-at-a-time
processing needs to be added to the OO paradigm.

5.2 Are Our Measurements Valid?

One explanation for the relatively low values of p’ is that Smalltalk is a single
parent inheritance language. In a single parent OO language, if a class requires
the services of more than one other class, it must reference an instance of the
other class via an E call. We hypothesis that p’ will be larger in multiple
inheritance languages (e.g. Eiffel and C++) and are working on collecting the
relevant statistics from applications built in those languages.

Another drawback with our analysis is that it ignores the runtime beha-
viour of an OO system. Call graphs are static. They describe the possible paths
that could be taken by a running OO system. If a running system only ever
uses some subset of these paths, then we should base our information hiding/
inheritance usage conclusions on those portions of the program actually exer-
cised at runtime. We are currently exploring metering the runtime of Smalltalk
systems (i.e. in the manner of 11%) order to confirm/refute the above static
analysis.

6 Conclusion

One success criteria for any visualisation technique is this: does the technique
allow us to find out something that was not known previously before looking at
the diagram? Qur ternary diagrams permit a better understanding of the rel-
ative importance of different call directions. For example, the low p’ values for
the studied applications was counter to our pre-experimental intuitions. Fur-
ther, using the ternary diagrams, we are able to make novel conclusions about
0O systems. Suppose we repeated the above analysis for systems developed
using other languages. Three exciting results from such a study could be:

e The call graph pattern is the same in different languages. This would
suggest that language choice in OO was not a major issue since, once the

€e.g. automatic copying of attributes from parent to child classes, automatic join up the
generalisation link
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applications are built, they all look the same.

e In all OO applications, p’ remains very low. This would support the
above argument that OO languages need to be extended beyond just
ZSA support.

o If we found that p’ was the same in single and multiple inheritance sys-
tems, then this would assist in ending the single vs multiple inheritance
debate.

Ternary visualisations of anonymous call graphs are a practical tool for
large-scale data collection. Our tools take 5 hours to run on a Pentium 90 with
32MB of RAM. We can reasonably ask commercial organisations to run our
tools overnight, and return to us the collected anonymous call graphs. Once
the call graphs are pooled, then the contributing organisations can benefit from
the experience contained in that pool. Our current goal is the generation of a
database of ternary diagrams for different applications categorised by:

e The OO language used to develop it.
e The years of experience of the developers.

e The domain of the project; i.e. is the development intended for a specific
application, or part of some re-use library?

e The change rate. Certain source code management systems allow an
historical overview of how parts of an application changed over time. If
we can link certain patterns of method calls to error rates, then we can
use the ternary diagrams as a quality management tool.

The major negative result of this study was the large p seen in i’, ¢’ and p'.
Due to this large p, we seem unable assess the design a single class by comparing
it with applications mapped onto a ternary diagram. This area deserves further
work. Perhaps after computing the centroids for many applications, we will be
able to make value judgments about classes. In the meantime, we can use
ternary diagrams to make general statements about the macro nature of OO
applications.

One final note: the standard response to our plea for more empirical studies
in software engineering is that “it’s too hard”. We hope that we have demon-
strated here that this is not a defensible position. After an initial period of
tool development, significant portions of the software process can be accur-
ately quantified. We feel that such quantitative studies are important since
very little of current software practice is being experimentally verified %17,
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