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Abstract

SAWTOOTH: Learning from Huge Amounts of Data

Andrés Sebastián Orrego

Data scarcity has been a problem in data mining up until recent times. Now,
in the era of the Internet and the tremendous advances in both, data storage
devices and high-speed computing, databases are filling up at rates never
imagined before. The machine learning problems of the past have been aug-
mented by an increasingly important one, scalability. Extracting useful
information from arbitrarily large data collections or data streams is now of
special interest within the data mining community. In this research we find
that mining from such large datasets may actually be quite simple. We ad-
dress the scalability issues of previous widely-used batch learning algorithms
and discretization techniques used to handle continuous values within the
data. Then, we describe an incremental algorithm that addresses the scal-
ability problem of Bayesian classifiers, and propose a Bayesian-compatible
on-line discretization technique that handles continuous values, both with a
“simplicity first” approach and very low memory (RAM) requirements.
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Chapter 1

Introduction

This thesis addresses the problem of scalability, and “incremental learning”

in the context of classification and discretization. Scalability refers to the

amount of data we can process given an algorithm in a fixed amount of time.

It could be thought as the “capacity” of the algorithm in respect to the

amount of data it can handle. One approach to scaling up learning is to

use incremental algorithms. They have their “answer” ready at every point

in time, and update it as new data is processed. We also discuss “concept

drift” which relates to the changes in the underlying process or processes

that generate the data. Most machine learners assume that data is drawn

randomly from a fixed distribution, but in the case of variable processes filling

up huge databases, or simulations producing examples (outcomes) over time,

this assumption is often violated. For example, the selling performance of a

retail store changes drastically depending on promotions, day of the week,

1
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weather, etc. We need to be aware of and adapt the learned theory to

closely fit the most current state and abandon obsolete concepts in order to

achieve the best possible classification accuracy at any given point in time.

Even though many algorithms have been offered to handle concept drift, the

scalability problem still remains open for such algorithms.

In this thesis we propose a scalable algorithm for data classification

from very large data streams based on the widely known, state-of-the-art

Näıve Bayes Classifier. The new incremental algorithm, called SAWTOOTH,

caches small amounts of data (by default 150 examples per cache) and learns

from these caches until classification accuracy stabilizes. It is called incre-

mental because it updates the classification model as new instances are se-

quentially read and processed instead of forming a single model from a col-

lection of examples (dataset) as in batch learning.

After stabilization is achieved, SAWTOOTH changes to cruise mode

where learning is disabled and the system runs down the rest of the caches,

testing the new examples on the theory learned before entering cruise mode.

If the test performance statistics ever significantly change, SAWTOOTH en-

ables learning until stabilization is achieved again. SAWTOOTH perfor-

mance is comparable with the state-of-the-art C4.5 and Näıve Bayes classifier

but requiring only one pass over the data even for data sets with continuous

(numeric) attributes, therefore, supporting incremental on-line∗ discretiza-

∗On-line discretization refers to the conversion of continuous values to nominal (dis-
crete) ones while in the process of learning as opposed to a preprocessing step.
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tion.

1.1 Motivation

In the real world, large databases are common in a variety of domains. Data

scarcity is not the problem anymore, as it used to be years ago. The main

issue now is the usage of all available data in the available time, and track

possible changes in the underlying distribution of the data to more accurately

predict its behavior at each point in time.

In order to make sense of huge or possibly infinite data sets, we need to

develop a responsive single-pass data mining system with constant memory

footprint. In other words, a linear (or near-linear) time, constant memory

algorithm that processes data streams by sequentially reading each instance,

updates the learned theory on it or on small sets of them, and then forgets

about the processed examples.

The Näıve Bayes classifier offers a good approximation to this ideal. It

learns after one read of each instance, it requires very low memory, and

it is very efficient for static datasets [?]. One of its drawbacks is that it

handles continuous attributes by assuming that they are drawn from a normal

distribution, an assumption that may not only be false in certain domains,

but, in the context of incremental classification, distributions vary over time.

Our proposed algorithm solves this problem by providing SPADE, an

incremental on-line discretization procedure, and a “cruise control” mode
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that prevents the learned theory to be saturated and over-fitted.

1.2 Goal

The main goal of this research is to develop a simple incremental classifica-

tion algorithm that scales to huge or possibly infinite datasets, and is easy

to implement, understand, and use. It would serve as a model for scaling up

standard data miners using a simplicity-first approach.

The algorithm should be able to detect changes in the underlying dis-

tribution of data and adapt to those variations. Its performance should be

comparable to currently accepted classification algorithms, like the state-of-

the-art C4.5 and Näıve Bayes classifier on batch datasets, but with the ability

to scale up to unbounded datasets. Overall, it should comply with most, if

not all, the following standard data mining goals:

D1 FAST: requires small constant time per record, lest the learner falls

behind newly arriving data;

D2 SMALL: uses a fixed amount of main memory, irrespective of the total

number of records it has seen;

D3 ONE SCAN: requires one scan of the data and early termination of

that one scan (if appropriate) is highly desirable;

D4 ON-LINE: on-line suspendable inference which, at anytime, offersthe

current “best” answer plus progress information;
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D5 CAN FORGET: old theories should be discarded/updated if data-

generating phenomenon changes;

D6 CAN RECALL: the learner should adapt faster whenever it arrives

again to a previously visited context.

D7 COMPETENT: produces a theory that is (nearly) equivalentto one

obtainedwithout the above constraints.

1.3 Contribution

Two main contributions result from this research:

SPADE: A simple incremental on-line discretization algorithm for Bayesian

learners that makes possible incremental learning.

SAWTOOTH: A very simple incremental learning algorithm able to pro-

cess huge datasets with very low memory requirements and perfor-

mance comparable to standard state-of-the-art techniques.

An extensive literature review is also provided as an aid to understand

the field of data mining, particularly in the classification and discretization

tasks. Additionally, studies on algorithm evaluation and testing, and findings

on data stability are also important contributions to the field.

The proposed algorithms and their implications are explained in this the-

sis in the following order.
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1.4 Organization

The remaining chapters of this thesis are organized as follows.

Chapter two provides a literature review on the topics of classification

and discretization. It explains the most relevant algorithms in both fields,

giving particular attention and offering a very detailed view of the ones con-

sidered the “state-of-the-art”. It investigates these algorithms’ strengths and

searches for their possible contributions to incremental learning in distribu-

tion changing environments. It further explains why we choose the Näıve

Bayes Classifier as the ideal candidate to evolve into an incremental tech-

nique. This chapter is of particular importance since it covers the majority

of the terms and concepts used later on to describe our creations and findings.

Chapter three gives details on the performance evaluation procedures

used for comparing different classifiers. It analyzes different techniques uti-

lized by previous authors and agree on the ones that we believe gives us the

statistically best results.

Chapter four unveils SPADE, the first ever one-pass, low memory, on-line,

discretization technique for Bayesian classifiers. This new discretizer mini-

mizes information loss and requires one pass through the data. It was de-

veloped to handle datasets with continuous attributes so assumptions about

the underlying distribution of datasets are avoided. The algorithm is fully

described in this chapter and its remarkable results are offered at the end.

Chapter five presents SAWTOOTH, an incremental, low memory Bayesian
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classifier potentially capable of adapting to changes on the underlying dis-

tribution of the data. It integrates the Bayes theory with SPADE and a

control on data stability. A study on learning curve stability is also pro-

vided in this section. It shows how learning stabilizes early in most cases.

This is of particular significance since over-training Bayesian classifiers could

result in a saturation of the learned theory. We explain how this impacts

the performance of the learner on huge databases and how to solve it in a

very simple but powerful way. This study, a section on concept drift, the

complete SAWTOOTH algorithm, and a series of case studies are the major

components of this chapter.

Conclusions and future work are offered in Chapter six. It summarizes

the key issues presented and discusses future work that we think is worth

further exploration. Finally, it highlights the major contributions of this

thesis to the research area of machine learning.



Chapter 2

Literature Review

2.1 Introduction

Today, in the age of information, data is gathered everywhere. At work, every

time a badge is swiped, a log is created and saved into a database. At the

supermarket, every transaction is stored electronically. At school, student

performance lives in a hard drive. Every day more places are recording our

choices and information in an effort to understand us (and the world) better

for many different purposes.

Not only is data increasing in size, but also in complexity. As memory

becomes cheaper, more and more dimensions of data are recorded in order

to get a better snapshot of an event. All this data, millions and millions of

terabytes, accumulate in static memory around the world while humans find

a way to take advantage of it, understand it, and make it explicit.

8
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2.1.1 Understanding Data

Data mining is the process of discovering patterns that underlie data in order

to extract useful information. More formally, it is the extraction of implicit,

previously unknown, and potentially useful information from data [?] [?] [?].

Usually, data is stored in databases and data mining becomes the core step

for what is called Knowledge Discovery in Databases (KDD).

Data analysis requires an effort that is bounded at least to the size of the

dataset. The entire dataset has to be read at least once to draw meaningful

conclusions from it. For a human, it does not represent a problem when data

has few features and a small set of examples, but the analysis quickly becomes

impossible as the size and the dimensions of the data increase. Computers

can help us solve this problem by automatically processing thousands of

records per second. Only partial human interaction is necessary to provide

a suitable format, and to interpret the computer results.

Machine Learning is the field within artificial intelligence that develops

most of the techniques that help us extract information from data by having

a machine process the instances, discover patterns in the data, and “learn”

a theory to accurately forecast the behavior of new examples. Theories can

be of two types, structural patterns, or explicit hypothesis, and what we call

tacit hypothesis. Structural patterns capture the structure of the mined data

making it explicit and easy to understand (i.e. decision trees), while tacit

theories develop from unclear data processing, but may still accurately make

non-trivial predictions on new occurrences (i.e. neural nets). This is why data
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mining in the field of machine learning is defined as the process of discovering

patterns in data, automatically or at least semi-automatically [?].

Many different machine learning approaches and algorithms have been

developed since the invention of the computer, some simpler than others.

Holte [?] offers a case study where a very simple learner performs very well

indeed (See §2.2.1). From that case study we adopt its “simplicity first”

methodology. Certainly, as we shall see in this thesis, what is true for machine

learning in general is just as true for discretization in particular. Our general

finding is that very simple discretization works very well as it was suggested

by previous authors [?]. What is new, is that we can use that “simplicity

first” insight to devise a discretization method with properties unavailable in

any other method. In particular time and space management for scaling up

to infinite datasets. We will center our attention on classification strategies

and discretization techniques suitable for this kind of algorithm.

2.1.2 Stream Data

The real world is not the only generator of data. Nowadays, simulations

of virtual models are the testing bed for developing real world processes.

They are also used to forecast the most likely outcome of an event, providing

valuable time to take preventive action. Great amounts of data are gener-

ated through this procedure, mainly because they consider a greater number

of parameters and outcomes than those produced by actual processes in a

very short time. These streams of information, whose storage is imprac-
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tically expensive, or impossible, have recently been studied in an effort to

learn constraints that improve the behavior of the model that generated the

data. Numerous experiments with the “incremental treatment learning” ap-

proach have shown that setting a small number of variables is often enough

to significantly improve the performance of the model [?] [?] [?]. Although

applying this technique results in an improved understanding of the model,

as explained in [?], data mining is unfeasible for large data sets due to the

long run-times it requires to perform the overwhelming number of simulation

in the Monte Carlo analysis.

In this chapter, we compile the basic definitions and terms offered by

authors of previously publicized articles that are closely related to the field

of machine learning and our research in particular. First, we introduce rel-

evant Machine Learning approaches, mainly classification learning, and how

they differ. Then, we focus on the performance evaluation of classification

algorithms and offer a test scenario for comparison among them.

The state-of-the-art classifiers are presented in this review. The remaining

algorithms show the evolution of the field of data mining, and serve as a

benchmark for newly developed algorithms. The main idea is to offer a

representative sample of research in this area.
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2.2 Classification

Classifiers comprise one well studied category of machine learners. Their

purpose is to determine the outcome of a new example given the behavior

of previous examples. As defined by Fayyad, Piatetsky-Shapiro, and Smyth

in [?], a classifier provides a mapping function from a data example to one

of the possible outcomes. Outcomes are called classes and their domain is

called the class attribute. Examples are called instances.

The weather dataset [?] shown in Figure 2.1 consists of fourteen instances

where play is the class attribute with classes “yes” and “no”. Other attributes

are outlook, temperature, humidity, and windy. The purpose of a classifier is

to predict the class value of an unseen instance, that is, whether or not we

play golf given the weather of a new day. This dataset will be used as an

example throughout this chapter.

Instance Attributes Class
outlook temperature humidity windy play

1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes

10 rainy mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rainy mild high true no

Figure 2.1: The weather dataset with all discrete attributes.
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Accurate forecasting is possible by analyzing the behavior of previous

observations or instances and building a model for prediction. Measuring the

performance of classification involves two main phases, the training phase

and the testing phase. During training, the classifier processes the known

examples called training instances, and builds the model based on their class

information. This is known as supervised learning. However, in unsupervised

learning, the class labels are either absent or not taken into consideration

for the training process. After training, the classifier tests the learned model

against the test dataset. Instances from the test dataset are assigned a class

according to the model and each prediction is then compared to the actual

instance class. Each correctly classified instance is counted as a success and

the remaining are errors. The accuracy or success rate is the proportion of

successes over the whole set of instances. Similarly, the error rate is the

ratio of errors over the total number of examples. If an acceptable accuracy

is achieved, then the learned model is used to classify new examples where

the class is unknown.

Classification models may be described in various forms: classification

rules, decision trees, instance based learning, statistical formulae, or neural

networks. We will focus special attention to decision tree induction and

Statistical formulae.
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2.2.1 Decision Rules

We start with this topic because rudimentary decision rules can be extracted

easily using very simple algorithms. Also, simplicity is one of the “slogans”

of this thesis and should always be tried first.

One of the simplest learners ever developed is “1-R” which stands for

one-rule. Holte presented 1-R in the paper, “Very simple classification rules

perform well on most commonly used datasets” [?]. 1-R reads a dataset and

generates a one-level decision tree described by a set of rules always testing

the same attribute. Its set of rules is of the form:

IF Attributei = V alue1 THEN Class = Max(classi1)

ELSE

IF Attributei = V alue2 THEN Class = Max(classi2)

ELSE
...

ELSE

IF Attributei = V aluen THEN Class = Max(classin)

Where


Attributei = Selected Attribute.

V alue1...n = One of the n different values of Attributei.

Max(classi,n) = The majority class for the attribute-value i, n.

Surprisingly, 1-R sometimes achieves very high accuracies suggesting that

the structure of many real-world datasets are simple and many times it de-

pends on just one highly influential attribute. An accuracy comparison be-
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tween 1-R and the state-of-the-art decision tree learner C4.5 (§2.2.2) on four-

teen datasets from the University of California Irvine (UCI) repository [?] is

presented in Figure 2.2.
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Data Set

1-R Vs. C4.5

1-R C4.5

Number Dataset Name
1 Credit-a
2 Vote
3 Iris
4 Mushroom
5 Lymph
6 Breast-w
7 Breast-cancer
8 Primary-tumor
9 Audiology
10 Kr-vs-Kp
11 Letter
12 zoo
13 Soybean
14 Splice

Figure 2.2: Accuracy comparison between 1-R and the more complex decision
tree learner C4.5

These are the results from a tenfold cross-validation (see §3.2.1) on each

of the datasets and sorted by the accuracy difference between 1-R and C4.5.

In more than 50% of the datasets, 1-R’s performance is very close to C4.5’s,

but in some of the remaining datasets there is enough “big” difference in the

results to encourage us to look further than 1-R.

The algorithm for 1-R divides up into three main parts. First, it generates

a different set of rules for each attribute, one rule per attribute value. Then,

it tests each attribute’s rule set and calculates the error rate. Finally, it

selects the attribute with the lowest overall error rate – in the case of a tie,

it breaks it arbitrarily – and proposes its rules as the theory learned. The
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pseudo-code for 1-R is depicted in Figure 2.3.

1. for each attribute A {
2. for each value VA {
3. Count class of VA occurrences
4. VA ←Max(Class)
5. }
6. ErrorA ← Test VA against the whole dataset
7. }
8. Select attribute with Min(ErrorA)

Figure 2.3: 1-R pseudo-code

Simple and modestly accurate, it also handles missing values and con-

tinuous attributes. Missing values are dealt with as if they were another

attribute’s value; therefore, generating an additional branch (rule) for the

value missing. Continuous attributes are transformed into discrete ones by

a procedure explained in the discretization section §2.3 of this chapter.

As stated before, 1-R encourages a simplicity first methodology, and

serves as a baseline for performance and theory complexity of more sophisti-

cated classification algorithms.

2.2.2 Decision Tree Learning

After his invention of ID3 [?] and the state-of-the-art C4.5 [?] machine learn-

ing algorithms, Ross Quinlan became one of the most significant contributors

to the development of classification. Both classifiers model theories in a tree

structure.
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Following a greedy, divide-and-conquer, top-down approach, decision tree

learners choose one attribute to place at the root node of the tree and generate

a branch for each attribute value, effectively splitting the dataset into one

subset per branch. This process is repeated recursively for each subset until

all instances of a node belong to a single class or until no further split is

possible. Selecting a criterion to pick the best splitting attribute is the main

decision to be made. The smaller trees can be built by selecting the attribute

whose splits produce leaves containing instances belonging to only one class,

that is, the purest daughter nodes [?]. The purity of an attribute is called

information and is measured in bits.

Entropy is the information measure usually calculated in practice. As an

example, let D be a set of d training examples, and Ci(i = 1 · · ·n) be one

of n different classes. The information needed to classify an instance or the

entropy of D is calculated by the formula:

E(D) = −
n∑

k=1

pi log2(pi) where pi =
|D, Ci|
|D|

(2.1)

pi is the probability of the class Ci in D. This formula can be translated to

the more used:

E(D) =
(−∑n

i=1 |Ci| log2 |Ci|) + |D| log2 |D|
|D|

(2.2)

|Ci| is the number of occurrences of Class Ci in the dataset D. |D| is the

size of the dataset D. This is the information of the dataset as it is, without
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splitting it. Now let us suppose an attribute A with m different values is

chosen to split the data set D. D is partitioned producing subsets Dj(j =

1 · · ·m). The entropy of such split is given by:

E(A) =
m∑

j=1

|Dj|
|D|
∗ E(Dj) (2.3)

Where E(Dj) is calculated as described in Equation 2.2. The entropy of a

pure node Dj is 0 bits.

Now, the information gained by splitting D in attribute A is the difference

between the entropy of the data set D (Equation 2.2) and the entropy of the

split in the attribute A (Equation 2.3), that is:

InfoGain(A) = E(D)− E(A).

This information gain measure is evaluated for each one of the attributes left

for selection. Maximizing InfoGain is ID3’s main criterion for choosing the

splitting attributes at every step of the tree construction.

One problem of this approach is that the information gain measure fa-

vors attributes having large possible values, generating trees with multiple

branches and many daughter nodes. This is best seen in the extreme case

that an attribute contains a single different value per instance. Let us say

that in Figure 2.1 instance (the example number) is an attribute. There is

one different instance value per entry. If we calculate the entropy of such

attribute according to Equation 2.3, we have E(instance) = 0 bits, since
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such a split would branch into pure nodes. The entropy of the dataset would

be:

E(weather) = E([9, 5]) = [−9 log2 9− 5 log2 5 + 14 log2 14]/14 = 0.940bits

then, the attribute‘s information gain would be: InfoGain(instance) =

E(weather)−E(instance) = 0.0940 bits, which is higher than the ones from

all the other attributes. Therefore, ID3 would generate a 1-level deep tree

placing the attribute instance at the root. Such a tree tells us nothing about

the structure of the data and does not allow us to classify new instances,

which are the two main goals of classification learning.

C4.5 partially overcomes this bias by using a more robust measure called

gain ratio. It simply adjusts the information measure by taking into account

the number and size of the daughter nodes generated after branching on an

attribute. The formula for gain ratio is:

GainRatio(A) =
InfoGain(A)

E([|D1|, |D2|, . . . , |Dm|])

Unfortunately, it is reported that the gain ratio fix carries too far and can

lead to bias toward attributes with lower information than the others [?] [?].

Going back to the weather dataset, its decision tree structure is depicted

in Figure 2.4. Nodes are attributes and leaves are the classes. Each branch is

a value of the attribute at the parent node. Predictions under this structure

are made by testing the attribute at the root of the tree, and then recursively
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moving down the tree branch corresponding to the value of the attribute until

a leaf is reached. As an example, let’s suppose we have a new instance outlook

= sunny, temperature = cool, humidity = high, windy = true. If we want

to classify this instance, we start at the root testing the outlook attribute.

Since outlook = sunny in the new instance, then we follow the left branch

and arrive at humidity. We test humidity and we find that it is “high”,

therefore we keep following the left branch and arrive at a leaf the class

“no”, suggesting that we do not play golf under the above circumstances.

Following the same classification procedure we find that this tree has 100%

accuracy on the training data, in other words, all 14 training instances are

classified correctly under the described model. It is not surprising to achieve

very high accuracies when testing on the training data. It is analogous to

predicting yesterday’s weather today. Measuring a learner’s performance on

old data is not a good predictor of its performance on future data.

Figure 2.4: Decision Tree for the weather data.
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Classification targets new instances, instances where the class is unknown;

therefore a better approximation to the true learner’s performance is to asses

its accuracy on a dataset completely different than the training one. This

independent dataset is known as the test data. Both training and test sets

need to be representative in order to give the true performance on future data.

Normally, the bigger the training set, the better the classifier. Similarly,

the bigger the test set, the better the approximation to the true accuracy

estimate. When plenty of data is available, there is no problem in separating a

representative training set and test set, but when data is scarce, the problem

becomes how to make the most of the limited dataset.

2.2.3 Other Classification Methods

Covering Decision Rules

More classification rule learners have been developed and their theories are

usually described using a bigger, more complex set of rules. Covering Algo-

rithms, like the one called Prism, usually test on more than a single attribute

and sometimes their rules contain conjunctions and disjunctions of many pre-

conditions in an effort to cover all the instances belonging to a class and, at

the same time, excluding all instances that do not belong to it. Building

a theory from such algorithms is simple: First, Prism creates the rule with

the empty left-hand-side and one of the classes as the right-hand-side. For

example:
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if ? then Class = c.

This rule covers all the instances in the dataset that belong to the class.

Then, Prism restricts the rule by adding a test as the first term of the left-

hand-side (L.H.S.) of the equality. It keeps adding attribute values to the

L.H.S. until the accuracy of the rule is 100%, therefore creating only “perfect”

rules.

Prism’s classification performance on new data is very limited since it only

relies on the classification of the training data to create its theory. Prism’s

rules fit very well the known instances, but not very well the unknown ones

(testing set). This phenomenon is known as overfitting and can be caused

by this and many other reasons as we shall see in this thesis.

A comparison between Prism and C4.5 on classification accuracy is de-

picted in Figure 2.5. This graph shows the results of a tenfold cross-validation

procedure on each dataset and for both classifiers. These results are better

estimates of the accuracy on new data as we shall see in §3.2.1.

Decision rules are an accepted but inferior alternative to the more complex

theory learned by decision tree induction. However, the algorithmic complex-

ity of decision rule learners (several passes through the training data) makes

them unsuitable for incremental learning. Decision trees are explained next.

Instance Based Classification

The idea behind Instance-based learning is that under the same conditions

an event tends to have the same consequences at every repetition. Further,
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Number Dataset Name
1 Lymph
2 Contact-lenses
3 Tic-tac-toe
4 Splice
5 Kr-vs-kp

Figure 2.5: Accuracy comparison between Prism and the state-of-the-art
C4.5. Prism’s accuracy instability is due to overfitting.

the consequence (class) of an event (instance) is closest to the outcome of the

most similar occurrence(s). An instance-based learner just has to memorize

the training instances and then go back to them when new instances are

classified. This scheme falls into a category of algorithms known as lazy

learners. They are called lazy because they delay the learning process until

classification time.

Training the learner consists of storing the training examples as they

appear, then, at classification time, a distance function is used to determine

which instance of the training set is “closest” to the new instance to be

classified. The only issue is defining the distance function.

Most instance-based classifiers employ the Euclidian distance as the dis-

tance function. The Euclidian distance between two points X = (x1, x2, . . . , xn)
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and Y = (y1, y2, . . . , yn) is given by the formula:

d(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2

With this formula, the class value of the training instance that minimizes

the distance to the new example becomes the class of the new example. This

approach is known as the Nearest Neighbor and has the problem of being

easily corrupted by noisy data. In the event of outliers in the instance space,

new instances closest to these points would be misclassified. A simple but

time consuming solution to this problem is to cast a vote from a small number

k of nearest neighbors and classify according to the majority vote. Another

problem is that distance can be measured easily in a continuous space, but

there is no immediate notion of distance in a discrete one. Nearest neighbor

methods handle discrete attributes by assuming a distance of 1 for values

that differ, and a distance of 0 for values that are the same.

Nearest Neighbor instance-based methods are simple and very successful

classifiers. They were first studied by statisticians in the early 1950’s and

then introduced as classification schemes in the early 1960’s. Since then they

remain among the most popular and successful classification methods, but

their high computational cost when the training data is large prevents them

from developing into more sophisticated incremental learning algorithms.
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Neural Networks

Inspired by the biological learning process of nervous systems, artificial neural

networks (ANN) [?] simulate the way neurons interact to acquire knowledge.

Neural nets learn similarly to the brain in two respects [?]:

• Knowledge is acquired by the network through a learning process.

• Interconnection strengths known as synaptic weights are used to store

the knowledge.

The network is composed of highly interconnected processing elements,

called neurons, working parallel to solve a specific problem. Each connection

between neurons has an associated weight that is adjusted during the training

phase. After this phase is finished and all the weights are adjusted, the

architecture of the neural network becomes static and ready for the test

phase. In this later phase, instances visit the neurons according to the net’s

architecture, they are multiplied by the neuron’s associated weights, some

calculations take place, and an outcome is produced. This output value is

then passed to the next neuron as input and the process is repeated until an

output value determines the instance class.

Depending on the connections between neurons, various ANN models

have been developed. They can be sparsely-connected, or fully-connected as

in the Hopfield Networks [?]. They could also be recurrent such as Boltzmann

Machines [?] in which the output of a neuron not only serves as the input

to another but also feedbacks itself. Multilayered feed-forward networks, like
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Figure 2.6: Fully-connected feed-forward neural network with one hidden
layer and one output layer. Connection weights between nodes in the input
and the hidden layer are denoted by w(ij). Connection weights between
neurons in the hidden and the output layer are w(jk)

the multilayered percepton shown in Figure 2.6, are the most widely used.

They have an input layer of source nodes, an output layer of neurons, and

layer of hidden neurons that are inaccessible to the outside world. The output

of one set of neurons serves as the input for another layer.

ANN training can be achieved by different techniques. One of the most

popular is known as Backpropagation. It involves two stages [?]:

• Forward stage. During this stage the free parameters of the network

are fixed and instances are iteratively processed layer by layer. The dif-

ference between the output generated and the actual class is calculated

and stored as the error signal.
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• Backward stage. In this second stage the error signal is propagated

backwards from the output layer down to the first hidden layer. Dur-

ing this phase, adjustments are applied to the free parameters of the

network, using gradient descent, to statistically minimize the error.

A major limitation of back-propagation is that it does not always converge [?]

or convergence might be very slow, therefore, training could take a very long

time or it may perhaps never end.

ANN main advantages are the tolerance to noisy data and their particular

ability to classify a pattern on which they have not been trained. On the

other hand, one major disadvantage is their poor interpretability: additional

utilities are necessary to extract a comprehensible concept description.

Although they can perform better than other classifiers [?], ANN long

time requirements make them unsuitable for learning on huge data sets. Also,

their complex theories go against our goal of simplicity, therefore, we do not

discuss them any further.

Treatment Learning

Neural networks learning algorithms and other miners look for complex and

detailed descriptions of concepts learned to better fit the data and more

accurately predict future outcomes. However, such learning is unnecessary

in domains that lack complex relationships [?] [?]. Treatment learning was

developed with simplicity in mind.

Created by Menzies and Hu [?], treatment learning (or Rx Learning)
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mines minimal contrast set with weighted classes [?]. It does not classify,

but finds conjunctions of attribute-value pairs, called treatments, that occur

more frequently under the presence of preferred classes and less frequently

under the presence of other classes. It looks for the treatment that better

selects the best class while filtering out undesired classes.

The concept of best class derives from the assumption that there is a

partial ordering between classes, that is, each class has some weight or score

that determines its priority over the rest. The best class is the one considered

superior than the other ones and, therefore, has the highest weight. Similarly,

the worst class is the least desirable and has the lowest score. The class values

are determined by the user or by a scoring function depending on the domain

and the goal of the study.

Tar2 is the first known treatment learner made available to the public.

This software along with documentation can be downloaded from http://

menzies.us/rx.html. It produces treatments of the form:

if Rx : AttA = V alAz ∧ AttB = V alBy . . .

then class(Ci) : confidence(Rxw.r.t.Ci)

Where confidence of a treatment with respect to a particular class Ci is the

conditional probability of Ci on the instances selected by the treatment. That

is:

confidence(Rxw.r.t.Ci) = P (Ci|Rx) =
|examples ∈ (Rx ∧ Ci)|
|examples ∈ Rx|

(2.4)

Good treatments have significantly higher confidence in the best class and

http://menzies.us/rx.html
http://menzies.us/rx.html
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significantly lower confidence in the worst class than the original distribution.

The best treatment is the one with the highest lift, that is, the one that

most improves the outcome distributions compared to the baseline distribu-

tion. In the case of the weather example, outlook = overcast is the best

treatment since it always appears when we play golf and never emerges when

we play no golf.

The impact of Tar2’s output on the class distribution is depicted in Fig-

ure 2.7.

Figure 2.7: Class frequency of the dataset before and after being treated.

Treatment learning offers an attractive solution for monitoring and con-

trolling processes. Several studies have demonstrated its usefulness in parameter-

tuning and feature subset selection [?]. Even though the last version of the

TARs, Tar3, has improved the learning time by adding heuristic search, it

is still polynomially bounded in time and requires the storage of training

instances in memory.
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2.2.4 Näıve Bayes Classifier

The Näıve Bayes Classifier (NBC), is a well studied probabilistic induction

algorithm that evolves from work in pattern recognition [?]. This statistical

supervised approach allows all the attributes to contribute equally to the

classification and assumes that they are independent of one another. It is

based on the Bayes theorem which states that the probability of an event E

resulting in a consequence C can be calculated by dividing the probability

of the event given the consequence times the probability of the consequence

by the probability of the event. In other terms:

P [C|E] =
P [E|C]× P [C]

P [E]
. (2.5)

In the context of classification, we want to determine the class value given

an instance. The Bayes theorem could help us determine the probability that

an instance i, described by attribute values A1=V1,i ∧ . . . ∧An=Vn,i, belongs

to a class Cj. Going back to Equation 2.5:

P (Cj|A1=V1,i ∧ . . . ∧ An=Vn,i) =
P (Cj)× P (A1=V1,i ∧ . . . ∧ An=Vn,i|Cj)

P (A1=V1,i ∧ . . . ∧ An=Vn,i)
.

(2.6)

where P (Cj|A1=V1,i ∧ . . . ∧ An=Vn,i) is the conditional probability of the

class Cj given the instance i; P (Cj) is the number of occurrences of the class

Cj over the total number of instances in the dataset, also known as the prior
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probability of the class Cj; P (A1=V1,i ∧ . . . ∧ An=Vn,i|Cj) is the conditional

probability of the instance i given the class Cj; and P (A1=V1,i ∧ . . . ∧ An=

Vn,i) is the prior probability of the instance i. In order to minimize the

classification error the most likely class is chosen for classification, that is,

argmaxCj
(P (Cj|A1=V1,i ∧ . . . ∧ An=Vn,i) for each instance i [?] [?] [?] [?].

Since the denominator in Equation 2.6 is the same across all classes, it can

be omitted as it does not affect the relative ordering of the classes, therefore:

P (Cj|A1=V1,i ∧ . . . ∧An=Vn,i) = P (Cj)× P (A1=V1,i ∧ . . . ∧An=Vn,i). (2.7)

Since i is usually an unseen instance, it may not be possible to directly

estimate P (A1=V1,i∧ . . .∧An=Vn,i|Cj). Based on the assumption of attribute

conditional independence, this estimation could be calculated by:

P (A1=V1,i ∧ . . . ∧ An=Vn,i|Cj) =
n∏

k=1

P (Ak = Vk,j|Cj). (2.8)

Finally, combining Equation 2.7 and Equation 2.8 results in:

P (Cj|A1=V1,i ∧ . . . ∧ An=Vn,i) = P (Cj)×
n∏

k=1

P (Ak = Vk,j|Cj). (2.9)

NBC uses Equation 2.9. This equation can be solved by maintaining a

very simple counting table. During training, every attribute value occurrence

is recorded along with its class by incrementing a counter, the number of
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counters depends on the number of attribute values and the number of classes.

Probabilities can be then calculated from the table and classification can be

easily performed. As an example, let us go back to the weather dataset.

Figure 2.8 presents the summary of the weather data in terms of counts.

outlook temperature humidity windy play
yes no yes no yes no yes no yes no

sunny 2 3 hot 2 2 high 3 4 false 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 true 3 3
rainy 3 2 cool 3 1

Figure 2.8: Bayesian Table for the weather dataset

From the Figure 2.8 we can see that for each one of the attribute value

pairs there are two counters, one for play = yes and one for play = no. These

counters are incremented every time an attribute value of an instance is seen.

For instance, temperature = mild occurred six times, four times for play =

yes and two times for play = no. We also note that overall, nine times play

= yes and five times play = no, as summarized in the rightmost columns.

From this information we can build the probabilities necessary to classify a

new day. For example, classifying the new instance depicted in Figure 2.9

involves the following:

outlook temperature humidity windy play

rainy hot high true ?

Figure 2.9: A New Day

P (yes|rainy ∧ hot ∧ high ∧ true) = P (rainy|yes)P (hot|yes)P (high|yes)P (true|yes)P (yes)
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= (3/9)× (2/9)× (3/9)× (3/9)× (9/14) = 0.005291 (2.10)

P (no|rainy ∧ hot ∧ high ∧ true) = P (rainy|no)P (hot|no)P (high|no)P (true|no)P (no)

= (2/5)× (2/5)× (4/5)× (3/5)× (5/14) = 0.027429 (2.11)

From the results in Equation 2.10 and Equation 2.11 we can conclude

that Näıve Bayes would classify the new day as play = no.

As we see from the previous example, calculating probabilities from dis-

crete feature spaces is straightforward. Counting occurrences of few values

per attribute is very efficient. Continuous attributes often have finite but

large number of values, where each value appears in very few instances, thus

generating a large number of small counters. Sampling probabilities from

such small spaces gives us unreliable probability estimation, leading to poor

classification accuracy. NBC handles continuous attributes by assuming they

follow a Gaussian or normal probability distribution. The probability of a

continuous value is estimated using the probability density function for a

normal distribution which is given by the expression

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2.12)

Where µ is the mean value of the attribute space, and σ is the standard

deviation. The mean and standard deviation for each class and continuous

attribute is calculated from the sum and sum2 of the attribute, given the
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class. This means that NBC can still incrementally learn, even in the presence

of continuous attributes.

It is important to note that the probability density function of a value

x, f(x), is not the same as its probability. The probability of a continuous

attribute being a particular continuous value x is zero, but the probability

that it lies within a small region, say x±ε/2, is ε×f(x). Since ε is a constant

that weighs across all classes, it will cancel out, therefore, the probability

density function can be used in this context for probability calculations.

When classifying a new instance, the probability of discrete values is

calculated directly from the counters within the Bayesian table, while the

probability of a continuous value x is estimated by plugging the values x, µ,

and σ into the probability density function. The result is then multiplied

according to Bayes’ rule.

Only one pass through the data and simple operations are necessary

to keep the table updated, making NBC a very simple, efficient, and low-

memory requirement algorithm suitable for incremental learning. Although

it carries some limitations, mainly induced by the attribute independence

assumption often violated in real-world datasets [?], it has been shown that

it is also effective and robust to noisy data [?] [?] [?] [?] [?].

Kernel Estimation

The probability estimation of an event is nothing more that that, an estima-

tion. The probability density function of the normal distribution provides
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a reasonable approximation to the distribution of many real-world datasets,

but it is not always the best [?]. In datasets that do not follow a normal dis-

tribution, the classification accuracy could be improved by providing more

general methods for density estimation. This problem has been the subject

of numerous studies aiming for better probability estimation so the classifi-

cation accuracy becomes optimal.

John and Langley in [?] investigate kernel estimation with Gaussian ker-

nels, where the estimated density is averaged over a large set of kernels.

For this procedure to take place, all the n values of a continuous attribute

must be stored. Estimating the probability density function of a value for

the classification of a new instance requires the evaluation of the Gaussian

probability density function (Equation 2.12) n times - once per continuous

value – with µ = to the current value and σ = 1√
nc

where nc is the number of

instances belonging to class c. The average of the evaluations becomes the

probability estimation for a value. This process could be thought as piling

up n small Gaussian probabilities with varying height according to each one

of the attribute values and with constant width (σ). This practice discov-

ers distribution skews and approximates better to the actual distribution.

In practice, Näıve Bayes Classifier with kernel estimation, denoted NBK in

this thesis, performs at least as well as Näıve Bayes with Gaussian assump-

tion (NBC), and in some domains it outperforms the Gaussian assumption.

Figure 2.10 shows the performance of the Näıve Bayes classifier under both

assumptions.
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Number Dataset Name
1 Vehicle
2 Horse-colic
3 Vowel
4 Auto-mpg
5 Diabetes
6 Echocardiogram
7 Heart-c
8 Hepatitis
9 Ionosphere
10 Labor
11 Anneal
12 Hypothyroid
13 Iris

Figure 2.10: Accuracy comparison between Gaussian estimation (NBC) and
Kernel Estimation (NBK) for the Näıve Bayes classifier

The drawback of kernel estimation is its computation complexity. Since

it requires continuous attribute values to be stored the NBK becomes un-

suitable for incremental learning and is no longer memory efficient.

Another approach for handling continuous attributes that works for dis-

crete space learners including the Näıve Bayes Classifier is called discretiza-

tion. Although discretization techniques convert continuous feature spaces to

discrete ones independently of the learning scheme, our focus is discretization

performance under the Näıve Bayes Classifier, mainly because it is a learner

apt for incremental classification.
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2.3 Discretization

Discretization techniques are developed and widely studied not only because

many machine learning algorithms require a discrete space, but because they

may improve the accuracy and performance achieved by some others that

support continuous features [?] [?]. Many discretization methods have been

developed through the years, many of them focusing on minimizing the error

of the learned hypothesis. In this literature review we will refer to the state-

of-the-art discretization methods and the research that is behind them.

2.3.1 Data Preparation

Machine learning from raw data in any format and any size is not possi-

ble so far. Researchers and Data Miners have to follow some steps prior to

learning [?]. Formatting the data is one tedious, time consuming, and un-

avoidable preprocessing step [?]. In this data transformation process, data

is shaped into a specific format so the learner can interpret it correctly. Ma-

chine learner implementations require some kind of differentiation between

fields and records (instances). They also need to be able to match each field

of an instance with an attribute of the dataset. One way to address this

problem is to store data in a table like file where each line is an instance

and fields are bounded by a field separator which could be a comma, a tab, a

space, etc. Another way could be XML format. In any case, a predefined way

of reading the data is necessary and converting to it is a must. Some learn-
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ers even require the attribute values in the data to be known before hand.

Those usually expect a header on the data file or a header file containing

information about the data such as the name of the dataset, the types of the

attributes and/or the attribute values present in the data. Another problem

with raw data is the presence of unsuitable or sometimes mixed attribute

types.

Attribute Types

According to many authors, there are several kinds of attribute domains. In

[?] John and Langley classify attributes into either discrete or numeric, while

Yang and Web in [?] talk about categorical versus numeric where numeric

attributes can be either continuous or discrete. Witten and Frank in [?]

offer a better differentiation between attribute types that we summarize here

for consistency throughout this thesis. We will classify attribute types in

two main groups, qualitative and quantitative. Qualitative attributes refer

to characteristics of the data and their values are distinct symbols forming

labels or names. Two subcategories can be derived from it. Nominal values

have no ordering or distance measure. Examples of nominal attributes are:

• Outlook: sunny, overcast, rainy.

• Blood Type: A, B, O, AB.

Ordinal values have a meaningful logical order and can be ranked, but no

arithmetic operations can be applied to them. Examples of ordinal attributes
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are:

• Temperature: cool < mild < hot.

• Student evaluation: excellent > good > pass > fail.

Quantitative attributes measure numbers and are numeric in nature.

They possess a natural logic order therefore can be ranked. Also, meaningful

arithmetic operations can be applied to their values, and their distance can be

measured. Two subcategories of quantitative attributes can be distinguished

based on the level of measurement. In the interval level of measurement data

can be ranked, and distance can be calculated. Some, but not all arithmetic

operations can be applied to this type of attribute mainly because zero in the

interval level of measurement does not mean ‘nothing’ as zero in arithmetic.

A good example of interval level measurement attribute is dates in years.

Having various values (years) such as V1 = 1940, V2 = 1949, V3 = 1980, and

V4 = 1988, we can order them (V1 < V2 < V3 < V4), we can calculate the

difference between the years V1 and V4 (1988− 1940 = 48 years), and we can

even calculate the average of the four dates (1964), and all those calculations

make sense. What would not make much sense is to have five times the year

V1 (1940×5 = 9700) or the sum between the years V2 and V3 (62864) because

the year 0 is not the first year we can start counting from, it is an arbitrary

starting point.

The last level of measuring is the ratio quantities. This level inherently

defines a starting point zero that, the same as the arithmetic zero, means
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“nil”, or “nothing”. Also, any arithmetic operation is allowed. An example

of ratio attributes could be “the number of male students in a classroom.”

A classroom can have three times the number of male students of another

classroom, or zero (or no) male students.

Ratio is the most powerful of the measuring levels in terms of information.

Interval, ordinal, and nominal follow in that order. Conversion from a higher

level to a lower one will lose information (generalization). Figure 2.11 gives a

summary of the characteristics of the different attribute types from the most

informative down to the least.

TYPE LEVEL LOGICAL ORDER ARITHMETIC ZERO
Quantitative Ratio yes any defined
Quantitative Interval yes some not defined
Qualitative Ordinal yes none not defined
Qualitative Nominal no none not defined

Figure 2.11: Level of measurement for attributes

For simplicity, we will only differentiate between the two broader cate-

gories of attribute types: qualitative and quantitative. From now and for

the remainder of this thesis, we will call qualitative attributes discrete, and

quantitative attributes will be denoted continuous.

2.3.2 Data Conversion

Handling continuous attributes is an issue for many learning algorithms.

Many learners focus on learning in discrete spaces only [?] [?]. The presence

of a vast number of different values for an attribute and few occurrences
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for each of its values will increase the likelihood that instances will have

the same class as the majority class creating what is known as overfitting.

Overfitting guarantees high accuracy when testing on the training dataset

but poor performance on new data, therefore treating continuous values as

discrete is discouraged. Discretization is the process by which continuous at-

tribute values are converted to discrete ones, often grouping consecutive val-

ues into one. Several discretization techniques have been developed through-

out the years for different purposes. Discretization is not only useful for

those algorithms that require discrete features, but it also facilitates the un-

derstanding of the theories learned by making them more compact, increases

the speed of induction algorithms [?], and increases the classification perfor-

mance [?]. Discretization techniques can be classified according to several

distinctions [?] [?] [?] [?]:

1. Supervised vs. Unsupervised [?]. Supervised discretization meth-

ods select cut points according to the class information while unsuper-

vised methods discretize based on the attribute information only.

2. Static vs. Dynamic [?]. The number of intervals produced by many

discretization algorithms is determined by a parameter k. Static dis-

cretization determines the value of k for each attribute while dynamic

methods search for possible values of k for all features simultaneously.

3. Global vs. Local [?]. Most common discretization techniques convert

attributes from continuous to discrete for all instances of the training
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dataset, with only one set of discrete values for the entire learning

process. That is known as global discretization. On the other hand,

local discretization generates local sets of values (local regions) for a

single attribute and apply each set at different classification context.

4. Univariate vs. Multivariate [?]. Univariate methods discretize

each attribute in isolation, while multivariate discretization considers

relationships among attributes.

5. Eager vs. Lazy [?]. Eager methods perform discretization as a pre-

processing step, while lazy techniques delay discretization until classi-

fication time.

Figure 2.12 classifies six discretization methods where all the categories

presented above are covered at least once.

Discretization Category
Method 1 2 3 4 5
Equal Width Disc. [?] Unsupervised Static Global Univar. Eager
One-Rule Disc. [?] Supervised Dynamic Global Univar. Eager
Entropy-Based Disc. [?] Supervised Dynamic Local Univar. Eager
K-means clustering [?] Unsupervised Dynamic Local Univar. Eager
Multivariate Disc. [?] Supervised Dynamic Local Multivar. Eager
Lazy Disc. [?] Unsupervised Static Local Univar. Lazy

Figure 2.12: Classification of various discretization approaches.

In the case of Näıve Bayes classifiers, discretization eliminates the as-

sumption of normal distribution for continuous attributes. It forms a dis-

crete attribute A′
k from a continuous one Ak. Each value V ′

k,j of the discrete
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attribute A′
k corresponds to an interval (xk, yk] of Ak. If Vk,j ∈ (xk, yk],

P (Ak = Vk,j|Cj) in Equation 2.9 is estimated by

P (Ak = Vk,j|Cj) ≈ P (a < Ak ≤ b|Cj)

≈ P (A′
k = V ′

k,j|Cj). (2.13)

Since Näıve Bayes classifiers are probabilistic, discretization should result

in accurate estimation of P (C = Cj|Ak = Vk,j) by substituting the discrete

A′
k for the continuous Ak. Discretization should also be efficient in order to

maintain the Näıve Bayes classifier low computational cost. Discretization

performance is the main focus of this thesis as we search for an algorithm

of linear complexity, but first, we present different discretization algorithms

suited for Näıve Bayes Classifiers whose purpose is to improve classification

accuracy.

2.3.3 Equal Width Discretization (EWD)

EWD [?] is one of the simplest discretization techniques. This unsupervised,

global, univariate and eager process consists on reading a training set and

for each attribute, sorting its values v from vmin to vmax, and generating k

equally sized intervals, where k is a user-supplied parameter. Each interval

has width w = vmax−vmin

k
and cut points at vmin + iw where i = 1, . . . , k − 1.

Let us now show how this works on the continuous attribute temperature in

the non-discretized weather dataset [?] depicted in Figure 2.13.



2.3. Discretization 44

Instance Attributes Class
outlook temperature humidity windy play

1 sunny 85 85 false no
2 sunny 80 90 true no
3 overcast 83 86 false yes
4 rainy 70 96 false yes
5 rainy 68 80 false yes
6 rainy 65 70 true no
7 overcast 64 65 true yes
8 sunny 72 95 false no
9 sunny 69 70 false yes

10 rainy 75 80 false yes
11 sunny 75 70 true yes
12 overcast 72 90 true yes
13 overcast 81 75 false yes
14 rainy 71 91 true no

Figure 2.13: The weather dataset with some continuous attributes.

if k = 7 then vmin = 64 vmax = 85 and w = 85−64
7 = 3

Intervals [64,67] (67,70] (70,73] (73,76] (76,79] (79,82] (82,85]
Temp. 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Surprisingly, this basic scheme tends to significantly increase the perfor-

mance of the Näıve Bayes Classifier [?] [?] even though it may be subject to

information loss [?] and unstable partitioning among some other problems.

2.3.4 Equal Frequency Discretization (EFD)

EFD [?] seeks to divide the feature space into intervals containing approxi-

mately the same number of instances so partitions are more stable. This is

accomplished by sorting the n instances of a feature space and grouping, into

each of the k intervals, n/k adjacent (possibly identical) values. k is again

a user defined parameter. As an example let us go back to the temperature

attribute:
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if k = 7 then n = 14 and n/k = 14
7 = 2

Temp. 64 65 68 69 70 71 72 72 75 75 80 81 83 85
Inst 2 2 2 2 2 2 2

The difference between EWD and EFD on classification accuracy is min-

imal in practice and both are widely used because of their simplicity.

2.3.5 1-R Discretization (1RD)

One-Rule learning [?], as explained before, is a very simplistic method but

it is robust enough to handle both discrete and continuous data. Contin-

uous values are discretized by a very straightforward technique. The idea

behind this supervised discretization scheme is to divide the feature space

into intervals so that each contains instances of one particular class. First,

instances are sorted according to the value of the continuous attributes. This

generates a sequence of class values that is later partitioned by placing cut

points in the mid point between class changes. This procedure could gen-

erate many intervals, therefore a threshold minbucketsize, determining the

minimum number of instances of the majority class in each interval (except

the last one), is set. For example on the weather dataset of Figure 2.13:
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if minbucketsize = 3

Temp. 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Class yes no yes yes yes no no yes yes yes no yes yes no

Class yes no yes yes yes | no no yes yes yes | no yes yes no

Maj. Class yes | yes | no

Final 64 65 68 69 70 71 72 72 75 75 | 80 81 83 85

The attribute temperature went from fourteen values to just two: [64,77.5],

(77.5,85]. Even though the attribute is initially partitioned into three values,

if two consecutive intervals have the same majority class, then they can be

merged into one with no adverse effect. Also, since this method discretizes

from minimum to maximum (or left to right), the last bucket is formed

even without complying with the minbucketsize parameter. The 1-R learner

implements this discretization method “on-line” [?], meaning that it simul-

taneously learns and discretizes, although the same discretization practice

could be performed as a preprocessing step or “off-line”.

2.3.6 Entropy Based Discretization (EBD)

First formulated by Fayyad and Irani [?], this discretization scheme was de-

veloped in the context of top-down induction of decision trees. In a similar

way as C4.5 handles continuous attributes by setting cut points and evaluat-

ing the entropy measure, this discretization places a candidate cut point every

midpoint between each successive pair of sorted values. For evaluating each
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cut point data is accommodated into two intervals and the resulting class

information entropy is calculated. A binary discretization is determined by

selecting the cut point with the lowest entropy measure among all candidates.

This binary discretization is applied recursively until a stopping criterion -

given by the minimum description length principle(MDL) - is met.

The minimum description length principle stops discretization if and only

if the lowest entropy measure among all candidate points results in a split

whose information gain is lower than a value resulting from the number of

instances N , the number of classes c, the entropy of the instances E, the

entropy of each of the two intervals E1 and E2, and the number of classes in

each interval c1 and c2:

gain <
log2 (N − 1)

N
+

log2 (3c − 2)− cE + c1E1 + c2E2

N

Since this algorithm was developed from a decision tree learning context,

it tends to result in discrete attributes with small number of values. This is

important for decision tree induction so it avoids the fragmentation problem

[?].

Näıve Bayes classifiers do not suffer from this fragmentation issue, there-

fore forming small number of intervals may not be well justified for them.

Another incompatibility of the entropy-based discretization with Näıve

Bayes classifiers is that measuring the information entropy of each attribute

may reinforce the independence assumption of the Näıve Bayes classifiers by
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identifying cut points in the learning context of one-attribute applications

instead of multi-attribute applications.

2.3.7 Proportional k-Interval Discretization (PKID)

PKID [?] is based on the equal frequency discretization policy, but focuses on

adjusting discretization bias and variance by tuning the size of the intervals

and, therefore, the number of them. Discretization bias is the discretiza-

tion error that results from the use of a particular discretization policy.

Discretization variance describes the discretization error that results from

random variation of the data for a particular discretization algorithm. Vari-

ance measures how sensitive the discretization policy is to changes in the

data. Discretization bias and variance are directly related to interval size

and number. The larger the interval size, the smaller the interval number,

the lower the variance, but the higher the bias. The opposite is also true:

the smaller the interval size, the larger the interval number, the lower the

bias, but the higher the variance [?].

The inverse relationship between interval size “s” and interval number

“n” is trivial and may be represented by the formula:

s× n = D. (2.14)

Where “D” is the number of instances of the training set. The direct rela-

tionship between interval number and variance may be thought as the fewer
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the values an attribute has the less variation in the boundaries it is seen,

therefore, more consistency is achieved. Finally, interval size and bias are

directly related because the bigger the intervals formed by the discretization

policy is, the more appropriate the interval becomes for random sampling.

Higher accuracy can be achieved by finding a good trade-off between

the bias and variance, or what is the same, by tuning the interval size and

number. PKID gives equal weight to discretization bias reduction and dis-

cretization variance reduction by setting the interval size equal to the interval

number. Doing so requires:

s = n. (2.15)

From Equation 2.14 and Equation 2.15 we can calculate interval size to be

the square root of the total number of instances in the training dataset:

s = n =
√

D. (2.16)

PKID sorts the attribute values and discretizes them into intervals of size

proportional to the number of training instances. As the quantity of the

training data increases, both discretization bias and variance may decrease

making greater its capacity to take advantage of additional information.

One flaw of the PKID method is that for small training sets it forms

intervals small in size which might not present enough data for reliable prob-

ability estimation, hence resulting in high variance and poorer performance

of Näıve Bayes classifiers.
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2.3.8 Non-Disjoint Discretization (NDD)

The idea behind NDD [?] is that calculating the probability estimation of a

continuous value vi that is discretized into an interval (ai, bi] is more reliable

if the vi falls towards the middle of the interval instead of close to either ai

or bi. Given s and n calculated as in Equation 2.16, NDD forms n′ atomic

intervals of the form (a′1, b
′
1], (a

′
2, b

′
2], . . . , (a

′
n, b

′
n] each of size s′, where

s′ =
s

α

s′ × n′ = D (2.17)

Where α is any odd number and does not vary. For demonstration purposes

let us say α = 3.

With these atomic intervals in hand, when a value v is seen, it is assigned

to the interval (a′i−1, b
′
i+1] where i is the index of the atomic interval which

contains v. Using this procedure v always falls towards the middle of the

interval, except when i = 1 in which case v is assigned to the interval (a′1, b
′
3],

and when i = t′ in which case v is assigned to (a′t′−2, b
′
t′ ]

Grouping atomic intervals to form discretization values produces overlap-

ping. That is the reason why this procedure is called non-disjoint.
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2.3.9 Weighted Proportional k-Interval Discretization

(WPKID)

A solution for the PKID problem of insufficient data in an interval was

adopted in the WPKID algorithm. For smaller datasets, discretization vari-

ance reduction has a bigger impact on Näıve Bayes performance than dis-

cretization bias [?]. WPKID [?] weights discretization variance reduction

more than bias for small training sets. This is accomplished by setting a

minimum interval size m so the probability estimation always has a certain

degree of reliability. When the training dataset is big enough to set the in-

terval size above m (when D = m2,) then discretization bias and variance

are equally weighted as in PKID.

Going back to the equations for PKID, WPKID replaces Equation 2.15

for:

s−m = n

where m = 30 as it is commonly assumed the minimum sample space from

which reliable statistical inferences should be drawn. This addition should

alleviate the disadvantage of PKID for small datasets while keeping the ad-

vantages it carries for larger datasets.

2.3.10 Weighted Non-Disjoint Discretization (WNDD)

WNDD [?] is performed the same way as NDD, but with the restriction of

the minimum interval size imposed by WPKID. As explained before, the
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minimum interval size parameter prevents the discretization algorithm from

forming intervals with insufficient data for reliable probability estimation.

2.4 Summary

In this chapter we have presented a literature review consisting of two parts:

• First, we presented machine learning as a field followed by an explana-

tion of the different techniques developed to accomplish data classifi-

cation and eight classification algorithms.

• The second part deals with discretization and explains eight discretiza-

tion algorithms from which six are suitable for the Näıve Bayes classi-

fiers and two come from a decision tree induction context.

From the first section we can extract that the state-of-the-art classifiers C4.5

and Näıve Bayes have been well studied in literature and widely applied in

practice. Overall, their classification performance is significantly higher than

the rest. Although the classification accuracy obtained by C4.5 is sometimes

better than Näıve Bayes, the computational complexity of Näıve Bayes makes

it ideal for incremental learning and for standard learning on larger datasets.

It only requires one pass through the data, which results on a linear time

complexity, and does not store the instances of the dataset; only counters,

resulting in a space complexity that is not bounded to the size of the dataset.

All other classifiers serve as benchmarks for classification performance of new
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methods.

From the discretization section we can highlight the importance of dis-

cretization in the context of classification. It serves four purposes:

1. Allows learning on continuous datasets for discrete space classifiers.

2. May improve classification accuracy.

3. Increases the classifier’s performance time and memory wise.

4. Decreases the complexity of the learned theory making it simpler and

more understandable.

Although some of the discussed discretization algorithms perform well on

small to medium size datasets, only one, EWD, can be performed in linear

time∗, the remaining ones require sorting, therefore augmenting their time

complexity. Added to that, all of them, except EWD, require storing all

the training instances, thus incurring in a linear (or wider) space complexity.

These two characteristics make the discretization techniques studied unsuit-

able for incremental learning and do not match the time and space complexity

inherent to the Näıve Bayes classifier.

In Chapter 4, we will introduce our own incremental discretization algo-

rithm that performs within the computational complexity of the Näıve Bayes

classifier and still serves the purposes described above.

∗ EWD is linear in time, or takes O(n) where n is the size of the training dataset, but
it needs to reach the end of the dataset before a second pass for the actual data conversion
therefore it is unsuitable for infinite datasets



Chapter 3

Experimental Procedures for

Assesing Classification

Algorithms

3.1 Introduction

Estimating the accuracy of a classifier induced by supervised learning is im-

portant not only to predict its future prediction accuracy, but also for choos-

ing a classifier from a given set, or combining classifiers for a particular

task [?] [?].

In this chapter we offer a study of the most widely used techniques for the

proper performance evaluation of learners and the comparison between them.

Later on, we propose two testing platforms used throughout the remainder

54
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of this thesis, we explain the strengths of these techniques and how they are

implemented.

3.1.1 Background

The performance of a classifier is usually measured in terms of either the

error rate or the success rate, also called accuracy. The classifier’s job is to

predict the class of each instance, and if the prediction matches the actual

value, that is, if the prediction is correct, then it is counted as a success,

if not, it is an error. The error rate is the proportion of errors over the

whole set of classified instances. Similarly, the accuracy, or success rate, is

the ratio of successes over the number of classified instances. The error- and

success-rate add up to 1, so one can be easily calculated from the other.

We prefer to measure the performance in terms of accuracy to measure the

overall performance of the classifier.

Performance estimation can be partitioned into a bias, a variance and an

irreducible term [?] [?] [?] [?] [?] [?]:

Bias: The bias of a method designed to estimate a parameter is defined as

the expected value minus the estimated value. It describes the compo-

nent of performance that results from systematic error of the learning

algorithm.

Variance: The variance measures the sensitivity of the assessed algorithm

to changes in the training data. It describes the component of perfor-
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mance that results from random variation in the training data and from

random behavior in the learning algorithm. As an algorithm becomes

more sensitive, its variance increases.

Irreducible term: The irreducible term describes the performance of an

optimal algorithm. It is usually aggregated with the variance and the

bias terms resulting in the true performance measure.

Given that the irreducible term is fixed and the variance and bias are

variable, we can infer that there is a trade-off between bias and variance.

That is, all other things being equal, if the algorithm in question is modified,

it will have opposite effects on the bias and variance. Even though the best

estimation is the one that minimizes both, bias and variance, low variance is

preferred [?].

Since we want to forecast the performance of the learner in future data,

testing on the training data is not a good predictor for performance on new

data. It adjusts the classification theory up to the point that it over-fits the

particular dataset, not saying much about the performance on unseen data.

This kind of testing results in what is know as resubstitution error which is an

optimistic performance evaluator. Assessing the classifier’s performance on

future data requires a test dataset that has played no part in the formation

of the predictive model. This independent dataset is called the test set and

is assumed to be representative of the underlying problem.

Generally, a dataset is provided to generate a classification theory. On
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rare occasions an independent test set is given. One technique to evaluate

the performance of the classifier on new data is known as holdout. This

technique splits the dataset in two disjoint subsets, one subset is the training

set and the other one is the test, or holdout set. Usually, one-third of the

data is designated for testing and the remaining two-thirds for training. The

classification algorithm learns from the training set and then evaluates its

theory on the test set resulting in a single accuracy estimate. This value is

an approximation to the true accuracy of the classification theory on unseen

data, but we need to estimate how close they are from one another. Statistics

tells us that the bigger the test set the smaller the confidence interval the

approximation lies within. That means that the variance of the assessment is

reduced and the resulting accuracy estimate is a better approximation to the

true one. The problem arises when the given dataset is not large enough to

give us a comfortable confidence. In this case, a very common case in classic

data mining, it is required to come up with more than one accuracy estimate

from different partitions of the dataset. Various techniques to accomplish

this have been developed in the past.

3.2 Learner Evaluation

First we introduce the common testing procedure known as “cross-validation”,

then we explain why this method is insufficient and how it can be modified

to more adequately avoid testing bias. Next, we discuss significance test and
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other statistical methods necessary for the proper comparison between two

(or more) algorithms.

3.2.1 Cross-Validation

We want to use as much of the data as possible for training in order to get

a good classifier, but at the same time we want to test as much of it as

possible to get a good accuracy estimate. Cross-validation is one method

widely used to deal with this problem [?] [?] [?] and our preferred method to

asses overall learner performance. It consists of dividing a dataset into equal

sized fractions (e.g. three one-thirds) called folds and sequentially holding

out one fold for testing and the remaining ones for training until all subsets

have served for both training and testing purposes. Even class representation

is required for both the training and the test sets, therefore we need to ensure

that each one of the folds contains approximately the same class distribution

as the whole dataset. This is known as stratified n-fold cross-validation where

n is the number of (training set / test set) pairs. Learning on each one of

these folds results in n usually different accuracies that are then averaged to

give a better approximation to the true accuracy estimate. The pseudo-code

for the standard stratified n-fold cross-validation is shown in Figure 3.1

Tenfold cross-validation is a standard method used for measuring the

performance of a learning algorithm. In it, the original data set is divided into

ten disjoint groups, each one with approximately the same class distribution.
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1. Divide dataset D into n approximately equal folds di

2. for each di {
3. Acci ← Train on D − di and Classify on di

4. }
5. MeanAcc← 1

n

∑n
i=1 Acci

6. return MeanAcc

Figure 3.1: n-fold cross-validation pseudo-code

Each subset is then used to form a test set for training on the remaining

nine, i.e. Subset one is used for testing and subset two through ten are used

for training, then subset two is the testing subset and subsets one, and three

through ten form the training set. This is then repeated for each subset. This

way we come up with ten different accuracy measures where data used for

training is different from the one used for testing. These ten results are then

averaged and the mean accuracy is the final measurement of classification

performance.

3.2.2 Ten by Ten-Fold Cross-Validation Procedure

According to Boucaert in [?], and Witten and Frank in [?], estimating accu-

racy from ten samples is not enough. It is necessary to take more examples

into account and randomize the process to avoid bias. One approach we use

in this thesis is known as m× n-fold cross-validation, or m× nFCV. It con-

sists of repeating the n-fold cross-validation process, on the same data set,

m times while randomizing the order of the data at each iteration as shown

in the pseudo-code in Figure 3.2. Statistically, it is a better estimation of
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the accuracy of the classifier in the new data because it is drawn from the

bigger sample size m× n.

1. repeat m times {
2. Dm ← all instances of data set D in random order
3. Accm ← n-fold cross-validation(Dm) as in Figure 3.1
4. }
5. MeanAcc← 1

m

∑m
i=1 Accj

6. return MeanAcc

Figure 3.2: m× n-fold cross-validation pseudo-code

Several issues arise with the introduction of this scheme. The first one

is how to estimate the accuracy from the set of results returned. Another

matter is the statistical comparison between estimations.

These issues are analyzed in Boucaert’s paper [?]. In it, Boucaert recom-

mends the use of all 100 individual estimates to calculate the mean accuracy

and its variance. Then, when comparing these estimates coming from two

different algorithms, we compare them by performing a t-test with 10 degrees

of freedom. This simple setting, known as the use-all-data approach, is cali-

brated to compensate for the difference between the desired Type I error and

the true one and has the same properties of more complicated tests. We use

this method within our own test procedure as explained in the next section.
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3.3 Comparing Learning Techniques

Comparing two learning algorithms is not a simple task [?]. In an effort

to compare the results coming from different machine learners, we have de-

veloped a test platform that performs “ten by ten-fold Cross-Validation”

(10x10FCV). It allows us to compare various classifiers against each other

while assuring that comparisons are statistically significant.

3.3.1 The Test Scenario

For the first testing scheme we use a script that does the following on each

dataset D:

1. Splits the dataset into ten disjoint subsets with equal class representa-

tion (D = D1 ∪D2 ∪ · · · ∪D10).

2. Generates ten training/test-dataset pairs. For each iteration i the test

set is Di and the training set is the union of the remaining nine subsets.

3. Runs each training/test-dataset pair on each of the competing algo-

rithms.

4. Reports the accuracy of all the runs to a file. One file per algorithm.

5. Calculates the average mean and standard deviation on the results in

each file according to the use all data technique previously described.
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6. Performs t-test statistics to compare the results of the classifiers with

a significance level of 0.05 or 95% confidence and 9 degrees of freedom.

7. Generates a win-loss table according to the outcomes of the test statis-

tics.

8. Graphs the mean accuracy and +/− one standard deviation.

As Boucaert’s paper suggests, this testing scenario is robust to Type I

errors and accommodates to the requirements established for a proper per-

formance evaluation setting (high replicability, low variance). An example of

this set-up is presented next.

3.3.2 An example: NBC Vs. NBK and C4.5

The example in Figure 3.3 shows the performance of NBC, NBK and J4.8

on nineteen datasets from the UCI repository [?].

The graph displays the accuracy of each classifier on each dataset sorted

in ascendant order in reference to the NBC results. From this graph we can

ratify Wolpter’s claim that states, “. . . with certain assumptions, no classifier

is always better than another one” [?]. It is not clear that the tree induc-

tion classifier C4.5 (Weka’s J4.8) is better than NBC and NBK in terms

of accuracy, as their curves often intercept in the graph. That is why the

win-loss table is also provided. Each row shows the number of times the

algorithm performs significantly better (wins) or worse (losses) than the ac-

curacy of the other algorithms. The win − loss column determines which
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# Dataset Insts Atts Num Disc Cl
1 vehicle 846 18 18 0 4
2 primary-tumor 339 17 0 17 21
3 letter 20000 16 16 0 26
4 vowel 990 13 10 3 11
5 horse-colic 299 24 8 16 3
6 audiology 226 69 0 69 24
7 auto-mpg 398 6 6 0 4
8 diabetes 768 8 8 0 2
9 echo 130 8 6 2 2
10 waveform-5000 5000 40 40 0 3
11 ionosphere 351 34 34 0 2
12 hepatitis 155 19 6 13 2
13 heart-c 303 13 6 7 2
14 anneal 898 38 6 32 5
15 vote 435 16 0 16 2
16 soybean 683 35 0 35 19
17 labor 57 16 8 8 2
18 hypothyroid 3772 29 7 22 4
19 iris 150 4 4 0 3

Alg w-l win lose
j48 5 15 10
nbk 3 10 7
nbc -8 5 13

Figure 3.3: Comparison between Näıve Bayes classifier, with and without
kernel estimation (NBC and NBK respectively), and Weka’s implementation
of C4.5 (J4.8) using a stratified 10x10FCV technique. The graph plots the
mean accuracy and +/- one standard deviation of each dataset. The table
summarizes the characteristics of the datasets used for this comparison. Fi-
nally, the win-loss table gives us a higher level view on the performance of
the classification techniques.
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algorithm achieves the overall highest accuracy of the compared algorithms

on the tested datasets. That does not necessarily mean that such algorithm

is the preferred one. Perhaps we would need a very reliable algorithm. In

this case, we would choose the one that looses the least, or maybe we would

prefer to risk a little for a better performance and choose the one that would

win the most.

3.4 Learning Curves

In this section, we present an additional test scenario where the proportion of

training instances over the test instances varies for each run. Although it is a

very time consuming and memory expensive approach, we propose it for com-

paring the learning curves of different algorithms on individual datasets. This

procedure assesses the accuracy of classifiers at different quantities of training

data generating a learning curve proportional to the amount of training. We

named it incremental 10-times 10-fold cross-validation and it is explained

next.

3.4.1 Incremental 10-times 10-fold Cross-Validation

This evaluation procedure performs 10x10FCV on increments of ten percent

of training data. That is, it runs over train sets containing ten percent

of the data, and tests on the remaining nine sets. Then it increments the

training data to twenty percent and repeats the randomization procedure. It
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repeats this process nine times until the last set of runs are equivalent to the

10x10FCV technique explained above.

A simple but powerful implementation of this method was developed by

Dr. Menzies in a software package called “bill”. It is part of a series of data

mining tools in a linux environment∗ that can be downloaded from www.

scant.org. “Sequence” is the particular program used within this package

to assess the learning curves of different algorithms on different datasets.

Sequence takes a dataset and splits it into n stratified and equally sized

subsets Di . . .Dn. Then it trains each specified algorithm on subset Di and

tests on the remaining subsets repeating this procedure n times until all the

subsets have served as training set. In every successive iteration j, sequence

adds the subset Di+j to the training set and therefore subtracts it from

the test set. It iterates until there is only one subset left for testing (until

j = i− 1). Finally, it repeats the whole process m times while randomizing

the order of the original dataset.

Since we set sequence’s parameters to m = 10 and n = 10, it runs each

algorithm a total of 900 times on each dataset. It generates 9 different

10-fold cross-validations, one per each 10% extra training data. This is a

very complete test that shows the performance of each algorithm at different

training states. It also tells us how fast (or slow) an algorithm can improve

its classification accuracy. This is most important in the context of model

∗We use cygwin for all testing and development. It is a linux emulator under windows
and it is downloadable from www.cygwin.com

www.scant.org
www.scant.org
www.cygwin.com
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selection for a particular application. Next we will see an example of this

test scenario at work.

3.4.2 Example

Figure 3.4 illustrates the learning curve of NBC, and J4.8 on ten UCI datasets

[?]. These graphs help us visualize how fast and how accurate the learners

may be on certain datasets.

Notice the flattened shape of the majority of the learning curves. Perhaps

it indicates a stabilization of the predictive model in the early training stages.

This is exactly what we found after experimental tests on several datasets.

We exploit this “early plateauing” of the majority of studied datasets when

developing our classification tool in Chapter 5.
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Figure 3.4: Incremental performance comparison between NBC and C4.5.



Chapter 4

SPADE: Single Pass Dynamic

Enumeration

4.1 Introduction

Many discretization techniques have been developed to improve the classi-

fication accuracy of the Näıve Bayes classifier. While some of them have

achieved great enhancement, like the WNDD (§2.3.10), none of them have

been able to scale parallel to the classifier. That is, no algorithm can dis-

cretize continuous attributes as they come, reading them once, and without

storing them. The challenge of building a discretization process that matches

the characteristics of the Näıve Bayes classifier while improving classification

accuracy and minimizing the lost of information, motivated us to invent

SPADE, S ingle PAss Dynamic Enumeration, as described in this chapter.

68
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The ultimate goal of our discretization technique is to provide the most

accurate density estimate while updating the partition boundaries incremen-

tally and minimizing information loss.

4.1.1 Creating Partitions

The idea behind SPADE is to create dynamic “ranges”, also called “buckets”,

“bands”, or “bins”, that self adjust every time a new continuous value is

encountered. We achieve this by assigning to the first value, v1, a band of

the form b1=[v1, v1] and min=v1, and max=v1. When the second value,

v2, comes by, it is tested to see whether it is greater than the maximum

value seen so far (“max”=v1), lesser than the minimum value seen so far

(“min”=v1), or within “min” and “max”. Depending on the result of the

test, three things can occur:

• If v2 lies between min and max (v2=v1 in this case), then we look for

the band that contains v2 (in this case b1) and return it to the learner.

• If v2 is greater than max, then b2=( max , v2 ] is created and returned

to the learner. Therefore the bands are now b1=[ v1 , v1 ], b2=( v1 ,

v2 ], and max=v2.

• If v2 is less than min, then b2=[ v2 , v2 ] is created and returned,

while b1 is modified from [ v1 , v1 ] to b1=( v2 , v1 ]. This procedure

leaves the bands b2=[ v2 , v2 ], b1=( v2 , v1 ], and min is updated to

min=v2.
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This procedure is repeated for every continuous value of each attribute.

Even though this is a single pass approach (each continuous value is read

once), it has several problems. One serious problem is that if the initial

values are the minimum and maximum of the attribute’s distribution, then

only two bands will be created, and most of the values will fall into only

one band. This defies the purpose of the discretization since all class-value

information is lost [?] [?]. Another problem arises if the continuous values

come in ascending or descending order. In either case, one band is created

for each value and this also cancels out the point for discretization [?].

In order to overcome these problems two improvements are necessary.

Solving the first issue requires creating a minimum number of bands to guar-

antee a minimum continuous attribute partitioning. The other problem,

great amounts of bins, is solved by updating the bands often. Both tech-

niques are explained next.

4.1.2 Band Sub-Division

A new parameter is introduced to the algorithm, “SUBBINS”. This tells

the discretizer how many equal-width sub-divisions to create per each band

generated by the original algorithm. In other words, each time a band is

created, it is split in SUBBINS number of (sub-)bands. This approach assures

a better distribution among various bands, guarantees a minimum number

of them, and avoids crowding all values into a single band.

If we go back to the example in the previous section and assume that
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SUBBINS=3, then:

• If v2 lies between min and max (v2=v1 in this case), then we look for

the band that contains v2 (in this case b1) and return it to the learner.

• If v2 is greater than max, then b2=( max , v2 ] is partitioned in three so

b2=( max , max+(v2-max/3) ], b3=( max+(v2-max/3) , max+2(v2-

max/3) ], b4=( max+2(v2-max/3) , v2 ] are created and b4 is returned

to the learner. Therefore the bands are now b1=[ v1 , v1 ], b2=( max

, max+(v2-max/3) ], b3=( max+(v2-max/3) , max+2(v2-max/3) ],

b4=( max+2(v2-max/3) , v2 ] guaranteeing at least four bands.

• If v2 is less than min, then b1 is modified from [ v1 , v2 ] to b1=(

min+2(min-v2/3) , v1 ], and b2=( min+(min-v2/3) , min+2(min-v2/3)

], b3=( v2 , min+(v1-v2/3) ], b4=[ v2, v2 ] are created and b4 is

returned. This procedure leaves the bands b4=[ v2 , v2 ], b3=( v2

, min+(v1-v2/3) ], b2=( min+(min-v2/3) , min+2(min-v2/3) ], b1=(

min+2(min-v2/3) , v1 ] again, assuring at least four bands are created.

With this technique, some control over the number of bands created is

gained. Also, since there is no partitioning after instances have been assigned

to each band, there is no information loss due to the split. Now the problem

is that a big number of SUBBINS can potentially generate a great number of

unnecessary bands. To solve this new problem along with the previous issue,

creating one band per continuous value when values are sorted, the following

technique has been developed.
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4.1.3 Updating Partitions

Controlling a variable number of bands allowed to be maintained by the

learner is necessary. Creating huge amounts of bands and searching them is

exceedingly time consuming. Also, they might not contain enough values to

sample from for a good estimator. In order to gain such control, several new

parameters are introduced to SPADE. They help direct a “merge” function

whose job is to join unused or under-used bands; bands with small number

of instances.

Three parameters are introduced to the algorithm:

MAXBANDS: A dynamic upper-bound for the number of bands. It is set

to the squared root of the number of training instances seen.

MAXINST: A dynamic upper-bound suggesting the maximum number of

instances in each band (suggested upper-bound tally). It is set to two

times MAXBANDS.

MININST: A dynamic lower-bound suggesting the minimum number of

instances in each band (suggested lower-bound tally). It is set to the

same number as MAXBANDS

We have chosen the square root of the processed training instances as

SPADE’s border criterion to control discretization bias and variance as ex-

plained by Yang and Webb in [?]. Also, we called MAXINST and MININST

“suggested” boundaries because there is no guarantee to hold the number
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of instances in a band within those values. They simply prevent the fusion

of any bin with one having a tally bigger than MAXINST, and promote

the combination of multiple sequential under-MININST bins until their sum

surpasses the MININST parameter.

The bin merging function works as follows. The number of bands created

for each attribute is maintained and if it surpasses MAXBANDS, then the

merge function is called. This function visits each one of the bands in the

current attribute sequentially. If the visited band has fewer instances than

MININST, and if when combined with the next it is still less than MAXINST,

the two bands are collapsed into one. All other counts have to be updated

accordingly. If any of the tests fail, then the current band is not merged and

the function continues operation on the next band. A clearer view of this

procedure is offered in the next chapter, where the whole learner is explained.

Merging bands according to the above procedure minimizes the informa-

tion loss due to discretization because all counts are actual counts and no

estimation is used for any operation.

4.1.4 Algorithmic Complexity

A comparison of the algorithmic complexity of Näıve Bayes with the single

Gaussian assumption, John and Langley’s kernel estimation, and SPADE is

shown in Figure 4.1. Notice that there is no difference between the time

complexity of NBC and NBK on training data, and SPADE is actually worse

than them in this context by the b factor. Experimental procedures show
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Gaussian Assumption Kernel Estimation SPADE
Operation Time Space Time Space Time Space
Train on n instances O(nk) O(k) O(nk) O(nk) O(nk ln b) O(kb)
Test on m instances O(mk) O(mnk) O(mk ln b)

Figure 4.1: Algorithmic complexity of three different continuous handling
techniques for the Näıve Bayes classifier, given k attributes. Also, b is the
number of bins generated by SPADE.

that b very rarely reaches the worst case or even close to the worst case. We

describe the very unlikely scenario where it would get to the worst time and

memory case in §5.4.4. What algorithm complexity does not show is what

we call the “two-scan” problem.

Many kernel estimation and discretization methods violate the one scan

requirement of a data miner; i.e. learning needs only one scan (or less) of the

data since there may not be time or memory to go back and look at a store of

past instances. For example, the EWD discretization method is n-bins which

divides attribute ai into bins of size MAX(ai)−MIN(ai)
n

. If MAX and MIN

are calculated incrementally along a stream of data, then each instance may

have to be cached and re-discretized if the bin sizes change. An alternative

is to calculate MAX and MIN after seeing all the data. Both cases require

two scans through the data, with the second scan doing the actual binning.

Many other discretization methods we discussed in §2.3 and all the methods

discussed by Dougherty et.al. [?] and Yang and Webb [?], suffer from this

two-scan problem. Similarly, John and Langley’s kernel estimation method

cannot build its distribution until after seeing and storing all the continuous

data.
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SPADE only scans the input data once and, at anytime during the pro-

cessing of X instances, SPADE’s bins are available. Further, if it ever adjusts

bins (e.g. when merging), then the information used for that merging comes

from the bins themselves, and not some second scan of the instances. Hence,

it can be used for the incremental processing of very large data sets.

Going back to the discretization classification shown in Figure 2.12, SPADE

is classified as an unsupervised, dynamic, local, univariate, eager dis-

cretization technique. It is unsupervised because bins are created and

merged according to individual values and not the instance’s class. It is

dynamic in the sense that there is no predefined number of bins SPADE

creates, but this number dynamically changes as data comes in. Also, since

discretization takes place during training time, and the bins generated are

not the same for the whole training set, this discretization technique is lo-

cal. SPADE is univariate as it discretizes each continuous attribute value

independently, and attribute correlations are not taken into account for the

process. It is eager because it does not wait until classification time to

generate the bins. Finally, and more importantly, SPADE is defined as a

one-pass, on-line, incremental discretization algorithm.

4.2 Experimental Results

Figure 4.2 and Figure 4.3 show the results of our first experiment. In it, we

compare the histogram of the true distribution of the data and the estimated
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density distribution generated by SPADE.

Figure 4.2: First three continuous attributes from the UCI dataset “letter”.

The first six attributes of the “letter” dataset from the UCI Repository [?]
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Figure 4.3: Attributes four to six from the UCI data set “letter”.



4.2. Experimental Results 78

were used for this comparison. We use Matlab 6.2 to generate the histograms

from the raw data, and then we let SPADE run on the dataset and generate

its own bins. Next, we plot the tallies of each bin generated. Notice from the

graphs, that there is no major difference between the corresponding graphs.

SPADE’s density estimation is very close to the true one, even though they do

not always follow a Gaussian distribution. The minimum variation between

the graphs is expected and it is a consequence of the loss of information

generated by going from a fine grain level of measurement to a coarser one

(See §2.3.1). In summary, from these results, we can say that SPADE’s loss of

information is minimal. Therefore, one of the discretization goals introduced

at the beginning of this chapter has been attained.

The second test’s objective is to see the difference SPADE makes on ex-

isting classifiers. Figure 4.4 shows the results of comparing Näıve Bayes

with SPADE (NBC+SPDE), a single Gaussian (NBC), and kernel estima-

tion (NBK). As we expected, Spade improves the performance of the Näıve

Bayes classifier as it was developed in the context of Bayesian classifiers like

EWD, EFD, PKID, (§2.3). In the figure, the table displays the accuracies of

NBC+SPADE, NBC and NBK, as well as the statistical comparison between

NBC+SPADE and the each of the other two. From that table, notice that

SPADE significantly improves NBC’s accuracy five times and decreases it

once. Also the average accuracy across all datasets is increased very close

to the one obtained by NBK. This is encouraging as it demonstrates that in

most cases SPADE is at least as accurate as NBC and in some cases it is
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actually better.

# Dataset NBC+SPADE NBC NBK
1 vehicle 61.83375± 4.86358 44.64230± 4.95235 - 60.76793± 4.28329
2 letter 72.21600± 1.14537 64.04600± 1.11137 - 74.27700± 1.08412 +
3 vowel 65.41417± 7.19013 66.42427± 5.30648 72.55558± 6.33344 +
4 horse-colic 68.01264± 7.63013 67.57586± 7.63559 68.81494± 7.44340
5 auto-mpg 74.18719± 7.55786 74.85193± 8.36961 73.94808± 7.82594
6 diabetes 75.28351± 4.71252 75.54479± 4.35598 75.10050± 4.63620
7 echo 79.30771±10.91667 78.84617±11.00827 80.23079± 9.97605
8 waveform-500 80.14200± 1.79838 80.00200± 1.92852 79.84400± 1.94834
9 segment 88.96105± 2.14164 80.04331± 2.33934 - 85.73162± 2.08922 -

10 ionosphere 89.45317± 5.07635 82.09206± 7.69688 - 91.73413± 4.30545 +
11 hepatitis 83.80833±10.00035 83.27917±10.03757 84.37500± 9.91803
12 heart-c 83.67312± 6.49099 83.50108± 6.97044 84.16345± 6.23720
13 anneal 93.73146± 2.98953 86.60624± 3.59273 - 94.48851± 2.47123
14 labor 94.90000± 9.77244 93.86666±11.25882 92.66666±11.45920
15 hypothyroid 95.30524± 1.31992 95.30240± 1.06445 95.92538± 0.98183
16 iris 93.19999± 5.99138 95.66666± 5.13564 + 96.13332± 4.84832 +

MEAN 81.21433 78.26818 81.92231

Figure 4.4: Comparison between Näıve Bayes with data preprocessed by
SPADE, NBC (Gaussian), and NBK (kernel estimation). The “+” and “-”
signs indicate that there is a statitistical significant increase or decrease in
accuracy of the method against SPADE respectively.

On the other hand, Figure 4.5 shows the effects of SPADE on C4.5.

According to Yang [?], supervised discretization performs better in decision

trees. On the other hand, unsupervised techniques, like SPADE, tend to do
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worse in this context because they do not partition the attributes separating

the different classes. This is the reason why we do not expect SPADE to

improve C4.5 accuracy.

# Dataset C4.5+SPADE C4.5
1 horse-colic 67.31494 ± 8.17739 59.88391 ± 8.77245 -
2 vehicle 72.42493 ± 5.52383 67.69398 ± 5.28800 -
3 diabetes 74.15074 ± 5.41005 73.90228 ± 5.23319
4 waveform-500 75.12000 ± 2.03107 72.12400 ± 2.05849 -
5 auto-mpg 75.73270 ± 8.17346 70.66411 ±10.32592 -
6 heart-c 76.22581 ± 7.70545 78.10538 ± 7.39768
7 vowel 76.90911 ± 9.14462 65.14144 ± 8.52095 -
8 hepatitis 78.27500 ± 9.48724 81.37083 ±10.70506 +
9 labor 78.66667 ±17.65106 67.80000 ±19.08819 -

10 echo 80.76925 ±11.33595 85.38463 ± 9.24499 +
11 letter 88.01050 ± 0.83416 79.99550 ± 1.05009 -
12 ionosphere 89.65873 ± 5.28187 89.03968 ± 6.02286
13 iris 94.53333 ± 5.87027 92.86666 ± 7.23223
14 segment 96.86580 ± 1.19171 93.95672 ± 1.63248 -
15 anneal 98.68553 ± 1.01912 97.88478 ± 1.48782
16 hypothyroid 99.53342 ± 0.31996 95.97325 ± 1.77369 -

MEAN 82.67978 79.4867

Figure 4.5: Comparison between C4.5 with data preprocessed by SPADE,
and C4.5 with the continuous data. The “+” and “-” signs indicate that
there is a statitistical significant increase or decrease in accuracy of C4.5
with continuous values against C4.5 with SPADE respectively.

From Figure 4.5 and its table, it is clear that SPADE could decrease the
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accuracy of the learner. This is neither surprising nor discouraging, as it

is an incremental discretizer designed to work specifically in the context of

Bayesian learners. It also proves that discretization algorithms ought to be

targeted to a specific learning approach, and not all discretization techniques

work on all learners.

Lastly, Figure 4.6 summarizes the results from Figure 4.4 by comparing

the results from SPADE and John and Langley’s kernel estimation method

using the display format proposed by Dougherty, Kohavi and Sahami [?].

In that figure, a 10x10-way cross validation used three learners: (a) Näıve

Bayes with a single Gaussian; (b) Näıve Bayes with John and Langley’s ker-

nel estimation method (c) Näıve Bayes classifier using data pre-discretized

by SPADE. Mean classification accuracies were collected and shown in Fig-

ure 4.6, sorted by the means (c−a)− (b−a); that is, by the difference in the

improvement seen in SPADE or kernel estimation over or above a simple sin-

gle Gaussian scheme. Hence, kernel estimation works comparatively better

than SPADE on datasets A through I, while SPADE performs comparatively

better on the remaining six datasets (J, K, L, M, N, O).

Three features of Figure 4.6 are noteworthy. Firstly, in a finding consis-

tent with those of Dougherty et.al. [?], discretization can sometimes dramat-

ically improve classification the accuracy of a Näıve Bayes classifier (by up

to 9% to 15% in data sets C,F,M,0). Secondly, Dougherty et.al., found that

even simple discretization schemes (e.g. EWD §2.3.3) can be competitive

with more sophisticated schemes. We see the same result here where, in 13
15
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Figure 4.6: Comparing SPADE and kernel estimation. Data sets: A=vowel,
B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000,
M=vehicle, N=labor, O=segment.
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of these experiments, SPADE’s mean improvement was within 3% of John

and Langley’s kernel estimation method. Thirdly, in two cases, SPADE’s

one scan method lost information and performed worse than assuming a sin-

gle Gaussian. In data set A, the loss was minimal (-1%) and in data set B

SPADE’s results were still within 3% of kernel estimation. In our view, the

advantages of SPADE (incremental, one scan processing) compensates for

its occasional performing worse than the state-of-the-art alternatives which

require far more memory.



Chapter 5

SAWTOOTH: Learning on

Huge Amounts of Data

After the successful development of SPADE with its incremental capabilities,

the next step to a simple but powerful scalable classifier is to integrate it to

a Bayesian learner that, instead of reading a whole dataset and generate

a single classification model, it reads each instance and updates the model

(Bayesian table) at a time, very quickly. Such a scheme is not only useful

for context where data is continuously generated and classified, but it could

serve as the basis of simple unsupervised learning and other data mining

techniques as we explain in §6.1.

84
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5.1 Scaling-up Inductive Algorithms

Provost and Kolluri, in [?], distinguish three main methods for scaling up in-

ductive algorithms. Firstly, there are relational representation methods that

reject the assumption that we should learn from a single memory-resident

table. Such tables can be built by joining and denormalizing other tables.

Denormalization echoes the same datum in multiple locations so the joined

tables are larger than the original tables. For example, joining and denor-

malizing three tables of data expanded the storage requirements from 100MB

to 2.5GB files [?, p25]. Various relational representation learning methods

exist such as hierarchical structure learners, inductive logic programming,

or methods that take more advantage of the DBMS that gathers the data

together for the learner.

Returning to the single-table approach, another class of scale-up methods

are those based on faster algorithms that (e.g.) exploits parallelism; or that

target some restricted representations such as a decision tree of limited depth;

or that optimize search by, say, combining greedy search for extensions to the

current theory with a fast pruning strategy.

A third class of scale-up methods perform data partitioning methods to

learn from (e.g.) some subset of the attributes such as those selected via

attribute relevance studies; or from subsets of the instances selected via, say,

duplicate compaction or stratified sampling method where minority class(es)

are selected with greater frequency and most of the majority class ignored.
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Our technique uses the classic sequential data partitioning method called

windowing. This particular technique is used in the FLORA1. . .FLORA4

systems [?]. The basic schema for FLORA is that newly arrived examples

are pushed into the start of sliding window of size w while the same number

of older examples are popped from the end. Adding examples can confirm or

refute a generalization in the current theory. Adding or removing examples

can trigger relearning from the examples in the window. As long as w is

small relative to the rate of concept drift, then this procedure guarantees the

maintenance of a theory relevant to the last w examples.

SAWTOOTH’s windowing scheme is much simpler than FLORA. A sin-

gle theory is carried across each window and SAWTOOTH takes no action

when data is removed from a window. Newly arrived data is classified ac-

cording to the current theory. Then they become training examples and the

learner updates. If the performance of the learner has not changed after e.g.

a Stable number of windows (we considered stable theories that remained at

or above current performance three times in a row), the learning is said to

have plateaued. Learning is then disabled and the current predictive model

is frozen. Data from subsequent windows is then processed using the frozen

model. Learning is reactivated if the performance seen in the current win-

dow is significantly different to the prior stability point. On reactivation, a

new theory is learned from the current window onward, until stabilization

is achieved, updating the frozen theory. The process repeats forever. The

algorithm has its name since the resulting behavior often looks like a SAW-
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TOOTH curve: performance is initially low and rises sharply during the first

few windows. After a concept shift, the performance drops sharply, and then

rises again to a new plateau. We called each window an ERA and it is a fixed

user-defined parameter in SAWTOOTH’s most current implementation.

Two problems with windowing systems like FLORA and SAWTOOTH

are (1) the computational cost of relearning and (2) if w (ERA) is too small

or too large, the learning may never find an adequate characterization of the

target concept. Similarly, if w (ERA) is too large, then this will slow the

learner’s reaction to concept drift.

SAWTOOTH uses two mechanisms to reduce problem (1). Firstly, SAW-

TOOTH turns off learning while the performance of the system is stable.

Secondly, SAWTOOTH uses a learner that can update its knowledge very

quickly.

5.2 Concept Drift

In the real world concepts change over time. Similarly, the underlying data

distribution coming from real world processes, also vary. These instabilities

often make theories learned on old data inconsistent with new data, and

frequent updating of the theory is required. This problem, known as concept

drift, complicates the task of learning a model from data and requires a

different approach than the one used for batch learning [?].

In the particular case of Bayesian classifiers, if we use them for incre-
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mental (time series) learning, the early saturation of their learned theory

becomes a serious problem for adapting to changing concepts. Every time a

new instance is processed, Bayesian classifiers increment counters that later

are used to calculate the most likely class (see §2.2.4). This technique has an

adverse effect on changing distributions since the adjustments to the new dis-

tribution may take a long time depending on how early they change. That is,

the later a variation occurs, the longer it takes to adjust to new data. More-

over, if a Bayesian classifier is trained and re-trained on the same concept

several times, then it takes longer to adjust to the concept if its classification

changes.

As a simple example, let us suppose that NBC generated a theory that

classifies a dataset with classes “0” and “1”. If the theory is generated

on several hundred instances from which 100 instances classified a certain

combination of attribute values as class “1”, then, if the distribution changes,

and that same combination is now of class “0”, it would take the learner

another 100 instances of the same combination of attribute values to adjust

and classify new instances as class “0”. Such effect would make adjustments

on the learned theory slowly, and in some cases even more slowly than the

rate at which the distribution changes, decreasing the classification accuracy

on new data.

A more realistic scenario, on the same problem, would be if the learner

has been trained on thousands of instances where the majority belongs to

a particular class and a small portion belongs to the remaining class (or
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classes). If the data distribution changes because of a small number of at-

tribute variations, then it would take very long time to adjust to them in the

same way it does in the example presented above. This is very undesirable in

incremental learning, but works well on batch classification, where examples

are assumed to be drawn from a single, static distribution.

In order to overcome the concept drift problem, we need to avoid training

on already learned concepts so the adjustment to newer ones are easier and

take less time. One study on the early stability of real world datasets helps us

devise a technique, the windowing technique explained earlier, to avoid over-

training the learner and over-fit the theory to initial concepts. The study is

presented next.

5.2.1 Stability

During the initial phases of our investigation, we compared several of our

attempts to incremental learning against C4.5 and Näıve Bayes, using the

incremental 10x10-fold cross-validation technique explained in Chapter 3.

From the resulting learning curves we conclude that there are three types of

data sets according to the early learning saturation or stability.

First we have data sets where learning fails all together. Learners fail to

produce useful theories; therefore their accuracies are very low. Examples

are depicted in Figure 5.1

The second group, which is the biggest one, plateaus early, meaning that

after twenty to thirty percent of the data (sometimes earlier) is seen, no
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Figure 5.1: Data sets where learning accuracy is low. Learning fails.

significant performance improvement is achieved. Data sets from this group

stabilize at around 300 instances, as shown in Figure 5.2.

The third group contains data sets where the more data the better the

theory learned. Figure 5.3

Even though we show stability results based on NBC and C4.5, stability

is present in a variety of datasets regardless of the learning algorithm. For

example, Figure 5.4 summarizes stability results across two different clas-

sification concepts. On the left-hand-side it shows the performance of two

discrete class classifiers, while on the right-hand-side it presents the results

of two linear regression algorithms.

Figure 5.2 and Figure 5.4 suggest that, for many data sets and many learn-

ers, learning could proceed in windows of a few hundred instances. Learning

could be disabled once performance peaks within those windows. If the

learner’s performance falls off the plateau (i.e. due to concept drift), it could
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Figure 5.2: Data sets where useful theories are learned on less than 30 percent
of the data. The exhibit early plateaus.
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All data is useful

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

audiology results

NBC
j48

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

horse-colic results

NBC
j48

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

iris results

NBC
j48

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

labor results

NBC
j48

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

soybean results

NBC
j48

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90

A
c
c
u

ra
c
y

Training on (%)

vowel results

NBC
j48

Figure 5.3: Data sets where classification accuracy increases proportional to
the number of instances used for training.
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update its predictive model by learning from the new instances in the current

window. Given early plateaus like those in Figure 5.2 and Figure 5.4, this

new learning should take only a few more hundred instances. Further, since

learning only ever has to process a few hundred instances at a time, this

approach should scale to very large data sets.

Figure 5.2 and Figure 5.4 are not the first reports of early plateaus in the

data mining literature (though, to the best of our knowledge, it is the first

report of early plateaus in M5’ and LSR). Oates and Jensen found plateaus

in 19 UCI data sets using five variants of C4.5 (each with a different pruning

method) [?]. In their results, six of their runs plateaued after seeing 85 to

100% of the data. This is much later than our results, where none of our

data sets needed more than 70% of the data.

One possible reason for our earlier plateaus is the method used to identify

start-of-plateau. From Figure 5.2 we determined stability by eye-balling the

slope of the learning curve (IF slope ≈ 0, THEN stable), and Figure 5.4

detected plateaus using t-tests to compare performance scores seen in theories

learned from M or N examples (M < N) and reported start-of-plateau

if no significant (α=0.05) difference was detected between the N and the

last M with a significant change. On the other hand, Oates and Jensen

scanned the accuracies learned from 5, 10, 15% etc. of the data looking for

three consecutive accuracy scores that are within 1% of the score gained

from a theory using all the available data. Note that regardless of where

they found plateaus, Oates and Jensen’s results endorse our general thesis
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that, often, learning need not process all the available examples.

We are not motivated to explore different methods for detecting start-

of-plateau. The results below show that learning using our start-of-plateau

detector can produce adequate classifiers that scale to very large data sets.

In summary, we may be using too much data to train our learners. In

the majority of cases where useful results were obtained, there seems to be

little benefit in learning from more than 30% of the data. In all cases, little

improvement was seen after learning from more than 300 instances. These

results imply that data mining from data sets may be quite simple. Read

the data in a buffer of N instances. Train the learner on the instances of

the current buffer until its theory stabilizes. Keep buffering and testing the

incoming data, but do not learn from it. If the learner’s performance ever

drops from a stable plateau, assume that the data distribution has somehow

changed and relearn from the last buffer. Repeat forever while only keeping

N instances in the buffer.

That is exactly what we target with SAWTOOTH, a simple classification

algorithm that oversees the performance of the current predictive model and

updates it every time it fails. As a side effect, it indicates whether the current

predictive model is valid for the oncoming data.
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5.3 Algorithm

So far, we have seen how classification, discretization and concept drift de-

tection works. The algorithm introduced in this section is the integration of

these concepts and the final product of this thesis. The actual code is pro-

vided in §A. It has been implemented in AWK for a better comprehension

and simplicity.

As we explained earlier in §2.3.2, data mining algorithms expect prefor-

matted data, so they can process it correctly. SAWTOOTH has very low

formatting requirements as it only necessitates a header line containing the

attribute names separated by comma (‘,’) and preceded by an asterisk (‘*’)

if continuous. The class attribute should be the last one in the header and it

is required to be discrete∗. It also expects each example in the form of a line

(row) with each attribute value separated by comma (‘,’) and corresponding

to the attribute named in the header at its position (column). Missing values

need to be denoted as a single question mark (‘?’), to be handled appropri-

ately. Even though the attribute values are not required beforehand, we have

also implemented the algorithm so it can handle Weka’s “.arff” files.

The user-defined parameters this algorithm requires are:

SUBBINS: This user-defined variable affects discretization only. It speci-

fies the number of ranges (or bins) created every time an unknown value

is encountered. It prevents continuous values from being partitioned

∗We have left the discretization of the class attribute for future work
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into small number of bins. It assures a finer-grain discretization.

ERA: It is the size of the window, the buffer that holds a subset of the data

for classification and testing at a single point in time. Theoretically,

a bigger ERA is preferred for data whose distribution is expected to

change gradually over time. Smaller ERA is better when data changes

drastically over short periods of time.

The remaining parameters are initialized within the algorithm and dy-

namically change over the run. They are:

• Affecting the classifier:

Total: Counts the total number of instances seen since the beginning

of the execution.

Classified Counts the number of classified instances within the cur-

rent ERA.

Correct: Counts the number of instances correctly classified within

the current ERA.

totalCorrect: Global counter of the total number of correctly classi-

fied instances.

totalClassified: Global counter of the total number of classified in-

stances.

maxAttributes: Holds the number of attributes of the current dataset.

classes: Array that stores the class values.
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Frequencies: Matrix that holds the Bayesian table. It stores the coun-

ters for the number of seen values per attribute per class.

Seen: Secondary table that stores the number of times each attribute

value is seen across all classes.

AttValues: A table that stores the number of values per attribute.

Prediction: Stores the class value returned by the classifier at every

instance.

• Affecting SPADE (discretizer):

minInstance: Specifies the recommended minimum number of in-

stances to be present in each partition.

maxInstance: Specifies the recommended maximum number of in-

stances to belong to a single bin.

maxBands: Specifies the maximum number of bands (bins) allowed

to exist at every point in time.

Bands: Table or matrix that holds the counters for the number of bins

generated by SPADE. One counter per continuous attribute.

Numeric: Array that holds a flag for each attribute indicating whether

it is continuous or discrete.

MIN: Stores the minimum values seen so far by SPADE for each con-

tinuous attribute.
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MAX: Stores the minimum values seen so far by SPADE for each

continuous attribute.

5.3.1 Processing Instances

SAWTOOTH starts by reading the header of the dataset and extracts some

information. The header must contain the name of each attribute separated

by a comma where the last attribute is the class. Continuous attributes

must be distinguishable from discrete ones by a preceding asterisk. No other

information is required.

During this initialization process the learner sets the values of maxAt-

tributes, Numeric, and the starting values Min and Max for each continuous

attribute. SAWTOOTH then proceeds to accept instances and collect them

in a buffer of size ERA. Upon entering the buffer, instances are classified and

counts are stored in the variables Classified and Correct. Once the buffer is

full, its classification performance is statistically compared to the learner’s

previous performance using the standardized test statistic [?]. This test allows

us to statistically compare two sets of outcomes from the same distribution

with a certain significance level (α). In other words, it allows us to place

the current accuracy estimation in a confidence interval. Let us model the

situation as follows.
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Standardized Test Statistic for Stability

Let S be the number of classification successes in n = ERA independent

trials having the binomial distribution b(n = ERA, p = S). The null hy-

pothesis, H0, states that there is no change in the underlying distribution of

the data. That means that the current ERAs mean classification accuracy

µ has not dropped since the previous ERA. The alternative hypothesis, H1,

says that the underlying distribution has changed, that is, the mean classi-

fication accuracy has dropped compared to the mean classification accuracy

of all processed data µ0.
†. The decision rule is that we reject H0 and accept

H1 if the mean classification accuracy µ for the current ERA drops with a

significance level of α = 0.05. To achieve a test with this significance level, we

choose the critical region as X ≤ c such that α = 0.05 = P (X ≤ c; µ = µ0).

Since under H0, X is N [np, np(1 − p)] after the binomial distribution is

approximated to the normal. Then, the critical region is calculated using the

formula:

− z(α) ≥ X − µ0

σ/
√

n
(5.1)

where z(0.05) = 1.645 , µ0 = ERA× S, σ = ERA× S(1− S).

The formula in Equation 5.1 is called the standardized test statistic. There

SAWTOOTH takes the difference between the sample mean and the hy-

†If the classification accuracy actually rises, it does not mean that the distribution of
the data has changed and that we need to update the current theory by learning on the
buffer, it simply means that the current theory is so similar that it is classifying better
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pothesized value and “standardizes” it by the standard deviation of X. If

the observed value z = (x − µ0)/(σ/
√

n) is a large negative value, even

smaller than −z(α) = −z(0.05) = −1.645, SAWTOOTH rejects H0 in favor

of H1 : µ < µ0, affirming that the distribution has changed. Otherwise, if

the standardized test statistic is larger than −z(α), then there is not enough

evidence to reject H0, and thus the distribution is considered stable.

Armed with this test statistic, SAWTOOTH can choose whether the cur-

rent buffer distribution matches what it has seen so far or if it is changing;

in other words, if the learned model is stable.

SAWTOOTH considers its theory to be stable if the estimated accuracy of

the current buffer lies within the confidence interval given by the standardized

test statistic at the 0.05 significance level. This is the criteria by which the

learner decides to either learn and forget or just forget.

Learning and Forgetting

In a previous section (§5.2) we analyzed the incremental properties of the

Bayesian classifiers. From that analysis and the stability results shown in

§5.2.1, we conclude that the simplest method to handle concept drift is to

prevent learner over-training. This can be accomplished by only training the

learner from instances where classification fails. This will also take care of

the instances that it has not seen since it is not able to classify them correctly.

SAWTOOTH windowing technique activates a cruise control when its

classification has been stable for two consecutive ERAs. While it is activated,
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the learner classifies the new incoming instances before they are buffered and

when the buffer is full, SAWTOOTH’s performance on the current buffer is

compared to the overall accuracy since the last instability. If the learned

model is still stable, then empty the buffer and repeat the process. Oth-

erwise, if the classification accuracy drops, the cruise mode is deactivated

and training on the current buffer is performed until stability is regained.

This way, the theory is updated to the most actual state and it is ready for

classification of new data. This cycle is performed forever or until the last

instance is processed.

As an example, the dataset used to generate the results in Figure 5.5 was

provided by Dr. Bojan Cukic. The data was generated from a flight simu-

lator software at West Virginia University. It is composed of 4800 instances,

four continuous attributes describing flight parameters, and six discrete class

values: “nominal”, “error1”, “error2”, “error3”, “error4”, and “error5”. The

“nominal” class describes a normal flight scenario. Each of the “error” classes

describes a major malfunction of the aircraft. It is organized so the first 800

instances are “nominal”, and then a sequence of 600 “nominal” 200 “error”

instances are repeated five times, once per each different error.

While this dataset was not generated for the purpose of classification‡, it

serves us well for showing the saturation effect.

For this test we ran SAWTOOTH with ERA = 100, and SUBBINS = 5

‡It is actually used by Yan Liu, at the WVU Lane Department of Computer Science
and Electrical Engineering, for research on a different kind of machine learning called
anomaly detection
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in both cases (left and right), but the cruise control was omitted for the results

on the left. In the figure, ERA is the number of processed buffers. Mode refers

to the class of the current buffer. Inst is the number of processed instances.

Correct is the number of correctly classified instances in the buffer. Clssfd

says the number of instances in the buffer. Accuracy tells us the proportion

of correctly classified instances over the number of instances in the buffer.

State is “Stable” if the Accuracy of the buffer is significantly equal or better

than the overall accuracy, “Unstable” otherwise. Finally, Train() informs

whether the buffer is learned or not. This last column makes the difference

between the two runs of the algorithm.

These results corroborate our theory that over-training the learned the-

ory could have negative effects. For example, when the learner classifies the

first buffer of “error1” instances, in both cases it fails to recognize the class

since it has never seen it. Now, when the second buffer of “error1” instances

is classified, the learner that has trained on less instances of the majority

class performs better than the one that has been trained on all the data.

This effect is repeated when the learner gets to “error2”, “error3”, and “er-

ror5”. The only exception is found when the learner processes the “error4”

instances, were in both cases SAWTOOTH fails to classify them even after

processing the first buffer of instances belonging to the same error. This

positive effect does not come alone though, it affects the classification of the

majority class. When learning in all eras (left) the nominal instances are al-

ways classified correctly, whereas SAWTOOTH classifies such instances with
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inferior accuracy. This is acceptable as long as the positive effect remains

greater than the negative one.

5.4 Algorithm Evaluation

5.4.1 SAWTOOTH on Changing Distributions

The first test we perform is based on the results of the flight simulator data.

In this case we want to see the performance and recovery of SAWTOOTH

on a dataset with concept drift. Data was taken from the simulator in ERAs

of 100 instances. Each error mode lasted two ERAs, and for three times the

simulator returned to each error mode. That is, we repeated three times the

same dataset used in the previous section.

The top of Figure 5.6 shows the results of SAWTOOTH’s stability tests

as well as when SAWTOOTH enabled or disabled learning. Each error mode

introduced a period of instability which, in turn, enabled a new period of

learning.

The first time SAWTOOTH sees a new error mode (at eras 15, 23, 31, 39,

and 47), the accuracy drops sharply and after each mode, accuracy returns

to a high level (usually over 90%). The second time SAWTOOTH returns to

a prior error mode (at eras 63, 71, 79, 87 and 95), the accuracies drop, but

only very slightly.

Three features of Figure 5.6 are worthy of mentioning:
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• The large drop in accuracy when entering new context means that

SAWTOOTH can be used to recognize new contexts (watch for the

large drops). In terms of certifying an adaptive system, this is a very

significant result: learning systems can alert their uses when they are

leaving the region of their past competency.

• There is no such large drop when SAWTOOTH returns to old contexts.

That is, SAWTOOTH can retain knowledge of old contexts and reuse

that knowledge when contexts re-occur.

• The accuracy stabilizes and SAWTOOTH mostly disables the learner

between drifts. That is, for much of Figure 5.6 the SAWTOOTH

“learner” is not learning at all.

These three points cover two of the seven standard data mining goals

mentioned in the introduction of this thesis (§1.2): (D5) Can forget, and

(D6) Can remember. Also, since SAWTOOTH “freezes” the predictive model

when it is stable, the current best answer is readily available at any time,

therefore it also supports goal (D4) On-line.

5.4.2 Batch Data

We also assess the performance of SAWTOOTH against batch learning. We

have chosen twenty-one discrete-class datasets from the UCI repository [?].

These datasets are small so we can run NBC, NBK and C4.5 from the WEKA

toolkit. In this comparison, we do not expect SAWTOOTH to be the best
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among the compared algorithms simply because it was not designed to handle

such small datasets and its contribution is more towards scalability. What

we do expect is a comparable to slightly better performance than NBC due

to the early plateaus of some of the datasets used, but more importantly,

because of SPADE.

Figure 5.7 shows a comparison between our algorithm and C4.5, NBC,

NBK. From the graph, notice that SAWTOOTH clearly wins five times and

losses two times against NBC. It wins in vehicle, letter, segment, ionosphere,

and anneal. All but one of these datasets, ionosphere, have more than 800

instances, and all but one, anneal, have all continuous attributes (except

the class). Also, they all fall in the early plateau group from the stability

results, therefore, it is not a coincidence that SAWTOOTH does better in

these datasets.

On the other hand, SAWTOOTH clearly looses in vowel and audiology.

Not surprisingly, these two datasets fall in the use all data of Figure 5.3. On

the remaining datasets, SAWTOOTH performs better than NBC and close

to NBK as expected. What we did not expect was to be exactly in the middle

of the average accuracy of NBC and NBK. This suggests that we can improve

the overall accuracy of Näıve Bayes using the SAWTOOTH approach even

in small datasets. Such results are noteworthy because SPADE is not only

scalable to huge datasets, but it can also be used in smaller ones achieving

results similar to the state-of-the-art batch learners. Therefore, it embraces

one of the remaining four uncovered goals: SAWTOOTH is (D7) Competent.
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5.4.3 Case Study: The KDD Cup 99 Classification

Contest

The remarkable difference between SAWTOOTH and batch learning algo-

rithms is encountered when they face large datasets like the KDD Cup 1999

datasets [?] on network intrusion detection. The training set is 750MB in size

while the test set size is 45MB. SAWTOOTH classifies such dataset using

at most 3720 KB ( 3.5MB) of memory, while Weka’s implementation of the

Näıve Bayes and the C4.5 classifiers cannot read the dataset into memory.

Weka even has trouble training on the physics dataset from the KDD Cup

2004, which is 46.7MB.

SAWTOOTH’s simplistic approach is very efficient and is able to handle

huge amounts of data as we shall see in the KDD Cup 1999 case study

presented next. We do not include the KDD Cup 2004 study because the

labeled test set has not been released.

The task for the KDD Cup 1999 contest was to learn a classification

theory to distinguish between different connections in a computer network

for intrusion detection learning.

Two data sets were provided. One, the training set, is a collection of

about five million connection records with 24 attack types (classes) and 40

attributes (from which 34 are continuous). The test set contains 311,029

instances from a different probability distribution than the training data. It

has 38 classes (14 additional) and the same 40 attributes as the training set.
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It is also important to note that the test instances are not all independent.

There are 77,291 distinct test examples out of the 311,029 present in the

dataset. This is important because it is a clear violation of the independence

assumption of Bayesian classifiers.

Classes from both sets are divided into four main categories:

[0 ] normal: No attack.

[1 ] probe: Surveillance and other probing.

[2 ] DOS: denial-of-service.

[3 ] U2R: unauthorized access to local super-user (root) privileges.

[4 ] R2L: unauthorized access from a remote machine.

The class distributions of the datasets are:

Class Train Test
0 19.69% 19.48%
1 0.83% 1.34%
2 79.24% 73.90%
3 0.01% 0.07%
4 0.23% 5.20%

The classification results submitted were scored according to the following

cost matrix:

normal probe DOS U2R R2L
normal 0 1 2 2 2
probe 1 0 2 2 2
DOS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0
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The 24 submitted entries were ranked according to their average classi-

fication cost as shown in Figure 5.8. This measurement is calculated by a

simple script that generates a confusion matrix based on the predicted class

and the actual class labels. Then this confusion matrix is dot multiplied by

the cost matrix. That is, each value in the confusion matrix is multiplied by

the corresponding value in the cost matrix.

Figure 5.8 is sorted in ascending order ranging from 0.2356 to 0.9414.

“The first significant difference between entries with adjacent ranks is be-

tween the 17th and 18th best entries. The difference is very large: 0.2952−

0.2684 = 0.0268, which is about nine standard errors. One could conclude

that the best 17 entries all performed well, while the worst 7 entries were

definitely inferior.”§

Figure 5.9 shows the confusion matrix obtained by the winning group.

Their approach involved an ensemble of 50x10 C5 decision trees using a cost-

sensitive bagged boosting technique¶. It took several runs of the commer-

cially available C5 (Supposedly better than C4.5) algorithm, implemented

in C, on many sub-samples of the training set. Although they did not use

the whole training set, and the algorithms used were implemented efficiently,

their final run took over a day on a dual-processor 2x300MH Ultra-Sparc2

machine, with 512MB of RAM, running Solaris 5.6.

§Extracted from the KDD Cup 99 results page available at http://www.cs.ucsd.edu/
users/elkan/clresults.html

¶More details are given at http://www.ai.univie.ac.at/~bernhard/kddcup99.html

http://www.cs.ucsd.edu/users/elkan/clresults.html
http://www.cs.ucsd.edu/users/elkan/clresults.html
http://www.ai.univie.ac.at/~bernhard/kddcup99.html


5.4. Algorithm Evaluation 109

5.4.4 SAWTOOTH Results

Motivated by the large scale of the datasets offered for this task, we ran

SAWTOOTH and obtained the confusion matrix and average classification

cost in Figure 5.10.

SAWTOOTH’s average classification cost then falls between places 15

and 16 of the submitted entries. That means that SAWTOOTH is within the

group that performed well according to the judges. SAWTOOTH’s average

classification cost was close to the winning entrant score; very similar to en-

trants 10, 11, 12, 13, 14, 15, 16; and better than entrants 18,19,20,21,22,23,24.

These results are encouraging since SAWTOOTH is a much simpler tool than

the winning entry. Even though SAWTOOTH is written in interpreted script-

ing languages (gawk/bash), it processed all 5,300,000 instances in one scan

using less than 3.5 Megabytes of memory. This took 11.5 hours on a 2GHz

Pentium 4, with 500MB of RAM, running Windows/Cygwin. We conjecture

that this runtime could be greatly reduced by porting our toolkit to “C”.

Another encouraging result is the # bins with tally=X plot of Figure 5.11.

One concern with SPADE is that several of its internal parameters are linked

to the number of processed instances; e.g. MaxBins is the square root of the

number of instances. The 5,300,000 instances of KDD’99 could therefore,

in the worst case, generate over 2000 bins for each continuous attribute.

This worst-case scenario would occur if each consecutive group of SUBBINS

number of continuous values would have different values from the previously

seen groups and are sorted in ascending or descending order. If this unlikely
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combination of events does not occur then the resulting bins would have

tallies than MININST, encouraging it to merge with the next bin. In all of

our experiments, we have never seen this worst-case behavior. In KDD’99,

for example, SPADE only ever generated 2 bins for 20 of the 34 continuous

attributes. Also, for only one of the attributes, did SPADE generate more

than 50 bins. Lastly, SPADE never generated more than 100 bins.

From this case study we can mark off two of the remaining three goals

left to achieve by SAWTOOTH. It is clear from this test that it is: (D2)

Small, since it requires about the same amount of memory to process any

of the smaller UCI datasets as it took this huge one; and (D3) One scan,

requiring a single pass over the set of instances to draw conclusions. There

is only one standard data mining goal that has not been met: (D1) Fast. At

this point, we cannot assure that SAWTOOTH runs in linear time. This is

because SPADE’s bin generation method is linked to the size of the dataset,

as explained in Chapter 4. What we did see is that, experimentally, SPADE

does not generate anywhere near the worst case (square root of the number

of instances), and the number of bins is usually small.
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Figure 5.4: R=10*N=10 incremental cross validation experiments on 20 UCI
data sets [?]. A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.
G:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud,
M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:auto-mpg, T:housing.
Data sets A..J have discrete classes and are scored via the accuracy of the
learned theory; i.e % successful classifications. Data sets K..T have continu-
ous classes and are scored by the PRED(30) of the learned theory; i.e. what
% of the estimated values are within 30% of the actual value. Data sets are
sorted according to how many instances were required to reach plateau using
nbk and C4.5 (left-hand side) or M5’ and LSR (right-hand side).
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ERA Mode Inst Correct Clssfd StblAccy State train()

1 nominal 100 0 100 0.000000 initial yes

2 nominal 200 100 100 1.000000 stable yes

3 nominal 300 100 100 1.000000 stable yes

4 nominal 400 100 100 1.000000 stable yes

5 nominal 500 100 100 1.000000 stable yes

6 nominal 600 100 100 1.000000 stable yes

7 nominal 700 100 100 1.000000 stable yes

8 nominal 800 100 100 1.000000 stable yes

9 nominal 900 100 100 1.000000 stable yes

10 nominal 1000 100 100 1.000000 stable yes

11 nominal 1100 100 100 1.000000 stable yes

12 nominal 1200 100 100 1.000000 stable yes

13 nominal 1300 100 100 1.000000 stable yes

14 nominal 1400 100 100 1.000000 stable yes

15 error1 1500 0 100 0.928571 unstable yes

16 error1 1600 60 100 0.300000 stable yes

17 nominal 1700 100 100 0.533333 stable yes

18 nominal 1800 100 100 0.650000 stable yes

19 nominal 1900 100 100 0.720000 stable yes

20 nominal 2000 100 100 0.766667 stable yes

21 nominal 2100 100 100 0.800000 stable yes

22 nominal 2200 100 100 0.825000 stable yes

23 error2 2300 0 100 0.733333 unstable yes

24 error2 2400 69 100 0.345000 stable yes

25 nominal 2500 100 100 0.563333 stable yes

26 nominal 2600 100 100 0.672500 stable yes

27 nominal 2700 100 100 0.738000 stable yes

28 nominal 2800 100 100 0.781667 stable yes

29 nominal 2900 100 100 0.812857 stable yes

30 nominal 3000 100 100 0.836250 stable yes

31 error3 3100 0 100 0.743333 unstable yes

32 error3 3200 35 100 0.175000 stable yes

33 nominal 3300 100 100 0.450000 stable yes

34 nominal 3400 100 100 0.587500 stable yes

35 nominal 3500 100 100 0.670000 stable yes

36 nominal 3600 100 100 0.725000 stable yes

37 nominal 3700 100 100 0.764286 stable yes

38 nominal 3800 100 100 0.793750 stable yes

39 error4 3900 0 100 0.705556 unstable yes

40 error4 4000 3 100 0.015000 stable yes

41 nominal 4100 100 100 0.343333 stable yes

42 nominal 4200 100 100 0.507500 stable yes

43 nominal 4300 100 100 0.606000 stable yes

44 nominal 4400 100 100 0.671667 stable yes

45 nominal 4500 100 100 0.718571 stable yes

46 nominal 4600 100 100 0.753750 stable yes

47 error5 4700 0 100 0.670000 unstable yes

48 error5 4800 4 100 0.020000 stable yes

82.3617

ERA Mode Inst Correct Clssfd StblAccy State train()

1 nominal 100 0 100 0.000000 initial yes

2 nominal 200 100 100 1.000000 stable yes

3 nominal 300 100 100 1.000000 stable yes

4 nominal 400 100 100 1.000000 stable no

5 nominal 500 100 100 1.000000 stable no

6 nominal 600 100 100 1.000000 stable no

7 nominal 700 100 100 1.000000 stable no

8 nominal 800 100 100 1.000000 stable no

9 nominal 900 100 100 1.000000 stable no

10 nominal 1000 100 100 1.000000 stable no

11 nominal 1100 100 100 1.000000 stable no

12 nominal 1200 100 100 1.000000 stable no

13 nominal 1300 100 100 1.000000 stable no

14 nominal 1400 100 100 1.000000 stable no

15 error1 1500 0 100 0.928571 unstable yes

16 error1 1600 80 100 0.400000 stable yes

17 nominal 1700 100 100 0.600000 stable yes

18 nominal 1800 100 100 0.700000 stable yes

19 nominal 1900 100 100 0.760000 stable no

20 nominal 2000 100 100 0.800000 stable no

21 nominal 2100 100 100 0.828571 stable no

22 nominal 2200 100 100 0.850000 stable no

23 error2 2300 0 100 0.755556 unstable yes

24 error2 2400 99 100 0.495000 stable yes

25 nominal 2500 100 100 0.663333 stable yes

26 nominal 2600 100 100 0.747500 stable yes

27 nominal 2700 100 100 0.798000 stable no

28 nominal 2800 100 100 0.831667 stable no

29 nominal 2900 100 100 0.855714 stable no

30 nominal 3000 100 100 0.873750 stable no

31 error3 3100 0 100 0.776667 unstable yes

32 error3 3200 81 100 0.405000 stable yes

33 nominal 3300 100 100 0.603333 stable yes

34 nominal 3400 100 100 0.702500 stable yes

35 nominal 3500 92 100 0.746000 stable no

36 nominal 3600 85 100 0.763333 stable no

37 nominal 3700 88 100 0.780000 stable no

38 nominal 3800 94 100 0.800000 stable no

39 error4 3900 0 100 0.711111 unstable yes

40 error4 4000 3 100 0.015000 stable yes

41 nominal 4100 100 100 0.343333 stable yes

42 nominal 4200 100 100 0.507500 stable yes

43 nominal 4300 100 100 0.606000 stable no

44 nominal 4400 96 100 0.665000 stable no

45 nominal 4500 97 100 0.708571 stable no

46 nominal 4600 91 100 0.733750 stable no

47 error5 4700 0 100 0.652222 unstable yes

48 error5 4800 33 100 0.165000 stable yes

83.8085

Figure 5.5: Difference between learning using all data (left) and learning on
the unstable portions of it(right). See how the performance on new classes
degrades as more training is provided.
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Figure 5.6: SAWTOOTH and Concept Drift
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incremental batch
# data set instances SAWTOOTH NBC NBK J4.8
1 vehicle 846 61.62 ± 4.73 44.64 ± 4.95 - 60.77 ± 4.28 72.42 ± 5.52+
2 primary-tumor 339 47.83 ± 7.34 49.37 ± 7.09 49.37 ± 7.09 41.73 ± 7.63 -
3 letter 20000 72.44 ± 1.26 64.05 ± 1.11 - 74.28 ± 1.08 + 88.01 ± 0.83+
4 vowel 990 59.72 ± 6.51 66.42 ± 5.31+ 72.56 ± 6.33 + 76.91 ± 9.14+
5 horse-colic 368 68.41 ± 7.55 67.58 ± 7.64 68.81 ± 7.44 67.31 ± 8.18
6 audiology 226 61.42 ± 10.45 69.84 ± 10.35+ 69.84 ± 10.35 + 76.55 ± 9.10+
7 auto-mpg 398 74.24 ± 7.48 74.85 ± 8.37 73.95 ± 7.83 75.73 ± 8.17
8 diabetes 798 74.70 ± 4.81 75.54 ± 4.36 75.10 ± 4.64 74.15 ± 5.41
9 echo 130 80.08 ± 10.09 78.85 ± 11.01 80.23 ± 9.98 80.77 ± 11.34

10 waveform-5000 5000 80.16 ± 1.77 80.00 ± 1.93 79.84 ± 1.95 75.12 ± 2.03 -
11 segment 2310 88.91 ± 2.24 80.04 ± 2.34 - 85.73 ± 2.09 - 96.87 ± 1.19+
12 ionosphere 351 89.54 ± 5.09 82.09 ± 7.70 - 91.73 ± 4.31 + 89.66 ± 5.28
13 hepatitis 155 85.67 ± 9.15 83.28 ± 10.04 - 84.38 ± 9.92 78.28 ± 9.49 -
14 heart-c 303 83.74 ± 6.46 83.50 ± 6.97 84.16 ± 6.24 76.23 ± 7.71 -
15 kr-vs-kp 3196 85.49 ± 8.12 85.66 ± 9.01 85.66 ± 9.01 99.18 ± 1.49+
16 anneal 898 94.50 ± 2.97 86.61 ± 3.59 - 94.49 ± 2.47 98.69 ± 1.02+
17 vote 435 89.98 ± 4.32 89.96 ± 4.35 89.96 ± 4.35 96.58 ± 2.97+
18 soybean 683 89.38 ± 4.76 92.42 ± 4.21+ 92.42 ± 4.21 + 90.49 ± 6.04
19 labor 57 91.13 ± 11.76 93.87 ± 11.26 92.67 ± 11.46 78.67 ± 17.65 -
20 hypothyroid 3772 95.36 ± 1.30 95.30 ± 1.06 95.93 ± 0.98 99.53 ± 0.32+
21 iris 150 93.13 ± 6.03 95.67 ± 5.14+ 96.13 ± 4.85 + 94.53 ± 5.87

MEAN 79.40 78.07 80.86 82.26

learner win - loss win loss ties
J48 13 28 15 20
nbk 7 17 10 32

SAWTOOTH -7 12 19 32
NB -13 9 22 32

Figure 5.7: mean± standard deviations seen in 10*10-way cross validation
experiments on UCI Irvine data sets running NBC NBK and J4.8. The graph
shows the performance on the learners on the 21 datasets. The plot bottom-
right sorts the differences in the accuracies found by SAWTOOTH and all the
other learners. Some of those differences are not statistically significant: the
“+” or “-” in the table denote mean differences that are significantly different
to SAWTOOTH at the α = 0.05 level. The significant differences between
all the learners are shown in the win-loss statistics of the bottom-right table.
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1 0.2331 7 0.2474 13 0.2552 19 0.3344
2 0.2356 8 0.2479 14 0.2575 20 0.3767
3 0.2367 9 0.2523 15 0.2588 21 0.3854
4 0.2411 10 0.2530 16 0.2644 22 0.3899
5 0.2414 11 0.2531 17 0.2684 23 0.5053
6 0.2443 12 0.2545 18 0.2952 24 0.9414

Figure 5.8: Average classification cost results from the 24 submitted entries
to the KDD Cup 1999.

Predicted 0 1 2 3 4 %correct
Actual \--------------------------------------------------
0 | 60262 243 78 4 6 99.5%
1 | 511 3471 184 0 0 83.3%
2 | 5299 1328 223226 0 0 97.1%
3 | 168 20 0 30 10 13.2%
4 | 14527 294 0 8 1360 8.4%

|
%correct | 74.6% 64.8% 99.9% 71.4% 98.8%

Average classification cost: 0.2331
Correctly Classified: 288349
Accuracy: 92.708%

Figure 5.9: Detailed classification summary attained by the winning entry.

predicted 0 1 2 3 4 %correct
actual \---------------------------------------------------------

0 | 60163 324 52 2 52 99.3%
1 | 739 3257 170 0 0 78.2%
2 | 6574 880 222399 0 0 96.8%
3 | 136 82 0 10 0 4.4%
4 | 16115 73 0 0 1 0.0%

|
%correct| 71.9% 70.6% 99.9% 83.3% 1.9%

Average classification cost: 0.25985
Correctly Classified: 285830
Accuracy: 91.898%

Figure 5.10: SAWTOOTH detailed classification summary on the KDD Cup
99 dataset.
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Figure 5.11: SAWTOOTH and the KDD’99 data



Chapter 6

Conclusion and Future Work

In this thesis, we have found that mining on huge datasets can be successfully

accomplished in a very simplistic manner. Our original objective of building

a simple classifier able to handle huge or infinite data sets with possible nu-

meric attributes while validating the theory learned and possibly adapting

to changes in the underlying distribution of the data, is accomplished with

SAWTOOTH. Our results show that its performance is comparable to Näıve

Bayes on batch data, but with very low memory requirements. This is re-

markable in the sense that it can handle virtually unlimited amounts of data

while preserving the Bayesian advantages of incremental updatability, readi-

ness of the learned model, and robustness to missing values. The addition of

an on-line discretizer, not only allows it to handle continuous values in the

data, but it can actually increase the accuracy of the learner, and eliminates

the assumption of normality within each attribute’s distribution.

117
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Holte argues for the simplicity-first approach to data mining; i.e. re-

searchers should try simpler methods before complicating existing algorithms [?].

While Provost and Kolluri endorse “simplicity-first”, they note in their re-

view of methods for scaling up inductive algorithms that, “it is not clear

now much leverage can be obtained through the use of simpler classifiers

to guide subsequent search to address specific deficiencies in their perfor-

mance” [?, p32].

This thesis has been a simplicity-first approach to scaling up data miners.

We have levered two features of Näıve Bayes classifiers that make them good

candidates for handling large datasets: fast updates of the current theory

and small memory foot print. Several deficiencies with Näıve Bayes classi-

fiers have been addressed: incremental discretization and dynamic windowing

means that Bayes classifiers need not hold all the data in RAM at one time.

Our algorithm works via one scan of the data and can scale to millions of

instances. It is much simpler than other scale-up methods such as FLORA

or the winner of KDD’99. Even so, it performs as well as many other data

mining schemes (see Figure 5.11). Also, when used on smaller data sets,

it performs within ±5% of other commonly used schemes (see Figure 5.7).

Further, the same algorithm without any modifications can be used to de-

tect concept drift, to repair a theory after concept drift, and can reuse old

knowledge when old contexts re-occur (see Figure 5.6).

A drawback with our learner is that we cannot guarantee that it operates

in small constant time per incoming instance. Several of SPADE’s inter-
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nal parameters are functions of the total number of instances. In the worst

case, this could lead to the runaway generation of bins. On a more opti-

mistic note, we note that this worst case behavior has yet to be observed in

our experiments: usually, the number of generated bins is quite small (see

Figure 5.11).

From the results of this thesis, we can say that SAWTOOTH fully accom-

plishes all but one (D1 FAST) of the standard data mining goals presented

in §1.2. It is a small, one-scan, on-line, can forget, can recall, and

competent classification algorithm. We have also shown that the goal D1

fast is attainable experimentally.

Why can such a simple algorithm like SAWTOOTH be so competent

for both small and large data sets? Our answer is that many data sets

(such as all those processed in our experiments) exhibit early plateaus and

such early plateaus can be exploited to build very simple learners. If a

particular data set does not contain early plateaus then our simple learner

should be exchanged for a more sophisticated scheme. Also, SAWTOOTH

is inappropriate if concept drift is occurring faster than the time required to

collect enough instances to find the plateau.

Finally, we recommend that other data mining researchers check for early

plateaus in their data sets. If such plateaus are a widespread phenomena,

then very simple tools (like SAWTOOTH) should be adequate for the pur-

poses of scaling up induction.
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6.1 Future Work

This research does not stop here. There are countless opportunities to fine-

tune SAWTOOTH for even better performance, but more importantly, it

could be expanded to help with scalability and simplicity on many different

areas of machine learning.

SAWTOOTH can be improved by implementing it in a programming lan-

guage, as opposed to a scripting one. It could also be improved by exploiting

parallelism. One thread could update the theory while another classifies new

examples on the most recently frozen model. Even a third thread could

be used to handle classification of unlabeled data. Both approaches would

speed-up the algorithm several orders of magnitude.

A different approach would be taking numeric class datasets and incre-

mentally discretize the class with SPADE as an approximation to linear re-

gression. It would be really interesting to see if what is true for discrete class

classification holds in the context of numeric classes. If such algorithm’s per-

formance is comparable to the state-of-the-art linear regression algorithms,

then it would simplify very complicated real world tasks present in a variety

of domains ranging from stock market fluctuations, to spatial calculations.

One area of great interest is unsupervised learning. Very simple ap-

proaches to anomaly detection, where the likelihood of the novel class is

tracked for sudden changes, could be developed based on the research pro-

vided by this thesis. Likelihood variation above a certain threshold could de-
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termine an anomaly on the distribution. One-class classification techniques

like that is essential for the latest advancements in unmanned exploration,

where mission critical components need to detect behaviors outside the nom-

inal ones to take an action. This is the context in which the flight simulator

data was generated. It was targeted to this kind of learning.

On another note, our research could also help speed-up treatment learning

by changing the confidence1 measure to likelihood and making use of SPADE

for discretization. According to Geletko and Menzies [?], treatment learning

can be really useful for testing real world models. The only drawback is that it

takes a really long time to run, and it grows exponentially with the number

of instances. Treatment learning could become incremental and scalable

based on our research, leading to an invaluable tool for critical validation

and verification (V&V) of models.

Finally, any machine learning approach based on probabilities could take

advantage of SPADE by simply embedding it and attaching it to the proba-

bility table.



Appendix A

SAWTOOTH Implementation

in AWK

A.1 Interface

A.1.1 SAWTOOTH What is This?

copyleft() {
cat<<-EOF
sawtooth: An incremental online naive bayes classifier with
on-line, one-pass discretization, and stabilization tuning.
Copyright (C) 2004 Andres Orrego and Tim Menzies

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, version 2.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the

122
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Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA.

EOF
}

A.1.2 Usage

usage() {
cat<<-EOF

Usage: sawtooth [FLAG]... FILE
SawTooth

Flags:
-h print this help text
-l copyright notice
-X N run one of N demos. N=0 means run all demos
-v verbose mode (shows bayes table & run times)
-p Brief Mode (Shows predicted and actual classes)
-t <file> training file specifier
-T <file> test file specifier
-s <number> Number of sub divisions of a discretized bin (default 5)
-e <number> Number of instances that determines an ERA (cache size)

EOF
}

A.1.3 Motivation

#During our research we have performed classification experiments
#on many datasets and we have noticed three accuracy (3) patterns
#in respect to the number of instances:

#We may be using too much data to train our learners.
#In the majority of cases where useful results were obtained,
# there seemed little benefit is learning from more than
# 30% of the data.
# In all cases, little improvement was seen after learning from
# 300 instances. See www.scant.org/bill/sequence.html

#What are the implications of this study? For one thing,
#data mining from data sets may be quite simple. Learn a theory
#until it stablizes. Classify and incrementally train on I<N>
#instances until the classification accuracy stabilizes,
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#then stop training but keep classifying and
#discretizing (if needed) until the mean accuracy drops
#or the end of the dataset is reached

A.1.4 Installation

Updates

#To update the package, run the install procedure, described below,
#again.

#After the first install
#there will exist a directory sawtooth/local directory.
#Subequent updates may overwrite all other directories EXCEPT
#for sawtooth/local. So do your own work in sawtooth/local.

Install

#Requires a UNIX system (LINUX most preferred and Solaris, least)
#with a bash shell interpreter (I have gotten it before using ksh
#but bash is best.)

#Also
#requires a variable $SCANT
#pointing to a directory for all the scant packages. Then define
#certain useful search paths. This can be set many
#ways including adding these lines to $HOME/.bashrc

# SCANT="$HOME/someSubDirectory"
# PATH="$SCANT/share/local:$SCANT/share/bin:$PATH"
# AWKPATH="$SCANT/share/local:$SCANT/share/bin:$AWKPATH"
# export SCANT PATH AWKPATH

#Download www.scant.org/sawtooth/var/sawtooth.zip sawtooth.zip
#into a temp directory. Then:

# unzip -d $SCANT sawtooth.zip #creates $SCANT/sawtooth, $SCANT/share
# $SCANT/share/bin/publish

#Check the pathnames in $SCANT/share/etc/sharerc. If they look wrong,
#add fixed pathways to I$SCANT/share/local/sharerc. Next, try
#getting the help text:

# cd $SCANT/sawtooth/bin
# ./sawtooth -h
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#If that works, try running a demo:

# cd $SCANT/sawtooth/bin
# ./sawtooth -X

#If that works, you should see YYY:

A.1.5 Source code

SAWTOOTH Configuration

. $SCANT/share/bin/config sawtooth

Main driver

sawtoothMain() {
$awk -f sawtooth.awk \

ERA=$era \
Verbose=$verbose \
Brief=$brief \
SUBBINS=$subbins \
$train \
$test

}

Command Line Processing

defaults(){
demo=""
era=150
verbose=0
brief=0
subbins=5
train=""
test=""

}

defaults

while getopts "hlvt:T:ps:e:" flag
do case "$flag" in

l) copyleft; exit;;
h) usage; exit ;;
v) verbose=1;;
t) train="Pass=1 $OPTARG";;
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T) test="Pass=2 $OPTARG";;
p) brief=1;;
s) subbins="$OPTARG";;
e) era="$OPTARG";;

esac
done
shift $(($OPTIND - 1))

if [ -z "$train" ]
then
echo "training file not specified"
usage
exit

else
sawtoothMain

fi

A.2 The Worker

Initialization

BEGIN {
#Command line arguments:
# Verbose # for verbose mode
# Brief # for "brief mode"
# SUBBINS # Number of subdivisions per new value seen (discretization)
# ERA # Cache size (expresed in number of instances)

FS=" *, *"; # Field separator is a comma and surrounding blank-spaces

#Internal globals:
Total=0; # count of all instances
Classified=0;# count of currently classified instances
Correct=0; # count of currently correctly classified instances
totClsfd=0; # count of all classified instances
totCorrect=0;# count of all correctly classified instances
stblClsfd=0; # count of correctly classified insts. since stable
stblCrrct=0; # count of classified insts. since stable
guess=""; # Stores the current class prediction
MaxAtt=0; # count of number of attributes
StTime = 0; # Start time
TrTime = 0; # Training Time
TsTime = 0; # Test Time
TtTime = 0; # Total Time
MININST=0; # minimum number of instances per band split
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MAXINST=0; # max number of instances
MINBANDS=0; # minimum number of bands per attribute
MAXBANDS=0; # max number of bands
trained=0; # Flag that determines whether first ERA was learned.
stDevAcc=0.0;# Standar deviation of the accuracies
meanAcc=0.0; # Mean of the accuracies
zTest=0.0; # ZTest results

# MaxBands # table of counters for attribute ranges
# NumAtt # table of index for numeric attributes
# Classes # table of class names/frequencies
# Freq # table of counters for values in attributes in classes
# Cache # Temporary Bayesian table.
# Seen # table of counters for values in attributes
# Attributes # table of number of values per attribute
StTime = systime(); # Start timer.

} # END Initialization

Training

Pass==1 {
if(FNR==1){ # Processing header of train file.
init(); # Checks for file type and attribute characteristics.
next;

}
do{
if ($0~/^%/ || NF != MaxAtt) continue;
guess = classify();
if ($NF == guess) {Correct++;} # Classification and testing.
Classified++;

for(a=1; a<=NF; a++){ # Caching instances
Cache[Classified,a] = $a;

}

if (Classified>=ERA){break;}
if (getline <= 0) {break;}

} while(Pass==1)

if(!trained){
trained = 1;

}
else{
stblClsfd += Classified; # Update counters
stblCrrct += Correct;
totClsfd += Classified;
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totCorrect += Correct;
stDevAcc = StDev(Classified,Correct); # calculate test parameters.
newMeanAcc = Correct; #n*p=classified*(correct/classified)=correct
oldMeanAcc = stblCrrct*Classified/stblClsfd; #mu_0=n*p_0

# Standardized test statistics Z(0.01) = 2.326
zTest=ZTest(newMeanAcc,oldMeanAcc,stDevAcc,Classified);
if (zTest < -2.326){ # Not stable
Stable = -1;
stblCrrct=Correct; # Reset counters of Stable
stblClsfd=Classified;

}
else{ # Stable
Stable++;

}
}

if(Stable < 3){ # IF stability is preserved
train(Cache,Classified); # THEN train on the cache.

}
delete Cache; # Resete Cache

Correct = Classified = 0; # Reset counters of ERA

if(NumDS){ # IF dataset has numeric attributes
updateBands(); # THEN Update discretization table after each ERA.

}
} # END Training

Testing

Pass==2 { # Classification time!
if(FNR==1){ # Processing header of test file.
TrTime = systime();
test(); # Checks for matching file type and attributes in init().
if (NumDS){
updateBands()

}
if (Verbose){

print "\n\nDISCRETE VALUES AFTER TRAINING";
printDVals();

}
totCorrect=0; totClsfd=0; # Reset counters of Totals when testing
next;

}
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if ($0~/^%/ || NF!=MaxAtt) next;

guess = classify(); # Classification

if ($NF == guess) totCorrect++; # Classification and testing.
totClsfd++;

if (Brief)
print guess;

} # END Testing

Post-Processing

END {
TsTime = systime();
if (Verbose) { # When in verbose mode.
print "\n\nDISCRETE VALUES AFTER TESTING";
printDVals(); # Prints the discretized attributes.
printTable(); # Prints the bayesian table.
print "Number of Classes:",Attributes[MaxAtt];
print "Correctly Classified Instances : " totCorrect;
print "Total Number of Instances Classified : " totClsfd;
printf "accuracy: "

}
if(!Brief) print totCorrect*100/totClsfd;
TtTime = systime();
if (Timer){ # When in timing mode, times are displayed.
printf "\nTraining Time: %-2.2dm %-2.2ds\n",
(TrTime-StTime)/60,(TrTime-StTime)%60;

printf "Testing Time : %-2.2dm %-2.2ds\n",
(TsTime-TrTime)/60,(TsTime-TrTime)%60;

printf "Total Time : %-2.2dm %-2.2ds\n",
(TtTime-StTime)/60,(TtTime-StTime)%60;

}
}

A.2.1 User Defined functions

Standardized Test Statistic

function ZTest(newMean,oldMean,stDev,totInst){
if(stDev == 0) return newMean - oldMean;
return (newMean-oldMean)/(stDev/sqrt(totInst));

}
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Standar Deviation

function StDev(n,corr, p){
if(n > 1){
p=corr/n;
return sqrt(n*p*(1-p));

}
return 0;

}

Data File Initialization

function init( i){
if (FILENAME~/.mbc$/){ # .MBC files.
for(i=1;i<=NF;i++){
header[i]=$i; # Stores the attribute value name i.
if ($i ~ /^\*/) {
NumAtt[i]=1; # Determines that the field i is numeric.
NumDS=1;
Min[i,1]=1e+32; # Minimum number in the field i.
Max[i,1]=-1e+32; # Maximum number in the field i.

}
else NumAtt[i]=0; # field i is discrete.

}
MaxAtt=NF; # Total number of attributes.

}
if (FILENAME~/.arff$/){ # .ARFF files (WEKA).
FS = " ";
i=1;
while($0!~/^ *@r/ && $0!~/^ *@R/) getline;
while($0!~/^ *@d/ && $0!~/ *^@D/){
if ($0~/^ *@a/ || $0~/^ *@A/) {
header[i] = $2;
if ($3!~/^\{/){
NumAtt[i]=1;
NumDS=1;
Min[i,1]=1e+32;
Max[i,1]=-1e+32;

}
i++;

}
getline;

}
MaxAtt = i-1;
FS=" *, *";

}
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}

Validating the Test Datafile

function test( i){
if (FILENAME~/.mbc$/){
for(i=1;i<=NF;i++){
if(header[i]!=$i){ # Matches atts names with train file.

print "Error. Invalid testing file. Exiting...";
exit 1;

}
}

}
if (FILENAME~/.arff$/){
while($0!~/^ *@d/ && $0!~/^ *@D/){ # Skips file header.
getline;

}
}

}

Bayesian Training Function

function train(array,size, a,val,i,c) {
for(a=1;a<=size;a++){
Total++;
c=array[a,MaxAtt];
Classes[c]++;
for(i=1;i<=MaxAtt;i++) {
if (array[a,i] ~ /?/) continue;
if (NumAtt[i]){

val=discretize(i,array[a,i]+0);
}
else val=array[a,i];
Freq[c,i,val]++

if (++Seen[i,val]==1) Attributes[i]++;
}

}
}

Bayesian Classification Function

function classify( i,temp,what,like,c,prior,m,inst) {
m=2;
like = 0;
for(i=1;i<NF;i++) {
if (NumAtt[i] && $i !~ /?/)
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inst[i]=discretize(i,$i+0); # Discretization step
else inst[i]=$i;

}
for(c in Classes) {
prior=(Classes[c]+1)/(Total+Attributes[MaxAtt]);
temp=1.0;
for(i=1;i<NF;i++) {
if ( inst[i] ~ /?/ )
continue; # ignores unknown values

val=inst[i];
temp *= ((Freq[c,i,val]+(m*prior))/(Classes[c]+m));

}
temp *= prior;
if ( temp >= like ) {like = temp; what=c}

}
return what;

}

SPADE’s Bin Creation Function

function discretize(fld,item, i,j,k,subdiv){

# numeric value lies between min max seen so far.
if (item>=Min[fld,1] && item<=Max[fld,1]) {
# search for the band who contains it and return its position.
return find(fld,item);

}

# creating first Band. It is of the form (item,item]
if (item<Min[fld,1] && item>Max[fld,1]){
i=0; # The index for the first band is 0
Band[fld,i,1]=item; # Band is the array where "fld" is the attribute,
Band[fld,i,2]=item; # " i" is the position of the band, "1" is the

# lower limit and "2" is the upper limit.
Min[fld,1]=item; # Min is an array to store the overall Min value
Min[fld,2]=i; # and its position, "1," and "2" respectively.
Max[fld,1]=item; # Max is analogous to Min.
Max[fld,2]=i;
MaxBands[fld]++; # The number of bands is now 1
return i;

}

# If the numeric value is less than the min seen so far.
if (item<Min[fld,1]){
subdiv=((Band[fld,Min[fld,2],2] - item) / SUBBINS); #calc subdiv
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Band[fld,Min[fld,2],1]=item+((SUBBINS-1)*subdiv); # Update lwrlimit
i=Min[fld,2]-SUBBINS;
Band[fld,i,1]=item;
Band[fld,i,2]=item;
Min[fld,1]=item;
Min[fld,2]=i;
MaxBands[fld]++;
i++;
for(j=1; j<SUBBINS; j++){
Band[fld,i,1]=item+((j-1)*subdiv);
Band[fld,i,2]=item+(j*subdiv);
i++;
MaxBands[fld]++;

}
return Min[fld,2];

}

# If the numeric value is greater than the max seen so far.
if (item>Max[fld,1]){
subdiv = ((item - Band[fld,Max[fld,2],2]) / SUBBINS);
i=Max[fld,2]+1;
for(j=1; j<SUBBINS; j++){
Band[fld,i,1] = Max[fld,1]+((j-1)*subdiv);
Band[fld,i,2] = Max[fld,1]+(j*subdiv);
MaxBands[fld]++;
i++;

}
Band[fld,i,1]=Max[fld,1]+((SUBBINS-1)*subdiv);
Band[fld,i,2]=item;
MaxBands[fld]++;
Max[fld,1]=item;
Max[fld,2]=i;
return i;

}
}

Updating Bins of a Single Numeric Attribute

function updateBand(i, j,k,l,m,n,p,old,busy,temp){
l=0;m=0;
n=Max[i,2];
old = Min[i,2]+1;
for(j=old+1; j<=n; j++){
if(Seen[i,j]<(MAXINST-Seen[i,old])&& Seen[i,old]<MININST){
Band[i,j,1]=Band[i,old,1];
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Band[i,old,1]=""; #lower limit
Band[i,old,2]=""; #upper limit
Seen[i,j]+=Seen[i,old];
Seen[i,old]=0;
for(k in Classes){

Freq[k,i,j] += Freq[k,i,old];
Freq[k,i,old]=0;

}
}
else{
busy[++l,"min"] = Band[i,old,1];
busy[l,"max"] = Band[i,old,2];
busy[l,"seen"] = Seen[i,old];
for(k in Classes)

busy[l,k] = Freq[k,i,old];
}
old = j;

}
m=Min[i,2]+1;
p=0;
for(j=m; j<m+l; j++){
Band[i,j,1] = busy[++p,"min"];
Band[i,j,2] = busy[p,"max"];
Seen[i,j] = busy[p,"seen"];
for(k in Classes)
Freq[k,i,j] = busy[p,k];

}
Band[i,j,1]=Band[i,n,1];
Band[i,j,2]=Band[i,n,2];
Seen[i,j]=Seen[i,n];
for(k in Classes)
Freq[k,i,j] = Freq[k,i,n];

Max[i,2] = j;
MaxBands[i] = (j-m)+2;
for(j++ ;j<=n; j++){
delete Band[i,j,1];
delete Band[i,j,2];
delete Seen[i,j];
for(k in Classes)
delete Freq[k,i,j];

}
}
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Updating the Bins of All Numeric Attributes

function updateBands( j){
MININST = sqrt(Total); # Sets variables needed for updating
MAXINST = MININST * 2; # the values of the current attribute
MAXBANDS = MININST; #* SUBBINS;
for(j=1; j<=MaxAtt; j++){
if(NumAtt[j]){
if (MaxBands[j]>MAXBANDS){

updateBand(j);
}

}
}

}

Displaying the Predictive Model

function printTable( i,j,k){
printf "\n| %17s B A Y E S I A N T A B L E %17s|", " ", " ";
printf "\n| %-15.15s | %-15.15s | %-9.9s | %-6.6s | %-6.6s |\n",

"ATTRIBUTE","VALUE","CLASS","FREQ","SEEN";
for(i=1;i<=MaxAtt;i++){
print Attributes[i];
for(j in Freq){
split(j,k,SUBSEP);
if (k[2]==i && Seen[k[2],k[3]] > 0){
if (NumAtt[i])
printf "| %-15.15s | (%2.4f,%-2.4f] | %-9.9s | %6d | %6d |\n",

header[i], Band[i,k[3],1],Band[i,k[3],2], k[1],
Freq[k[1],k[2],k[3]], Seen[k[2],k[3]];

else
printf "| %-15.15s | %-15.15s | %-9.9s | %6d | %6d |\n",

header[i], k[3], k[1], Freq[k[1],k[2],k[3]],
Seen[k[2],k[3]];

}
}

}
}

Displaying SPADE’s Bins

function printDVal(j, i,k){
print "Att Name:", header[j] ,

"\tNumber of Bands:",MaxBands[j],
"\tMin Val:",Min[j,1],
"\t\tMax Val:",Max[j,1];
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for(i=Min[j,2]; i<=Max[j,2]; i++){
printf "( %s , %s ]=%d ",Band[j,i,1],Band[j,i,2],Seen[j,i];

}
print "\n";

}

Displaying All Attribute Conversions

function printDVals( i){
for(i=1; i<=MaxAtt; i++)
if (NumAtt[i]) printDVal(i);

}

Finding a Number’s Bin

function find(fld,item, left,mid,right){
if (item == Min[fld,1]) {
return Min[fld,2];

}
left = Min[fld,2];
right = Max[fld,2];
while (left < right){
mid = int((left+right)/2);
if (item > Band[fld,mid,2]) {left=mid+1}
else {
if (item == Band[fld,mid,2] || item > Band[fld,mid,1]) {

return mid;
}
right=mid-1;

}
}
return left;

}

A.3 Configuration File

#Loads the config files in the right order.
#Lets ’local’ config files override defaults in ’etc’ config files

. $SCANT/share/etc/sharerc
[ -f $SCANT/share/local/sharerc ] && . $SCANT/share/local/sharerc
. $SCANT/$1/etc/${1}rc
[ -f $SCANT/$1/local/${1}rc ] && . $SCANT/$1/local/${1}rc
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# Defines search paths to let stuff in ’local’ override default code.
# Useful for adding ’local’ patches.

PATH="$SCANT/$1/local:$SCANT/$1/bin:$PATH"
AWKPATH="$SCANT/$1/local:$SCANT/$1/bin:$AWKPATH"

export PATH AWKPATH
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