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ABSTRACT: The utility of objects as a
knowledge representation (KR) schema is
discussed. Objects will be found to be useful
as a software engineering tool, and as an tool
for explicitly representing control knowledge.
However, commonly used object-oriented
(OO) systems (e.g. C++, Smalltalk, and Eif-
fel) have will be found to be incomplete KR
tools.
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In recent years, there has been much interest
in developing object-oriented expert systems
(ES). Many ES practioners have realised that
objects are very close to the knowledge
representation (KR) concept of a frame [Min-
sky 75]. Many features of the frame model
are present in the object-oriented (OO)

model1. This realisation suggests that com-
mercial OO systems such as C++, Smalltalk,
and Eiffel are suitable tools for knowledge
representation (KR). This paper will argue
that this is not the case and that while systems
such as these can be used as KR tools, they
require modification.

This paper continues a discussion that began
in [Menzies 90a & Menzies 90b]. At issue is
the pragmatic utility of OO techniques for
commercial knowledge engineering. The
feedback received by the author from the pre-
vious papers seemed to confuse three issues:
OO as a software engineering tool; OO as a
method of explicitly representing procedural
knowledge; and OO as a KR tool. This paper
will argue each of these issues separately.
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This section discusses the use of objects for
ES from a software engineering (SE) prospec-
tive.
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1. Frame slots can be modelled as instance’s private data.

Instantiating a generic frame is akin to creating an instance.
Frame demons can be implemented as methods (as can
slot-fillers). When searching for knowledge that matches
the current situation, the frame system can take a guess,
instantiate the guessed frame (i.e. create a new instance),
and then query the instantiation to check its validity. If in
valid, the frame’s hierarchy (super-classes) can be explored
looking for a frame whose instantiated version is valid.
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Consider the standard SE cycle:

specification -> analysis -> code -> test

Expert systems can be characterised as exe-
cutable specifications. Ideally, the
knowledge base (KB) author expresses their
requirements in a form that is instantly exe-
cutable. KB authors can then get rapid feed-
back on the completeness of their require-
ments. This feedback can prompt a rapid evo-
lution in the specification.

start -> change spec -> test -> goto start

The software engineering challenge for ES is
to support the execution of a specification
that is expected to change significantly in
short periods of time. In the context of sup-
porting an evolving specification, many of the
software engineering benefits of OO have a
special significance for expert systems.

According to [Meyer 88], objects are best
viewed as a repository of services that can be
offered to some client. No assumptions
should be made about the order in which the
public interface methods of a well-designed
object are called. Such assumptions compli-
cate maintenance when the calling order of
the functions may be re-arranged due to a
change in the specification.

Objects can usefully hide information. The
KB author can be shielded from procedural
complexity via object interfaces. In such a
"cushioned" environment, a non-technical
domain expert could develop a KB. For
example, in a hybrid rule-based/ object-based
ES, a rule could read:

rule300
if the creditRating of an applicant

is medium and
the age of an applicant

is below 25
then reject(an applicant)

Figure 1. A rule using procedures defined in an object system.MM
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The function creditRating could protect the
KB author from numerous implementation
details. For example, creditRating could exe-
cute a complicated join across a database to

extract the pre-computed credit rating. Alter-
natively, it could access some mathematical
credit scoring system that awards numeric
points to the applicant’s application. Simi-
larly, the age function could compute the
applicant’s age by computing the difference
between the date of birth stored in the
applicant’s instance and the current year.

The ability to sub-divide a large problem into
smaller, more manageable "chunks" is a use-
ful design tool. One of the draw-backs to
most rule-based expert systems is the global
nature of all knowledge. Facts and rules live
in the one global data-space. The assertion of
a fact can have unforeseen consequences as it
affects one of the rules in the global space in
some odd way. Many OO ES use objects to
divide up the reasoning. For example, [Aikins
83]’s CENTAUR system associates rules with
objects. The rules are fired as a side-effect of
processing that object. Further, the use of rule
group objects (called contexts) can explicitly
represent logical groupings that may be only
implicit in a pure rule-based system. So,
instead of:

Rule 1: if A and B and C then X
Rule 2: if A and B and D then Y
Rule 3: if A and B and E then Z

Figure 2. Implicit context in a global rule-space.QQQ
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rule knowledge can be represented as:

Context: A and B are true

Rule 1: if C then X
Rule 2: if D then Y
Rule 3: if E then Z

Figure 3. Explicit context in a divided rule-space.SS
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This re-expression is more than just a mere
syntactic edit on the original rules. Using
contexts, knowledge relating to one topic can
be grouped together in one place. This makes
subsequent edits easier.

Finally, objects can institutionalise the con-
cept of dialogue independence : i.e. a clear
separation of a program’s computational
component from its interface. Such a
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separation permits the separate subsequent
modification of a program’s interface or func-
tionality without having to re-write the entire
system [Hartson 89]. OO interface toolkits
can directly implement dialogue indepen-
dence by assigning separate objects to a
program’s model and its view. Certain OO
interface toolkits extend dialogue indepen-
dence even further than a two-way split.
Smalltalk assigns a model, view, and a con-
troller object to each pane of each window.
The controller object processes user keys-
trokes and mouse movements. Objective-C’s
interface kit adds a fourth object called a
transparent controller that manages the back-
ground pane of a window (which the user
sees as the top-bar of the window). See
[Urlocker 89] and [Knolle 89] for more
details. [Menzies 90a] argues for an exten-
sion to the basic MVC-triad and describes
five new classes for ES with an extensive
interface component.

U 032�4�CVGB69GB4%=9GH=98�4�57698�W
This section discusses OO KR from a
inferencing control perspective.

[Aikins 83 & Lenat 83] argue that OO KR
can be used to explicitly and usefully model
control strategies. Aikins notes that the fol-
lowing "rule" from the [Kunz 78] PUFF sys-
tem is less concerned with the knowledge of a
domain expert than the ordering of the rea-
soning:

If: 1) An attempt has been made to deduce
the degree of disease X

2) An attempt has been made to deduce
the subtype of disease X

3) An attempt has been made to deduce
the findings about the diagnosis
of disease X

Then:
It is definite (1.0) that there is an
interpretation of potential disease X

Figure 4. Implicit control in a rule.XXX
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This rule’s purpose is to invoke other rules
that finds, then refines, evidence for some
disease. Re-ordering the "logic" of the prem-
ises would cause an inappropriate search for a
refinement of a diagnosis before checking

that the diagnosis is in fact relevant. CEN-
TAUR stores such ordering information expli-
citly in slot contents.

Lenat’s RLL system stores its "rules" as
instances of a rule class. For example:

Rule#332
Isa: Rule
Description:

Tell the user to hold his breath
if the chemical is toxic.

IfWorkingOnTask:
AscertainImminentDanger

IfPotentiallyRelevant:
(chemical toxicity is High ?)

IfTrulyRelevant:
(chemical Location is

(Nearby user ?))
ThenTellUser:

"Do not breathe this chemical!"
ThenAddToAgenda:

(SummonAbulances WarnOthers)
Priority:

High
Worth:

900
AvgRunningTime:

.1 seconds
FrequencyOfUse:

considered 985 times, used 4 times
Generalizations:

(Rule#899 Rule#45)
Specializations:

(Rule#336)
Justification:

Breathe&DieScenario
Author:

Johnson
CreationDate:

17:30 on 9-July-81

Figure 5. Frames slots relating to a rule.ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ
ZZ[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[PZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[O[
This OO representation of the rule makes the
control explicit and permits customisation of
the inferencing.

\ Rather than exhaustively searching all the
rules, the inference engine could take a
quick "peek" at this rule to see if it might
be relevant (i.e. execute the IfPotential-
lyRelevant slot).

] If more than one rule might be relevant,
then the inference engine could choose
between the possible rules in a variety of
ways. The rule that runs fastest (i.e. has
the smallest AvgRunningTime figure)
could be tried first. Alternatively, the rule
that works most often (i.e. has the highest
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"used" figure in FrequencyOfUse) could
be fired.

^ The ThenTellUser slot could be disabled
so that the system can find all its conclu-
sions without sending strings to the
screen.

_ This representation also supports certain
meta-queries that simplify knowledge
maintenance. For example, if rules are
expressed as the above, then it is possible
to find all the rules which have (e.g.)
never fired.

Explicit knowledge of the structure of the
procedural reasoning allows a system to rea-
son about its own reasoning. Aikins presents
an example in which the same problem is
approached using three different strategies:

` Confirmation: attempting to confirm the
most likely frame.

a Elimination: attempting to eliminate the
least likely frame.

b Fixed-order: exploring all the frames in a
pre-set order.

Each strategy was then assessed according to
computational efficiency and user acceptabil-
ity2. Since the strategies are explicit in slot
contents, it is possible for the system to
automatically learn which strategy is best to
apply and modify its own future reasoning to
take advantage of this learnt improvement
(i.e. re-write the strategy-slot contents).

In a more experimental approach, [Lenat 84]
describes EURISKO, which is a system that
made extensive use of its explicit knowledge
of its procedural structure to learn new
heuristics. As an example, EURISKO applied
this heuristic to the rule system shown in Fig-
ure 5 and learnt that:

It’s usually okay to mutate a
heuristic by changing and

cLcLcLcLcLcLcLcLcLcLcLcLcLcLcLcLcLc
2. For example, which strategy pesters the user with the least

number of questions.

AND to an OR in its ifPoten-
tiallyRelevant slot, but usually
not in its IfTrulyRelevant slot.

Lenat’s work is very experimental and is not
currently commercially viable. However, the
general lesson here is that if control of
inferencing is required for an application,
then objects are an excellent implementation
tool.
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This section discusses OO ES from a
knowledge representation perspective.hOikjmlVn�o�pmoOqOr�strvuxwzy|{~}�������{
Many commentators have remarked on the
confusing semantics of is-a. [LaLonde 91]
argue that novice OO-analysts often confuse
three distinct meanings of is-a: subclassing,
subtyping, and specialization. Having
presented their analysis, they then observe
that it is incomplete:

Although we have clearly
shown that is-a and subtyping
subclassing are different, our
definition of the is-a relation-
ship is rather imprecise. It
would be a worthwhile
research endeavor to develop
a more precise definition.
[LaLonde 91]

The artificial intelligence community has
been struggling to precisely define is-a for
over a decade. Rigorous studies of is-a can
be found in [Brachman 83, Brachman 85b,
Touretzky 86, & Horty 90] (as well as the
[Etherington 83 & Hayes 79] papers men-
tioned below). Brachman’s KL-ONE infer-
ence engine used its object hierarchies for its
classification algorithm. KL-ONE matches a
specified concept and studies the known
frames looking for known concepts that sub-
sume the new concept. If some are found, the
new concept is added in the appropriate
place. Otherwise, it attempts to add the new
concept as a subsumption of existing con-
cepts. KL-ONE’s reliance on its taxonomy for
its inferencing forced Brachman to precisely
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define is-a. [Brachman 83] is a catalogue of
the various usages of is-a. The catalogue
includes:�

set membership;

� predicates that act on a individual (e.g.
Clyde is a camel means camel(cylde));

� sharing of typical properties;

� superset/ subset;

� specialisation/ generalisation;

� kind (which Brachman argues is subtly
different from specialisation);

� conceptual containment (e.g. a triangle is
a polygon with three sides);

� abstraction (which Brachman argues is
not the same as generalisation)

After presenting the catalogue, Brachman
makes the following surprising observation:

One important observation to
be made about our analysis of
the is-a link is that inheritance
of properties has played no
part in our understanding.. the
useful (semantic properties of
is-a) are... not "pass this pro-
perty or "block this one".
[Brachman 83]

A semantic property not catalogued above is
the unique ability of inheritance hierarchies
to override inherited properties. [Brachman
85b] warns that such a feature removes any
representational power from the is-a link. If a
representational system allows for the ad hoc
alteration of the relationships between objects
in that representation then, almost by
definition, that system has removed any con-
sistent interpretation of the relationship
between objects in that system. If we state
that:

John is-a bachelor

but then allow John to override any or all of
the properties of Bachelor, then our statement
says very little that is necessarily true about
the current relationship between bachelors

and John. Brachman presents this argument
more amusingly as follows:

Q- What’s big and grey, has a
trunk, and lives in trees?
A- An elephant- I lied about
the trees.

Brachman’s implementation of is-a (as seen
in KL-ONE) is based on strict subsumption.
An object is in its "right" place in the object
hierarchy if it is below all descriptions that
subsume it and if it is above all the descrip-
tions that it subsumes.

Touretzky and Horty are not so strict as
Brachman. They permit property overrides
and then discuss how to reason consistently
from the resulting network. For example,
consider the "Nixon Diamond".

Nixon is-a republican.
Nixon is-a Quaker.
Republicans are not Pacifists.
Quakers are Pacifists.

Pacifist

Quaker Republican

Nixon

is-ais-a

is-a is-not-a

Figure 6. The Nixon Diamond (adapted from [Horty 90])��
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This network has no single interpretation. In
one view, Nixon is a pacifist and in another
(conflicting) view, Nixon is not a pacifist.
The [Etherington 83] system forks one exten-
sion for each interpretation. Etherington &
Reiter define a "correct" inference engine as
one whose conclusions all share the same
extension. [Horty 90] defines an inference
engine3 that makes reasonable conclusions
from networks like the above (e.g. Nixon is a
pacifist and Nixon is not a Pacifist) and
avoids irrelevant conclusions (e.g. Nixon is a
Democrat). Subsequent work identifies
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problems with this inference procedure. Their
general conclusion (as presented in
[Touretzky 91]) is that inheritance systems
should avoid the ability to override, then re-
instate properties as this is semantically
undesirable. In a limited sense, this is agree-
ment with Brachman’s earlier conclusion.
Brachman cautions against overrides in a KR
system while Touretzky and Horty caution
against the re-instatement of overridden pro-
perties.�O�k�m�z���O�3�O���������z�¡ t¢
[Hayes 79] re-expresses the frame model in
terms of first-order predicate logic. For exam-
ple:

% frame model of John and his dog
John Smith is-a person.
John Smith.pet = Fido.
Fido is-a dog.

% Equivalent logical model
IsPerson(J.S.)
& name(J.S., "John Smith")
& pet(J.S., Fido)
& Isdog(Fido)

Figure 7. Equivalence between frame/logical model.£££
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Hayes finds that the entire frame model can
be re-written in terms of logic:

Most of ’frames’ is just a new
syntax for parts of first-order
logic. [Hayes 79]

In an effort to test this conclusion, I built an
OO system on-top of a logic programming
language. At issue was how much extra archi-
tecture was required to convert a relational
system into an object system. If none was
required, then we could deduce that objects
were merely a re-expression of relational cal-
culus. The implemented system (called

¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥L¥
3. It is interesting to note that their inference procedure is not

consistent with a view of inheritance as a top-down
"property-flow" of features from super-classes to sub-
classes (i.e. the standard inheritance mechanism as seen in
systems like C++). Rather, the processing of exception
networks requires a runtime bottom-up search for
properties from sub-class to super-class.

OPUN4) translates its commands into the
underlying implementation language (in this
case, Prolog). This translation process could
be batched into a compilation process that
removed the runtime overheads associated
with converting the OO system into the
underlying implementation language (i.e. in
the manner of C++).

OPUN used a technique called data diction-
ary concatenation to drive the translation pro-
cess. The statements:

object isa nothing
with slots "id".

o1 isa new object.

person isa object with
with slots "name" and "dob".

p1 isa new person
with name = tim and

dob = 1960.

worker isa person
with slots "job".

w1 isa new worker
with name = jane and
dob = 1959 and
job = programmer.

Figure 8. Statements about objects.¦¦
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could be interpreted as specifying three rela-
tions (which are presented below in a Prolog
syntax). Note that the knowledge of the struc-
ture of the super-classes cascaded down and
is appended to knowledge about sub-classes.

% data dictionaries (= class definitions)
dd(object,[id]).
dd(person,[id,name,dob]).
dd(worker,[id,name,dob,job])

% tuples (= instances)
object(o1).
person(p1,tim,1960).
worker(w1,jane,1959,programmer).

Figure 9. Statements about a database (same as above).¨¨¨
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OPUN supported methods. For example, the
following is the definition of a person’s age:
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?- method age
for person = SELF
args AGE
code (currentYear(Y),

SELF says dob = DOB,
AGE is Y - DOB).

Figure 10. Defining a person’s age.¯¯
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Prolog’s meta-level predicates could then be
used to build the translation system.

% a query in the OPUN syntax
?- select worker and

wage = WAGE and
age = AGE.

% the internally generated goal:
?- worker(ID, NAME, DOB, JOB),

salary(JOB, WAGE, _),
currentYear(THIS_YEAR),
worker(ID, NAME, DOB, JOB) says

dob = BIRTH_YEAR,
AGE is THIS_YEAR - BIRTH_YEAR.

Figure 11. Query translation in OPUN.±±
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One of the benefits of implementing OPUN
in Prolog is that we get a query language for
free. This feature solved one of the problems
of object-oriented databases (and by exten-
sion, knowledge bases). In his critque of
OODBMS, [Date 90] observes that many
OODBMS only allow the processing of
objects an instance at a time. This is inade-
quate since users typically pose queries for a
set of data at a time. OPUN does not suffer
from this defect since its query will automati-
cally search all the assertions in a relation as
well as assist in joins across multiple rela-
tions.

This OO extension to Prolog was trivial, once
the query langauge primitives were available.
The code for the query system comprised
some 2400 lines of Prolog, 1300 of which
were a general library of Prolog code. The
OO extensions were another 300 lines, most
of which were to do with a user-friendly
object specification shell. The actual core of
the inheritance mechanism was less than 20
lines. This experiment hence did not refute
the [Hayes 79] conclusion.
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Ignoring the relationship between frames and
logic can be detrimental to the inference
capability of a ES. [Etherington 83] re-
expresses inheritance networks that support
cancellation of properties (i.e. subclasses can
override inherited properties) in terms of
Reiter’s default logic. The subsequent formal
analysis demonstrates certain limitations with
the inferencing capabilities of such net (for
example, consistent inferences can not be
drawn via a one-pass parallel inferencing
algorithm under purely local control). Such
limitations would not have been realised
unless the informal semantics of the inheri-
tance network had been expressed formally.

Pragmatic considerations have forced the
developers of certain large OO KRs to aug-
ment their object system with a logic system.
[Bracham 85a]’s KL-ONE is a general
frame-based knowledge representational tool.
Lenat’s CYC is a ten-year project to code up
all the tacit knowledge required to understand
1000 one paragraph encyclopedia entries
[Lenat 86, Lenat 90a, Lenat 90b]. Both sys-
tems began as essentially frame-based sys-
tems but, over time, an extra declarative layer
evolved on top of the original system. Brach-
man recognized the need for a assertion
language (the declarative layer) and a
separate description langauge (the object sys-
tem). Brachman argues that assertion without
description is just as useless as the other way
around. The sentence

Elephants are gray.

is a combination of two essentially different
kinds of knowledge: assertions about some-
thing (in this case, the symbol "elephants")
and the somethings themselves. In order to
define a sentence, we need not only
knowledge about the logic of the sentence,
but we also require background knowledge
about the terms in the sentence. KRYPTON
has a frame-style language for for forming
terms and a first-order predicate langauge for
forming sentences.
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The CYC project reached a similar conclu-
sion. After the frame system was instantiated,
CYC still required additional machinery to
support statements like:

"Bill is either a terrific fisher-
man or a terrific liar."
"Siblings almost never has the
same name."

Hence, the CYC implementation language
(called CycL) includes a constraint language.
Lenat argues that the slots in his frames are
akin to predicates and that since CycL sup-
ports variable slot names, that the constraint
language is essentially second-order predicate
calculus. Unlike Brachman, however, Lenat
does not believe in two essentially different
types of knowledge and asserts that the con-
straint language can express everything the
frame-language can express. However, he
cites software engineering reasons for keep-
ing the frame language such as simplicity and
extendability of the implementation as well
as speed of deduction [Lenat 90b]. Speed is a
non-trivial issue in the Cyc system. Lenat
estimates that the system will is currently 0.1
percent finished. It currently comprises
50,000 "units" (read frames or objects). Based
on these figures, we can guess-timate that the
completed Cyc will have to reason over a
search space of some five hundred million
frames.·
038�8¸E%4�:¹GBA

If we wish to benefit from the SE advantages
of OO, or if we wish to explicitly represent
procedural knowledge, then we should use
OO to implement ES. [Menzies 90a]
discusses class libraries that are useful for OO
ES development. Can we augment OO
languages to avoid the KR problems men-
tioned above?

Firstly, it seems universally agreed that the
KR should not include networks of inheriting
objects which can override and re-instate
inherited properties.

Secondly, we have seen that it is useful to add
a declarative level to the object system

(CycL’s constraint language, KL-ONE’s
assertion language, and the instance query
language of OPUN). Indeed, we have also
seen that an OO KR can be replaced with by
a logical formalism. How should we imple-
ment the declarative level?

º The OPUN experience suggests that,
pragmatically speaking, it is best to
implement the logic on top of the objects
and not the other way around. The OPUN
system handled queries elegantly, but
updates were problematic. Queries could
trigger updates as side-effects. This lead
to significant problems with non-static
clause lists. OPUN’s methods had to take
great care that they were accessing the
current instance variables and not some
older version that have since been
updated. OPUN would have benefitted
from being implemented in a language
that supported instance identity as actual
pointers.

» Brachman warns us against abusing the
muddled semantics of the is-a link. He
advises that the various logical com-
ponents of inheritance should be teased
apart and offerred as explicitly separate
services. Such a separation can be imple-
mented as a node/link network.¼ �k½m¾��¡¿��OÀÁ�v tÂ�ÃÄ¾��OÅ�Æ��¡��Ãv�

Consider the object representation required
for the following three equations:

a + b + c = 15.
b/ h = 5.
c = 9.

Figure 12. Three equations.ÇÇÇ
ÇÇ
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At a level of abstraction, these equations are a
discussion of the inter-relation of the vari-
ables a,b,c,h and the constants 15,9, and 15.
We can draw this relationship, as shown
below.
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Figure 13. Inter-relationships between 4 variables and 3 con-
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The graph can be used to perform constraint-
based reasoning or direction-less arithmetic.
It can be processed to deduce values for vari-
ables that do not appear by themselves on one
side of an equals sign. The node/link model
for these equations is shown below.
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Figure 14. Node/link network for the equations.ËË
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This model contains some surprises. The
user’s specification is not stored in classes,
but in instances. There is no divide object.
Divide is really a re-expression of multiplica-
tion and so the system implements division as
merely a fiddle on how multiplication nodes
are inserted. Note also that constants are not
actually objects. Due to certain esoteric
implementation details, this system stored its
constants as instance variables on the link
objects. And that’s the other surprise: link
objects. Each link in the direction-less arith-
metic graph is actually an object. This allows
us to customise the semantics of a particular
relationship into the methods of an object.

Node/Link networks permit the development
of arbitrary relationships as networks of
instances. The use of instances to store
knowledge may seem counter- intuitive in an
OO tool. However, consider:

Í If a class is viewed as a re-usable software
IC (as per the [Cox 90] model), then only
concepts that migrate between applica-
tions should be made into a class. Con-
cepts like bank-teller and XYZ-Insurance
Company belong as strings stored as
instance variables rather than as class
names. In my view, when a software
engineer creates a class, they are making
a promise that its contents will be usable
in another application. Domain-specific
knowledge is, by definition, domain-
specific. Hence it belongs in an instance.

Î Many KRs could use node/link networks.
Consider a binary-relationship model for
a standard business application. The
model might assert that employee and
manager are both kinds of people. Such a
link could be implemented using the
inheritance mechanism. But what about
works-at or is-paid or a host of other rela-
tions required by the model? The seman-
tics of these none-is-a links still have to
be implemented. A generic architecture
for node/link nets could support sub-class
as one of a range of inter-relations.

Ï When adding a declarative level to an
object system, it is wise to avoid the
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dubious semantics of the is-a link. There
are many relationships objects can have to
one another (e.g. manager, employee, etc)
and it just isn’t clear what is-a means,
particularly in a system that allows the
over-riding of inherited features.
Node/link networks allow the design team
to implement the semantics they want
rather than the semantics they have to
suffer with from the implementation tool.

Ð 03=�8%4�=9WÑ;%AI2�8%4
After purchasing a commercial OO system, a
ES developer does not have a KR system.
OO languages are more a software engineer-
ing tool that a knowledge representation tool.
The pragmatic software benefits of the OO
approach are non-trivial and can simplify the
development and maintenance of all software,
including expert systems. Objects can be used
to explicitly represent inference control
knowledge. However, logically speaking,
objects aren’t logical. We have seen exam-
ples were "object logic" can be implemented
by predicate calculus. Further, a rigorous
analysis of a inheritance system often reveals
semantic irregularities (especially when the
inheritance system supports overrides).

How can Eiffel, C++, Smalltalk, et al be used
for building KR?s

1. Experience suggest that a combination
of a declarative/assertional level with a
underlying definitional/object level is a
useful architecture. Much domain-
expert knowledge relates to multiple
inter-relationships between objects. An
OO-KR system needs a declarative
query language for expressing these
inter-relationships.

Pragmatic considerations suggest that
we should build the logic on top of the
objects and not the other way around.

2. The inter-object semantics has to be
customisable. Inheritance can be
abused to kludge-up all manner of
semantic relationships between objects.
These kludges become difficult to

maintain or use when their semantics
are extensively explored (e.g. in large
knowledge bases). In particular, over-
rides have to be avoided. If the
developer has source-code access to the
inheritance mechanism, then the
semantics of inheritance can be altered
to suite the domain. However, for most
OO systems, this is not the case and the
developer should use networks of
instances to store the KR. Such net-
works have two components: node
objects and links objects that imple-
ment the semantics of the links
between the nodes. An editor of
instance networks would be a useful
generic tool for an OO ES tool.
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