The Mysterious Case Of The Missing Reusable Class Libraries

Tim Menzies, Julian Edwards, Kekwee Ng

School of Information Systems (Edwards)
School of Computer Science & Engineering (Menzies & Ng)
University of New South Wales
P.O. Box 1, Kensington, NSW, Australia, 2033
juliane@cumulus.csd.unsw.oz.au; {timm | kekwee)@cs.unsw.oz.au

ABSTRACT: Where are the reusable class libraries as
promised by the literature on Object-Oriented (OO)-
methods? We argue that within corporate data processing
groups, resource pressures cFrevent the development of
reusable class libraries based on an optional, additional,
generalisation of some specific OO application. We
observe that the development of such general libraries
need not wait for the completion of the specific
application, if the application is regarded as an example
of the type of processing required for the domain. The
Eroducts of any particular application development could
e (i) the application itself; and (ii) more importantly, a
set of general tools, specifically class libraries, for
building similar applications. In terms of a class librarf,
we believe that reusable class libraries are not simply
specialised/ generalised application classes. That is to
say generalised reusable classes do not simply evolve
from vertical refinement. More typically, they involve
horizontal expansion of the application's domain via
client-server/association relationships. Examples of
class libraries created by horizontal extension of the
initial development process are given. Seven factors are
described that promote the construction of class libraries
during development. Object-oriented analysis (OOA) and
design (OOD) methodologies are assessed for their ability
to facilitate the development of the horizontal classes.
Most of the current methods do not support the
development of horizontal class structures and hence a
contributing factor to the lack of reusable components
may be our current generation of OOA and OOD
methodologies.

KEYWORDS: Analysis, design, reuse.

1. INTRODUCTION

One of the frequently cited benefits of the OO approach is
the development of reusable code libraries [Meyer 88,90].
Such libraries, it is said, reduce the costs of future
development since developers can rapidly take advantage
of previous work. A good library generalises a
recognised domain and involves generalising what were
previously application-specific

classes. That is, once a class library, C,, has been created
to implement some product, P to meet some requirements,
R, then Cy, is generalised via a secondary analysis, G to
produce a generic class library C7 . Explicit recognition

of G has been incorporated into a number of proposed OO
software development life cycle models (e.g. the fountain
model of [Henderson-Sellers 90] & [Edwards 92] and the
cluster model of [Meyer 90]). C7 then becomes the kernel

of a range of P7 -like products (shown below as P
P3.PN in Figure 1).

R (initial
requirements)
P1 (the

/ product)

P2 (the next
product)

CO (classes
specific to P)

(the generalisation

process) P3 (the next,

next product)

C1 (classes
useful for P-like
applications)

P-N
Figure 1

For example, a pull-down menu-package (Cp) developed
for a word-processing application (P7) could be used
later for a spreadsheet (P2,), database(P3,), and
communications package (P4) but only after Cp has been
generalised via G to create Cy.

Mysteriously, such reusable libraries are largely missing
from the public domain and are often restricted to either
user-interface or collection class libraries eg. NIHCL
[Gorlen 91] and InterViews [Linton 89]. Even in the
restricted domains of specific corporations, reusable
class libraries are the rare exception rather than the rule.
We suggest that one reason why this is so is that it is a
mistake to make G simply an otﬁtional, additional, future
project. Given the realities of the corporate environment,
it would appear that companies are reluctant to allocate
resources to the optimisation of an existing, working,
3pplication. Imagine, for example, the head of the DP

epartment asking the business user for further funding in
order to build a reusable class library based on their
recent release. Given the current short-term economic
view of corporate cost centres, generalising class
libraries is not a high priority. It is unlikely that the user
would allocate the necessary funds.

Instead it is important to make the development (G), of the
generalised classes (C71), part of the development cycle of
the first product, (P1). Rather than delivering P71 using Co,
we argue for using C, as an analysis/design tool for
discovering C7. The first product, (P7) can be then
delivered using the generalised classes (C7), The

corporation then has two products: an executable version
of requirements, (R) as well as a library of reusable
components C7 which can be immediately used to develop

P1-like applications (see Figure 2). In this way the "reuse
mindset" pervades the entire development process.

R (initial
requirements)

CO (classes

specific to P),
as recognizecd
durig analysis)

P1 (the
product)

P2 (the next
(the generalisation product)

process)

P3 (the next,
next product)

C1 (classes
useful for P-like

applications)

P-N

Figure 2

The rest of this paper is a discussion of the G process. Is it
possible that G can be included as part of the original
application development? Initially, this may seem
somewhat implausible since we appear to be arguing for
the generalisation of some product prior to having
experience necessary for that generalisation. However,
let us distinguish between the user's evolution of their
understanding of the domain (as evident in updates to
requirements (R)) and the software engineer's evolution of
their understanding of the support utilities required to
squort R. It remains an open question as to whether a
software engineer can Ipreempt the user's evolution of
their domain. Nevertheless, our analysis of known Cg
libraries indicates that (i) within any application there
exist sub-systems that squort the requirements (R), but
which are not immediately obvious from R; and (ii) such
sub-systems can be found during the initial development
of P1. We demonstrate this via examples in section two.

These examples suggest to us that software engineers can
educate themselves to investigate R, develop C,, and then
generalise to C7 prior to the release of P7. However, we
acknowledge that organisational factors can encourage
or discourage G. These factors are discussed in section
three. A key observation we make is that the relation of
P71 to Cq is not simply the specialisation/ generalisation
relationship. Section four discusses the implications of
this on conventional OOA /OOD methodologies. We find
that many OOA and OOD techniques lack support for the
development of the horizontal links which we have found
necessary for G.

2. EXAMPLES OF G-C31

This section gives examples of output of G; i.e. the process
of generalising some design for R into a reusable class
library, C7 .

2.1. SMARTASK

SMARTASK was a Frototype system developed to
support the mythical Mongolian Life Insurance
Company's (MLI) customer service division [Menzies
90]. In this case, our R is the book of 60 tables used by the
MLI's insurance agents as they roam the plains selling
insurance to yak herders. For example, the following

table says that a 20 year old yak herder with an old
wooden house valued at 70,000 would have an annual
Eremium of 191.25 (i.e. an figure obtained by interpolating

etween two known values of 120 and 130 multiplied a
factor of 1.5) as shown in Figure 3.

House type= wood type =
value age= age= brick
new old

40,000 110 120 115
80,000 120 130 117
120,000 150 190 140
Notes:
if client age > 65
then use the "Premiums for the

Retired" table.
if client age > 90
then refer to manager
if clients age <21
then premium := 1.5*premium.

Figure 3

The design of the table and its associated rules gives some
procedural control over the look-up process. Queries on
the table can be shuffled off to other tables, abort the
look-up (see the above "refer to manager" rule) or filtered
via a post-processor (e.g. adding 50% to the premium of
young people). Within the table, values not explicitly
mentioned in the columns can be interpolated or
extrapolated. The columns of the tables are headed by a
set of selection criteria that control which columns are
used.

A Cp for this system could be to build one object or

procedure for each table. Each cell of the table would be
implemented as part of a set of nested If-Then constructs.
A C1 would build a genericTable class, a table look-up
Slzstem that controls the queries, a specialisation of List
that can handle conjunctions, and a Rule object that stores
conjunctions and associated actions if the conjunction
returns true. Note that these are all reasonable
candidates for domain-independent objects in a reusable
class library. Note also that with the C, design, each new
table, or changes to existing table would require the
support of a programmer. ontrast this with the Cq
design. If the programmer built the generic table and same
tool for instantiating an instance of that table with the
appropriate rules and column values, then the
programmer would not be required for subsequent
modifications. As with the above case, the business user
could maintain their R.

The class hierarchy for SMARTASK (as shown in
[Menzies 89]) has one child-less class called Table
immediately under Object. This is just a container class
storing the name of the table and pointers to instances of
Matrix, Rule, and Conjunction. Again, the C1 classes are
associations of the application class and not
specialisations or generalisations. In a C, system,

functionality tends to be in a few objects whereas in C7 -
based applications, functionality is dispersed amongst a
larger number of classes that collaborate to implement the
functionality. C7 -based classes tend not to be
s]gecialisations or generalisations of the application
object, but rather a horizontal collaboration of classes.

2.2. DESCRIBE

Describe is a question-asking system originally
developed for the AMP Society [Dang 90]. The original R
for this system was a copy of a 40-page paper
questionnaire that was to have been given to several

thousand AMP employees and the one-line statement: "We
want the computer to collect the answers". Cy , as
proposed by management, was for the questionnaire to be
scanned and presented on screen exactly as it was shown
on the paper questionnaire. The software engineers
worked with that idea for four weeks, then designed a C1
comprising of an object library for different question

types (boolean, free text entry, one-of-a-list, controll), a
general question asker, a general question/question-help
display environment, and a questionnaire mark-up
language that turned ascii files into instances of the class
Question.

The mark-up language was interesting in that it was
merely syntactic-sugar for Question instance
instantiation. For example, the mark up language could

say:
@oneOf
@prompt Where do you work?
This question wants to know in which state

office do you spend more than 90% of your
working hours.
@options
nsw

vic

qd

nt

wa

tas

qd

@end

A simple pre-processor turned this into the following
object code (in a Smalltalk syntax):

OneOf new

prompt: ‘Where do you work?'

otherText: This question wants to know in

which state office do you spend more than

90% of your working hours.'

option: #nsw;

option: #vic;

option: #qid;

option: #nt;

option: #wa;

option: #tas;

option: #qld;

commit

The mark-up language reader was implemented as two
objects: TagReader was a §eneric object that handled the
details of opening files of mark-up language text, and
finding each "chunk" of mark-up, isolating the method
calls and various arguments. A specialisation of
TagReader was QuestionTagReader which handled the
specific details of questionnaire definition tags such as
"options".

The mark-up language files were maintained by the
business users. Over the period of the development of
Describe, the users made extensive alterations to the fine
details of the questionnaire. If Describe had been
implemented using the original Co design, then these
changes would have necessitated the slow re-
implementation of the system by a programmer.

Under the language's root object, the application is built
up from four separate hierarchies: TagReader, Question,
QuestionAsker, and QuestionDisplay. Yet again, C7
comprises horizontally associated classes. The reader
may wonder why we stress non-inheritance horizontal-
association. Could not the same implementation be built
using multiple inheritance links? For simple applications,

1A control question caused the question asker to
ignore irrelevant questions and directed the user to
somewhere else in the questionnaire.

erhaps multiple inheritance can suffice for association
Ez.g. tlEe structure chart system described above could
have utilised multiple inheritance). However, above a
certain level of complexity, multiple inheritance becomes a
kludge that complicates a design. For example, it would
have been perverse in the extreme to have created a
Describe object that inherited from TagReader, Question,
QuestionAsker, and QuestionDisplay. Such complexity is
best dealt with via horizontal client-server links.

2.3. KNOWLEDGE BASES

If we substitute "requirements" for "knowledge bases",
then the lessons and techniques of expert systems become
relevant to traditional software engineering. Expert
systems theory argues for the separation of control from
e knowledge base (KB). A KB is an expression of some

extpert's knowledge, uncluttered by tecfious rocessing
information. So, a rule in an expert system could be:

ifage <4

then infant

A separate inference engine could handle the details of
searching for applicable rules, gathering the information
(for eg. age), tully testing the if-part of a rule, then
managing the then-part appropriately (here, the fact infant
would be added to a library of assertions).

[Bustany 88] generalises this and describes the
application language approach. When exploring a new

omain, Bustany ef. al. develop a notation that can record
R. Next, they build an interpreter for R. System
development then proceeds by constructing larger and
larger chunks of R, recorded in the interpreter's syntax.
This approach has the advantage that the user can evolve
their understanding of their requirements via experience
with an executable version of the requirements.

The development of application languages requires a tool
that can (i) process code as data and which (ii) can
sup]lo)ort arbitrary abstract data types. OO-languages can
do both. For example, recall the Describe mark-up
language. The knowledge of the system was the design of
the questions and the mark-up language allowed the users
to express that design in a manner that allowed them to
ignore tedious implementation detail.

Lest we over-state our case, we note that one feature of
application languages/ expert systems is that the
usually give the programmer some search algorithm whic
simplifies the implementation. This features allows for the
rapid development of a constraint/ re-write rule that can
process all instances of a particular class or some
relational join across attributes in different objects.
However, this brief digression into expert systems theory
demonstrates that use§ul support tools for a requirement
may not involve generalisation-specialisation of
gpplication objects. Indeed, they may require the

evelopment of elaborate architectures that may not be
explicit in the original requirements document.

2.4. STRUCTURE CHARTS

Su}:)pose a user versed in structure chart analysis gave the
software engineer a specification in terms of a top-down
decision tree (see Figure 4).

day = day =
saturday) \sunday

goto goto | goto I
|shopping I | parents I work
Figure 4

One design option for Cp would be to create one class or

procedure for each node and write the conditional code
and calls to other objects as procedural code within each
node, guarded by If-Then statements. After working with
this approach on paper, a software engineer would
realise that large sections of the code in different objects
appear very similar. A generalisation would be to
recognise that this is a network of nodes and links where
nodes can be specialised into question-asking nodes (e.g.
ask day), action nodes (e.g. goto shopping) and conditional
nodes (e.g. day = sunday). The root class of our C7 would

be a Generalised Node Object with local variables for

lists of parent and child pointers and a deferred method

called %0 that handles the processing at that node. Go

would be specialised in our other nodes as follows:

® Question-asking nodes: prompt the user with the

uestion text (a local variable), wait for input,

check input validity, if invalid, repeat, else place in
S?lnllg global store. Then call go recursively on each
child.

. Conditional-nodes: if the test is true, call go
recursively on each child.

Orne tacit feature of this design is that the application
class is not a child-class of the generalised "mnode-link"
class (Generalised- NetNode) The design process up until
this point has been the traditional generalisation/
specialisation process. However, consider these node-
link networks from the user's perspective. Nodes grou,

together into networks (e.g. the shopping , parents, or wor,

networks) and Node-level processing should not be
confused with network-wide processing. Hence, let us
create a NetworkManager class to manage the network-
wide processing (e.g. Eersistent storage to a file, display
in separate windows, begin processing with some special
root node, authoring details, etc). Each user's application
is now a named instance of NetworkManager which
stores (amongst other things) a pointer to a special root
node of every network. Sgo, when the user creates an
application, the hierarchy looks like this (see Figure 5):

Class- Class- Instan
Class Instance Instance
Links Links Links

Pida

Morning-
Decisions

goto
shopping

bject
NetworkMana§e

P Generalised
Net

Node

g Actio

Figure 5

Our example served to introduce the concept of a node-
link network that underlies many designs. [Menzies 91]

argues that a standard library for any OO language
should be a node-link network editor. [Bellcore 91] also
argues for a node-link library arguing that lessons learnt
from semantic modelling should not be forgotten, namely
that relationships should be kept explicit.

2.5. MODEL-VIEW-CONTROLLER (MVC)

A famous G (although not known as such) is the model-
view-controller, originally developed in the Smalltalk
community [Goldberg 84]. MVC implements the concept of
dialogue independence : i.e. a clear separation of a
program's computational component from its interface.
Such a separation permits the separate subsequent
modification of a program's interface or functionality
wi]thout having to re-write the entire system [Hartson
89].

OO interface toolkits can directly implement dialogue
independence by assicgning separate objects to a program's
model and its view. Certain OO interface toolkits extend
dialogue independence even further than a two-way split.
Smalltalk assigns a model, view, and a controller object to
each pane of each window. The controller object
processes user keystrokes and mouse movements.
Objective-C's interface kit adds a fourth object called a
transparent controller that manages the background pane
of a window (which the user sees as the top-bar of the
window). See [Urlocker 89] and [Knolle 89] for more
details.

MVC demonstrates again that G-C7; does not solely
involve specialisations or generalisations of application

classes. Digitalk's Smalltalk/ V® class hierarchy stores
the View and Controller hierarchies directly under
Object. Applications that use MVC exist in parallel
hierarchies (e.g. ClassHierarchyBrowser, ClassBrowser,
File- Browser). That is, G tends to generate association-
links between application classes and C7 classes rather

than inheritance links2.

We note that MVC is such a novel generalisation of an
application that it would probably not be successfully

enerated from a single application3. Our other examples

-C7 are at least an order-of-magnitude easier to
produce that the sophistication of the MVC.

3. OPTIMISING G

What do our examples tell us about the process of G-C7 ?
We have argued that G is a process of building an
executable version of R via the creation of classes
horizontally associated with the application class(es).
The essential change required to the mind-set of the
software engineer is to regard P7 as an example of the
types of processing that are required for this domain. The
P71 processing should be described at a level above the
immediate details of the requirements document. G is the
process of recognising this meta-level description and C7

is the implementation of it.

This view leads to an architecture comprising of lots of
ﬁeneral support tools and a (smaller) section detailing

ow those support tools are used to realise R. When
designing C7 , we have said that R should be viewed as a

21t s possible to simulate associations using
multiple inheritance networks but this is strongly
discouraged as it leads to complicated networks.
Further, [Menzies 91] cautions against the use of
multiple inheritance networks in languages that
support over-riding inherited properties (e.g. most
commercial OO languages) since these over-rides
leads to very confusing semantics.

3In fact, MVC is probably an example of C-GN,
where N > 10.

evolving structure; ie. the high-level control of the
support tools may change. We should look for R support
tools which would remain useful, despite changes to R.
The tables of SMARTASK store business knowledge that
could change with time. However, the generalised Matrix
class underlying R would be useful regardless of how the
table values change.

We expect R to evolve in two ways: (i) when Py is
evolved into P47 or (ii) during the development of Py

the users understanding of their requirements evolve
leading to a change in the current requirements. We have
given examples where user-level tools designed to permit
the business user to modify R have proven useful. That is,
G-C7 leads to a style of interactive refinement of R that

has parallels in the field of knowledge engineering. This
observation leads us to suggest that one useful strategy
for G would be to design an application language for the
business users which abstracts away the tedious control
details.

There are certain organisational factors will encourage/
discourage the G-C7 strategies. We have identified seven

below:

1. Cost: G is a long-term strategy. In the short-term, it
adds to the project cost. In the lonf—term, G pays for
itself in decreased product development time.
However, if the software is developed within an
environment that is overly-concerned with cost-
cutting, then the overheads of G would not be
acceptable.

2. Time: G takes some time. Versions of C, have to be

re-worked. If time is of the essence, then G is not
appropriate. However, repeating the above remarks,
while G costs more in the short-term (in terms of time
and money), it can prove cheaper in the longer-term.

3. Size of project: The larger the project, the harder it is
to get an overview of the system. Such broad
overviews are very useful, if not necessary for G.

4. Sizeof team: For G to be effective, the designers need
to be fully conversant with all the processing that
C71 has to manage. This is easier in small teams
where the team members have regular contact.

5. Experience: One strategy for G is to generalise C,
using experience gained in other applications. For
example, an experienced software engineer might
identify the similarities between current and past
projects.

6. Quality of team: A separate factor to team
experience is team quality. All the experience in the
world will not convert a bad designer in to a good
designer and identifying. G = requires a certain
creative flair which we would not expect in bad
designers.

7. Language: G-C7 is a evolutionary process.
Languages that support incremental compilation
encourage G.

In summary, we could say that G-C7 is more likely to
occur in small, skilled, experienced teams working with
incremental development tools without serious time and
cost constraints being a dominant factor. G-C7 is a
strategy that can be a%plied to many development projects
to encourage the development of reusable classes
throughout the development process. This approach can
be synthesised with the later G phase to give a G1-C1-G2
... type cycle. The latter G2 process is made considerably
easier by the work on generalisation (G7). We therefore
argue that G should pervade the whole OO life-cycle.

4. G & EXISTING OO-METHODOLOGIES

Another serious contributing factor to the success or
failure of G is the extent to which the OOA/OOD
methodologies used by the team encourage horizontal
association links as opposed to vertical inheritance
links.. This section reviews various OOA/OOD

approaches on their ability to use non-inheritance
concepts.

One criticism that can be levelled at most currently
available OOA/OOD methodologies is their lack of
concern with reuse. Most of the methodologies
concentrate on a "greenfield" approach to constructing
object-models [Arnold 91]. That is to say they do not
include techniques and heuristics for examining and
inteﬁraﬁng class libraries into the development. Those
methodologies that do include a discussion of reuse tend
to concentrate on development for reuse [Arnold 91]
rather than development with reuse. The implication is
that G is a process that occurs after the development of
the object-model by generalising classes, although this
process is not yet formalised or well defined for any OO
methodology. Furthermore, most OOA/0O0OD
methodologies concentrate on the notions of inheritance
rather than the horizontal links of association and client-
server. Most methodologies, therefore, forget the lessons
learned from semantic modelling and the explicit
relationship paradigm [Bellcore 91]. These horizontal
linkages, it is argued, are important not only for logical
modelling [Rumbaugh 91] but also for reusablility and
loose coupling of classes [Kilian 91].

In this paper we have argued that generalising classes
after the development of P by
eneralisation/specialisation alone is not sufficient for
e development of large-scale reusable class libraries.
The implication of this argument is that current
OOA/OOD methodologies are not able to lead to the
development of the class libraries sought by the OO
community particularly domain specific libraries.

In pursuing our ar§uments for software developers to
consider the need for horizontal linkages, we are not
stating that the usage of inheritance is not an important
issue in software reuse. In fact, we favour a two-prong
approach in order for any environment to develop a
robust suite of reusable classes i.e. to use horizontal
linkages for logical modelling and to use vertical
refinement for generalising/ specialising the classes.
Indeed this dual-pronged approach should be sealed
together with the application of formal techniques.
Further, despite existing methodologies' affinity for
suggesting inheritance as a suitable mechanism for reuse,
we find that here too the notion seems to be rather lacking
in rigour. The laws of good software development tells us
that it must be a systematic and well-managed process and
it is here that the incorporation of formal methods can
help. This is evident by the fact that it assists in helping
the developers produce coherent object models that are
capable of being validated against the requirements of the
domain. This need is urgent especially in the area of
developing safety critical applications. The central theme
is for one to combine both horizontal and vertical
approaches under a formal framework (see [Wing 90] and
[Gries 91] for further ar ents supporting the need for
formalisms in software cievelopment). This technique has
suggested that our everyday usage of existing OO
methodologies can be further refined and made more
rigorous.

Overall, the level of reusability is improved because of
the precision and completeness our approach encourages.
The pragmatic goal of our p?iper is to suggest a means of
achieving wider reuse and this we have done by
integrating the vertical and horizontal linkages allowing
a more Com%lete semantic description of the problem
domain. We believe that only by combining these two
glpes of linkages can extensive reusable class libraries be
eveloped.

5. CONCLUSIONS

We have proposed a solution to the mysterious case of the
missing reusable class libraries. The libraries are missing
because we have not structured ourselves to create them.
Our project plans defer object generalisation till after the

delivery of the first product, when resource limitations
may result in the perpetual postponement of the
generalisation process. Our software engineers do not
"think general" when they build our systems. Building the
reusable libraries, then, is always "someone else's
problem". Further, our current OOA and OOD tools may
not support the development of reusable components since
they (mostly) do not support the discovery and
specification of horizontal associations between classes
and therefore, no reuse.

From this analysis, we argue that one cannot expect to
find reusable class libraries unless we re-structure our
endeavours. Generalisation, we have argued, should not
simply be regarded as an optional add-on, but should
ervade the reuse "mind-set" from day-one of any project.

e should deliver version one of the executable system of
the users' requirements via some generic class libraries.
That is, the output of the development of any product P
should be (i) an executable version of the wuser's
requirements and (ii) a reusable class library which can
support the development of P-like systems. In our view,
reusable class libraries are the responsibility of every
Frogrammer/ designer/ analyst throughout the whole
ife-cycle of every application. We should reward our
software engineers for performing G. (eg. index pay
raises to the number of C7 classes engineered by an

individual).

Also, we would argue that considerable further research
into OO methodologies is required for the development of
class libraries to become a reality.

Our proposal was defended by an analysis of G-Cq

systems. The generalisations used in those systems were
eveloped concurrently with release one of the
application. With the exception of the special case of
MVC, we believe that competent software engineers could
develop these C7 classes during the development of

release one with further refinement made easier after P7.

6. REFERENCES

[Arnold 91] Arnold P., Bodoff S., Coleman D., Gilchrist
H., & Haynes F., An Evaluation of Five Object-
Oriented Development Methods, HP Technical
Report, HPL-91-52 June 1991.

[Bellcore 91] Information Modelling Concepts and
Guidelines, Version 1, SR-OPT-001826, 1991.
[Bustany 88] Bustany A. & Skingle B. Knowledge-based
Development via Application — Languages in
Proceedings of the Fourth Australian
Conference on Applications of Expert Systems,

May 11-13, 1988, pp. 277-302.

[Dang 90] Dang T. Describe: A case study in Object-
Oriented Design and Programming Workshop
Proceedings of Al '90, Perth, Australia.

[Edwards 92] Edwards J. Development of An Object-
Oriented Methodology and Its Application to a Water
Resources Problem, PhD Thesis, School of
Information Systems, University of New South
Wales, 1992 (forthcoming).

[Goldberg 84] Goldberg A. & Robson D. Smalltalk-80:
The Language and its Implementation Addison-
Wesley, Reading MA, 1984.

[Gorlen 91] Gorlen K.E., Orlow S.M. & Plexico P.S.
Data Abstractions and Object-Oriented
Programming in C++, John Wiley & Sons, 1991.

[Gries91] Gries D. Teachin Calculation and
Discrimination: A More Effective Curriculum in
Communications of ACM, Vol 34, No. 3, March
1991, pp. 44-55.

[Hartson 89] Hartson H.R. & Hicks D. Human-Computer
Interface Development: Concepts and Systems for its
Management, in ACM Computing Surveys, Vol
21, No. 1, March 1989, pp. 5-92.

[Henderson-Sellers 90] Henderson-Sellors B. & Edwards
J. The Object-Oriented Systems Development Life-

Cycle, Communications of the ACM Vol. 33 No.
9, September 1990, pp142-159

[Kilian 91] Kilian M., A Note on Type-Composition and
Reusability, OOPS Messenger, SigPlan Vol 2 No.
3, 1991, pp24-32.

[Knolle 89] Knolle N.T. Why Object-Oriented User
Interfaces are Better in Journal of Object-Oriented
Programming, Nov/Dec, 1989, pp. 63-67.

[Linton 89] Linton M.A., Vlissides J.M. & Calder P.R.
Composing User Interfaces with Interviews in IEEE
Computer February 1989, pp. 8-22.

[Menzies 90] Menzies T.J. Is-a Object Part-of Knowledge
Representation?, Proceedings of AI'90, Perth,
Australia, November, 1990.

[Menzies 91] Menzies T.J. IS-A Object PART-OF
Knowledge Representation (Part Two) in Proceedings
of TOOLS 4, The fourth International Tools Pacitic
Conference, Sydney Australia, December 1991.

[Meyer 88] Meyer B. Object-Oriented Software
Construction Prentice Hall, 1999.

[Meyer 90] Meyer B. Lessons from The Design of The
Eiffel Libraries in Communications of ACM, Vol
33, No. 9, September 1990, pp. 69-88.

[Rumbali?‘n 91] Rumbaugh J., Blaha M., Premerlani W.,
Eddy F. & Lorensen W. Object-Oriented
Modelling and Design, Prentice-Hall, 1991.

[Urlocker 89] Urlocker Z. Abstracting the User Inte;;face
in Journal of Object-Oriented Programming,
Nov/Dec 1989, pp. 68-74.

[Wing 90] Wing J.M. A Specifiers Introduction to Formal
%\/Iethods, in Computer, September 1990, pp. 8-24.

