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ABSTRACT:  We long for the day when interfaces
automatically configure themselves without requiring
tedious and time-consuming programming. Such an
automatic configuration capability would require
knowledge of the objects they are editing. Our current
generation of OO interface tools lack a general protocol
for exploring  the objects they are processing. Therefore,
they are unsuitable for auto-configuration. Here we
explore a surprisingly simple syntactic model of objects-
to-be-edited which a general-purpose interface hierarchy
can use to manage the auto-configuration of interfaces.
The model relies on "black-box" constraints: methods
that when messaged may add error strings to a list of
known errors. These constraints are not "glass-box"; i.e.
our configuration tools cannot query them to discover
their dependency information. Without such dependency
information, our black-box system cannot optimise the
processing of its constraints. Nevertheless, we
demonstrate that black-box constraints can support the
automatic configuration and processing of a  surprisingly
wide variety of interfaces. The open research issue is how
far our black-box-based interfaces can be extended
without requiring glass-box knowledge.
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Modern software development requires multiple interfaces
to a wide-variety of complex structures. While it is
possible to obtain ready-built editor classes for simple
objects like dates or pick-one-from-a-list, there are many
cases where special purpose editors have to be constructed
for domain-specific objects (e.g. risky-loan-applicant or
space-shuttle-main-booster).

Consider the architecture of a standard application that
utilises a graphical interface (see figure 1). The logical (or
business) model may use external services such as a
mainframe database. The logical model  is presented to
the user in an application program that "glues" together
collections of display widgets such as text, list, graph
panes, buttons, sliders, etc,  into a visual unit that has
some meaning to the user.  The "glue" defines a set of
operations and reports that the user can access.

The construction of the "glue", and the customisation of
the GUI support code such that the glue works, is a time-
consuming process.  This is unfortunate since we expect
the interface requirements of software in general to
increase:

•  As users educate themselves in multi-windowed
event-driven interfaces (e.g. Microsoft Windows
and the Macintosh look-and-feel), we see
increasingly more sophisticated interface
requirements.

• In projects that emphasis evolutionary
development, there will be a requirement for
developers and user groups to study the program's
execution at many points during the development.
That is, software developers should have to build
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Figure 1: Standard application
architecture = GUI support + glue +
logic + services.  Two applications are
described in this framework: (i) a
database application (ii) a  Smalltalk
class editor.



multiple throw-away intermediary interfaces prior to
delivery.

In an ideal world, we should be able to develop a clean
logical model of an application, press a button, and the
interface configures itself automatically.  We do not live
in an ideal world. Current OO graphical-user-interface
(GUI) toolkits (e.g. the MVC triad (Urlocker 1989))
isolate the developer from many low-level details such as
paging up and down, window management, displaying
characters, tracking mouse movements, etc. Screen
painting tools such as WindowBuilder™ and
VisualWorks™ simplify layout. However, these tools fall
well-short of the goal of automatic configuration since
they only work on the GUI support classes or on the very
outer-layer of the glue class(es).

Our thesis is that missing from these toolkits is
knowledge of the logical model.  Without such knowledge
interface tools will remain low-level support tools for
high-level business applications. Such low-level tools
will require extensive and time-consuming customisation
before they are useful in an application. Here, we explore
methods of collecting that logical knowledge in an OO
paradigm.

How should we give our interfaces knowledge of the
logical model? One possibility is to demand that every
object in the system responds to a "glass-box" protocol
that supplies detailed knowledge of the entities used
within that object and  how these entities are dependant
on other entities. This knowledge could include a
"dependency diagram": a directed-graph that indicates
what entities a method requires to function (i.e. its inputs)
and what state changes result from this methods
operations (i.e. its outputs).  Such a diagram could be used
for  (i)  automatic program validation (Menzies 1993), (ii)
rapidly detecting constraint violation, (iii) optimising
constraint execution, develop simulation programs
(Borning 1981), etc (for a longer list, see the related work
section of (Freeman-Benson, Maloney et al. 1990)).
Indeed, a program with knowledge of these dependencies
can control its execution via an intelligent traversal of its
dependency network1 .

This approach, however, runs contrary to the spirit of the
OO paradigm where objects are meant to hide their inner-
processing from the outside world.  Further, it may not be
possible to use our current generation of OO languages for
such a glass-box approach. In principle, it is possible
that parts of the dependency  diagram could be
automatically generated from the parse trees of our current
object systems. However, the information thus collected
automatically may be insufficient and have to be
augmented by hand-coded sections. That is, to implement
the glass-box approach would require an extensive re-
design of exist class libraries and impose stringent
requirements on future developments of any class that
could be used in an interface.

Here we seek an method for auto-configuration that is an
add-on to our existing objects and does not imply a re-
write of our class libraries. We propose a simple syntactic
structure for logical  models augmented by black-box
constraints: a method that can write error messages if
some invariant is violated.  The limits to this approach is

                                                                        
1 At which point  we have left the object paradigm. Such a

program can be best described as a rule-based / constraint-
based/ logic-based system.

that constraint application has to be applied in a heuristic
rather than an optimal manner. Nevertheless, we
demonstrate that it is possible to characterise the
interfaces to a surprisingly large number of applications
according to this simple structure and a generic black-box
constraint protocol.

We hasten to add that our framework does not exist in any
single program. For several years now, we have been
grappling with the problems of interface design (Menzies
1990; Menzies 1991; Menzies 1991). This paper resulted
from pooling the first and second author's practical
experience and a reverse engineering of the systems we
have developed over the last 5 years. Hence, the
framework presented here exists partially in several
systems, but not all in a single program. We believe that
if a single program had the entire framework, then a wide-
range of interface tools would be possible that satisfy the
auto-configuration requirement ranging from simple
screen painters to arbitrary graph editors as well as expert
systems, report generators, and intelligent CASE tools.

This rest of this paper describes the framework (called
MYLE2) and presents our design for these tools in a
Smalltalk context.  Section 2 describes some over-all
design considerations. Section 3 gives details of the
framework and section 4 describes its applications. The
appendix describes a generic hook into the Smalltalk
error handling routines that intercept the  generation of
error strings and passes them to the active glue instance.
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Our framework may not strike the reader as the way that
they would approach this problem. In order to understand
why we adopted out particular approach, we list in this
section three principles that guided our thinking.

� � � � � � � � � � � � � � � � � � � � � � � �
The standard application architecture of figure 1 is a
realisation of the principle of dialogue independence.
This principle states that  a program's computational
component should be kept separate from its interface
component. This permits the modification of either
component without having to re-configure the other. This
is a useful design principle, particularly for programs
developed in a prototyping environment (Hartson and
Hicks 1989).

Put more crudely, dialogue independence demands that
MYLE  should not pollute a clean logical model (e.g. that
of an employee) with interfacing details (e.g. checking
for mouse events while editing an employee).
� � � �  � ! � � " # ! �
The overhead associated with turning a logical model into
something that a user/programmer can browse and change
should be minimal. Ideally, after creating an object, i t
should be possible to create a user-friendly, editor of that
object that validates user entry by sending one message
to it: "specify".

In practice, there is more to it than that:

• Validation methods have to be created for the
logical object such that it can check the validity of
its contents. Such validation methods do not change

                                                                        
2 Short for "MY  Last Editor." The running gag of our research

is that we are currently up to MYLE, version 3.



state: they merely report errors. We argue that such
validation methods are part of the logical definition
of any concept and so belong in an object anyway.
Many such validation methods already exist in
current class hierarchies. For example, the
Smalltalk Date object calls the error handler if i t
detects an inappropriate number of days in a month
specification. MYLE includes a hook into the error
handler such that the generated errors are handled by
the user-friendly edit screens rather than dropping
the user into a user-hostile general-purpose code
debugger (see appendix).  For an example of the use
of validation methods, see figure 7 below.

• A "clean" validation method checks for constraint
violation prior to state update. Further, if a
violation is detected, the  "clean" validator aborts
the processing. A "dirty" validation method is not
clean. Many validation methods in existing classes
are dirty. For example, many of the error: methods
in Smalltalk/V's Date class do not abort the
processing after the call to error:. They tacitly
assume that the error handler will drop the sender
chain and spawn another window. For our purposes,
this is unacceptable since our error handler traps the
error string, diverts it to the current editor, then
continues on with the processing. As to state
update, it may be pragmatically difficult to forbid
state update prior to validation. Consider a process-
control application where one tank instance
connects to many other tanks on the plant. In order
to check that a newly proposed tank is valid, it may
have to update (e.g.) output pipe variables from
other tanks then check that the input from these
other tanks is compatible. We handle dirty
validation methods using zombie (see below).

• The logical model has to support one
"dataDictionary" method that includes the
information needed for a user-friendly edit of the
model (e.g. help text explaining each instance
variable). The "dataDictionary" method is one of the
two violations of dialogue independence that we
permit (the other is the commit protocol: see
below).

Once the "dataDictionary" and validation methods are
installed, then the rest of the edit-related processing can
be defined in objects remote to the logical model; e.g.

! Object methods!
specify

self dataDictionary edit ! !
� � $ � % % & � ' � � � � (
We believe in the principle of designing independent
stand-alone code modules that can be plugged-together in
many ways as a method for the rapid development of
applications.  Each object should have a clear "mission
statement" and should not be required to exhibit
behaviour that deviates from its mission statement.

This principle leads us to reject certain design
alternatives such as:

• A logic-programming approach. The meta-level
predicates of (e.g.) Prolog give us access to the
internal structure of our programs. However, the
MYLE framework is not an academic exercise: i t
addresses problems that we face in our consultancy
work.  A solution to the auto-configuration problem

in an OO paradigm would be more immediately
applicable than a logic-based solution.  We
similarly reject compromise solutions based on
hybrid OO-logic programming languages since such
languages are not currently commercial viable3.

• Adding "connection pointers" to each object in the
logical model. For example, consider the
employment start-dates and employment end-dates
contained in a employee instance. An invariant of
these objects is that the start-date should be before
the end-date. This could be implemented via
connection pointers that link the start-date instance
to the end-date instance. However, we would argue
against confusing the re-usable concept of Date with
methods/instance variables that refer to "Date-as-
used-in-an-employee."

• Adding "reset" variables to each object. A reset
variable is a copy of the variable at some prior time.
That can be used to implement (e.g.) "undo": the
current value is replaced with the last value
(lastValue being one of the reset variables).  Reset
variables imply that some logical concept will now
be extended to include methods for handling edit
behaviour. This violates dialogue independence and
we so we reject this option.

) � * � + , � - � � .

This section describes the MYLE framework in some
detail. Rather than confuse our logical models, we create a
new hierarchy for generic glue objects. It is the glue that
stores the connection knowledge such as inter-item
constraints as well as the editing functions (reset values,
entry-validation, etc).

$ � � # � � " � ' ( � / 0
The generality of the MYLE system comes from the
uniformity of the objects it edits. We burrow an idea from
logic programming for our core representation. Part of
the BNF of structures in a logic program are shown in
figure 2.

TERM ::= FUNCTION_SYMBOL {THINGS}4
THINGS ::= LOGICAL_VARIABLE

| ATOM
| LIST
|  TERM

LIST ::= {TERMS} nil

Figure  2:  Partial BNF of logic
programs. Note that list is usually
implemented as a set of recursive terms.

If a structure is asserted, then the outer-most function
symbol is a special (and is called the principle functor).
Note the recursive pattern; structures may contain
structures.: things can contains terms which can contain
things.  Much of the power of logic programming comes
from the uniformity of the structures that it process.
When a program is processing the internals of a structure,
there are only a few “things” that can be found there.

                                                                        
3 Least the reader accuse of language bigotry, we note that we

have developed and field logic-programming-based
applications (Menzies, Black et al. 1992). One of us (the first
author) is a logic-programming enthusiast but concedes that
the current focus of the commercial world is object-oriented.

4 { X} denotes zero of more Xs. {X} + denotes 1 or more Xs



We characterise editing as a recursive descent through
nested structures and adapt the above BNF to a object
model (see figure 3).

STRUCTURE ::= CLASS_NAME {THINGS}
INVARIANT
{ERRORS}
SERVICE_METHODS

THINGS ::= ATOM
| LIST
| STRUCTURE

ATOM ::= STRING
| NUMBER

LIST ::= FIXED
| DYNAMIC

DYNAMIC ::= DICTIONARY
| DYNAMIC_LIST

STRING ::= ONE_LINE
| N_LINES

DICTIONARY ::= {STRUCTURES}
DYNAMIC_LIST ::= {STRUCTURES}
FIXED ::= {STRUCTURES}

Figure 3: BNF of MYLE-able  structures.

Like the internal structures of logic programs, our
definition is recursive. OO has no concept of a logical
variable (hence, no atoms). Our atoms' are strings or
numbers and we replace functor with class_name. Note
that we have added an invariant and a set of error messages
to each structure. These will be discussed below (see
Semantics).  Service methods are a list of services that the
logical model provides which are useful for editing (e.g. a
get and put block for accessing and storing values).

Object-oriented lists are of at either fixed or variable
length and its elements may be accessed either by an
numeric offset or some symbolic reference. For example,
a hash table (or Dictionary in Smalltalk-speak) is a
variable length symbolic  access list. A forms-entry
screen for an employee could be described as a fixed-
length symbolic access list with accessors defined for
(e.g.) name, age, etc.

The main-loop of MYLE is (1) ask a data dictionary
method to describe it logical model in terms of nested
structures using the BNF of  figure 3 then (2) pass these
nested structures to a suite of classes that know how to
edit such recursive structures.  Editing then commences
via a recursive descent of these structures. On arrival at an
atom, a primitive edit function is called (e.g. pick-one-

from-a-list).
$ � � � 1 2 3 4 5 6
In our approach, the glue class(es) presents to the user
either an editable thing, or a collection of editable
things. Both a single thing or a collection of things
respond to the same protocol so that one thing in a
collection of things can be another collection of things
and so on recursively ad infinitum. Editable items contain
"container" pointers back to the thing that they are stored
inside. If an object has no container, it is a global object.

For example, our current glue  hierarchy is shown in
figure 4. Figure 4 mimics figure 3 except that certain
classes are added for pragmatic reasons (e.g. EDate and
EBoolean). Editable items permit the editing of strings
(EAbstractString) , editing a number (EMagnitude),
editing a piece of Smalltalk code (ESmalltalkThing), or
selecting n items from a list (EAbstractNof).  List
selection is further divided into selecting one item or "n"
items. Booelan editors are a special kind of single-
selection editors: there are only two options: one
associated with true and one with false.

Editable collections are divided into editors of fixed sizes
(e.g. an employee has a fixed number of fields) and editors
of lists of dynamic size. EDictionary editors support the
editing of lists of items where each item has a symbolic id
(e.g. a hash table) while EDynamicList editors  use a
numeric offset to address their contents.  The EOneThing
class is a special service class used when a single item
wants to edit itself (which it does by created a fixed list
editor of size 1 and installing itself as the first item).

$ � � � 1  7 5 3 4 � 8 1
9 : ; : < : = > ? @ A B = C D E C F G H I ? J F H G
An editable item is removed from the global name space
by a sequence of containers. The errors of an item is
defined to be its own error strings plus the error strings of
its containers (see figure 5).

These error strings are written by invariants stored by
each class in the glue hierarchy. When a value is changed
in an item the invariants of it and its container are

Ed
ECollection

EAbstractDynamic
EDictionary
EDynamicList

EFixedList
EOneThing

EItem
EAbstractNof

EAbstractOneOf
EBoolean
EOneOf

ENof
EAbstractString

EOneLineString
EString

EMagnitude
EDate
ENumber

ESmalltalkThing

Figure 4: The MYLE "glue" hierarchy.

(EFixedList
          (name ...)
          (age ...)
          (pensionPlans
                      (EDynamicList
    (1  ((name ...)
                                       (startDate ...)
                        (stopDate ...)
                                       (contribution ...)))
                                 (2   ((name ...)
                                       (startDate ...)
                        (stopDate ...)
                                       (contribution ...)))))

ERROR2: illegal age value

ERROR1: stopDate before startDate

Figure 5: MYLE glue for
an employee instance with
error strings for age and
pension plan #2. When
editing pension plan #2's
name, the displayed error
messages would be "illegal
age value" and "stop date
before start date".



excepted. As a side-effect of this execution, extra error
strings may be generated.

For example, figure 6 shows a EFixedList editing date
details. The screen is in two halves: the display top
section and the help bottom-section. The bottom section
shows 3 lines. The currently active item is the "Day" line
on line 1 of the top-section. Its errors are defined to be its
own error strings, plus the error strings of the containing
date editor. These errors are displayed as the help text for
the active item (shown in the bottom portion of the
screen in Figure 6). This text comprises the help text
associated with the active item (see the line "The day of
month") and is followed by (i) the error messages
generated by the invariant of this EFixedList then (ii) the
error messages associated with the currently active item.
In this case, the EFixedList invariant has realised that
May does not have 35 days and the currently active item
has realised that the current value of 35 violates the valid
range for its numeric entries (1 to 31).9 : ; : ; : K J G ? L M ? F H ? N O G C P = > ? @ A B = C D

E C F G H I ? J F H G
In a glass-box system, the system would have knowledge
about the invariant of figure 3 (in a logic programming
paradigm, the constraint would be expressed like
everything else, i.e. the BNF of figure 2). MYLE has no
knowledge of the internal structure of the constraints:
they are black boxes that can be executed and which may
generate new error strings. We can not query them and ask
(e.g.) "if I was to message you, what other information
would you gather?". This has some drawbacks. For
example, we lack sufficient information to optimise
constraint testing. Currently, if X is edited and X  is
contained by Y , then when X's state is updated, we fire
constraints for X and Y. This may be inadequate to detect
certain constraints. For example, suppose we are editing
a database definition contained within some global
database definition library. Imagine that our constraint
on jobName insists that the set of all jobs performed by
employees should be stored in the legalJobs list. When
can we delete a job name? Obviously, when no employee
is performing that job. However, this could be a very
expensive constraint to test since it implies a search
through all the employees stored on the database.   Our
generic processor of "black-box" constraints lacks
sufficient meta-knowledge of this constraint's scope to
recognise this problem and (e.g.) suggest to the user that
this particular edit be performed last thing at night so that
the system can check it overnight.

Glass-box knowledge of the structure of the dependencies
can be used to intelligently schedule constraint
application. Reps & Teitelbaum extended conventional
compiler technology of procedural language to add a
"attribute equations" to symbols in a BNF. Further, they
developed a generic syntax-directed editor  (the
Synthesiser Generator) that inputs a BNF and auto-
configures itself. As a background process, the editor
repeatedly applies the attribute equations to perform such
tasks as type checking and incremental compilation.
Nearly half the effort of their work (6 man-years) was
spent evolving a generic control mechanism for the
scheduling of the evaluation of the attribute equations.  A
poor controller could send the system into infinite loops
as it chases circular state updates. Their solution was to
pre-compute and cache "plans" of how to apply the
attribute equations. Such a computation was only
possible due to the glass-box nature of the system: the

planner had access to the parse as well as some knowledge
of the attribute equations (Reps and Teitelbaum 1989). 

MYLE only has half the problem of the Synthesiser
Generator. MYLE's "attribute equations" (read invariants)
only test values; they should not update state (exception:
see the section on zombies below). Nevertheless, the
lesson is clear: a generic control mechanisms for the
intelligent application of invariants is a non-trivial
problem.9 : ; : 9 : Q L M ? F H ? N O G C P = > ? @ A B R C D

E C F G H I ? J F H G
Our case is not that glass-box constraints can be replaced
by black-box constraints. There are many areas where
glass-box constraints are essential; e.g. very intricate
screen layout (such as placing the notes of a musical score
on a display) require glass-box constraints (Freeman-
Benson, Maloney et al. 1990). However, our introduction
noted that a glass-box solution to interface auto-
configuration (e.g. the Synthesiser Generator) implies
changing our existing class libraries and imposing
additional requirements on the development of any future
classes.

 The black-box solution proposed here is less restrictive
and is an add-on to our current practice. Despite its
comparative  lack of meta-knowledge, our seemingly-
simplistic framework permits the implementation of a
surprisingly wide-variety of interfaces (see below).
Further, our black-box constraints can be used in several
generic and useful manner:

• If an editor contains error strings, we cannot save it.

• If an editor contains no errors, and a state change
results in error strings being added to the editor,
then the editor should pop-up an undo dialogue
urging the user to reverse their last action.

• To perform a batch test of all the instances in the
system, we ask their dataDictionary method for a
description of their editor, then ask that editor to
write alls it values back to itself. If this process
generates any error strings, then the instance is
corrupted in some way.

• If an instance is corrupted, then we should try and
avoid it during processing of the application.

• Simple screen lay-out (e.g. a forms entry for
defining an employee, 2-D displays, etc- see
below).

May
1993

Figure 6:  A Date instance editor with
errors. The cross on the left-hand-side of
the title bar indicates that the contents
of this editor have been changed, but not
saved.



9 : ; : S : T C U R J O G
Ideally, the glue editors utilise clean validation methods
defined within the logical model.  Since we cannot
guarantee that all of the validation method in existing
class libraries are not dirty, we have to handle the case
where validation updates state prematurely (i.e. prior to
completing a check that the state change proposed by the
user is correct).

A zombie  is an instance of the same class as the portion
of the logical model being edited. It is called a zombie
because it is not a live section of the logical model and is
doomed for destruction when the editing process is
finished. We only create it to access services of that class
which (i) are useful to the editing and (ii) change state
inside the instance.

For example, suppose the creation methods of an
employee initialise defaults which we wish to use when
prompting the user for input. Suppose also that the set
methods for that class fill out other values as side-effects.
We create a zombie employee to access the defaults and
fill  out the instance variables created by side-effect. We
destroy the zombie after editing since we don't want a
permanent copy of the state of this used and abused slave
instance.

For another example, consider the "dataDictionary"
method for Date shown in figure 7. Lines 2-14 define the
three edit fields of a Date and give them unique identifiers
(#day, #month, #year).  Zombie construction is defined in
lines 15-19 which use the symbolic names to access the
values of the edit fields. The zombie is used by the
invariant on line 20. As a side-effect of testing the
invariant, the Date class tries to create a new Date
instance using the current values in the editor. Validation
methods inside the Date instance creation methods can
generate error strings (which are trapped using the error
handler defined in the appendix). Note that this method is
the only intrusion of the MYLE system into the Date
class. The zombie facility allowed us to access many of
the services of the Date class without having to add
multiple methods to Date.

9 : ; : V : W J R I ? I J O G
Often users process collections of instances, which we
call libraries. For example, all the preferences for an
application or all the employees known to the system
could be stored together in a library.  A library cached to
disc is a database.

The ability to create more than one type of X implies a
need to search through all X looking for a particular one.
Hence, libraries support indexed searches. A "finder"
object is created containing some/all of the fields of the
goal object. We run over the library comparing values
between library members and the finder. All matching
library members are collected together in a dynamic list.
The user can then select one or more and edit them using
the standard edit process described above.

Note that the finder object will require many of the same
services as the instance that it is searching for. For
example, a finder for employee needs to ask the user for
valid entries for age, postcode, and all other fields the
user wants to search for. Note that in figure 1, our
employee editor was subclassed into a employee details
editor and a glue object for finding an employee.
Common functions were stored in the super class and used
by both subclasses.

A more general approach allows us to generate arbitrary
finders without having to define a new class. The
"dataDictionary" method is used to configure both an
editor of an instance of the logical model but also a finder
for these instances in a library. The finder is a list that
stores one entry for each field the user is interested in.
The full query is the and of all the fields. If a field is
mentioned twice, then this is an or query.  Figure 8 shows
the Employee dataDictionary providing details for the
configuration of an EFixedList that is an employee details
editor and a EDynamicList that it is employee finder.

Employee Details
Editor

Find an
Employee

name:  tim
age:   33
postCode: 2024

EFixedList EDynamicList
name =  tim
name =  richard

age > 33
age < 40

Employee dataDictionary

• edit details re "name"
• edit details re "age"
• edit details re "postCode"

Figure 8: Using a dataDictionary method
to configure both an editor of employees
and a finder of employees in a library. The
query in the finder would find both authors
and reads as follows: find employee
with (name = tim or name =
Richard) and (age < 40 or age >
33)

9 : ; : X : Y Z O E C U U J H [ I C H C @ C >
It is an error to store a zombie in a library since they are
only temporary instances created for some specific
purpose. This error can occur if (e.g.) an instance creation
method calls a commit as part of creation.

In order to avoid this problem, we propose a commit
protocol. The lowest-level commit routines should
check that, prior to commit, the instance to be

! Date methods !
dataDictionary
1. ^(EFixedList new: 'Date';
2. add:  ((ENumber new: 'Day')
3. help:   'The day of month.'
4.           id: #day min: 1 max: 31
5. get:    [self dayOfMonth]);
6. add: ((EOneOf new:  'Month')
7. help: 'The month of the year.'
8. id: #month
9. options: [self class

     monthNames]
10. get:     [self monthName]);
11. add:  ((ENumber new:  'Year')
12. help:   'The current year.'
13.          id: #year min: 1900 max: 2100
14. get:    [self year]);
15. temporary: [:ed|
16. Date newDay:(ed at: #day) value
17.    month:(ed at: #month) value
18.             year:(ed at: #year) value
19.             ];
20. rule:      [:ed :value | ed temporary];
21. putBlock:  [:ed| self day:

ed temporary day] ! !

Figure 7: Defining glue for editing a
Date instance.



stored has the appropriate commit permission. By
default, commit is disabled for all objects.

!Object methods!               
canCommit

f̂alse ! !

If an editor wishes to commit an instance, then the
instance has to give permission for the commit. We
define a class hierarchy whose root is GlobalObject and
whose subclasses store canCommit methods. An instance
variable of GlobalObject is a boolean isZoombie value.

!GlobalObject methods!               
canCommit

îsZoombie not ! !

Non-global objects cannot be committed unless they are
contained in a GlobalObject  instance. This matches our
experience with application building. A Date instance by
itself is not stored in a library. However,  a Date within an
Employee (e.g. pension-plan-start-date) can be
committed as a side -effect of storing an Employee who
contains this Date.

$ � $ �  � � 4 � 3 \
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Internally, the things-being-edited is a tree structure.
Each node can contain multiple sub-trees. The user is
presented with a visual representation of the node and
portions of the sub-tree.  The user can click on portions
of the screen. Double-clicking starts a recursive edit:

1) If the item is another collection of editable items
then MYLE spawns another window and edits the
collection in that window. The close action of the
parent window  is disabled until all its child
windows are closed.

2) If not (1) then we call a primitive edit action.
Primitive edit actions collect a simple value and
validate it. Figure 9 shows a primitive edit action
for a NOneOf item. The legal items are thrown up in
a list and allow the user to pick one of them. Other

primitive edit actions throw up dialogue boxes and
allow the user to enter in values.

The primitive edit protocol is defined at the EItem level
(see figure 10). If the editor has no current value, i t
collects it from the logical model. The current value is
stored in the last value variable and a basicEdit is called to
collect the new value (see figure 10). One pragmatic note:
a flag editCancelled is set to true if the user hits the
"Cancel" button. On editCancelled, the previous state of
the instance is restored. 

! EItem methods !
edit
    "Save the last value in the lastValue

 method. Call basic Edit."
    |temp tempLastValue|

    currentValue isNil
  ifTrue: [currentValue := self value].

    tempLastValue := lastValue.
lastValue := currentValue copy.

    editCancelled := false.
    temp := self basicEdit.
    editCancelled
      ifFalse: [

modified := true.
        ^self accept: temp].

lastValue := tempLastValue.
^false! !

Figure 10: Primitive edits

Subclasses define the basicEdit action. For example,
figure 11 shows an EOneLineString method that collects a
single line of text and the editCancelledAction.

! EOneLineString methods !
basicEdit
    "Initiate the basic editing process. If
     the user cancels the edit, return the

current value. Otherwise, return the
new value."

    |temp|
    temp := Prompter prompt: prompt
                     default: currentValue.
    (temp isNil or: [

 temp trimBlanks size = 0])
        ifTrue: [ ^self editCancelAction ].
    ^temp! !

! EItem methods !
editCancelAction
    "Perform the appropriate actions for a

cancelled edit."
    editCancelled := true.
    ^currentValue! !

Figure 11: Basic Edit for  one line
strings.

The protocol for accepting new values is generic to all
items. Figure 12 shows that protocol. A quick pre-
processor (line 2) tests that the input does not contain
obvious syntactic errors (e.g. letters in a string
representing an integer). The input is then converted into
Smalltalk object (line 4) and tested for validity (line 6).

Figure 9: Primitive edit action of
NOneOf item. Note that the current value
is ticked.



! EItem methods !
accept: input
    "If the input is valid, and we can
     compile it, then compile it and set
     current value to this result. Collect
     all errors generated the owner. Return
     true if the value was accepted and
     updated and false otherwise."

    |result|
1.    errors := Set new.
2.    (self canCompile: input)
3.        ifTrue: [result :=
4.              self compile: input.
5.              self currentValue: result.
6.              (self valid: result)
7.                   ifTrue: [^true ]].
8.   ^false! !

Figure 12: The accept protocol.

Subclasses implement the details of this protocol. For
example:

ENof The user can only pick from one value from a
list of legal values. Hence, "canCompile:" and
"valid:" is always true and "self compile: input" just
"input.

EMagnitude  The user's input is a string. After
"canCompile" tests for non-numerics, "self
compile:" calls methods in the Number hierarchy to
turn a string into a number.  "Valid:" then tests that
the number is within the valid ranges of min/max.9 : 9 : ; : W ? ` C ^ H

The "dataDictionary" method supplies enough
information to automatically configure the data
validation routines and the cross-item edits. It also gives
us enough information to automatically layout the screen
in several different ways

a b a b c b d b e f g h i j k f l m n f l h i o p
For each item in the top-most container, assign one line
to the item and display the lines in a list box. For
example, figure 6 showed a simple list display of the
figure 7 data dictionary. The width of the screen is
computed from the size of the prompt strings and the
maximum size of the legal edit values. The user can click
on lines in the screen to initiate an edit.a b a b c b c b q o r i j n f l h i o p
Simple list editors display the top-level container, one
item per line. This is undesirable in an application with
multiple many-levelled structures. Each edit at any level
forks another window and soon the screen would be
cluttered and unmanageable.

A table display permits N (N >= 0) items per line. If the
nth item on each line occupies the same width, then the
display looks like a 2-D spreadsheet. Table displays
augment the list display by adding a formatting prefix and
suffix to each item. Adding a (e.g.) line break then
become  a matter of insert the ascii value for carriage
return into the formatting suffix. The table display tracks
the mouse movements and when the user single clicks,
the simple list display edit protocol defined above is
performed.

Visual clues are added to the table display to indicate the
container of the currently active item. The user can spawn
a new edit window on that container.

a b a b c b a b s j t j u o i e v u j j t n f l h i o p
General screen displays take table displays one step
further. No longer is the display restricted to ascii text.
Knowledge of graphic widgets is added to allow the
system to add (e.g.) radio buttons to store one-of actions.
Consider the table layout screen shown in figure 13. We
could have defined it using the data dictionaries of figure
14.

Figure 13: A typical screen from a
commercial application.

! WordProcessorToolBox methods !
dataDictionary
^(EFixedList new: 'Table Layout')

add: ((EOneOf new: 'Shift Cells')
help:   'Cell movement direction'
id:     #shiftCells
options:[#(Horizontally

             Vertically)]
get:    [#Vertically]
enabled: [:ed| ed shiftEnabled]);

add: ((EOneOf new:  '')
help:    'Selection scope'
id:      #scope
options: [#(Row Column

      Selection)]
get:     [#Selection]);

add: ((EOneOf new: ''
help:    'Perform this command'
id:       #command
options: [#(Insert Delete

    'Merge Cells' Cancel)]
get:     [#Cancel];

      putBlock:  [:ed| self
tableLayOut:(ed at: #command)
scope:  (ed at: #scope)

shift:  (ed at: #shiftCells)]
! !

Figure 14: Data dictionary for figure 11.
a b a b c b w b x j m y z u { n f l h i o p
How would we edit a 2-D network such as that in Figure
15? We could represent the graph as the nested lists of
Figure 16. We could then define a set of simple list
displays that process the contents of each node.



Figure 15: A 2-D graph display.

Alternatively, after defining the list displays, we could
present the structure in a graphical editor exactly like
figure 15. An automatic lay-out program and the ability to
select a node would be the only additional essential
requirements for converting the nested list displays into a
graphical editor. All the rest of the logic (such as nodes
with sub-trees can not be deleted without deleted the sub-
tree elements first) would be available from the validation
methods of the logical model.

The user could browse the network, fork editors for
individual nodes using the simple-list displays, spawn
editors of sub-trees, etc, etc using mostly the services
provided by the simple-list glue.9 : 9 : 9 : ] O G O H | ? I J ? R > O G
If the user wishes to cancel an edit, then any changes they
made must disappear. The simplest way to do this is to
take a temporary copy of the portion of the logical model
being edited, and edit the contents of the logical model in
temporary isolation to the model.

In practice, 2 copies are made. These become (i) the
current value and (ii) the last value. Whenever the user
edits an item, the old value is cached in the last value (see
figure 10). If the user requests an "undo" then the last
value is retrieved and assigned to the current value. On
"save", the current value is written back to the container
object. If the container object is a global object, then i t
is written back to the logical model. On "cancel", the
editor quits without saving.

Note that the users changes are only really committed on
the save of a global object. Consider one scenario of an
edit of pension plan #2 in figure 5. The employee glue
shows the user three fields: name, age, and pensionPlans.
If the user selects pensionPlans, a EDynamicList editor is
forked up on the pension plans. When the user quits and
saves the pension plans editor, any changes are written
back to the employee editor.  If the user then cancels the
employee edit, then the intuition is that the changes to
the pension plans should be discarded.  Is this a
reasonable assumption? If we permit the pension plans
editor to commit its contents back to the actual employee
instance, then the "cancel" action of employee editor
loses its meaning. However, if we forbid lower-level
editors such as the pension plan editor to commit, then
the one action "save" has two meanings: (i) commit
outer-level edits and (ii) return lower-level editor contents
to a higher-level editor contents. Currently, we have no
resolution for this inconsistency.9 : 9 : S : Y O U } C I ? I ` _ I I C I G
If the user requests an action that is impossible, the state
of the edited items is left unchanged and a temporary error
string is generated.

Temporary errors are errors displayed in the help-section,
but not cached in an errors list. Consequently, the user
sees them only until the  next screen update (e.g. when
the user changes the currently active item or they try a re-
edit of the currently active item) after which time, they
disappear.

~ � + � � � � 	 + � � � � �

This section examines the issue of what can be done with
the framework. This is a theoretical discussion: none of
the following applications exist. The claim being made
by this section is that a wide-variety of seemingly diverse
and complex applications could be built as extensions to
the current framework.  Some of the proposed
applications are dependant on other applications (see
figure 17).

ScreenTool

MYLEtool

GraphTool

RuleTool

DesignTool

CodeTool

DatabaseTool

ActionTool

PageTool TableTool

Figure 17: Applications using the
MYLE framework. The ones in the shaded
region represent the basic kit.

� � � � 1 � ' � � � 4 � � �
At the lowest level, with no extension to the above
framework, MYLE could simplify interface design.
Existing screen painters could be augmented with the glue
single-item hierarchy and use the services of that
hierarchy to augment existing field and inter-item
validation routines. The screen painters could have a
"suggest" button which calls the MYLE screen layout
routines. The output of those routines could be mapped
back into the screen painters' internal structures and
presented to the user as a first-pass screen design.

(Ed
(ECollection  

(EAbstractDynamic
EDictionary
EDynamicList)

EFixedList
EOneThing)

(EItem
(EAbstractNof

(EAbstractOneOf
EBoolen
EOneOf)

ENof)
(EAbstractString

EOneLineString
EString)

(EMagnitue
EDate
ENumber)

ESmalltalkThing))

Figure 16: Figure 15 as nested lists.



� � � � 7 0 � � 4 � � �
The dataDictionary structure has certain repeated features
(e.g. the add:  methods  are very similar). A MYLE editor
could be defined to edit data dictionaries.
� � $ � & � � � 4 � � �
Often the screens of an application can be viewed as "N"
pages. PageTool defines a "page" to be a simple list
display with a header line. One window could be shown
with the current page as a simple list. All the other pages
could be available via a list selection. When another page
is selected, the header on the window could change to the
new page header and the list display change to the new
page.

Their are two advantages of the PageTool:

• Instead of having 1 window per screen, the user sees
only needs on window to be on screen at any time.

• Page switching logic is simpler (since it is all local
to one window). This could be used to implement
(e.g.) an intelligent questionnaire that (i) only
allows page switching when certain fields are
completed and (ii) only presents the relevant pages
to the user (i.e. don't display the visa details page to
Australian citizens).

� � � � 4 � � � � 4 � � �
Spreadsheets have proved a useful tool for many business
modelling purposes. TableTool is an extension of the
table display that supports the processing of large tables
with user-defined dependencies between cells (e.g.
calculations).
� � � � \ ' � � � 4 � � �
Editors could be created for arbitrary graphs and for
simulation programs. User defined node positioning
would have to be added.
� � � � 5 � / � � � 4 � � �
Internal to the finder object would be a parse tree
representing a query. For example, the query of figure 8
would look something like figure 18; i.e. a tree of nested
commands. We could execute this as a program in a top-
down, left-to-right manner; i.e. our trees have become a
structure chart that can process user-specified commands.
Combined with the libraries, we then have the basis for a
generalised report writer for arbitrary objects.

ActionTool would need to define "action nodes" (if,
repeat, etc) and a name space convention for variables in
the structure chart.

(and (E.name = X)
     (or (X = tim)
         (X = richard))

    (E.age = Y)
    (or (Y < 40)

               (Y > 33)))

Figure 18: A code-tree. Code trees are
nested EDynamicLists whose first item is a
procedure that filters the output of the other
items (e.g. negates, sums, averages,
performs a disjunction or conjunction,
etc).

� � � � � � / � � � ! � 4 � � �
A report writer, a finder for instances, and user-friendly
editors for collection of items represent some of the tools
needed to a generalised object-oriented database. If we add
a disc-storage mechanism then we can rapidly build
single-user  databases. Our "dataDictionary" methods
serve as DB schema definitions and the ActionTool could
serve as a DB trigger language

Naturally, additional features would be required such as
multi-user login, record locking, instance indexing,
rollback and audit trials in order to build an industrial
strength DB system.  However applications that require
simple disc-storage, could use a small extension to MYLE
rather than suffer the overheads of a full OO database.
� � � � � � � � 4 � � �
Object-oriented expert systems require a search
mechanism over collections of instances. The
ActionTool provides such a mechanism. Rules could be
written that permit a user to customise the high-level
processing of the system in a declarative manner.  Rule
conditions and actions could call arbitrary methods.
Intricate processing could be hidden from the user behind
high-level object interfaces to complex processing.

In  figure 18, the operator was any message symbol that
could be sent the LHS operand. We could limit this to the
high-level interfaces of each object by adding
publicInterface method to each object. By default, all
methods are in the public dictionary and all parameters
could be of any type (a protocol defined at the Object
level). Subclasses could specialise this interface to (i)
include only the high-level methods for the objects and
(ii) the valid types for the parameters. Once defined, the
RuleTool  editor could define the LHS operand first, then
use the publicInterface method of that operand to control
ht editing of the rest of the structure.

A major issue in expert systems is search. RuleTool would
require an indexing/search schema over the libraries.
� � � � � � ! � � � 4 � � �
A pressing need in contemporary OO practice is better
design tools. Consider the graphical notation used by
many of the current methodologies. If we characterise
such notations as a graph editor with an expert system
attached to criticise the design, then a combination of
RuleTool and GraphTool could be used to implement a
generic OO design tool.

The icons of the nodes in the networks could be
customised to reflect the various whims of the different
authorities. Rules could include heuristics such as Myer's
one method rule5 or Wirfs-Broch's sub-system connection
rule6.

� � � � � 8 � � � 4 � � �
Code generation could be characterised as a report written
using ActionTool that runs over the DesignTool
networks. If MYLE is written in language X, then code

                                                                        
5 Beware the object with only one method. A procedural

programmer has been here and has tried to create a sub-
routine.

6 Sub-systems with too many contracts with other sub-systems
complicate the design. Review the design and decrease the
dependency between sub-systems.



generation for language Y may be restricted to class and
method headers. However, code generation for language X
code include methods as well.

Code generation could also be achieved by using MYLE as
a syntax-directed editor. Suppose that the BNF of a
program was defined as a nested set of EDynamicList
editors. Constraints would insist that the structure being
edited conforms to the BNF of the program (e.g. a
procedure must have a "begin" and "end" statement). Such
a structure could be presented in a table display. Code
generation could be achieved by a generic recursive-
descent report that works from the outer container of the
"program" to the lowest levels.

� � 	 � � 	 � � � � � �

A general framework for user-interaction with objects of
arbitrary complexity has been proposed. "Editing" is a
process of interacting with glue classes who understand
how to process things and lists of things (which may
contain nested glue). Editable items are augmented with
invariants that, when executed can write error strings into
the editor. Much of the processing can be characterised in
terms of recursive processing of the glue structures or
querying the number of error messages contained in an
glue class. Class specific processing can be isolated in
validation methods. The additional code needed in objects
to utilise this system is:

•  a "dataDictionary" method

• a canCommit protocol

• a publicInterface method (RuleTool only).

 A set of applications were proposed that represent minor
extensions of the framework and cover a wide-variety of
software systems including interactive design tools, code
generators, and expert systems.

Note every application interface would be achievable
using MYLE.  The claim being made here is that a 80%
solution could be achieved in minimal time. If further
extensions are required beyond the MYLE framework,
then the modularity of the system implies that the
building blocks would be available for further
customisation.

A test of the framework would be to build the applications
listed in section 4, then use these applications to attempt
arbitrary applications. The framework would be
considered a failure if the time taken to develop these
arbitrary applications was not significantly shorter (say,
by one order of magnitude) than time estimates for their
development based on conventional programming
techniques.

The limit of the framework is the nature of the invariants.
The system has no meta-knowledge of these invariants:
they are merely black-box code blocks that the framework
activates at certain points in the processing.  We believe
that it would require a major re-write of existing class
libraries and the imposing of strict coding standards on
future class development to make this knowledge
available.  We offer our compromise design as an
alternative: we give the editors a little knowledge and
define some generic processing loops based on our
recursive syntactic structure and black-box constraints.
The open research issue is how far we can extend this
formalism. Our examples presented here suggest that i t
may be further than one would first believe.
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In a Smalltalk context, validation methods are written
without knowledge of the MYLE system. When an
invariant violation is detected, the methods just call

^self error: message

where message is the error string. In standard Smalltalk,
the "error:" method is defined in the root Object. Here, we
modify that method such that, on error, the user is not
dropped into the user-hostile debugger (where they can,
potentially, destroy the entire system).

! Object methods !
error: aString
  "On error, call the friendly debugger"
  ^Friend current
       friendlyWarning: aString
       from: self!

basicError: aString
     "New call to the standard debugger."
    Process queueWalkback: aString
        makeUserIF:CurrentProcess isUserIF
        resumable: false!

friendlyWarning: error from: aFriend
    "By default, whenever an object gets a
     friendly warning,  it calls the main
     Smalltalk debugger. Subclasses that
     handle user-friendly dialogues re-
     define this method for a more user-
     palatable error behaviour."

    ^aFriend basicError: error! !

When testing invariants, MYLE subclasses pass a code
block representing the test to a friendlier debugger.



! Ed methods !
test
    "Remove all existing errors.
     Execute the invariant. Now, patiently

execute the invariant. Any  errors
re now current errors
|test|
test := [invariant value: self

                               value: nil]
     errors := OrderedCollection new.

     self patientlyTry: test !!

! Object methods !
patientlyTry: action

    Friend current do: action for: self.! !

The user-friendly debugger is the currently active instance
of the "Friend" class. Friends store a "noticeBoard"
variable. On error, the Friend tries to write a friendly
warning to the noticeBoard.  Ed subclasses, on receiving
such a warning, add it to its list of error strings.

! Ed methods !
friendlyWarning: warning from: aFriend

    "Handle a friendly warning from a
     friend. Add the warning to the list of
     errors."
    errors add: warning ! !

Other classes could try some error recover action. For
example, a dictionary could be stored whose keys are the
various error strings that can be generated and whose
values are fix-methods that could repair that error. Note
that the error recovery could also crash leading to
recursive calls to the error handler.  The friend has limited
patience. If it is repeatedly called more than "self
patience" number of times, it despairs and calls the
standard Smalltalk debugger.

!Object subclass: #Friend
  instanceVariableNames:
     'nErrors noticeBoard '
  classVariableNames:
     'One '           
  poolDictionaries: '' !

! Friend class methods !
current

One isNil ifTrue: [One := self new].
^One! !

new
    ^super new initialize! !!

patience
    "Return the number of times that Friend
     will issue friendly warnings prior to
     calling the Smalltalk debugger."
    ^1! !

! Friend methods !
do: performAction for: aFriend
    "Patiently try to execute the
     performAction, sending any complaints
     back to aFriend."
    self noticeBoard: aFriend.
    self morePatience.
    performAction value.
    self release.
    self morePatience.!

friendlyWarning: message from: object
    "Send the error message to the notice
     board (if it exists) unless my
     patience has been exhausted."
    noticeBoard isNil
        ifTrue:[
          ^object basicError: message].
    nErrors := nErrors + 1.

    nErrors >  self class patience
        ifTrue: [

"we have run out of patience
        with this notice board. It
        must be untrustworthy. Get
        rid of it."
             self release.
             ^object basicError: message].
    ^noticeBoard friendlyWarning: message
                              from: self!

initialize
nErrors := 0.!

morePatience
    "Tell your friend to have more patience
     when dealing with errors."    
     nErrors := 0.!

noticeBoard: newValue
    noticeBoard := newValue !

release
   "Forget the value of noticeBoard, thus
    deactivating friendly warnings."
    noticeBoard := nil! !

Note that, once installed, this scheme works
transparently in the case of normal calls to the error
handler. Such calls are not made in the context of a
patientlyTry:. Hence the noticeBoard   of the current
Friend is nil and basicError: will be used during error
handling.

The advantage of this approach is that validation methods
can be coded as per normal in the classes of the logical
model and used for either black-box constraints or as per
normal error calls.


