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ABSTRACT: We long for the day when interfaces
automatically configure themselves without requiring

tedious and time-consuming programming. Such an

automatic configuration capability would require
knowledge of the objects they are editing. Our current
generationof OO interfacetools lack a generalprotocol

for exploring the objects they aprocessing.Therefore,
they are unsuitable for auto-configuration. Here we

explore a surprisingly simple syntactic mod#lobjects-
to-be-editedwhich a general-purposénterface hierarchy
canuseto managethe auto-configurationof interfaces.
The model relies on "black-box" constraints: methods
that when messagedmay add error strings to a list of

known errors. These constraints aret "glass-box";i.e.

our configuration tools cannot query them to discover
their dependencynformation. Without such dependency
information, our black-box systemcannot optimise the

processing of its constraints. Nevertheless, we

demonstratehat black-box constraints can support the

automatic configuration and processing ofsairprisingly
wide variety of interfaces. The open reseaigdueis how

far our black-box-based interfaces can be extended
without requiring glass-box knowledge.

1. INTRODUCTION

Modern software development requires multipieerfaces
to a wide-variety of complex structures. While it is
possible to obtain ready-built editor classesfor simple
objects like dates or pick-one-from-a-lishere are many

cases where special purpose editors have to be constructed

for domain-specificobjects (e.g. risky-loan-applicantor
space-shuttle-main-booster).

Considerthe architectureof a standardapplication that

utilises a graphical interface (see figure 1). The logical (or

business) model may use external services such as a
mainframedatabaseThe logical model is presentedto
the userin an application programthat "glues" together
collections of display widgets such as text, list, graph
panes,buttons, sliders, etc, into a visual unit that has
somemeaningto the user. The "glue" defines a set of
operations and reports that the user can access.

The constructiorof the "glue”, andthe customisationof
the GUI support code sudhat the glue works, is a time-
consuming processThis is unfortunatesince we expect
the interface requirementsof software in general to
increase:

. As users educatethemselvesin multi-windowed
event-driven interfaces (e.g. Microsoft Windows

and the Macintosh look-and-feel), we see
increasingly more  sophisticated interface
requirements.

. In  projects that emphasis evolutionary

development, there will be a requirement for
developersandusergroups to study the program's
executionat many points during the development.
That is, software developersshould have to build
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Figure 1: Standard application

architecture= GUI support + glue +
logic + services. Two applications are
described in this framework: (i) a
databaseapplication (i) a Smalltalk
class editor.




multiple throw-away intermediary interfaces prior tothat constraint application has to be applied in a heuristic

delivery.

In anideal world, we shouldbe able to develop a clean
logical model of an application, pressa button, and the
interface configures itselfutomatically. We do not live

rather than an optimal manner. Nevertheless, we
demonstratethat it is possible to characterise the
interfaces toa surprisingly large numberof applications
according to this simple structure and a genbtack-box

in an ideal world. Current OO graphical-user-interface constraint protocol.

(GUI) toolkits (e.g. the MVC triad (Urlocker 1989))
isolate the developer from many low-levd@gtails suchas
paging up and down, window management,displaying
characters, tracking mouse movements, etc. Screen
painting tools such as WindowBuilder'™™ and
VisualWorks™simplify layout. Howeverthesetools fall

well-short of the goal of automatic configuration since
they only work on the GUI support classesoor the very
outer-layer of the glue class(es).

Our thesis is that missing from these toolkits is

knowledge of the logical model. Without such knowledg

interface tools will remain low-level support tools for
high-level businessapplications. Such low-level tools

will require extensiveandtime-consumingcustomisation

before they are useful in application. Here, we explore
methodsof collecting that logical knowledgein an OO
paradigm.

How should we give our interfaces knowledge of the
logical model?One possibility is to demandthat every
object in the systemrespondsto a "glass-box" protocol
that supplies detailed knowledge of the entities used

within that object and how theseentities are dependant

on other entities. This knowledge could include a
"dependencydiagram": a directed-graphthat indicates

what entities a method requires to function (i.e. its input
and what state changes result from this methods

operations (i.e. its outputs). Such a diagram coulddsel

for (i) automatic program validation (Menzies 1993), (ii)

rapidly detecting constraint violation, (iii) optimising

constraint execution, develop simulation programs 2.1,
(Borning 1981), etc (for a longer list, see the related wo

section of (Freeman-BensonMaloney et al. 1990)).

Indeed, gorogramwith knowledgeof thesedependencies
can control its execution via an intelligent traversal of it

dependency netwotk

This approach, however, runs contrary to the spifithe
OO paradigm where objects ameantto hide their inner-
processing from the outside world. Further, it nmat be

€

We hasten to add that our framework does not éxistny
single program. For several years now, we have been
grappling with the problems of interface desigienzies
1990; Menzies 1991; Menzies 1991). Tipiaperresulted
from pooling the first and second author's practical
experienceand a reverseengineeringof the systemswe
have developed over the last 5 years. Hence, the
framework presented here exists partially in several
systems, but not all in a singfjgogram. We believe that
if a single program had the entire framework, tlzenide-
range of interface tools would be possible thatisfy the
auto-configuration requirement ranging from simple
screen painters to arbitrary graph editors as wetxazert
systems, report generators, and intelligent CASE tools.

This rest of this paper describesthe framework (called
MYLE?) and presents our design for these tools in a
Smalltalk context. Section 2 describessome over-all
design considerations. Section 3 gives details of the
frameworkand section 4 describesits applications. The
appendix describesa generic hook into the Smalltalk
error handling routinesthat interceptthe generation of

error strings and passes them to the active glue instance.

2. DESIGN PRINCIPLES

%ur frameworkmay not strike the readeras the way that

they would approach this problerm orderto understand
why we adoptedout particular approach,we list in this
section three principles that guided our thinking.

Dialogue Independence

rJfhe standardapplication architecture of figure 1 is a

realisation of the principle of dialogue independence.
g’his principle statesthat a program's computational
componentshould be kept separatefrom its interface
component. This permits the modification of either

component without having to re-configure the other. This

is a useful design principle, particularly for programs
developedin a prototyping environment (Hartson and

possible to use our current generation of OO languages fqicks 1989).

sucha glass-box approach.In principle, it is possible
that parts of the dependency diagram could be
automatically generated from the parse trees ofcourent
object systemsHowever,the information thus collected
automatically may be insufficient and have to be
augmented by hand-coded sections. Thatoigmplement
the glass-box approachwould require an extensive re-
design of exist class libraries and impose stringent
requirementson future developmentsof any class that
could be used in an interface.

Here we seelan methodfor auto-configurationthat is an
add-on to our existing objects anddoesnot imply a re-

write of our class libraries. We propose a simple syntactic

structurefor logical models augmentedby black-box
constraints: a method that can write error messagesif

some invariant is violated. The limits to this approash

1 At which point we have left the object paradigm. Such a
programcan be bestdescribedas a rule-based/ constraint-
based/ logic-based system.

Put more crudely, dialogue independencedemandsthat
MYLE should not pollute a clean logicalodel (e.g. that
of an employee)with interfacing details (e.g. checking
for mouse events while editing an employee).

2.2. Ease of Use

The overhead associated with turning a logical moded
something that a user/programmer can browsedahge
shouldbe minimal. Ideally, after creating an object, it
should be possible to createuaer-friendly, editor of that
object that validatesuserentry by sendingone message
to it: "specify".

n practice, there is more to it than that:

. Validation methods have to be created for the
logical object such thait cancheckthe validity of

its contents. Such validation methods do not change

2 ghort for MY LastEditor." The running gag of our research
is that we are currently up MYLE, version 3.



state: they merelyeport errors. We arguethat such
validation methods are part of thegical definition
of any concept ando belong in an object anyway.
Many such validation methods already exist in
current class hierarchies. For example, the
Smalltalk Date object calls the error handlerif it
detects an inappropriate numbafr daysin a month
specification.MYLE includesa hook into the error
handler such that the generated errorshaedledby
the user-friendlyedit screensrather than dropping
the userinto a user-hostile general-purposecode
debugger (see appendix). Forexampleof the use
of validation methods, see figure 7 below.

. A "clean" validation method checks for constraint
violation prior to state update. Further, if a
violation is detectedthe "clean" validator aborts
the processing.A "dirty" validation methodis not
clean. Many validation methoda existing classes
aredirty. For example,many of the error: methods
in Smalltalk/V's Date class do not abort the
processing after the call to error:. They tacitly
assumethat the error handler will drop the sender
chain and spawn another windofor our purposes,
this is unacceptable since our error handtapsthe
error string, diverts it to the current editor, then
continues on with the processing. As to state
update,it may be pragmatically difficult to forbid
state update prior to validatio@onsidera process-
control application where one tank instance
connects to many other tanks tre plant. In order
to check that a newly proposed tankvalid, it may
have to update (e.g.) output pipe variables from
other tanks then check that the input from these
other tanks is compatible. We handle dirty
validation methods usingombie (see below).

. The logical model has to support one
"dataDictionary" method that includes the
information neededfor a user-friendly edit of the
model (e.g. help text explaining each instance

in an OO paradigm would be more immediately
applicable than a logic-based solution. We
similarly reject compromise solutions based on
hybrid OO-logic programming languages sirsigch
languages are not currently commercial vidble

. Adding "connection pointersto eachobject in the
logical model. For example, consider the
employmentstart-datesand employment end-dates
containedin a employeeinstance.An invariant of
these objectss that the start-dateshould be before
the end-date. This could be implemented via
connection pointers that link the start-datestance
to the end-dateinstance.However, we would argue

against confusing the re-usable concept of Date with

methods/instancevariables that refer to "Date-as-
used-in-an-employee."

. Adding "reset" variables to each object. A reset
variable is a copy of the variable at some prior time.
That can be usedto implement (e.g.) "undo": the
current value is replaced with the last value
(lastValue being one of the resetvariables). Reset
variables imply that some logicaonceptwill now
be extendedto include methodsfor handling edit
behaviour. This violateslialogueindependencend
we so we reject this option.

3. FRAMEWORK

This section describesthe MYLE framework in some
detail. Rather than confuse our logical models, we craate
new hierarchy for generic glugbjects. It is the glue that
stores the connection knowledge such as inter-item
constraints as well athe editing functions (resetvalues,
entry-validation, etc).

3.1 Uniformity

The generality of the MYLE system comes from the
uniformity of the objects it edits. We burroan ideafrom
logic programming for our core representation.Part of

variable). The "dataDictionary" method is one of thehe BNF of structuresin a logic program are shown in

two violations of dialogue independencethat we
permit (the other is the commit protocol: see
below).

Once the "dataDictionary" and validation methods are
installed, thenthe rest of the edit-relatedprocessingcan
be defined in objects remote to the logical model; e.g.

! Object methods!

specify
self dataDictionary edit ! !

2.3. OO Paradigm

We believe in the principle of designing independent
stand-alone code modules that daplugged-togethein

many ways as a method for the rapid developmentof

applications. Eachobject should have a clear "mission

statement” and should not be required to exhibit

behaviour that deviates from its mission statement.

This principle leads us to reject certain design
alternatives such as:

. A logic-programming approach. The meta-level
predicatesof (e.g.) Prolog give us accessto the
internal structure of our programs. However, the
MYLE frameworkis not an academicexercise: it
addressegroblemsthat we facein our consultancy
work. A solution to the auto-configuratiquroblem

figure 2.
TERM = FUNCTION_SYMBOL {THINGS}
THINGS = LOGICAL_VARIABLE
| ATOM
| LIST
| TERM
LIST n= {TERMS} nil
Figure 2: Partial BNF of logic
programs. Note that list is usually

implemented as a set of recursive terms.

If a structureis assertedthen the outer-most function
symbol is a special (andis called the principle functor).
Note the recursive pattern; structures may contain
structures.: thinggan containstermswhich cancontain
things. Much of thepower of logic programmingcomes
from the uniformity of the structuresthat it process.
When a program is processing the internals sfracture,
there are only a few “things” that can be found there.

Least the reader accuse of languéigotry, we note that we
have developed and field logic-programming-based
applications (Menzies, Black et d@992). One of us (the first
author)is a logic-programmingenthusiastbut concedesthat
the current focus of the commercial world is object-oriented.

N

{X} denotes zero of morx¥s. {X}* denotes 1 or mor¥s



We characteriseediting as a recursive descentthrough
nestedstructuresand adaptthe above BNF to a object
model (see figure 3).

STRUCTURE = CLASS_NAME {THINGS}
INVARIANT
{ERRORS}
SERVICE_METHODS
THINGS 5= ATOM
| LIST
| STRUCTURE
ATOM =  STRING
| NUMBER
LIST = FIXED
[ DYNAMIC
DYNAMIC =  DICTIONARY
| DYNAMIC_LIST
STRING = ONE_LINE
N_LINES
DICTIONARY = {STRUCTURES}
DYNAMIC_LIST == {STRUCTURES}
FIXED = {STRUCTURES}

Figure 3: BNF of MYLE-able structures.

Like the internal structuresof logic programs, our
definition is recursive.OO has no conceptof a logical
variable (hence,no atoms). Our atoms' are strings or
numbersand we replace functor with class_name Note

from-a-list).

3.1. SYNTAX

In our approach,the glue class(es)presentsto the user
either an editable thing, or a collection of editable
things. Both a single thing or a collection of things
respondto the sameprotocol so that one thing in a
collection of things can be anothercollection of things
and so on recursively ad infinitum. Editable iteomntain
"container" pointers back to the thing that they are stored
inside. If an object has no container, it iglabal object.

For example, our currentglue hierarchy is shown in
figure 4. Figure 4 mimics figure 3 except that certain
classesare addedfor pragmatic reasons(e.g. EDate and
EBoolean). Editableitems permit the editing of strings
(EAbstractString) , editing a number (EMagnitude),
editing a piece of Smalltalk code (ESmalltalkThing), or
selecting n items from a list (EAbstractNof). List
selection is further divided into selectirmge item or "n*
items. Booelan editors are a special kind of single-
selection editors: there are only two options: one
associated with true and one with false.

Editable collections are divided into editos§ fixed sizes
(e.g. an employee has a fixed number of fields) and editors

that we have added an invariant and a set of error message$sts of dynamicsize. EDictionary editors supportthe

to each structure. These will be discussedbelow (see

editing of lists of items where each item has a symbolic id

Semantics). Service methods are a list of services that th@e_g a hash table) while EDynamicList editors use a

logical model provides which are useful for editifegg. a
get and put block for accessing and storing values).

Obiject-orientedlists are of at either fixed or variable
length andits elementsmay be accessedeither by an
numeric offset or somseymbolic reference.For example,
a hash table (or Dictionary in Smalltalk-speak) is a
variable length symbolic accesslist. A forms-entry
screenfor an employee could be describedas a fixed-
length symbolic accesslist with accessorsdefined for
(e.g.) name, age, etc.

The main-loop of MYLE is (1) ask a data dictionary
methodto describeit logical model in terms of nested
structuresusing the BNF of figure 3 then (2) passthese
nestedstructuresto a suite of classesthat know how to

edit suchrecursive structures. Editing then commences
via a recursive descent of these structures. On arivah

atom, a primitive edit function is called (e.g. pick-one-

Ed
ECollection

EAbstractDynamic
EDictionary
EDynamicList

EFixedList

EOneThing

Eltem

EAbstractNof

EAbstractOneOf
EBoolean
EOneOf

ENof

EAbstractString
EOneLineString
EString

EMagnitude
EDate
ENumber

ESmalitalkThing

Figure 4: The MYLE "glue" hierarchy.

numeric offset to addregkeir contents. The EOneThing
classis a special service class usedwhen a single item
wantsto edit itself (which it doesby createda fixed list
editor of size 1 and installing itself as the first item).

3.2. SEMANTICS
3.2.1. Black-Box Constraints

An editableitem is removedfrom the global namespace
by a sequenceof containers.The errors of an item is
defined to be its own error strings plus the error striofjs
its containers (see figure 5).

Theseerror strings are written by invariants stored by
each class in the glue hierarchy. Whewmalue is changed
in an item the invariants of it and its container are

ERROR?2: illegal age value

(EFixedList
(name ...)
(age ...)
(pensionPlans
(EDynamicList
1 ((name ...)
(startDate ...)
(stopDate ...)
(contribution ...)))
2 ((name ...)
(startDate ...)
(stopDate ...)
(contribution ...)))))

ERRORL1: stopDate before startDate

Figure 5: MYLE glue for
an employee instanceith
error strings for age and
pension plan #2. When
editing pension plan #2's
name, the displayed error
messages would be "illegal
age value" and "stop date
before start date".




excepted.As a side-effectof this execution, extra error
strings may be generated.

For example, figure 6 shows a EFixedList editing date
details. The screenis in two halves: the display top
section and the help bottom-sectiorhe bottom section
shows 3 lines. The currently active itemtie "Day" line
on line 1 of the top-section. Its errors are defined tatbe
own error strings, plus the error stringstbé containing
date editor. These errors are displagesdhe help text for
the active item (shown in the bottom portion of the
screenin Figure 6). This text comprisesthe help text
associatedwith the active item (seethe line "The day of
month") and is followed by (i) the error messages
generated by the invariant of tHixedList then (ii) the
error messageassociatedvith the currently active item.
In this case,the EFixedList invariant has realisedthat
May does nothave 35 daysandthe currently active item
has realised that the current value3afviolates the valid
range for its numeric entries (1 to 31).

3.2.2. Disadvantages of Black-Box
Constraints

In a glass-box system, the systevould have knowledge
aboutthe invariant of figure 3 (in a logic programming
paradigm, the constraint would be expressed like
everything elsej.e. the BNF of figure 2). MYLE hasno
knowledge of the internal structureof the constraints:
they are black boxes thaan be executedandwhich may
generate new error strings. We can not query themaahkd
(e.g.) "if 1 wasto messageyou, what other information
would you gather?". This has some drawbacks. For
example, we lack sufficient information to optimise
constraint testing. Currently, if X is edited and X is
containedby Y, then when X's state is updated,we fire
constraints forX andY. This may be inadequateo detect
certain constraintsFor example,supposewe are editing
a databasedefinition contained within some global
databasealefinition library. Imagine that our constraint
on jobName insiststhat the set of all jobs performedby
employeesshould be storedin the legalJobs list. When
can we delete a jobhame?Obviously, whenno employee
is performing that job. However, this could be a very
expensive constraint to test since it implies a search
through all the employeesstoredon the database. Our
generic processor of "black-box" constraints lacks
sufficient meta-knowledgeof this constraint's scopeto
recognise this problem and (e.g.) sugdesthe userthat

this particular edit be performed last thing at night so that

the system can check it overnight.

Glass-box knowledge of the structuvé the dependencies
can be used to intelligently schedule constraint
application. Reps & Teitelbaumextendedconventional
compiler technology of procedurallanguageto add a
"attribute equationsto symbolsin a BNF. Further,they
developed a generic syntax-directed editor (the
Synthesiser Generator) that inputs a BNF and auto-
configuresitself. As a background process, the editor
repeatedly applies the attribute equatis@gerform such
tasks as type checking and incremental compilation.
Nearly half the effort of their work (6 man-years)was
spent evolving a generic control mechanism for the
scheduling of the evaluation of the attribwgquations. A
poor controller could send th&ysteminto infinite loops
asit chasescircular state updates.Their solution was to
pre-computeand cache "plans” of how to apply the
attribute equations. Such a computation was only
possible dueto the glass-boxnature of the system: the

planner had access to the parse as well as some knowledge
of the attribute equations (Reps and Teitelbaum 1989).

MYLE only has half the problem of the Synthesiser
GeneratorMYLE's "attributeequations”(readinvariants)
only test values; they should nopdatestate (exception:
seethe section on zombies below). Nevertheless,the

lesson is clear: a generic control mechanismsfor the

intelligent application of invariants is a non-trivial

problem.

3.2.3. Advantages of Black-box
Constraints

Our case is not that glass-box constraicas be replaced
by black-box constraints. There are many areaswhere
glass-box constraints are essential; e.g. very intricate
screen layout (such as placing the notes of a musical score
on a display) require glass-box constraints (Freeman-
Benson, Maloney et al. 1990). However, éntroduction
noted that a glass-box solution to interface auto-
configuration (e.g. the Synthesiser Generator)implies
changing our existing class libraries and imposing
additional requirements othe developmentof any future
classes.

The black-boxsolution proposedhereis less restrictive
and is an add-onto our current practice. Despite its
comparative lack of meta-knowledge,our seemingly-
simplistic framework permits the implementation of a
surprisingly wide-variety of interfaces (see below).
Further, our black-boxonstraintscan be usedin several
generic and useful manner:

. If an editor contains error strings, we cannot save it.

. If an editor containsno errors, and a state change
resultsin error strings being addedto the editor,
then the editor should pop-up an undo dialogue
urging the user to reverse their last action.

. To perform a batch test of all the instancesin the
system, we ask their dataDictionary method for a
description of their editor, then ask that editor to
write alls it values back to itself. If this process
generatesany error strings, then the instance is
corrupted in some way.

. If aninstanceis corrupted,then we should try and
avoid it during processing of the application.

. Simple screen lay-out (e.g. a forms entry for
defining an employee, 2-D displays, etc- see
below).

——— =E=
Month @ May
Year 1993!

The day of month.
E> error in day argument
E> 35 above 31

= [1=) F] o3 Ful

Figure 6: A Dateinstance editor with

errors. The cross on tHeft-hand-sideof

the title bar indicatesthat the contents
of this editor have been changed, Inatt
saved.




| Date methods !
dataDictionary
1. N(EFixedList new: 'Date";

2. add: ((ENumber new: 'Day')

3. help: 'The day of month.'

4. id: #day min: 1 max: 31

5. get: [self dayOfMonth]);

6. add: ((EOneOf new: 'Month’)

7. help: 'The month of the year.'

8. id: #month

9. options: [self class
monthNames]

10. get: [self monthName]);

11. add: ((ENumber new: ‘'Year')

12. help: 'The current year.'

13. id: #year min: 1900 max: 2100

14. get:  [self year]);

15. temporary: [:ed|

16. Date newDay:(ed at: #day) value

17. month:(ed at: #month) value

18. year:(ed at: #year) value

19. ;

20. rule: [:ed :value | ed temporary];

21. putBlock: [:ed| self day:
ed temporary day] ! !

Figure 7: Defining glue for editing a
Date instance.

3.2.4. Zombies

Ideally, the glue editors utilise cleanvalidation methods
defined within the logical model. Since we cannot
guaranteethat all of the validation methodin existing
classlibraries are not dirty, we have to handle the case
wherevalidation updatesstate prematurely(i.e. prior to
completing a check that the state change propasethe
user is correct).

A zombie is an instance othe sameclassasthe portion
of the logical modelbeing edited. It is called a zombie
because it is not a live section of the logicabdelandis
doomed for destruction when the editing process is
finished. We only create it to access serviceshat class
which (i) areuseful to the editing and (ii) changestate
inside the instance.

For example, suppose the creation methods of an
employeeinitialise defaultswhich we wish to use when
prompting the userfor input. Supposealso that the set
methods for that class fill out other valuasside-effects.
We createa zombie employeeto accessthe defaultsand
fill outthe instancevariablescreatedby side-effect.We
destroy the zombie after editing since we don't want a
permanent copy of the state tfis usedand abusedslave
instance.

For another example, consider the "dataDictionary"
method for Date shown ifigure 7. Lines 2-14 definethe
three edit fields of a Date amglve them uniqueidentifiers

(#day, #month, #year). Zombie construction is defined in

lines 15-19which usethe symbolic namesto accessthe
values of the edit fields. The zombie is used by the
invariant on line 20. As a side-effect of testing the
invariant, the Date class tries to create a new Date
instance using the current valuestire editor. Validation
methodsinside the Date instance creation methodscan
generateerror strings (which aretrappedusing the error
handler defined in the appendix). Note that tmiethodis
the only intrusion of the MYLE systeminto the Date
class. The zombie facility allowed usto accessmany of
the services of the Date class without having to add
multiple methods to Date.

3.2.5. Libraries

Often usersprocesscollections of instances,which we
call libraries. For example, all the preferencesfor an
application or all the employeesknown to the system
could be stored together mlibrary. A library cachedto
disc is a database.

The ability to createmore than one type of X implies a
need to search through allooking for a particularone.
Hence, libraries support indexed searches.A "finder"
object is createdcontaining some/all of the fields of the
goal object. We run over the library comparing values
betweenlibrary membersand the finder. All matching
library members areollectedtogetherin a dynamiclist.
The user can theselectone or more and edit them using
the standard edit process described above.

Note that thefinder object will requiremany of the same
servicesas the instance that it is searching for. For
example,afinder for employeeneedsto ask the userfor
valid entriesfor age, postcode,and all other fields the
user wants to searchfor. Note that in figure 1, our
employeeeditor was subclassednto a employeedetails
editor and a glue object for finding an employee.
Common functions were stored in the super cEssused
by both subclasses.

A more generalapproachallows usto generatearbitrary
finders without having to define a new class. The
"dataDictionary" methodis usedto configure both an
editor of an instance of the logical model but adsinder
for theseinstancesin alibrary. Thefinder is a list that
storesone entry for eachfield the useris interestedin.
The full queryis the and of all the fields. If a field is
mentioned twice, then this is an or query. Fig8rehows
the Employee dataDictionary providing details for the
configuration of arEFixedList that is an employee details
editor and é&EDynamicList that it is employee finder.

Employee dataDictionary

« edit details re "name”
« edit details re "age"
« edit details re "postCode"

EFixedList EDynamicList
name: tim name = tim
age: 33 | name = richard]
postCode: 2024 age <40
age > 33
Employee Details Find an
Editor Employee

Figure 8: Using a dataDictionarymethod
to configure both an editor of employees
and a finder oemployeesin alibrary. The
query in thefinder would find both authors

and reads as follows: find employee
with  (hame = tm or name =
Richard) and (age < 40 or age >
33)

3.2.6. The Commit Protocol

It is an error to stor@ zombiein alibrary sincethey are
only temporary instances created for some specific
purpose. This error can occur if (e.g.) an instacieation
method calls a commit as part of creation.

In order to avoid this problem, we propose a commit
protocol. The lowest-level commit routines should
check that, prior to commit, the instance to be



stored has the appropriate commit permission. By
default, commit is disabled for all objects.

I0Object methods!
canCommit
Malse !'!

If an editor wishes to commit an instance, then the
instance has to give permission for the commit. We
define a class hierarchywhoseroot is GlobalObject and
whose subclasses stazanCommit methods.An instance
variable ofGlobal Object is a boolearisZoombie value.

IGlobalObject methods!
canCommit
AisZoombie not !'!

Non-global objectscannotbe committed unlessthey are
containedin a GlobalObject instance.This matchesour
experience with application building. Bateinstanceby
itself is not stored in a library. However, a Date within
Employee (e.g. pension-plan-start-date) can be
committedas a side -effect of storing an Employee who
contains this Date.

3.3. EDITING
3.3.1. Recursive vs Primitive Edits

Internally, the things-being-editedis a tree structure.
Each node can contain multiple sub-trees.The useris
presentedwith a visual representationof the node and
portions of the sub-tree. The usercanclick on portions
of the screen. Double-clicking starts a recursive edit:

1) If theitem is another collection of editable items
then MYLE spawnsanother window and edits the
collection in that window. The close action of the
parent window is disabled until all its child
windows are closed.

2) If not (1) then we call a primitive edit action.
Primitive edit actions collect a simple value and
validateit. Figure 9 shows a primitive edit action
for aNONeOf item. The legal itemsrethrown up in
a list and allowthe userto pick one of them. Other
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Figure 9: Primitive edit action of
NOneOf item. Note that the current value
is ticked.

an

primitive edit actions throw up dialogueboxes and
allow the user to enter in values.

The primitive edit protocol is definedat the Eltem level
(seefigure 10). If the editor has no current value, it
collects it from the logical model. The currentvalue is
stored in the last value variable antasicEdit is called to
collect the new value (see figure 10). Quragmaticnote:
a flag editCancelled is set to true if the user hits the
"Cancel" button. On editCancelled the previous state of
the instance is restored.

! Eltem methods !
edit
"Save the last value in the lastValue
method. Call basic Edit."
|temp tempLastValue|

currentValue isNil
ifTrue: [currentValue := self value].

tempLastValue := lastValue.

lastValue := currentValue copy.
editCancelled := false.
temp := self basicEdit.
editCancelled

ifFalse: [
modified := true.

"self accept: temp].

lastValue := tempLastValue.

"Malse! !

Figure 10: Primitive edits

Subclassesdefine the basicEdit action. For example,
figure 11 shows aEOnelLineString method that collects a
single line of text and theditCancelledAction.

I EOneLineString methods !
basicEdit
“Initiate the basic editing process. If
the user cancels the edit, return the
current value. Otherwise, return the
new value."
[temp]|
temp := Prompter prompt: prompt
default: currentValue.
(temp isNil or: [
temp trimBlanks size = 0])
ifTrue: [ "self editCancelAction ].
emp! !

! Eltem methods !
editCancelAction
"Perform the appropriate actions for a
cancelled edit."
editCancelled := true.
AcurrentValue! !

Figure 11: Basic Edit for one line
strings.

The protocol for acceptingnew valuesis genericto all
items. Figure 12 shows that protocol. A quick pre-
processor(line 2) teststhat the input doesnot contain
obvious syntactic errors (e.g. letters in a string
representing an integer). The input is treamvertedinto
Smalltalk object (line 4) and tested for validity (line 6).



! Eltem methods !

accept: input
"If the input is valid, and we can
compile it, then compile it and set
current value to this result. Collect
all errors generated the owner. Return
true if the value was accepted and
updated and false otherwise."

|result|
errors := Set new.
(self canCompile: input)
ifTrue: [result :=
self compile: input.
self currentValue: result.
(self valid: result)
ifTrue: ["true ]J.

ONoGAWNE

Malse! !
Figure 12: The accept protocol.

Subclassesmplement the details of this protocol. For
example:

ENof The usercanonly pick from one value from a
list of legal values. Hence, "canCompile:" and
"valid:" is always true and "self compilénput" just

"input.
EMagnitude  The user's input is a string. After
"canCompile" tests for non-numerics, "self

compile:" calls methods in thRumberhierarchyto
turn a string into a number.Valid:" then teststhat

the number is within the valid ranges of min/max.

3.3.2. Layout

The ‘"dataDictionary" method supplies enough
information to automatically configure the data
validation routines and the cross-itezdits. It also gives
us enough information to automaticallgyout the screen
in several different ways

3.3.2.1. Simple List Display

For each item irthe top-most container, assignone line
to the item and display the lines in a list box. For
example, figure 6 showeda simple list display of the
figure 7 data dictionary. The width of the screenis
computedfrom the size of the prompt strings and the
maximum size of the legadit values. The usercan click
on lines in the screen to initiate an edit.

3.3.2.2. Table Display

Simple list editorsdisplay the top-level container, one
item per line. This is undesirablein an application with
multiple many-levelledstructures.Eachedit at any level
forks another window and soon the screen would be
cluttered and unmanageable.

A table display permits N (N >= 0) items per line. If the
nth item on eachline occupiesthe samewidth, then the
display looks like a 2-D spreadsheetTable displays

augment the list display by adding a formatting prefix an

suffix to eachitem. Adding a (e.g.) line break then
become a matter of insert the ascii value for carriage
return into the formatting suffix. Theable display tracks
the mousemovementsand when the user single clicks,
the simple list display edit protocol defined above is
performed.

Visual clues areaddedto the table display to indicate the
container of the currently active item. The usanspawn
a new edit window on that container.

3.3.2.3. General Screen Display

General screen displays take table displays one step
further. No longer is the display restrictedto ascii text.
Knowledge of graphic widgets is added to allow the
system to add (e.g.) radio buttons to stone-of actions.
Consider thetable layout screenshownin figure 13. We
could have definedt using the datadictionariesof figure
14.

Table Layout

@ Row [ Insert |
) Column

() Selection [ geieie ]
Shift cells—— | Merge Cells]
ng;zémzz%ss%ig[ Cancel ]
@ Bariicaiiy

Figure 13: A typical screenfrom a
commercial application.

! WordProcessorToolBox methods !
dataDictionary
"(EFixedList new: 'Table Layout’)
add: ((EOneOf new: 'Shift Cells')
help: 'Cell movement direction’
id:  #shiftCells
options:[#(Horizontally
Vertically)]
get: [#Vertically]
enabled: [:ed| ed shiftEnabled]);
add: ((EOneOf new: ")
help:  'Selection scope’
id: #scope
options: [#(Row Column
Selection)]
get: [#Selection]);
add: ((EOneOf new: "
help:  'Perform this command’
id: #command
options: [#(Insert Delete
'‘Merge Cells' Cancel)]
get: [#Cancel];
putBlock: [:ed| self
tableLayOut:(ed at: #command)
scope: (ed at: #scope)
shift: (ed at: #shiftCells)]

Figure 14: Data dictionary for figure 11.

3.3.2.4. Network Display

How would we edit a 2-D network suchasthat in Figure

15? We could representthe graph as the nestedlists of

gigure 16. We could then define a set of simple list
isplays that process the contents of each node.
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Figure 15: A 2-D graph display.
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Alternatively, after defining the list displays, we could _ EString)
presentthe structurein a graphical editor exactly like (EMagmtuEeDate
figure 15. An automatic lay-out program and the ability to ENumber)

select a node would be the only additional essential

requirements for converting the nested list displays ato

graphical editor. All the rest of the logic (suchasnodes
with sub-trees can ndie deletedwithout deletedthe sub-
tree elements first) would be available from tredidation
methods of the logical model.

The user could browse the network, fork editors for
individual nodesusing the simple-list displays, spawn
editors of sub-trees,etc, etc using mostly the services
provided by the simple-list glue.

3.3.3. Reset Variables

If the user wishes to cancel an edit, then any chatiyeg
mademust disappear.The simplest way to do this is to
take a temporary copy of the portion of tlegical model
being edited, and edit the contents of the logialdelin
temporary isolation to the model.

In practice, 2 copies are made. These become (i) the
currentvalue and (ii) the last value. Wheneverthe user
edits an item, the old value is cached in ldst value (see
figure 10). If the userrequestsan "undo” then the last
valueis retrievedand assignedto the currentvalue. On
"save", the currenvalueis written back to the container
object. If thecontainerobject is a global object, then it
is written back to the logical model. On "cancel", the
editor quits without saving.

Note that the users changaseonly really committedon
the saveof a global object. Considerone scenarioof an
edit of pensionplan #2 in figure 5. The employee glue

shows the user three fields: name, aged pensionPlans.

If the user selects pensionPlangRynamicList editoris
forked upon the pension plans. Whenthe userquits and
savesthe pension plans editor, any changesare written
back to the employee editorf the userthen cancelsthe
employeeedit, then the intuition is that the changesto
the pension plans should be discarded. Is this a
reasonableassumption?f we permit the pension plans
editor to commit its contents back to thetualemployee
instance, then the "cancel" action of employee editor
loses its meaning. However, if we forbid lower-level
editors suchas the pension plan editor to commit, then
the one action "save" has two meanings: (i) commit
outer-level edits and (ii) return lower-level editmontents
to a higher-level editor contents. Currently, we have no
resolution for this inconsistency.

3.3.4. Temporary Errors

If the user requests an actitimt is impossible, the state
of the edited items is left unchanged antraporary error
string is generated.

ESmalltalkThing))
Figure 16: Figure 15 as nested lists.

Temporary errors are errors displayedtie help-section,
but not cachedin an errors list. Consequently,the user
seesthem only until the next screenupdate(e.g. when
the user changes the currently active item or tingya re-
edit of the currently active item) after which time, they
disappear.

4. APPLICATIONS

This section examines the issue of whah be donewith

the framework. This is a theoreticaldiscussion:none of

the following applications exist. The claim being made

by this section is that a wide-variety of seemingly diverse
and complex applications could leiilt asextensionsto

the current framework. Some of the proposed
applications are dependanton other applications (see
figure 17).

MYLEtool

TableTool

PageT% ScreenTool

GraphTool

ActionTool

DesignTool DatabaseTool

\ CodeTool RuleTool

Figure 17: Applications using the
MYLE framework. The onesin the shaded
region represent the basic kit.

4.1. ScreenTool

At the lowest level, with no extension to the above
framework, MYLE could simplify interface design.
Existing screen painters could be augmented withgtbe
single-item hierarchy and use the services of that
hierarchy to augment existing field and inter-item
validation routines. The screen painters could have a
"suggest" button which calls the MYLE screenlayout
routines. The output of those routines could be mapped
back into the screen painters' internal structures and
presented to the user as a first-pass screen design.



4.2. MyleTool

The dataDictionarystructurehas certain repeatedeatures
(e.g. theadd: methods arevery similar). A MYLE editor
could be defined to edit data dictionaries.

4.3. PageTool

Often the screens adn application can be viewed as "N"

pages. PageTool definesa "page” to be a simple list

display with a headerine. Onewindow could be shown
with the current page as a simple liéll the other pages
could be available via a list selection. When anotrege
is selected, the header on twendow could changeto the
new page headerandthe list display changeto the new
page.

Their are two advantages of tRageTool:

. Instead of having 1 window per screen, tieersees
only needs on window to be on screen at any time.

. Page switching logic is simpler (sinceidt all local
to one window). This could be usedto implement
(e.g.) an intelligent questionnairethat (i) only
allows page switching when certain fields are
completed and (iipnly presentsthe relevantpages
to the user (i.e. don't display the visa details page
Australian citizens).

4.4. TableTool

Spreadsheets have proved a useful foolmany business
modelling purposes.TableTool is an extension of the
table display that supports th@ocessingof large tables
with user-defined dependenciesbetween cells (e.g.
calculations).

4.5. GraphTool

Editors could be createdfor arbitrary graphs and for
simulation programs. User defined node positioning
would have to be added.

4.6. ActionTool

Internal to the finder object would be a parse tree
representinga query. For example,the queryof figure 8

would look something like figure 18;e. atree of nested
commands. Weould executethis as a programin atop-

down, left-to-right manner;i.e. our treeshave becomea
structure chart thatan processuser-specifieccommands.
Combined with the libraries, we then hathe basis for a
generalised report writer for arbitrary objects.

ActionTool would needto define "action nodes" (if,
repeat, etc) and a nanspaceconvention for variablesin
the structure chart.

(and (E.name = X)
(or (X = tim)
(X = richard))
(E.age = Y)
(or (Y < 40)
(Y >33))

Figure 18: A code-tree.Codetrees are
nestedEDynamicLists whose first itemis a
procedure that filters the output of the other
items (e.g. negates, sums, averages,
performs a disjunction or conjunction,
etc).

4.7. DatabaseTool

A report writer, a finder for instances,and user-friendly
editors for collection of items represent some of thels
needed to a generalised object-oriented database afid
a disc-storagemechanism then we can rapidly build
single-user databases.Our "dataDictionary" methods
serve as DB schema definitioasd the ActionTool could
serve as a DB trigger language

Naturally, additional featureswould be required such as
multi-user login, record locking, instance indexing,
rollback and audit trials in order to build an industrial
strength DB system. However applications that require
simple disc-storage, could use a small extensiol Y&.E
rather than suffer the overheads of a full OO database.

4.8. RuleTool

Object-oriented expert systems require a search
mechanism over collections of instances. The
ActionTool providessucha mechanism.Rules could be
written that permit a userto customise the high-level
processingof the systemin a declarativemanner. Rule
conditions and actions could call arbitrary methods.
Intricate processing could be hiddéom the userbehind
high-level object interfaces to complex processing.

In figure 18, the operatorwasany messagesymbol that
could be sent the LHS operand. \W&uld limit this to the
high-level interfaces of each object by adding
publiclnterface methodto each object. By default, all
methodsarein the public dictionary and all parameters
could be of any type (a protocol defined at the Object
level). Subclassescould specialisethis interface to (i)
include only the high-level methodsfor the objects and
(ii) the valid types for the parametersOncedefined,the
RuleTool editor could define the LHS operandfirst, then
use the publicinterface methad that operandto control
ht editing of the rest of the structure.

A major issue in expert systems is seaRieTool would
require an indexing/search schema over the libraries.

4.9. DesignTool

A pressing needin contemporaryOOQ practice is better
design tools. Considerthe graphical notation used by

many of the current methodologies.If we characterise
suchnotations as a graph editor with an expert system
attachedto criticise the design, then a combination of

RuleTool and GraphTool could be usedto implement a

generic OO design tool.

The icons of the nodes in the networks could be

customisedto reflect the various whims of the different

authorities. Rules coulihclude heuristicssuchas Myer's

oneGmethod rufR or Wirfs-Broch's sub-system connection
rule®.

4.10. CodeTool

Code generation could be characteriseé asport written
using ActionTool that runs over the DesignTool
networks. If MYLE is written in languageX, then code

5 Beware the object with only one method. A procedural
programmerhas been here and has tried to create a sub-
routine.

Sub-systemsvith too many contractswith other sub-systems
complicatethe design.Review the design and decreasethe
dependency between sub-systems.



generationfor languageY may be restrictedto classand

method headers. However, code generation for IangMageG

code include methods as well.

Code generation could also be achieved by uBINGE as
a syntax-directededitor. Supposethat the BNF of a
program was defined as a nested set of EDynamicList
editors. Constraintsvould insist that the structurebeing
edited conforms to the BNF of the program (e.g. a
procedure must have a "begin" and "estéitement).Such
a structurecould be presentedin a table display. Code
generation could be achievedby a generic recursive-
descent report thawvorks from the outer containerof the
"program” to the lowest levels.

5. CONCLUSION

A generalframeworkfor user-interactionwith objects of

arbitrary complexity has been proposed."Editing" is a

processof interacting with glue classeswho understand
how to processthings and lists of things (which may
contain nestedglue). Editableitems are augmentedwith

invariants that, when executed can write error strimgs

the editor. Much of the processing candseracterisedn

terms of recursive processingof the glue structuresor

queryingthe numberof error messagescontainedin an

glue class. Class specific processingcan be isolated in

validation methods. The additional code neededbiects
to utilise this system is:

. a "dataDictionary" method
. a canCommit protocol
. a publicinterface methodr(¢leTool only).

A set of applications were propos#tht representminor
extensionsof the frameworkand cover a wide-variety of
software systems including interactive desigols, code
generators, and expert systems.

Note every application interface would be achievable
using MYLE. The claim being madehereis that a 80%
solution could be achievedin minimal time. If further
extensions are required beyond the MYLE framework,
then the modularity of the system implies that the
building blocks would be available for further
customisation.

A test of the framework would be to build th@plications
listed in section 4, then use these applicatitmattempt
arbitrary applications. The framework would be
considereda failure if the time taken to develop these
arbitrary applications was natignificantly shorter(say,
by one orderof magnitude)than time estimatesfor their
development based on conventional programming
techniques.

The limit of the framework is the nature tife invariants.
The systemhas no meta-knowledgeof theseinvariants:

they are merely black-box code blocks that the framework

activates at certain points in thgocessing. We believe
that it would require a major re-write of existing class
libraries andthe imposing of strict coding standardson

future class development to make this knowledge
available. We offer our compromise design as an

alternative: we give the editors a little knowledge and
define some generic processing loops based on our
recursive syntactic structureand black-box constraints.
The open researchissue is how far we can extendthis

formalism. Our examples presentedhere suggestthat it

may be further than one would first believe.
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7. APPENDIX: PATIENT ERROR
HANDLING

In a Smalltalk context, validation methodsare written
without knowledge of the MYLE system. When an
invariant violation is detected, the methods just call

"self error: message

where messagis the error string. In standardSmalltalk,
the "error:" method is defined in the root Objeldere, we
modify that methodsuchthat, on error, the useris not
droppedinto the user-hostiledebugger(where they can,
potentially, destroy the entire system).

! Object methods !
error: aString
"On error, call the friendly debugger"
AFriend current
friendlyWarning: aString
from: self!

basicError: aString

"New call to the standard debugger."

Process queueWalkback: aString
makeUserlF:CurrentProcess isUserlF
resumable: false!

friendlyWarning: error from: aFriend
"By default, whenever an object gets a

friendly warning, it calls the main
Smalltalk debugger. Subclasses that

handle user-friendly dialogues re-
define this method for a more user-

palatable error behaviour."
~aFriend basicError: error! !

Whentesting invariants, MYLE subclassesass a code
block representing the test to a friendlier debugger.



! Ed methods !
test
"Remove all existing errors.
Execute the invariant. Now, patiently

execute the invariant. Any errors

re now current errors

|test|

test = [invariant value: self
value: nil]

errors := OrderedCollection new.
self patientlyTry: test !!

! Object methods !
patientlyTry: action

Friend current do: action for: self.! !

The user-friendly debugger is the currently actinstance
of the "Friend" class. Friends store a "noticeBoard"”
variable. On error, the Friend tries to write a friendly
warning to the noticeBoardEd subclassespn receiving
such a warning, add it to its list of error strings.

! Ed methods !

friendlyWarning: warning from: aFriend
"Handle a friendly warning from a
friend. Add the warning to the list of
errors.”

errors add: warning ! !

Other classescould try some error recover action. For
example, a dictionary coulbe storedwhosekeys arethe
various error strings that can be generatedand whose
valuesare fix-methods that could repair that error. Note
that the error recovery could also crash leading to
recursive calls to the error handler. The fridras limited
patience. If it is repeatedly called more than "self
patience" number of times, it despairs and calls the
standard Smalltalk debugger.

I0Object subclass: #Friend
instanceVariableNames:
‘nErrors noticeBoard '
classVariableNames:
'One’
poolDictionaries: " !

! Friend class methods !
current
One isNil ifTrue: [One = self

~One! !

new].

new
Asuper new initialize! !!

patience
"Return the number of
will issue  friendly
calling the Smalltalk debugger.”
AL

that Friend

prior to

times
warnings

! Friend methods !

do: performAction for: aFriend
"Patiently try to
performAction, sending
back to aFriend."
self noticeBoard: aFriend.
self morePatience.
performAction value.
self release.
self morePatience.!

execute ~ the
any complaints

friendlyWarning: message from: object
"Send the error message to
board (if it exists)
patience has been exhausted.”
noticeBoard isNil
ifTrue:[
~object basicError: message].
nErrors := nErrors + 1.

the
unless

notice
my

nErrors > self class patience
ifTrue: [
"we have run out of patience
with this notice board. It
must be untrustworthy. Get
rid of it."
self release.
~object basicError: message].
~noticeBoard friendlyWarning:
from: self!

message

initialize
nErrors := 0.!

morePatience

"Tell your friend to have more patience

when dealing with errors."
nErrors := 0.!
noticeBoard: newValue
noticeBoard := newValue !
release .
"Forget the wvalue of noticeBoard, thus

deactivating friendly warnings."

noticeBoard := nil! !
Note that, once installed, this scheme works
transparentlyin the caseof normal calls to the error
handler. Such calls are not made in the context of a
patientlyTry:. Hencethe noticeBoard  of the current
Friend is nil and basicError: will be used during error
handling.

The advantage of this approach is that validation methods

can be codedas per normal in the classesof the logical
model and used faeither black-box constraintsor as per
normal error calls.



