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ABSTRACT:   A good methodology should be an
accurate description of sound software engineering
(SE) practice. Without empirically-supported
method-ologies,  we run the risk of using
potentially inaccurate prescriptions of the software
engineering process. We reject arguments that SE is
unmeasurable. Related fields, such as knowledge
acquisition, routinely perform repeatable
experiments on specification development and
maintenance. A sample of these results are presented
here. For a devotee of the OO approach such as
ourselves, these empirical results are very counter-
intuitive. They motivate our call for a thorough
empirical investigations of all the truisms of object-
oriented (OO) SE such as: (i) OO is better than
functional decomposition; (ii) OO promotes re-use;
(iii) OO programs are easier to maintain and have
fewer errors than alternative approaches; and (iv) OO
is currently our best technique for SE.   As a
starting point for these investigations, we include
designs for several experiments. Many of these
experiments could be performed by commercial
practitioners.
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On what basis do we decide on the myriad issues
that preoccupy us such as (i) multiple vs single
inheritance; (ii) the relative merits of templates or
deriving from root; and (iii) how to decide if a
method is private /protected/ public? More
fundamentally, do the issues we debate really matter?
Are we currently focused on issues that are truly
relevant or are we bogged down on minor details?
What are the real factors that crucially determine
good design, fewer errors, faster delivery, and easier
maintenance?

We reject answers to these questions based on
'intuition", "the voice of experience", "everybody
knows" or "it is widely accepted". Well-argued
beliefs widely-held in a community may not survive
attempts at experimental verification. For example:

• Galen's descriptions of human physiology,
written in 200B.C., were studied as virtual gospel
for millennia. However, no one thought to check
Galen's descriptions until one upstart surgeon had
the gall1 to pick up a scalpel and perform
dissections for himself.  Versalius's De Humani
Corporis Fabrica, published in 1543, showed that
many of Galen's descriptions were inaccurate.

• Henri Fayol told us in 1916 that managers plan,
organise, co-ordinate and control. This model of
management lasted nearly six decades until proved
inadequate by the empirical observations of Henry
Mintzberg [17]. Fayol's terminology reflects the
vague objectives of a manager but are inadequate
for characterising the day-to-day activity of
managers2.

• It is usually accepted that structured programming
are a "good thing".  However, surveys of
published empirical results relating to this issue
are inconclusive. Further, the experimental
methods used to collect those results is
questionable [6].

Galen  and Fayol offered prescriptive views of what
should be. Versalius and Mintzberg offered us
descriptive views of what is, based on empirical
observations.

Debates regarding appropriate OO SE techniques
occupy much of our time. We fear that many of

1 Pun intended.

2 For example, a study of 56 U.S. foreman found that they
averaged 583 activities in an eight-hour shift (one every 48
seconds).  Another study of  160 British middle and top
managers found that they worked for half an hour or more
without interruption only once every two days.  These
empirical results of actual managerial behaviour does not fit
Fayol's model of managers as systematic planners [17].



these discussions are prescriptive. The empirical
evidence supporting our  current generation of OO
SE methodologies is very weak [6]. Lacking
experimental results, we cannot authoritatively state
that any one methodology is better than any other.
Further,  certain empirical results in the related field
of knowledge acquisition (KA) that run counter to
the intuitions and truisms of OO.  We therefore call
for a thorough empirical investigation of all these
truisms, e.g.: (i) OO is better than functional
decomposition; (ii) OO promotes re-use; (iii) OO
programs are easier to maintain and have fewer errors
that alternative approaches; and (iv) OO is currently
our best technique for SE.   As a starting point for
these investigations, we include designs for several
experiments. Many of these experiments could be
performed by commercial practitioners.

Note that while article is aimed at an OO audience,
its general argument applies to much of the software
enterprise. The current  experimental basis for belief
in any methodology is dubious (for a very short list
of the current evidence, see [6]). Consequently,
proponents of alternatives to OO (e.g. functional
decomposition) should not read this article as an
endorsement of their proposals.

Section two reviews the KA results.  Section three
describes several repeatable SE experiments.
Section four makes some general points regarding
experimentation. Our appendix includes sample
problems suitable for reproducible software
engineering experiments at a university.
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This section discusses certain empirical results from
the knowledge acquisition (KA) community. For a
devotee of the OO approach, these  results will be
somewhat counter-intuitive. We present them as
motivation for our general call for empirical
investigations of all aspects of the OO SE process.

The goal of KA is some high-level representation of
an expert's reasoning processes. To convert KA into
conventional SE, perform the following global
substitutions: (i) "upper-CASE tool" for "expert
system shell"3; (ii) "analysis" for "knowledge
acquisition"; (iii) "specification" for "knowledge
base"; (iv) "maintenance" for "knowledge
maintenance".  Also, add a decent search mechanism;
i.e. a fast OO-SQL language which can search over
all instances of a class or its subclass, accessing
code or data as required. This search engine should be
support a variety of intelligent search techniques
[19].

3 That is, expert systems shells focus on the explicit
representation of the high-level logic of the system, not the
low-level implementation details.
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As far as we are aware, the best published
demonstration of increased productivity using re-
usable components is DEC's SPARK/ BURN/
FIREFIGHTER (SBF)[13]. SBF was an experiment
in providing automated support for the entire
software life-cycle, from specification to
maintenance. SPARK was a meta-CASE tool that
automatically configured a problem-specific CASE
tool using diagrams supplied by a business user.
BURN executed the problem-specific CASE tool
which assisted business users to fill our the details
of their domain. BURN generated an executable
version of the program which was run and debugged
using the FIREFIGHTER tool.  Using the SBF
toolkit, the time required to build a range of expert
systems was dramatically reduced (e.g.  in one case,
200 days to 7). For more details on SBF (and its
limitations) see  [14].

Unfortunately for proponents of the OO approach,
SBF was developed via a functional decomposition
paradigm. A reverse engineering of numerous expert
systems suggested that a small number (less than
two dozen) of high-level functions were re-used in
many applications. Examples of these functions
included classify, specify, compare, and match.  SBF
was built on top of such a library.

We know of no other publications in the OO
literature demonstrating a higher level of
productivity and re-use. Quite the reverse, in fact. At
Tools '92, [15] claimed that examples of reusable
OO libraries are the rare exception rather than the
rule. This claim was not challenged by the
conference referees or attendees. Since writing that
article, we have found only two publications in an
international refereed conference or journal  that
empirically studies the reuse issue: Lewis et. al.
[10]  and Stark [22]. Lewis et. al. took a group of
university senior-level SE students and had them
build applications. The students were divided into
four groups according to two dimensions:

• With and without a class library of components
relevant to the problem at hand

• Using C++ or Pascal; i.e. with and without the
object paradigm

One of Lewis et al's conclusions that if
programmers do not reuse code, then the OO
paradigm does not promote higher productivity that
the functional decomposition paradigm (i.e. Pascal).
Combining this result with the experience of [15]
(i.e. reusable libraries are the rare exception), we see
that claims that OO is more productive than the
functional decomposition paradigm require further
empirical analysis.

The Stark study is an example of such an empirical
study. Unfortunately, Fenton et. al. characterise the
Stark study as interesting, but with a poor
experimental design [6]. The study discusses the



impacts of OO technology over seven years and
eleven software projects at NASA. Verbatim code re-
use of 90% of ADA source code from prior projects
is reported. Stark gives little detail on the nature of
the projects, so this claim is unconvincing.  In other
results, described in better detail, Stark reports
increasing code reuse from a 20-30% base line
(before OOT) to 75-80%.  This increased level of
reuse arose from a reorganisation of some
FORTRAN code:

(The developers) developed separate interface
routines and file formats for each kind d sensor.
Only a mission-specific front-end telemetry
processor had to be developed for new
missions. [22]

Stark notes that this OO-style reorganisation
occurred not at the analysis or design phase, but
during the final coding phase. Stark reads this result
as an endorsement of OO in general. A more critical
observer could read it as evidence that the real benefit
in OO is a general organisation principle that is
language/methodology independent.  Perhaps some
subset of our current OO technology is the real
source of its power. If so, then we should dispense
with possibly-superfluous and complicating details
(e.g. classes, inheritance,  automatic garbage
collection) while still applying "OO" to existing
techniques (e.g. FORTRAN).  We make no
comment here regarding the "true" conclusion from
the Stark study, except to note that more
experimentation is required.
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There are few empirical studies of software
development with even fewer studies of
maintenance. One result from KA community is the
variability of a specification. There seems to be no
"correct" model of any domain. Rather,
specifications seem to be a construct that varies
according to who says, and when. [21] took a group
of geology experts and had them construct
knowledge bases for the same problem. The experts
then reviewed each other's knowledge base and, after
12 weeks, their own. Table 1 shows that experts
may disagree significantly about what constitutes a
"correct" specification. For example, experts only
agreed with each other, at best one-third of the time.

Expert
pairs

Understands
(max = 100)

Agrees
 (max = 100)

E1,E2 62.5 33.3
E2,E1 61.1 26.7
E1,E3 31.2 8.3
E3,E1 42.9 33.3
E2,E3 44.4 20.0
E3,E2 71.4 33.3

Table 1: Ex , Ey denotes a  review by expert Ex
of expert Ey's specification.

Table 2 shows the expert's assessment of their own
knowledge base, 12 weeks after they wrote it. When
old knowledge is reviewed, it may be found wanting.
For example, expert 1 could only understand 62.5%
of what he'd written 12 weeks before. All experts
disagreed (to some extent) with their own ideas from
the past (as shown in the Agrees column of Table
2).

Understands Agrees
Expert (max = 100) (max = 100)

E1 62.5 81.2
E2 77.8 94.4
E3 85.7 78.6

Table 2 Self-review of a specification, 12 weeks
after it was written.

Tables 1 and 2 suggest that maintenance is a non-
trivial issue. Experts may change their mind. What
was "correct" before may now be considered
"wrong". This is a major problem for program
maintenance (the moving target syndrome).

Techniques for taming the maintenance problem
may not be a simple add-on to existing
methodologies, but may require a fundamental
restructuring of the software process. For example,
PIERS is an expert system for interpreting
biochemistry results in routine daily use at St.
Vincent's Hospital Sydney [20]. PIERS's expertise
covers  20% of the biochemical tests performed at
the hospital. The system processes 500 cases per day
at 99% accuracy. PEIRS contains 1380 rules and is
one of the largest expert systems in routine use in
the world today. The system was built and is
maintained using a structured patching methodology
called RDR [2]. Whenever a case results in an
inappropriate conclusion, the patch knowledge is
entered in as an unless  test beneath the rule that
resulted in error. As the specification develops, it
grows into a binary tree with knowledge patches
stored at every node (see figure 1). At runtime,  the
final conclusion is the conclusion of the last
satisfied node.

rule 1

a & b

then x1
if false

if true
(x1 is true
unless...)

if false

if true
then x2

rule 3

d

then x3

rule 2

c

then x2

  null

  null

Figure 1: An RDR-tree. At runtime,
the output conclusion is the
conclusion of the last satisfied node.

The advantage of this approach is that  knowledge
that works is never changed. New knowledge is
always an addition to the specification, never a re-
write. This is an application of the heuristic: "if it
ain't broke, don't fix it".



Large expert systems are notoriously hard to build
and maintain [23].  Neither of these problems were
found to be true with structured patching of PIERS.
Development was simple. Minimal preliminary
analysis was performed. After the database
connections were made (using standard software
engineering techniques), experts just considered the
cases present on  a particular day and told PIERS
what to say for each such case. Maintenance time is
constant (2-6 new rules per day) and very simple (a
total of a few minutes each day).

RDR can be characterised as a "minimal-analysis"
tool. After some initial analysis, the system goes
live and is patched in the context of its errors.
Global re-organisations are forbidden. Our pre-
experimental intuition was that such global
reorganisations are an essential precondition for good
software.  If so, then OO analysis should be able to
deliver a better PIERS than using RDR.

The following thought experiment compares OO
analysis with RDR.  Assuming the use of OO SE
methodologies, generate time estimates for building
and maintaining a system that models 20% of
human biochemistry sufficiently to make diagnoses
that are 99% accurate. Factor into your time
estimates:

• The changing nature of the field. PIERS was
originally built for one "domain" (thyroid tests).
It now covers a dozen domains.

• The hypothetical nature of the problem. Many
areas of human biochemistry are open research
issues.

• Knowledge of prior unsuccessful attempts. Prior
experiments in the same domain used extensive
preliminary analysis but never made it out of the
prototype stage [18].

Compare your time estimates to the development
and maintenance effort of PIERS4 using RDR.  If
your OO estimates for development and maintenance
are greater than RDR then start doubting the value
of extensive analysis.

The PIERS conclusion is that, given a structured
patching environment, extensive preliminary
analysis is a opt iona l part of the software
development life-cycle. This conclusion is counter-
intuitive and somewhat controversial. If this result
generalises, then entire communities of software
analysts face unemployment as users build their own
systems using structured patching. However,
opponents of the PIERS conclusion have little

4 PIERS's interface, inference engine, and database
connections were built by one part-time PhD student
between June 1990 and May 1991. PIER's rules were built
by a doctor in fulltime practice, during his spare moments.
The doctor and the PhD student interacted occasionally.
After the system went live (May 1991), the doctor spent a
few minutes each day (< 30) extending the rules. The
specification of the diagnosis knowledge has since grown
from 200 rules to 1380 rules  (690%).

empirical evidence to support their opposition.
Experiments with OO maintenance are described
below.
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This previous section described empirical results that
challenge the supremacy of the OO paradigm. This
section describes experiments for replying to that
challenge. Note that all but the last one could be
performed in a commercial context.

B 0 1 0 C D D E F 3 G ; H 3 < 8 6 : G 3 I : G J K L M

A common reaction when we discuss empirical
experimentation  in SE is "SE experiments are too
hard". For example, the  [7] study was hard work.
However, no matter how hard are SE experiments,
not performing them is even harder. If we don't
understand what we have done right or wrong in the
past, then we run the risk of repeating past mistakes
and ignoring past successes.

Experimentation can be simplified by up-front
experimental design. Most of the difficulty of the
[7] study  were from having to collect statistics in a
post-hoc manner.  We describe techniques below for
data collection in parallel with software
development.

Prior to that discussion, we note that post-hoc
analysis is not always impossibly difficult. For
example, the following study  took 2 months
elapsed time, but less than seven days actual time.
One of us (Haynes) performed all the experimental
work as a background task while working as a
fulltime software engineer.

 [8] reports an analysis of five Smalltalk systems
that found a simple linear relationship between
number of objects referenced by a class and the
source lines of code in that object  (OSLOC).
Smalltalk's untyped variables makes determining
"objects referenced" problematic. The butterfly
heuristic  makes a reasonably accurate guess as
follows:

• Given a set of objects O1,…Oi defining features

F1…Fj,  the set UNIQUE  F represents the
features defined in only one object.

• Determining what object is referenced by a call to
a method Met  ∈ UNIQUE  is trivial. A table
Refs  of the number of references an object makes
to another object is computed for the UNIQUE
method calls. From Refs, for each object Oi  we
can compute  Oi.common : the object referenced
most commonly by Oi.

• The objects referenced by Met ∉ UNIQUE  is
indeterminate; i.e. we have to guess.  The
butterfly heuristic says that object references act
like migrating butterflies: where they land
commonly  is where they will land always. The



butterfly heuristic  assigns indeterminate object
references in Oi  to Oi.common.

• This heuristic was verified by a statistical
analysis of the differences between heuristically
generated object reference tables and tables built
by hand. No significant difference could be
detected [8].

Once the heuristic was confirmed, several Smalltalk
applications were compared5. The following
relationship was empirically determined:

OSLOC = references/m - b
0.024 ≤   m  ≤  0.036

3.8 ≤  b ≤   7.2

Such an equation could be used for software size
estimation. Combined with knowledge of
OSLOC/hour for the programmers assigned to a
project, this equation could then be used for detailed
time estimation.

[8] argues that further data collection and better
experimental technique could enhance the precision
of this expression. The significance of this result to
our discussion here is that it was generated in a
small amount of time using existing resources. It is
a reproducible experiment. The conclusions of the
experiment are clear. The design of an experiment to
attempt to falsify this result is obvious (i.e. measure
other programs).

Summary: SE experiments are not necessarily hard.
Empirical data can be found if you care to look for it
and this may not be a long search.
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We have offered above a linear relationship between
number of objects reference and OSLOC. This
relationship could be explored in other applications.
In environments like Smalltalk that support
automatic tools for accessing method references,
then it should be a simple matter to apply the
butterfly heuristic and confirm/ refine/ refute this
formula.

If versions of the design documents are available,
then it would also be interesting to compute ∆, the
difference in objects referenced between the initial
design and the final code. If a definite pattern can be
detected in ∆, then size estimation could be
performed on initial design documents.
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If information is available on OSLOC/hour for
different programmers, then we could convert size
estimates into time estimates based on the available
programmer population. Such statistics could be
simply collected:

5 One locally generated application, and four others (some
taken from the Manchester FTP goodies library
st.cs.uiuc.edu).

1) If the source code for the editor of the
development environment was accessible, the
each key stroke (including backspace and
accounting for cuts and pastes) could be
calculated automatically. Whenever a new
method was saved, its size delta could be logged.
Logs could be refined for method creation,
changing, deletion.

2) If the source code is stored in text files, then the
size of the output of a UNIX diff  could be
collected each day for each programmer. Note
that this method #2 is second-best to method #1
since it is not as fine-grained as method #1.

In keeping with the general theme of this paper, we
argue that such measurements should be made with a
view to assessing some active hypothesis. If
developers kept paper time sheets that recorded their
work times, then time estimates made using this
technique could be compared with actual time. This
technique would be rejected if the actual vs estimated
time were statistically different.
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If developers can customise the exception handlers of
their environment, then a log could be appended to
whenever an exception is raised. See the appendix of
[16] for sample code that customises the Smalltalk
exception handler.

The error log could have at least the following
entries:

errors(time, date, object, method)

where object and method are the object and method
that raised the exception. Ideally, some database
keeps a log of error message texts and current users.
The error log could then be usefully extended to:

errors(time, date, object, method, user_id, error_id)

Recording user_id implies some method of signing
users on/off to the system.

Once such error logs are available, and if we can
track which programmers developed which classes,
then OSLOC/hour for a programmer could be more
realistically assessed vs Errors/hour in the code
written by particular programmers.
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Note that errors detected in the above manner are a
subset of all possible errors. For example, an
incorrect result resulting from an incorrect design
may be silently written to a database without calling
the exception handler.

The total set of errors can only be determined by a
visual inspection of a program. Such a process is
slow. It must be done by the top experts in the
code/business problem. Hence, it is very expensive.

An interesting result would be the development of a
surrogate error measure. That is, some automatically



measurable quantity (e.g. calls to the exception
handler) that is related to the number of total errors.

To assess the utility of the above error log as a
surrogate measure, we could compare the  above
error logs to total error lists generated from a sample
set of applications.
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Consider a development environment that logs errors
and OSLOC/hour as described above. Add to this
environment a facility to record the number of runs
of the program (e.g. every time a method was called
that was created or changed during a development).
Such an environment could automatically log most
of the [10] statistics during development, without
requiring additional effort on the part of the
programmer. However, instead of measuring Lewis
et al 's "Time to Fix Run Time Errors", we would
propose an alternative "error half-life" measure
calculated as follows:

• Recall that  each error has a unique id.

• Divide the development period up into N time
periods.

• For each error id, create a 2-D plot of time vs
errors per time period.

• Fit a curve. The parameters of that curve are the
error half-life (called a half-life since our pre-
experimental intuition is that the curve will be a
decaying exponential).

Different methodologies could now be assessed
according to the different error half-lives they
generate.
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Jacobson defines a "use case" as a typical use of a
program (e.g. creating a new account or looking for
a bad loan risk). Such use cases are typically at two
levels: (i) the business user level which describe
some business event; and (ii) programmer level
which describe some internal processing (e.g.
accessing a record via the database interface). A use-
case description should be detailed enough for an
outsider to be able to look at the program's
operation and categorically state that the program
can/can not run that use case. Use cases are a "large-
grain" function point. According to Jacobson, 20-30
use cases represent about 3 months development [9].

Use cases can be used for several purposes.
Analysis can proceed, in part, by the development of
business level use cases. Designs can be reviewed
with respect to the use case library; e.g. what
percent of the use case library can be handled by the
current design? Mapping changes to the use case
library vs time can highlight design creep.  Metrics
for managing evolutionary development can also be
generated from the use case library: (i) a continually
growing use case library means runaway design
creep; (ii) developers can have short-term goals such
as "implement these 30 use cases in the next 3

months"; (iii) end-of-project can be estimated by
charting the percentage coverage of the use-case
library vs time; and (iv) business-users can gain a
perspective into the development by assessing the
current handling of the business-level use cases.

Use cases can also be used for software engineering
experiments. If each use case is assigned a unique id
and marked as "done" when satisfactorily completed,
then we can chart "Number of completed use cases
per fortnight". Different methodologies could then
be assessed according to how quickly they can
implement use cases.  Further, using our knowledge
of OSLOC/hour and error half-life for the
programmers involved, we can adjust the results to
account for programmers of different speeds and
reliability.
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The attendees of Tools '94 have two populations of
"Lab-Rats" at their disposal: university students and
commercial programmers. Lewis et al. base their
results on university students, arguing that the
students behaviour was not too different to
commercial programmers. If this was true, then
repeatable SE experiments under controlled
conditions could be performed on university classes
and generalised to commercial programmers.
However, Lewis et al's experimental evidence for
this is brief and could be criticised.  One important
difference between the projects conducted in
university and industry is scale. Computer science
has been sarcastically described as the study of
programs less than 3000 lines long6. Commercial
projects can be much bigger. Factors that grow non-
linearly with size become crucial in large systems,
but  can be missed in small systems.

If software was developed in environments that
automatically computed error half-lives,
OSLOC/hour/programmer,  and use-case coverage,
then we could compare our two populations of "lab
rats". Not only would such a study be insightful
regarding teaching methods, it would also serve to
confirm/refute the Lewis et al. claim. The optimum
result for such a study would be a set of mapping
parameters that let us map the measurable behaviour
in university lab rats to commercial lab rats (e.g.
university students OSLOC =x times commercial
OSLOC).
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Organisations could develop the same project with
different programmer populations using different
"tools" (i.e. methodologies, languages), collect the
above statistics, and report on the impact of different
approaches on program errors and delivery rates of
use-cases.

6 About  the largest code chunk that can be built and
rigorously analysed in the space of one PhD.



If the  Lewis et al assumption (see last section)
proves to be correct, then multiple experiments
could be quickly conducted amongst university
students. If the mapping parameters (discussed
above) are known, then results from these university
experiments could be applied to commercial
problems.
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Experiments with software maintenance could also
be conducted, given the above environment.
Methodologies that give rise to fewer bugs could be
favoured for maintenance. Bug reports and change
requests could be mapped into new use cases. The
ability of different approaches to handle extensions
to the use case library could be charted and
compared.
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While collecting data to assess the Lewis et al
assumption, university researchers could perform
numerous SE experiments in the SE classes. One
pressing experiment is a comparative analysis of OO
and functional decomposition approaches:

• Students must first demonstrate proficiency in
functional decomposition and OO methods (e.g.
passing a prior subject on OO and functional
design and coding7).

• Students must then maintain someone else's code
written using either a functional decomposition or
object-oriented paradigm (denoted P1).

• Students must then build a new system using a
paradigm P2 (P1 <> P2).

Note that students would still be trained in multiple
approaches (i.e. their education would not suffer as a
result of their participation in the experiment).
Further, their experience in maintaining a system
would motivate their use of a methodology for
development.

We list here some pragmatic issues:

1) The OO and functional decomposition
development should take place in an
environment that collects the parameters
discussed above.  Lewis et al used logs written
by hand by each student. We feel that automatic
error logging is better, but hand collection
would suffice if this was not possible.

2) Given the time involved, this may be a full year
course.

3) Given the need for lab-rats to demonstrate
proficiency in two paradigms prior to their
participation in this study, this would be an
experiment for third-years or post-graduate
students.

7 We stress the need for our lab rats to demonstrate adequate
proficiency in both analysis and coding skills.

4) Given the last point, the pre-requisite subjects
must be co-ordinated with this SE subject; i.e.
to teach the object and functional decomposition
language and (ideally) do so in the session
before the SE subject is conducted.

5) Given the need to maintain programs in the first
half of the study, the  programs to be
maintained must be available.  Developing such
programs, or acquiring them, must be done prior
to subject commencement.

6) Given the need to study ∆ (see above discussion
on Size Estimators), students doing the coding
must supply an initial design prior to writing a
line of code.

7) The functional decomposition and OO languages
must be chosen with care least we confound
paradigm issues with other issues. For example,
Lewis et al. compared Pascal development with
C++ development since certain OO language
(e.g. Smalltalk) have a development
environment far superior to the simple text
editors typically used for C++ source. Also,
both Pascal and C++ are strongly-typed.

8) In order for meaningful comparisons to be made
for the coding problem, the same problem
should be implemented by different groups.
Suggested coding problems are discussed in our
appendix.

We note that an OO extension to Lisp, CLOS, also
runs in the same interactive environment and uses
many of the same debugging tools. Students using
the functional decomposition approach should be
forbidden to use defclass, :include in a
defstruct , funcall , apply , and eval .
Students using the OO approach would be required
to create a minimum number of classes C with at
least a certain number of methods per class M .
Actual figures for C and M  would have to be
dependant on the application.

We advocate Lisp/CLOS since these systems have
customisable exception handlers, whereas standard
Pascal implementations do not. Further, we know of
numerous Lisp/ CLOS Internet FTP sites where
exemplar programs can be accessed. Lastly,
sophisticated and free Lisp/CLOS environments are
available for many platforms. Hence we suggest
Lisp and CLOS for this study.
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We strongly caution against performing SE
experiments without an active hypothesis. Courtney
and Gurstafson describe such "shotgun experiments"
as follows:

…a hypothesis is not stated. The researchers are
experimenting with many different aspects of
software projects …researchers are loading



numerous variables and taking a shot to see if
they hit anything. …The standard shotgun
approach is to correlate as many measures as
possible against one or more dependent
variables…

Courtney and Gurstafson caution "the likelihood of
finding accidental relationships is high" and
demonstrate this via an analysis of 15 random
variable8. Numerous spurious correlations were
"discovered" between the random variables [3].

For example, the experimental design of [5] has
certain shotgun-ish features. They offer a set of
automatically generated metrics for class coherence.
However, they make only  a short and untested
comment (in their section 3.4.3) on how to use their
metrics to generate value judgements regarding
good/bad design. For our purposes (i.e. the detection
of the essential features that can generate good
software), their work is therefore incomplete.

Theory informs data collection and no theory results
in very poor data collection. We have been careful to
describe the goals of our experiments: (i) software
size and cost estimation; (ii) methodology
evaluation via use-case delivery time and error half-
lives. In our framework, hypothesis can be stated,
then confirmed or rejected.
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It will take at least three to four years of trying
before we can generate definitive empirical results.
We base this estimate on experiments in the KA
community in reproducible expert systems
development [11, 12].  Initially proposed in 1990,
the Sisyphus9 project took 1 year and 2 attempts to
generate a problem that motivated a wide
community of researchers. In all, 14 different
approaches were proposed for two problems by
different groups.  The implementation and analysis
of various approaches for the Sisyphus-1 problem
took another year. These approaches were all
presented at the same conference. A general
consensus at the end of that first project was that
Sisyphus-1  (room allocation under constraints) was
too small to be representative of real-world expert
systems.

Sisyphus-2 was much larger (elevator configuration)
and was aided by the "Jost document": an impressive
and precise description of a prior system that
performed this task. Resources like the Jost
document are scarce, which limits problem
selection.

In our view, the data collection for the Sisyphus-2
project was inadequate. Data was collected in a non-

8 E.G. var1 = random(x)*14+10;  var12 =
random(x)/random(y).

9 Sisyphus was doomed for eternity to roll the same rock up the
same hill again and again and again...

uniform manner and so comparative assessment
studies are hard. Further, the development teams
were focused on validating their own technique,
rather than trying a  range of techniques (including
their own) to test if their technique was superior/
inferior to techniques from other paradigms. This
deficiency was not recognised till after Sisyphus-2
was complete (1994). Hopefully, data collection will
be more rigorous for future Sisyphus projects.

Despite these data collection problems, the KA
community has benefited from the Sisyphus
experiences. They now have a greater understanding
of each other's techniques. This understanding has
lead to an invaluable cross-fertilisation of ideas and a
significant maturation of KA development
approaches. Further, the KA community is now
developing  empirical evaluation methodologies.

Generalising this experience, we can see that (i) such
reproducible experiments conducted by groups of
researchers are a valuable exercise; (ii) developing a
sufficing empirical experimental regime takes
several years and several attempts (i.e. we should not
give up if we fail first time); (iii) such efforts are
greatly enhanced by scarce resources such as the Jost
document.
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i) Contrary to popular OO folklore, the supremacy
of the OO paradigm is an open research issue.
Empirical evidence for statements such as "OO
code is re-usable", "OO programming is more
productive that functional decomposition", and
"OO generates more robust code" is lacking.
Further, OO has yet to match results from other
communities which use a variety of non-OO
techniques (e.g. the SBF results).

ii) Contrary to popular OO SE folklore, repeatable
SE experiments are possible  (see the list in the
section 3).

iii) Given (i), and the feasibility of (ii), the OO SE
community should halt the generation of new
methodologies while it actively and empirically
explores the strengths and weaknesses of current
approaches. Based on the  Sisyphus experience,
we predict that such an empirical analysis will
take at least three to four years and will involve
at least two false starts.

iv) Given (iii), no new OO methodology should be
proposed till 1998.
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This appendix describes projects we feel are suitable
for reproducible university software engineering
experiments (e.g. the comparison between the
functional decomposition and OO paradigm).

Sisyphus-1 and Sisyphus-2 are clearly documented
and existing published solutions exist in a
international publications. Both are pure inference
tasks (as apposed to e.g. the interactive interface
tasks below). Both have an objective criteria of
success. There exists only one legal allocation of
staff to rooms in the Sisyphus-1 problem. There
exist numerous solutions which satisfy the
constraints of  the  Sisyphus-2 elevator
configuration problem, but the best solution is the
cheapest elevator that satisfies the constraints.

Another well-specified software engineering problem
would be the construction of an SQL system that
could handle all the SQL examples of chapters
4,5,6,7, and 8 of Date's database text [4]. Initially
students could be asked to assume RAM storage.
Students maintaining the code could be asked to
make certain changes such as (i) disc-based storage
using B*-trees (see section 4.5.1. of [24]); (ii)
speeding up the code by at least a factor of 10; (iii)
adding integrity rules (see chapter 11 of Date), or
(iv) a QBE front-end to the SQL (see examples in
section 14.6).



Other possibilities have less-well-defined goals, but
far more succinct descriptions. We believe that
inferring a complete specification from a partial
description of the problem is a valuable training
exercise for an apprentice software engineer. Certain
visual problems have a very succinct partial
description. For example, students could be asked to
build a system that inputs Figure 2 and outputs an
graph to an ascii file.

label Percent of Students Passing Comp321
range 1983 50 1993 100
bottom ticks 1983 1985 1987 1989 1991 1993
left ticks 50 60 70 80 90 100
1984 61
1985 72
1986 55
1987 65
1988 71
1989 73
1990 70
1991 79
1992 66
1993 73

Figure 2: Input to a simple Grapher application.

Grapher is a small introductory problem. Grapher
could be made more intricate by telling students that
the parser of the input must be separate to the graph
generator which is also separate to the output
routines. This could be motivated by saying that, in
the future: (i) the system will later be used to write
to some X-terminals which can   address a two-
dimensional space; and (ii) different import routines
will be used (e.g. from a spreadsheet rather than text
files like Figure 2).

Other, more intricate problems are Breakout and
Smart-Ask. These systems can be succinctly
specified with one screen and a few lines of
explanation.

• Breakout is a simple video game specified by [1]
that can be implemented on ascii terminals. Both
an OO and a functional decomposition
specification are supplied (in sections 6.2 and
9.1).

• Smar t -Ask is an intelligent table for life
insurance clerks that contains pre- and post-
processing rules for controlling which table to
use and what to do with the generated table. For
more details, see section 2.1 of [15].

In terms of complexity, Breakout, Grapher, and
Sisyphus-1, are much simpler that the other three.
Sisyphus-2 is possibly the hardest since the Jost
document takes a while to understand. The SQL task
is probably longer than Sisyphus-2, but the
conceptual problems are easier. Tacit in Smart-Ask
are  interactive authoring tools for building the
tables/rules and a database for sharing tables/ student
results.


